
Intel® Math Kernel Library

Reference Manual

World Wide Web: http://developer.intel.com

March 2007

Disclaimer and Legal Information

Document Number: 630813-025US

DateVersion InformationVersion

11/94Original Issue.-001

5/95Added functions crotg, zrotg. Documented versions of functions ?her2k, ?symm, ?syrk, and
?syr2k not previously described. Pagination revised.

-002

1/96Changed the title; former title: “Intel BLAS Library for the Pentium® Processor Reference
Manual.”

-003

Added functions ?rotm, ?rotmg and updated Appendix C.

11/96Documents Intel® Math Kernel library (Intel® MKL) release 2.0 with the parallelism capability.
Information on parallelism has been added in Chapter 1 and in section “BLAS Level 3 Routines”
in Chapter 2.

-004

8/97Two-dimensional FFTs have been added. C interface has been added to both one- and
two-dimensional FFTs.

-005

1/98Documents Intel Math Kernel Library release 2.1. Sparse BLAS section has been added in
Chapter 2.

-006

1/99Documents Intel Math Kernel Library release 3.0. Descriptions of LAPACK routines (Chapters
4 and 5) and CBLAS interface (Appendix C) have been added. Quick Reference has been
excluded from the manual; MKL 3.0 Quick Reference is now available in HTML format.

-007

6/99Documents Intel Math Kernel Library release 3.2. Description of FFT routines have been
revised. In Chapters 4 and 5 NAG names for LAPACK routines have been excluded.

-008

11/99New LAPACK routines for eigenvalue problems have been added in chapter 5.-009

06/00Documents Intel Math Kernel Library release 4.0. Chapter 6 describing the VML functions has
been added.

-010

04/01Documents Intel Math Kernel Library release 5.1. LAPACK section has been extended to include
the full list of computational and driver routines.

-011

07/02Documents Intel Math Kernel Library release 6.0 beta. New DFT interface and Vector Statistical
Library functions have been added.

-6001

12/02Documents Intel Math Kernel Library 6.0 beta update. DFT functions description has been
updated. CBLAS interface description was extended.

-6002

03/03Documents Intel Math Kernel Library 6.0 gold. DFT functions have been updated. Auxiliary
LAPACK routines’ descriptions were added to the manual.

-6003

07/03Documents Intel Math Kernel Library release 6.1.-6004

11/03Documents Intel Math Kernel Library release 7.0 beta. Includes ScaLAPACK and sparse solver
descriptions.

-6005

04/04Documents Intel MKL and Intel® Cluster MKL release 7.0 gold. Auxiliary ScaLAPACK and
alternative sparse solver interface were added.

-017

3

DateVersion InformationVersion

03/05Documents Intel MKL and Intel® Cluster MKL release 8.0 beta. Sparse BLAS and DFTI
sections were extended. New functionality was added: Sparse BLAS, Cluster DFTI, iterative
sparse solver, multiple-precision arithmetic, interval linear solver, and
convolution/correlation. Fortran95 interface to LAPACK functions was added.

-018

08/05Documents Intel MKL and Intel® Cluster MKL release 8.0 gold. Fortran95 interface to
BLAS and Sparse BLAS functions has been added.

-019

03/06Documents Intel MKL and Intel Cluster MKL release 8.0.2. PARDISO functionality
description has been extended with indefinite symmetric matrices pivoting.

-020

03/06Documents Intel MKL and Intel Cluster MKL release 8.1 gold. Chapter 13 on Trigonometric
Transform functions has been added. Information on specific features of Fortran-95
implementation for LAPACK routines has been reflected in a new Appendix E and the
relevant subsection of Chapter 3.

-021

05/06Documents Intel MKL and Intel Cluster MKL release 9.0 beta. Statistical Functions, Fourier
Transform Functions (Cluster DFT) descriptions have been updated. Description of new
VML functions, RCI Sparse Solvers, and Poisson solver have been added. Chapter 13 has
been renamed to PDE Support. Code examples have been expanded.

-022

09/06Documents Intel MKL and Intel Cluster MKL release 9.0 gold. Complex Interval Solvers
have been added. Description of the old deprecated FFT functions have been removed.

-023

01/07Documents Intel MKL and Intel Cluster MKL release 9.1 beta. Optimization Solvers
Routines and Support Functions chapters have been added. Chapters on Sparse Solvers
and Partial Differential Equations Support have been extended. LAPACK chapters have
been partially updated to reflect LAPACK 3.1 version.

-024

03/07Documents Intel MKL and Intel Cluster MKL release 9.1 gold. BLACS chapter has been
added. Chapters on BLAS and FFT have been extended. LAPACK chapters have been
additionally updated to reflect LAPACK 3.1 version. Description of BSR format has been
added to Appendix A. New FFT examples have been added to Appendix C.

-025

4

Intel® Math Kernel Library Reference Manual

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED
BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT
OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life
sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The software described in this document may contain software defects which may cause the product to deviate
from published specifications. Current characterized software defects are available on request.

This document as well as the software described in it is furnished under license and may only be used or copied
in accordance with the terms of the license. The information in this manual is furnished for informational use
only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation.
Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means without the express written consent of Intel Corporation.

Developers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Improper use of reserved or undefined features or instructions may cause unpredictable behavior
or failure in developer’s software code when running on an Intel processor. Intel reserves these features or
instructions for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from their unauthorized use.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel.
Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon,
and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 1994-2007, Intel Corporation.

Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

Chapters 4 and 5 include derivative work portions that have been copyrighted:

© 1991, 1992, and 1998 by The Numerical Algorithms Group, Ltd.

5

Contents

Chapter 1: Overview
About This Software..33

Technical Support...34
BLAS Routines..34
Sparse BLAS Routines...35
LAPACK Routines..35
ScaLAPACK Routines...36
Sparse Solver Routines..36
VML Functions..36
Statistical Functions..36
Fourier Transform Functions...37
Interval Solver Routines...37
Partial Differential Equations Support...37
Optimization Solvers Routines..37
Support Functions...38
BLACS Routines..38
GMP Arithmetic Functions..38
Performance Enhancements...38
Parallelism...39
Platforms Supported..39

About This Manual...40

7

Audience for This Manual...40
Manual Organization...40
Notational Conventions..42

Chapter 2: BLAS and Sparse BLAS Routines
Routine Naming Conventions..45
Fortran-95 Interface Conventions..47
Matrix Storage Schemes..48
BLAS Level 1 Routines and Functions...49

?asum...50
?axpy...51
?copy..53
?dot..54
?sdot..56
?dotc..57
?dotu..59
?nrm2...60
?rot..61
?rotg..63
?rotm...64
?rotmg..67
?scal...69
?swap...71
i?amax..72
i?amin..73
dcabs1..75

BLAS Level 2 Routines...75
?gbmv..77
?gemv..81
?ger..84
?gerc..86
?geru..88

8

Intel® Math Kernel Library Reference Manual

?hbmv..90
?hemv..93
?her..96
?her2..98
?hpmv...101
?hpr..103
?hpr2..105
?sbmv...108
?spmv...111
?spr..114
?spr2..116
?symv...118
?syr..121
?syr2..123
?tbmv...125
?tbsv..129
?tpmv...133
?tpsv..136
?trmv..138
?trsv...141

BLAS Level 3 Routines...143
?gemm..145
?hemm..149
?herk..152
?her2k..155
?symm..159
?syrk..162
?syr2k...166
?trmm...170
?trsm..173

Sparse BLAS Level 1 Routines and Functions.................................176
Vector Arguments...177

9

Contents

Naming Conventions...177
Routines and Data Types..177
BLAS Level 1 Routines That Can Work With Sparse Vectors.....178
?axpyi...179
?doti...181
?dotci..182
?dotui...184
?gthr...185
?gthrz...187
?roti..188
?sctr...190

Sparse BLAS Level 2 and Level 3...191
Naming Conventions in Sparse BLAS Level 2 and Level 3.......191
Sparse Matrix Data Structures..193
Routines and Supported Operations.....................................193
Interface Consideration...195
Sparse BLAS Level 2 and Level 3 Routines............................200

Chapter 3: LAPACK Routines: Linear Equations
Routine Naming Conventions..288
Fortran-95 Interface Conventions..289

MKL Fortran-95 Interfaces for LAPACK Routines vs. Netlib
Implementation..291

Matrix Storage Schemes..292
Mathematical Notation...293
Error Analysis...293
Computational Routines...294

Routines for Matrix Factorization...297
Routines for Solving Systems of Linear Equations..................325
Routines for Estimating the Condition Number......................362
Refining the Solution and Estimating Its Error.......................396
Routines for Matrix Inversion..439

10

Intel® Math Kernel Library Reference Manual

Routines for Matrix Equilibration...457
Driver Routines...470

?gesv..471
?gesvx..475
?gbsv..481
?gbsvx..484
?gtsv..491
?gtsvx...493
?posv..498
?posvx..500
?ppsv..505
?ppsvx..508
?pbsv..513
?pbsvx..516
?ptsv..521
?ptsvx...523
?sysv..527
?sysvx...530
?hesv..535
?hesvx..538
?spsv..543
?spsvx..545
?hpsv..550
?hpsvx..552

Chapter 4: LAPACK Routines: Least Squares and Eigenvalue
Problems

Routine Naming Conventions..558
Matrix Storage Schemes..560
Mathematical Notation...560
Computational Routines...561

Orthogonal Factorizations..561

11

Contents

Singular Value Decomposition...643
Symmetric Eigenvalue Problems...675
Generalized Symmetric-Definite Eigenvalue Problems............756
Nonsymmetric Eigenvalue Problems....................................774
Generalized Nonsymmetric Eigenvalue Problems...................834
Generalized Singular Value Decomposition...........................878

Driver Routines...891
Linear Least Squares (LLS) Problems...................................892
Generalized LLS Problems..909
Symmetric Eigenproblems..917
Nonsymmetric Eigenproblems...1015
Singular Value Decomposition...1040
Generalized Symmetric Definite Eigenproblems...................1057
Generalized Nonsymmetric Eigenproblems..........................1136

Chapter 5: LAPACK Auxiliary and Utility Routines
Auxiliary Routines..1169

?lacgv...1184
?lacrm...1185
?lacrt..1186
?laesy...1187
?rot...1189
?spmv...1190
?spr..1192
?symv...1194
?syr..1196
i?max1..1197
?sum1...1198
?gbtf2...1199
?gebd2..1201
?gehd2..1203
?gelq2...1205

12

Intel® Math Kernel Library Reference Manual

?geql2...1207
?geqr2...1209
?gerq2...1210
?gesc2...1212
?getc2...1213
?getf2...1215
?gtts2..1216
?isnan...1218
?laisnan...1218
?labrd..1219
?lacn2...1222
?lacon...1224
?lacpy...1225
?ladiv..1227
?lae2...1228
?laebz...1229
?laed0...1234
?laed1...1237
?laed2...1239
?laed3...1242
?laed4...1244
?laed5...1246
?laed6...1247
?laed7...1249
?laed8...1253
?laed9...1256
?laeda...1258
?laein..1260
?laev2...1263
?laexc...1265
?lag2...1267
?lags2...1269

13

Contents

?lagtf..1271
?lagtm...1273
?lagts..1275
?lagv2...1277
?lahqr..1280
?lahrd..1283
?lahr2..1286
?laic1..1289
?laln2..1291
?lals0..1295
?lalsa..1299
?lalsd..1303
?lamrg...1306
?laneg...1307
?langb...1308
?lange...1310
?langt..1311
?lanhs...1313
?lansb...1314
?lanhb...1316
?lansp...1318
?lanhp...1320
?lanst/?lanht..1322
?lansy...1323
?lanhe...1325
?lantb..1327
?lantp..1329
?lantr..1331
?lanv2...1333
?lapll...1334
?lapmt...1335
?lapy2...1337

14

Intel® Math Kernel Library Reference Manual

?lapy3...1337
?laqgb...1338
?laqge...1340
?laqhb...1342
?laqp2...1344
?laqps...1346
?laqr0..1348
?laqr1..1352
?laqr2..1354
?laqr3..1358
?laqr4..1362
?laqr5..1366
?laqsb...1370
?laqsp...1372
?laqsy...1374
?laqtr..1375
?lar1v..1378
?lar2v..1381
?larf..1383
?larfb..1385
?larfg..1387
?larft...1389
?larfx..1392
?largv..1393
?larnv..1395
?larra..1396
?larrb..1398
?larrc..1400
?larrd..1402
?larre..1406
?larrf...1410
?larrj...1413

15

Contents

?larrk..1415
?larrr...1416
?larrv..1418
?lartg..1422
?lartv..1424
?laruv..1425
?larz..1426
?larzb..1428
?larzt..1431
?las2...1434
?lascl...1436
?lasd0...1437
?lasd1...1439
?lasd2...1443
?lasd3...1447
?lasd4...1450
?lasd5...1452
?lasd6...1453
?lasd7...1458
?lasd8...1462
?lasd9...1464
?lasda...1467
?lasdq...1471
?lasdt..1474
?laset..1475
?lasq1...1476
?lasq2...1477
?lasq3...1479
?lasq4...1480
?lasq5...1481
?lasq6...1483
?lasr..1484

16

Intel® Math Kernel Library Reference Manual

?lasrt..1488
?lassq..1489
?lasv2...1491
?laswp...1492
?lasy2...1494
?lasyf..1496
?lahef..1498
?latbs..1501
?latdf..1503
?latps..1506
?latrd..1508
?latrs..1512
?latrz..1516
?lauu2...1519
?lauum..1520
?lazq3...1521
?lazq4...1524
?org2l/?ung2l...1526
?org2r/?ung2r..1527
?orgl2/?ungl2...1529
?orgr2/?ungr2..1531
?orm2l/?unm2l...1532
?orm2r/?unm2r..1535
?orml2/?unml2...1537
?ormr2/?unmr2..1540
?ormr3/?unmr3..1542
?pbtf2...1545
?potf2...1547
?ptts2..1548
?rscl..1550
?sygs2/?hegs2..1551
?sytd2/?hetd2..1553

17

Contents

?sytf2..1555
?hetf2...1557
?tgex2...1559
?tgsy2...1562
?trti2...1566
clag2z...1568
dlag2s...1569
slag2d...1570
zlag2c...1571

Utility Functions and Routines...1572
ilaver...1573
ilaenv..1573
iparmq..1576
ieeeck...1578
lsame..1579
lsamen..1580
?labad...1581
?lamch..1582
?lamc1..1583
?lamc2..1584
?lamc3..1585
?lamc4..1585
?lamc5..1586
second/dsecnd..1587
xerbla..1588

Chapter 6: ScaLAPACK Routines
Overview...1589
Routine Naming Conventions..1590
Computational Routines...1592

Linear Equations...1592
Routines for Matrix Factorization.......................................1593

18

Intel® Math Kernel Library Reference Manual

Routines for Solving Systems of Linear Equations................1611
Routines for Estimating the Condition Number....................1632
Refining the Solution and Estimating Its Error.....................1642
Routines for Matrix Inversion..1655
Routines for Matrix Equilibration..1661
Orthogonal Factorizations...1667
Symmetric Eigenproblems..1748
Nonsymmetric Eigenvalue Problems...................................1775
Singular Value Decomposition...1789
Generalized Symmetric-Definite Eigen Problems..................1805

Driver Routines...1810
p?gesv..1811
p?gesvx...1813
p?gbsv..1820
p?dbsv..1823
p?dtsv...1826
p?posv..1829
p?posvx...1831
p?pbsv..1838
p?ptsv...1841
p?gels...1844
p?syev...1849
p?syevx...1852
p?heevx...1860
p?gesvd...1869
p?sygvx...1874
p?hegvx...1883

Chapter 7: ScaLAPACK Auxiliary and Utility Routines
Auxiliary Routines..1895

p?lacgv..1902
p?max1...1903

19

Contents

?combamax1..1904
p?sum1...1905
p?dbtrsv..1906
p?dttrsv...1910
p?gebd2..1914
p?gehd2..1918
p?gelq2...1922
p?geql2...1924
p?geqr2...1927
p?gerq2...1930
p?getf2..1933
p?labrd..1935
p?lacon..1940
p?laconsb..1942
p?lacp2..1943
p?lacp3..1945
p?lacpy..1947
p?laevswp..1949
p?lahrd..1951
p?laiect..1954
p?lange...1956
p?lanhs..1958
p?lansy, p?lanhe...1961
p?lantr..1964
p?lapiv..1967
p?laqge...1971
p?laqsy..1973
p?lared1d..1976
p?lared2d..1977
p?larf..1979
p?larfb...1983
p?larfc...1988

20

Intel® Math Kernel Library Reference Manual

p?larfg...1992
p?larft...1994
p?larz..1998
p?larzb..2002
p?larzc..2007
p?larzt...2011
p?lascl...2016
p?laset..2018
p?lasmsub...2020
p?lassq..2021
p?laswp...2023
p?latra...2025
p?latrd..2026
p?latrs...2031
p?latrz...2034
p?lauu2...2037
p?lauum..2039
p?lawil...2040
p?org2l/p?ung2l..2041
p?org2r/p?ung2r...2044
p?orgl2/p?ungl2..2047
p?orgr2/p?ungr2...2050
p?orm2l/p?unm2l..2053
p?orm2r/p?unm2r...2057
p?orml2/p?unml2..2062
p?ormr2/p?unmr2...2066
p?pbtrsv..2071
p?pttrsv...2076
p?potf2..2080
p?rscl..2082
p?sygs2/p?hegs2..2083
p?sytd2/p?hetd2...2086

21

Contents

p?trti2...2090
?lamsh..2092
?laref..2094
?lasorte...2096
?lasrt2...2097
?stein2..2098
?dbtf2...2101
?dbtrf..2103
?dttrf...2105
?dttrsv..2106
?pttrsv..2108
?steqr2..2110

Utility Functions and Routines...2112
p?labad...2112
p?lachkieee..2113
p?lamch...2114
p?lasnbt..2116
pxerbla..2117

Chapter 8: Sparse Solver Routines
PARDISO - Parallel Direct Sparse Solver Interface........................2119

pardiso..2120
Direct Sparse Solver (DSS) Interface Routines............................2136

DSS Interface Description..2138
dss_create...2139
dss_define_structure...2140
dss_reorder..2141
dss_factor_real, dss_factor_complex.................................2142
dss_solve_real, dss_solve_complex...................................2143
dss_delete...2145
dss_statistics..2145
mkl_cvt_to_null_terminated_str..2149

22

Intel® Math Kernel Library Reference Manual

Implementation Details..2149
Iterative Sparse Solvers based on Reverse Communication Interface

(RCI ISS)...2151
CG Interface Description..2156
FGMRES Interface Description...2162
dcg_init...2171
dcg_check..2172
dcg...2173
dcg_get...2175
dcgmrhs_init..2176
dcgmrhs_check...2178
dcgmrhs..2179
dcgmrhs_get..2182
dfgmres_init...2183
dfgmres_check...2184
dfgmres...2185
dfgmres_get...2188
Implementation Details..2189

Preconditioners or Accelerators based on Incomplete LU Factorization
Technique...2190

ILU0 Preconditioner Interface Description...........................2193
dcsrilu0...2194

Calling Sparse Solver Routines From C/C++...............................2198

Chapter 9: Vector Mathematical Functions
Data Types and Accuracy Modes..2201
Function Naming Conventions...2202

Functions Interface...2203
Vector Indexing Methods..2205
Error Diagnostics...2206
VML Mathematical Functions...2207

Inv..2208

23

Contents

Div..2210
Sqrt..2211
InvSqrt..2213
Cbrt..2214
InvCbrt..2215
Pow...2216
Powx...2218
Hypot..2221
Exp...2222
Ln...2224
Log10..2226
Cos...2227
Sin..2229
SinCos...2231
Tan...2232
Acos..2234
Asin..2235
Atan..2237
Atan2..2239
Cosh...2240
Sinh..2242
Tanh..2244
Acosh..2245
Asinh...2247
Atanh..2249
Erf..2250
Erfc...2252
ErfInv..2253
Floor...2255
Ceil...2256
Trunc...2257
Round...2258

24

Intel® Math Kernel Library Reference Manual

NearbyInt..2259
Rint...2261
Modf...2262

VML Pack/Unpack Functions..2263
Pack..2264
Unpack..2266

VML Service Functions...2269
SetMode..2269
GetMode..2272
SetErrStatus...2273
GetErrStatus..2275
ClearErrStatus..2275
SetErrorCallBack...2276
GetErrorCallBack...2279
ClearErrorCallBack..2280

Chapter 10: Statistical Functions
Random Number Generators...2281

Conventions...2282
Basic Generators...2289
Error Reporting...2293
Service Routines...2294
Distribution Generators..2323
Advanced Service Routines...2385

Convolution and Correlation..2394
Overview...2394
Naming Conventions..2396
Data Types...2397
Parameters..2397
Task Status and Error Reporting..2400
Task Constructors...2402
Task Editors...2414

25

Contents

Task Execution Routines...2421
Task Destructors...2433
Task Copy..2435
Usage Examples...2436
Mathematical Notation and Definitions...............................2440
Data Allocation...2441

Chapter 11: Fourier Transform Functions
DFT Functions...2445

Computing DFT...2446
DFT Interface...2447
Status Checking Functions..2448
Descriptor Manipulation Functions.....................................2452
DFT Computation Functions..2458
Descriptor Configuration Functions....................................2464
Configuration Settings...2471

Cluster DFT Functions..2499
Computing Cluster DFT..2501
Distributing Data among Processes....................................2502
Cluster DFT Interface..2505
Descriptor Manipulation Functions.....................................2506
DFT Computation Functions..2511
Descriptor Configuration Functions....................................2517
Error Codes..2525

Chapter 12: Interval Linear Solvers
Routine Naming Conventions..2528
Routines for Fast Solution of Interval Systems.............................2529

?trtrs...2529
?gegas..2531
?gehss...2533

26

Intel® Math Kernel Library Reference Manual

?gekws..2535
?gegss...2537
?gehbs..2539

Routines for Sharp Solution of Interval Systems..........................2540
?gepps..2540
?gepss...2543

Routines for Inverting Interval Matrices......................................2547
?trtri...2547
?geszi..2548

Routines for Checking Properties of Interval Matrices...................2549
?gerbr...2549
?gesvr...2551

Auxiliary and Utility Routines..2553
?gemip..2553

Chapter 13: Partial Differential Equations Support
Trigonometric Transform Routines..2557

Transforms Implemented...2557
Sequence of Invoking TT Routines.....................................2559
Interface Description...2561
TT Routines..2561
Common Parameters...2571
Implementation Details..2575

Poisson Library Routines ..2579
Poisson Library Implemented..2580
Sequence of Invoking PL Routines.....................................2587
Interface Description...2591
PL Routines for the Cartesian Solver..................................2592
PL Routines for the Spherical Solver..................................2608
Common Parameters...2617
Implementation Details..2626

Calling PDE Support Routines from Fortran-90.............................2639

27

Contents

Chapter 14: Optimization Solvers Routines
Organization and Implementation..2643
Nonlinear Least-Squares Problem without Constraints..................2645

dtrnlsp_init..2646
dtrnlsp_solve..2647
dtrnlsp_get..2649
dtrnlsp_delete..2651
Examples of dtrnlsp Usage...2652

Nonlinear Least-Squares Problem with Linear (Bound) Constraints..2666
dtrnlspbc_init...2667
dtrnlspbc_solve..2668
dtrnlspbc_get...2670
dtrnlspbc_delete...2671
Examples of dtrnlspbc Usage..2672

Jacobi Matrix Calculation Routines...2688
djacobi_init..2689
djacobi_solve...2690
djacobi_delete..2691
djacobi..2691
Examples of djacobi_solve Usage......................................2693
Examples of djacobi Usage...2700

Chapter 15: Support Functions
Version Information Functions...2706

MKLGetVersion...2706
MKLGetVersionString...2709

Error Handling Functions..2710
xerbla..2710
pxerbla..2711

Equality Test Functions...2712

28

Intel® Math Kernel Library Reference Manual

lsame..2712
lsamen..2712

Timing Functions...2713
second/dsecnd..2713
getcpuclocks..2714
getcpufrequency...2714
setcpufrequency...2715

Memory Functions...2715
MKL_FreeBuffers...2715

Chapter 16: BLACS Routines
Initialization Routines..2719

blacs_pinfo..2720
blacs_setup..2720
blacs_get...2721
blacs_set...2723
blacs_gridinit..2724
blacs_gridmap..2725

Destruction Routines..2727
blacs_freebuff...2727
blacs_gridexit...2728
blacs_abort..2728
blacs_exit..2729

Informational Routines...2730
blacs_gridinfo...2730
blacs_pnum...2731
blacs_pcoord..2731

Miscellaneous Routines..2732
blacs_barrier..2732

Examples of BLACS Routines Usage...2734

29

Contents

Appendix A: Linear Solvers Basics
Sparse Linear Systems...2743

Matrix Fundamentals...2744
Direct Method...2745
Sparse Matrix Storage Formats...2751

Interval Linear Systems...2766
Intervals..2766
Interval vectors and matrices...2767
Preconditioning...2772
Inverting interval matrices...2773

Appendix B: Routine and Function Arguments
Vector Arguments in BLAS..2775
Vector Arguments in VML...2776
Matrix Arguments..2777

Appendix C: Code Examples
BLAS Code Examples...2783
PARDISO Code Examples...2790

Examples for Sparse Symmetric Linear Systems..................2790
Examples for Sparse Unsymmetric Linear Systems..............2802

Direct Sparse Solver Code Examples..2816
Iterative Sparse Solver Code Examples......................................2832
Fourier Transform Functions Code Examples................................2865

DFT Code Examples...2866
Examples for Cluster DFT Functions...................................2891

Interval Linear Solvers Code Examples.......................................2894
PDE Support Code Examples...2905

Trigonometric Transforms Interface Code Examples.............2906
Poisson Library Code Examples...2926

30

Intel® Math Kernel Library Reference Manual

Appendix D: CBLAS Interface to the BLAS
CBLAS Arguments...2963
Level 1 CBLAS..2964
Level 2 CBLAS..2968
Level 3 CBLAS..2977
Sparse CBLAS...2981

Appendix E: Specific Features of Fortran-95 Interfaces for
LAPACK Routines

Interfaces Identical to Netlib...2984
Interfaces with Replaced Argument Names.................................2987
Modified Netlib Interfaces...2989
Interfaces Absent From Netlib...2991
Interfaces of New Functionality...2997

Appendix F: Optimization Solvers Basics
Nonlinear Least Square Problem..2999
Trust Region Algorithm...3000

Bibliography

Glossary

Index

31

Contents

32

Intel® Math Kernel Library Reference Manual

1Overview

The Intel® Math Kernel Library (Intel® MKL) provides Fortran routines and functions that perform a wide
variety of operations on vectors and matrices including sparse matrices and interval matrices. The library
also includes discrete Fourier transform routines, as well as vector mathematical and vector statistical
functions with Fortran and C interfaces.

The version of the library named Intel® Cluster MKL is a superset of Intel MKL and includes also ScaLAPACK
software and Cluster DFT software for solving respective computational problems on distributed-memory
parallel computers.

The Intel MKL enhances performance of the application programs that use it because the library has been
optimized for latest generations of Intel® processors.

This chapter introduces the Intel Math Kernel Library and provides information about the organization of
this manual.

About This Software
The Intel® Math Kernel Library includes the following groups of routines:

• Basic Linear Algebra Subprograms (BLAS):

– vector operations

– matrix-vector operations

– matrix-matrix operations

• Sparse BLAS Level 1, 2, and 3 (basic operations on sparse vectors and matrices)

• LAPACK routines for solving systems of linear equations

• LAPACK routines for solving least-squares problems, eigenvalue and singular value problems,
and Sylvester's equations

• Auxiliary and utility LAPACK routines

• ScaLAPACK computational, driver and auxiliary routines (for Intel Cluster MKL only)

• Direct and Iterative Sparse Solver routines

• Vector Mathematical Library (VML) functions for computing core mathematical functions on vector
arguments (with Fortran and C interfaces)

• Vector Statistical Library (VSL): functions for generating vectors of pseudorandom numbers with
different types of statistical distributions and for performing convolution and correlation
computations

33

• General Discrete Fourier Transform Functions (DFT), providing fast computation of DFT via
the Fast Fourier Transform (FFT) algorithms and having Fortran and C interfaces

• Cluster DFT functions (for Intel Cluster MKL only)

• Interval Solver routines for solving systems of interval linear equations

• Tools for solving partial differential equations - trigonometric transform routines and Poisson
solver

• Optimization Solver routines for solving nonlinear least squares problems through the
Trust-Region (TR) algorithms and computing Jacobi matrix by central differences

• GMP arithmetic functions.

For specific issues on using the library, please refer to the MKL Release Notes.

Technical Support

Intel MKL provides a product web site that offers timely and comprehensive product information,
including product features, white papers, and technical articles. For the latest information,
check: http://developer.intel.com/software/products/

Intel also provides a support web site that contains a rich repository of self help information,
including getting started tips, known product issues, product errata, license information, user
forums, and more (visit http://support.intel.com/support/performancetools/libraries/mkl).

Registering your product entitles you to one year of technical support and product updates
through Intel® Premier Support. Intel Premier Support is an interactive issue management and
communication web site providing these services:

• Submit issues and review their status.

• Download product updates anytime of the day.

To register your product, contact Intel, or seek product support, please visit:
http://developer.intel.com/software/products/support.

BLAS Routines

BLAS routines and functions are divided into the following groups according to the operations
they perform:

• BLAS Level 1 Routines and Functions perform operations of both addition and reduction on
vectors of data. Typical operations include scaling and dot products.

• BLAS Level 2 Routines perform matrix-vector operations, such as matrix-vector multiplication,
rank-1 and rank-2 matrix updates, and solution of triangular systems.

34

1 Intel® Math Kernel Library Reference Manual

• BLAS Level 3 Routines perform matrix-matrix operations, such as matrix-matrix multiplication,
rank-k update, and solution of triangular systems.

Starting from release 8.0, Intel® MKL also supports Fortran-95 interface to BLAS routines.

Sparse BLAS Routines

Sparse BLAS Level 1 Routines and Functions and Sparse BLAS Level 2 Routines and Level 3
routines and functions operate on sparse vectors and matrices. These routines perform vector
operations similar to BLAS Level 1, 2, and 3 routines. Sparse BLAS routines take advantage of
vector and matrix sparsity: they allow you to store only non-zero elements of vectors and
matrices. Intel MKL also supports Fortran-95 interface to Sparse BLAS routines.

LAPACK Routines

The Intel® Math Kernel Library fully supports LAPACK 3.0 set of computational, driver, auxiliary
and utility routines and partially supports LAPACK 3.1 routines - one computational routine
(?stemr) and a number of auxiliary and utility routines.

The original versions of LAPACK from which that part of Intel MKL was derived can be obtained
from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai,
C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen.

The LAPACK routines can be divided into the following groups according to the operations they
perform:

• Routines for solving systems of linear equations, factoring and inverting matrices, and
estimating condition numbers (see Chapter 3).

• Routines for solving least-squares problems, eigenvalue and singular value problems, and
Sylvester's equations (see Chapter 4).

• Auxiliary and utility routines used to perform certain subtasks, common low-level computation
or related tasks (see Chapter 5).

Starting from release 8.0, Intel MKL also supports Fortran-95 interface to LAPACK computational
and driver routines. This interface provides an opportunity for simplified calls of LAPACK routines
with fewer required arguments.

35

Overview 1

ScaLAPACK Routines

ScaLAPACK package (included with Intel® Cluster MKL only, see Chapter 6 and Chapter 7)
runs on distributed-memory architectures and includes routines for solving systems of linear
equations, solving linear least-squares problems, eigenvalue and singular value problems, as
well as performing a number of related computational tasks.

The original versions of ScaLAPACK from which that part of Intel Cluster MKL was derived can
be obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are
L. Blackford, J. Choi, A.Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K.Stanley, D. Walker, and R. Whaley.

Intel Cluster MKL version of ScaLAPACK is optimized for Intel® processors and uses MPICH
version of MPI as well as Imtel MPI.

Sparse Solver Routines

Direct sparse solver routines in Intel MKL (see Chapter 8) solve symmetric and
symmetrically-structured sparse matrices with real or complex coefficients. For symmetric
matrices, these Intel MKL subroutines can solve both positive definite and indefinite systems.
Intel MKL includes the PARDISO* sparse solver interface as well as an alternative set of user
callable direct sparse solver routines.

If you use the sparse solver PARDISO* from Intel MKL, please cite:

O.Schenk and K.Gärtner. Solving unsymmetric sparse systems of linear equations with PARDISO.
J. of Future Generation Computer Systems, 20(3):475- 487, 2004.

Intel MKL provides also an iterative sparse solver (see Chapter 8) that uses sparse BLAS level
2 and 3 routines and works with different sparse data formats.

VML Functions

Vector Mathematical Library (VML) functions (see Chapter 9) include a set of highly optimized
implementations of certain computationally expensive core mathematical functions (power,
trigonometric, exponential, hyperbolic etc.) that operate on vectors of real and complex numbers.

Application programs that might significantly improve performance with VML include nonlinear
programming software, integrals computation, and many others. VML provides interfaces both
for FORTRAN and C languages.

Statistical Functions

Vector Statistical Library (VSL) contains two sets of functions (see Chapter 10):

36

1 Intel® Math Kernel Library Reference Manual

• The first set includes a collection of pseudo- and quasi-random number generator subroutines
implementing basic continuous and discrete distributions. To provide best performance, VSL
subroutines use calls to highly optimized Basic Random Number Generators and a library
of vector mathematical functions.

• The second set includes a collection of routines that implement a wide variety of convolution
and correlation operations.

Fourier Transform Functions

The Intel® MKL multidimensional Discrete Fourier Transform functions with mixed radix support
(see Chapter 11) provide uniformity of DFT computation and combine functionality with ease
of use. Both Fortran and C interface specification are given. There is also a cluster version of
DFT functions, which runs on distributed-memory architectures and is provided with Intel Cluster
MKL package.

DFT functions provide fast computation via the Fast Fourier Transform (FFT) algorithms not
only for lengths that are powers of 2 but also for 3, 5, 7, 11, and other radices.

Interval Solver Routines

Interval Solver routines included into Intel® MKL (see Chapter 12) can be used to solve interval
systems of linear equations and related problems.

Partial Differential Equations Support

Intel® MKL provides tools for solving Partial Differential Equations (PDE) (see Chapter 13).
These tools are Trigonometric Transform interface routines and Poisson Library.

The Trigonometric Transform routines may be helpful to users who implement their own solvers
similar to the solver that the Poisson Library provides. The users can improve performance of
their solvers by using fast sine, cosine, and staggered cosine transforms implemented in the
Trigonometric Transform interface.

Poisson Library is designed for fast solving of simple Helmholtz, Poisson, and Laplace problems.
The Trigonometric Transform interface, which underlies the solver, is based on Intel MKL DFT
interface (refer to Chapter 11), optimized for Intel® processors.

Optimization Solvers Routines

Intel® MKL provides Optimization Solvers routines (see Chapter 14) that can be used to solve
nonlinear least squares problems with or without linear (bound) constraints through the
Trust-Region (TR) algorithms and compute Jacobi matrix by central differences.

37

Overview 1

See also Appendix A Optimization Solvers Basics for description of the basic notions of
optimization solvers, nonlinear least square problems, and the TR algorithm.

Support Functions

Intel® MKL support functions (see Chapter 15) are used to support the operation of Intel MKL
software and provide basic information on the library and library operation, such as the current
library version, timing, setting and measuring of CPU frequency, error handling, and memory
allocation.

BLACS Routines

Intel® Math Kernel Library implements routines from the BLACS (Basic Linear Algebra
Communication Subprograms) package (see Chapter 16) that are used to support a linear
algebra oriented message passing interface that may be implemented efficiently and uniformly
across a large range of distributed memory platforms.

The original versions of BLACS from which that part of Intel MKL was derived can be obtained
from http://www.netlib.org/blacs/index.html. The authors of BLACS are Jack Dongarra and R.
Clint Whaley.

GMP Arithmetic Functions

Intel® MKL implementation of GMP arithmetic functions includes arbitrary precision arithmetic
operations on integer numbers. The interfaces of such functions fully match the GNU Multiple
Precision (GMP) Arithmetic Library.

Performance Enhancements

The Intel® Math Kernel Library has been optimized by exploiting both processor and system
features and capabilities. Special care has been given to those routines that most profit from
cache-management techniques. These especially include matrix-matrix operation routines such
as dgemm().

In addition, code optimization techniques have been applied to minimize dependencies of
scheduling integer and floating-point units on the results within the processor.

The major optimization techniques used throughout the library include:

• Loop unrolling to minimize loop management costs.

• Blocking of data to improve data reuse opportunities.

• Copying to reduce chances of data eviction from cache.

38

1 Intel® Math Kernel Library Reference Manual

• Data prefetching to help hide memory latency.

• Multiple simultaneous operations (for example, dot products in dgemm) to eliminate stalls
due to arithmetic unit pipelines.

• Use of hardware features such as the SIMD arithmetic units, where appropriate.

These are techniques from which the arithmetic code benefits the most.

Parallelism

In addition to the performance enhancements discussed above, the Intel® MKL offers performance
gains through parallelism provided by the symmetric multiprocessing performance (SMP)
feature. You can obtain improvements from SMP in the following ways:

• One way is based on user-managed threads in the program and further distribution of the
operations over the threads based on data decomposition, domain decomposition, control
decomposition, or some other parallelizing technique. Each thread can use any of the Intel
MKL functions because the library has been designed to be thread-safe.

• Another method is to use the FFT and BLAS level 3 routines. They have been parallelized
and require no alterations of your application to gain the performance enhancements of
multiprocessing. Performance using multiple processors on the level 3 BLAS shows excellent
scaling. Since the threads are called and managed within the library, the application does
not need to be recompiled thread-safe (see also Fortran-95 Interface Conventions in Chapter
2).

• Yet another method is to use tuned LAPACK routines. Currently these include the single-
and double precision flavors of routines for QR factorization of general matrices, triangular
factorization of general and symmetric positive-definite matrices, solving systems of equations
with such matrices, as well as solving symmetric eigenvalue problems.

For instructions on setting the number of available processors for the BLAS level 3 and LAPACK
routines, see the Intel® MKL User's Guide.

Platforms Supported

The Intel® Math Kernel Library includes Fortran routines and functions optimized for Intel®
processor-based computers running operating systems that support multiprocessing. In addition
to the Fortran interface, the Intel MKL includes a C-language interface for the Discrete Fourier
transform functions, as well as for the Vector Mathematical Library and Vector Statistical Library
functions. For hardware and software requirements to use Intel MKL, see MKL Release Notes.

39

Overview 1

About This Manual
This manual describes the routines and functions of the Intel® MKL and Intel® Cluster MKL. Each
reference section describes a routine group typically consisting of routines used with four basic
data types: single-precision real, double-precision real, single-precision complex, and
double-precision complex.

Each routine group is introduced by its name, a short description of its purpose, and the calling
sequence, or syntax, for each type of data with which each routine of the group is used. The
following sections are also included:

Describes the operation performed by routines of the group based on
one or more equations. The data types of the arguments are defined
in general terms for the group.

Description

Defines the data type for each parameter on entry, for example:Input Parameters
REAL for saxpya
DOUBLE PRECISION for daxpy

Lists resultant parameters on exit.Output Parameters

Audience for This Manual

The manual addresses programmers proficient in computational mathematics and assumes a
working knowledge of the principles and vocabulary of linear algebra, mathematical statistics,
and Fourier transforms.

Manual Organization

The manual contains the following chapters and appendixes:

Overview. Introduces the Intel Math Kernel Library software, provides
information on manual organization, and explains notational
conventions.

Chapter 1

BLAS and Sparse BLAS Routines. Provides descriptions of BLAS and
Sparse BLAS functions and routines.

Chapter 2

LAPACK Routines: Linear Equations. Provides descriptions of LAPACK
routines for solving systems of linear equations and performing a
number of related computational tasks: triangular factorization, matrix
inversion, estimating the condition number of matrices.

Chapter 3

40

1 Intel® Math Kernel Library Reference Manual

LAPACK Routines: Least Squares and Eigenvalue Problems. Provides
descriptions of LAPACK routines for solving least-squares problems,
standard and generalized eigenvalue problems, singular value problems,
and Sylvester's equations.

Chapter 4

LAPACK Auxiliary and Utility Routines. Describes auxiliary and utility
LAPACK routines that perform certain subtasks or common low-level
computation.

Chapter 5

ScaLAPACK Routines. Describes ScaLAPACK computational and driver
routines (software included with Intel Cluster MKL only).

Chapter 6

ScaLAPACK Auxiliary and Utility Routines. Describes ScaLAPACK auxiliary
routines (software included with Intel Cluster MKL only).

Chapter 7

Sparse Solver Routines. Describes direct sparse solver routines that
solve symmetric and symmetrically-structured sparse matrices. Also
describes the iterative sparse solver routines.

Chapter 8

Vector Mathematical Functions. Provides descriptions of VML functions
for computing elementary mathematical functions on vector arguments.

Chapter 9

Statistical Functions. Provides descriptions of VSL functions for
generating vectors of pseudorandom numbers and for performing
convolution and correlation operations.

Chapter 10

Fourier Transform Functions. Describes multidimensional functions for
computing the Discrete Fourier Transform and cluster DFT functions
(software included with Intel Cluster MKL only).

Chapter 11

Interval Linear Solvers. Describes routines that can be used to solve
interval systems of linear equations and related problems.

Chapter 12

Partial Differential Equations Support. Describes Trigonometric
Transform interface routines and Poisson Library implemented for
solving Partial Differential Equations (PDE).

Chapter 13

Optimization Solvers Routines. Describes routines for solving
optimization problems. These routines solve nonlinear least squares
problems through the Trust-Region (TR) algorithms and compute Jacobi
matrix by central differences.

Chapter 14

Support Functions. Describes functions that are used to support the
operation of Intel MKL software, such as status information functions,
timing and error handling functions.

Chapter 15

BLACS Routines. Describes Basic Linear Algebra Communication
Subprograms that are used to support a linear algebra oriented message
passing interface.

Chapter 16

Linear Solvers Basics. Briefly describes the basic definitions and
approaches used in linear algebra for solving systems of linear
equations. Describes sparse data storage formats, as well as basic
concepts of interval arithmetic.

Appendix A

41

Overview 1

Routine and Function Arguments. Describes the major arguments of
the BLAS routines and VML functions: vector and matrix arguments.

Appendix B

Code Examples. Provides code examples of calling various Intel MKL
functions and routines (BLAS, PARDISO, Direct and Iterative Sparse
Solver, DFT, Cluster DFT, Intreval Linear Solvers, Trigonometric
Transforms, and Poisson Library).

Appendix C

CBLAS Interface to the BLAS. Provides the C interface to the BLAS.Appendix D
Specific Features of Fortran-95 Interfaces for LAPACK Routines. Provides
the features of Intel MKL Fortran-95 interfaces for LAPACK routines in
comparison with Netlib implementation.

Appendix E

Optimization Solvers Basics. Briefly describes the basic notions of
optimization solvers, nonlinear least square problem, and Trust Region
algorithm.

Appendix F

The manual also includes a Bibliography, Glossary and an Index.

Notational Conventions

This manual uses the following notational conventions:

• Routine name shorthand (?ungqr instead of cungqr/zungqr).

• Font conventions used for distinction between the text and the code.

Routine Name Shorthand

For shorthand, character codes are represented by a question mark “?” names of routine groups.
The question mark is used to indicate any or all possible varieties of a function; for example:

Refers to all four data types of the vector-vector ?swap routine: sswap,
dswap, cswap, and zswap.

?swap

Font Conventions

The following font conventions are used:

Data type used in the discussion of input and output parameters for
Fortran interface. For example, CHARACTER*1.

UPPERCASE COURIER

Code examples:lowercase courier
a(k+i,j) = matrix(i,j)
and data types for C interface, for example, const float*

42

1 Intel® Math Kernel Library Reference Manual

Function names for C interface, for example, vmlSetModelowercase courier

mixed with UpperCase

courier

Variables in arguments and parameters discussion. For example, incx.lowercase courier

italic

Used as a multiplication symbol in code examples and equations and
where required by the Fortran syntax.

*

43

Overview 1

2BLAS and Sparse BLAS Routines

This chapter contains descriptions of the BLAS and Sparse BLAS routines of the Intel® Math Kernel Library.
The routine descriptions are arranged in several sections according to the BLAS level of operation:

• BLAS Level 1 Routines and Functions (vector-vector operations)

• BLAS Level 2 Routines (matrix-vector operations)

• BLAS Level 3 Routines (matrix-matrix operations)

• Sparse BLAS Level 1 Routines and Functions (vector-vector operations).

• Sparse BLAS Level 2 and Level 3 (matrix-vector and matrix-matrix operations)

Each section presents the routine and function group descriptions in alphabetical order by routine or
function group name; for example, the ?asum group, the ?axpy group. The question mark in the group
name corresponds to different character codes indicating the data type (s, d, c, and z or their combination);
see Routine Naming Conventions.

When BLAS or Sparse BLAS routines encounter an error, they call the error reporting routine xerbla. To
be able to view error reports, you must include xerbla in your code. A copy of the source code for xerbla
is included in the library.

In BLAS Level 1 groups i?amax and i?amin, an “i” is placed before the character code and corresponds
to the index of an element in the vector. These groups are placed in the end of the BLAS Level 1 section.

Routine Naming Conventions
BLAS routine names have the following structure:

<character code> <name> <mod> ()

The <character code> is a character that indicates the data type:

real, single precisions

complex, single precisionc

real, double precisiond

complex, double precisionz

Some routines and functions can have combined character codes, such as sc or dz.

For example, the function scasum uses a complex input array and returns a real value.

45

The <name> field, in BLAS level 1, indicates the operation type. For example, the BLAS level 1
routines ?dot, ?rot, ?swap compute a vector dot product, vector rotation, and vector swap,
respectively.

In BLAS level 2 and 3, <name> reflects the matrix argument type:

general matrixge

general band matrixgb

symmetric matrixsy

symmetric matrix (packed storage)sp

symmetric band matrixsb

Hermitian matrixhe

Hermitian matrix (packed storage)hp

Hermitian band matrixhb

triangular matrixtr

triangular matrix (packed storage)tp

triangular band matrix.tb

The <mod> field, if present, provides additional details of the operation. BLAS level 1 names
can have the following characters in the <mod> field:

conjugated vectorc

unconjugated vectoru

Givens rotation.g

BLAS level 2 names can have the following characters in the <mod> field:

matrix-vector productmv

solving a system of linear equations with matrix-vector operationssv

rank-1 update of a matrixr

rank-2 update of a matrix.r2

BLAS level 3 names can have the following characters in the <mod> field:

matrix-matrix productmm

solving a system of linear equations with matrix-matrix operationssm

rank-k update of a matrixrk

rank-2k update of a matrix.r2k

The examples below illustrate how to interpret BLAS routine names:

46

2 Intel® Math Kernel Library Reference Manual

<d> <dot>: double-precision real vector-vector dot productddot

<c> <dot> <c>: complex vector-vector dot product, conjugatedcdotc

<sc> <asum>: sum of magnitudes of vector elements, single precision
real output and single precision complex input

scasum

<c> <dot> <u>: vector-vector dot product, unconjugated, complexcdotu

<s> <ge> <mv>: matrix-vector product, general matrix, single precisionsgemv

<z> <tr> <mm>: matrix-matrix product, triangular matrix,
double-precision complex.

ztrmm

Sparse BLAS naming conventions are similar to those of BLAS level 1. For more information,
see “Naming Conventions”.

Fortran-95 Interface Conventions
Fortran-95 interface to BLAS and Sparse BLAS Level 1 routines is implemented through wrappers
that call respective Fortran-77 routines. This interface uses such features of Fortran-95 as
assumed-shape arrays and optional arguments to provide simplified calls to BLAS and Sparse
BLAS Level 1 routines with fewer arguments.

The main conventions that are used in Fortran-95 interface are as follows:

• The names of arguments used in Fortran-95 call are typically the same as for the respective
generic (Fortran-77) interface. However, to reduce the number of argument names used in
the library, the following identity settings of formal argument names were made:

Fortran-95
Argument Name

Generic Argument
Name

aap

Note that these name changes of formal arguments have no impact on program semantics
and follow the conventions of unification names.

• Input arguments such as array dimensions are not required in Fortran-95 and are skipped
from the calling sequence. Array dimensions are reconstructed from the user data that must
exactly follow the required array shape.

Also, an argument can be skipped if its value is completely defined by the presence or
absence of another argument in the calling sequence, and the restored value is the only
meaningful value for the skipped argument.

47

BLAS and Sparse BLAS Routines 2

• Arguments incx and incy are skipped. In all cases their values are assumed to be 1. One
can obtain the effect of the values of incx and incy not being equal to 1 by using
corresponding Fortran-95 feature: index incrementing may be directly established in actual
arguments. Other possibility to obtain this effect is to use Fortran-77 call.

• Some generic arguments are declared as optional in Fortran-95 interface and may or may
not be present in the calling sequence. An argument can be declared optional if it satisfies
one of the following conditions:

1. If an input argument can take only a few possible values, it can be declared as optional.
The default value of such argument is typically set as the first value in the list and all
exceptions to this rule are explicitly stated in the routine description.

2. If an input argument has a natural default value, it can be declared as optional. The
default value of such optional argument is set to its natural default value.

• Optional arguments are given in square brackets in Fortran-95 call syntax.

The concrete rules used for reconstructing the values of omitted optional parameters are specific
for each routine and are detailed in the respective “Fortran-95 Notes” subsection given at the
end of routine specification section. If this subsection is omitted, the Fortran-95 interface for
the given routine does not differ from the corresponding Fortran-77 interface.

Note that this interface is not implemented in the current version of Sparse BLAS Level 2 and
Level 3 routines. Fortran-95 interfaces for each these routines is given in the “Interfaces -
Fortran-95” subsection at the end of the respective routine specification section.

Matrix Storage Schemes
Matrix arguments of BLAS routines can use the following storage schemes:

• Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element aij

stored in the array element a(i,j).

• Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices
more compactly: the upper or lower triangle of the matrix is packed by columns in a
one-dimensional array.

• Band storage: a band matrix is stored compactly in a two-dimensional array: columns of
the matrix are stored in the corresponding columns of the array, and diagonals of the matrix
are stored in rows of the array.

For more information on matrix storage schemes, see “Matrix Arguments” in Appendix B.

48

2 Intel® Math Kernel Library Reference Manual

BLAS Level 1 Routines and Functions
BLAS Level 1 includes routines and functions, which perform vector-vector operations. Table
2-1 lists the BLAS Level 1 routine and function groups and the data types associated with
them.

Table 2-1 BLAS Level 1 Routine Groups and Their Data Types

DescriptionData TypesRoutine or
Function Group

Sum of vector magnitudes (functions)s, d, sc, dz?asum

Scalar-vector product (routines)s, d, c, z?axpy

Copy vector (routines)s, d, c, z?copy

Dot product (functions)s, d?dot

Dot product with extended precision (functions)sd, d?sdot

Dot product conjugated (functions)c, z?dotc

Dot product unconjugated (functions)c, z?dotu

Vector 2-norm (Euclidean norm) a normal or null
vector(functions)

s, d, sc, dz?nrm2

Plane rotation of points (routines)s, d, cs, zd?rot

Givens rotation of points (routines)s, d, c, z?rotg

Modified plane rotation of pointss, d?rotm

Givens modified plane rotation of pointss, d?rotmg

Vector scaling (routines)s, d, c, z, cs, zd?scal

Vector-vector swap (routines)s, d, c, z?swap

Vector maximum value, absolute largest element of
a vector, where i is an index to this value in the
vector array (functions)

s, d, c, zi?amax

49

BLAS and Sparse BLAS Routines 2

DescriptionData TypesRoutine or
Function Group

Vector minimum value, absolute smallest element
of a vector, where i is an index to this value in the
vector array (functions)

s, d, c, zi?amin

Absolute value of a double complex number z.ddcabs1

?asum
Computes the sum of magnitudes of the vector
elements.

Syntax

Fortran 77:

res = sasum(n, x, incx)

res = scasum(n, x, incx)

res = dasum(n, x, incx)

res = dzasum(n, x, incx)

Fortran 95:

res = asum(x)

Description

The function ?asum function computes the sum of the magnitudes of elements of a real vector,
or the sum of magnitudes of the real and imaginary parts of elements of a complex vector:

res = |Rex (1)| + |Imx (1)| + |Rex(2) | + |Imx (2)|+ ... + |Rex (n)| +
|Imx (n)|

where x is a vector of order n.

Input Parameters

INTEGER. Specifies the order of vector x.n

REAL for sasumx
DOUBLE PRECISION for dasum

50

2 Intel® Math Kernel Library Reference Manual

COMPLEX for scasum
DOUBLE COMPLEX for dzasum

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.incx

Output Parameters

REAL for sasumres
DOUBLE PRECISION for dasum
REAL for scasum
DOUBLE PRECISION for dzasum
Contains the sum of magnitudes of real and imaginary parts
of all elements of the vector.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine asum interface are the following:

Holds the array of size(n).x

?axpy
Computes a vector-scalar product and adds the
result to a vector.

Syntax

Fortran 77:

call saxpy(n, a, x, incx, y, incy)

call daxpy(n, a, x, incx, y, incy)

call caxpy(n, a, x, incx, y, incy)

call zaxpy(n, a, x, incx, y, incy)

51

BLAS and Sparse BLAS Routines 2

Fortran 95:

call axpy(x, y [,a])

Description

The ?axpy routines perform a vector-vector operation defined as

y := a*x + y

where:

a is a scalar

x and y are vectors of order n.

Input Parameters

INTEGER. Specifies the order of vectors x and y.n

REAL for saxpya
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy
Specifies the scalar a.

REAL for saxpyx
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy
Array, DIMENSION at least (1 + (n-1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.incx

REAL for saxpyy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy
Array, DIMENSION at least (1 + (n-1)*abs(incy)).

INTEGER. Specifies the increment for the elements of y.incy

Output Parameters

Contains the updated vector y.y

52

2 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine axpy interface are the following:

Holds the array of size(n).x

Holds the array of size (n).y

The default value is 1.a

?copy
Copies vector to another vector.

Syntax

Fortran 77:

call scopy(n, x, incx, y, incy)

call dcopy(n, x, incx, y, incy)

call ccopy(n, x, incx, y, incy)

call zcopy(n, x, incx, y, incy)

Fortran 95:

call copy(x, y)

Description

The ?copy routines perform a vector-vector operation defined as

y = x,

where x and y are vectors.

Input Parameters

INTEGER. Specifies the order of vectors x and y.n

REAL for scopyx
DOUBLE PRECISION for dcopy
COMPLEX for ccopy

53

BLAS and Sparse BLAS Routines 2

DOUBLE COMPLEX for zcopy
Array, DIMENSION at least (1 + (n-1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.incx

REAL for scopyy
DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy
Array, DIMENSION at least (1 + (n-1)*abs(incy)).

INTEGER. Specifies the increment for the elements of y.incy

Output Parameters

Contains a copy of the vector x if n is positive. Otherwise,
parameters are unaltered.

y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine copy interface are the following:

Holds the vector of length(n).x

Holds the vector of length (n).y

?dot
Computes a vector-vector dot product.

Syntax

Fortran 77:

res = sdot(n, x, incx, y, incy)

res = ddot(n, x, incx, y, incy)

Fortran 95:

res = dot(x, y)

54

2 Intel® Math Kernel Library Reference Manual

Description

The ?dot functions perform a vector-vector reduction operation defined as

where x and y are vectors.

Input Parameters

INTEGER. Specifies the order of vectors x and y.n

REAL for sdotx
DOUBLE PRECISION for ddot
Array, DIMENSION at least (1+(n-1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.incx

REAL for sdoty
DOUBLE PRECISION for ddot
Array, DIMENSION at least (1+(n-1)*abs(incy)).

INTEGER. Specifies the increment for the elements of y.incy

Output Parameters

REAL for sdotres
DOUBLE PRECISION for ddot
Contains the result of the dot product of x and y, if n is
positive. Otherwise, res contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine dot interface are the following:

Holds the vector of length(n).x

Holds the vector of length (n).y

55

BLAS and Sparse BLAS Routines 2

?sdot
Computes a vector-vector dot product with
extended precision.

Syntax

Fortran 77:

res = sdsdot(n, sb, sx, incx, s y, incy)

res = dsdot(n, s x, incx, s y, incy)

Fortran 95:

res = sdot(sx, sy)

res = sdot(sx, sy, sb)

Description

The ?sdot functions compute the inner product of two vectors with extended precision. Both
functions use extended precision accumulation of the intermediate results, but the function
sdsdot outputs the final result in single precision, whereas the function dsdot outputs the
double precision result. The function sdsdot also adds scalar value sb to the inner product.

Input Parameters

INTEGER. Specifies the number of elements in the input
vectors sx and sy.

n

REAL. Single precision scalar to be added to inner product
(for the function sdsdot only).

sb

REAL.sx, sy
Arrays, DIMENSION at least (1+(n -1)*abs(incx)) and
(1+(n-1)*abs(incy)), respectively. Contain the input
single precision vectors.

INTEGER. Specifies the increment for the elements of sx.incx

INTEGER. Specifies the increment for the elements of sy.incy

Output Parameters

REAL for sdsdotres

56

2 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dsdot
Contains the result of the dot product of sx and sy (with sb
added for sdsdot), if n is positive. Otherwise, res contains
sb for sdsdot and 0 for dsdot.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sdot interface are the following:

Holds the vector of length(n).sx

Holds the vector of length(n).sy

NOTE. Note that scalar parameter sb is declared as a required parameter in Fortran-95
interface for the function sdot to distinguish between function flavors that output final
result in different precision.

?dotc
Computes a dot product of a conjugated vector
with another vector.

Syntax

Fortran 77:

res = cdotc(n, x, incx, y, incy)

res = zdotc(n, x, incx, y, incy)

Fortran 95:

res = dotc(x, y)

Description

The ?dotC functions perform a vector-vector operation defined as

57

BLAS and Sparse BLAS Routines 2

where x and y are n-element vectors.

Input Parameters

INTEGER. Specifies the order of vectors x and y.n

COMPLEX for cdotcx
DOUBLE COMPLEX for zdotc
Array, DIMENSION at least (1 + (n -1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.incx

COMPLEX for cdotcy
DOUBLE COMPLEX for zdotc
Array, DIMENSION at least (1 + (n -1)*abs(incy)).

INTEGER. Specifies the increment for the elements of y.incy

Output Parameters

COMPLEX for cdotcres
DOUBLE COMPLEX for zdotc
Contains the result of the dot product of the conjugated x
and unconjugated y, if n is positive. Otherwise, res contains
0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine dotc interface are the following:

Holds the vector of length(n).x

Holds the vector of length (n).y

58

2 Intel® Math Kernel Library Reference Manual

?dotu
Computes a vector-vector dot product.

Syntax

Fortran 77:

res = cdotu(n, x, incx, y, incy)

res = zdotu(n, x, incx, y, incy)

Fortran 95:

res = dotu(x, y)

Description

The ?dotu functions perform a vector-vector reduction operation defined as

where x and y are n-element complex vectors.

Input Parameters

INTEGER. Specifies the order of vectors x and y.n

COMPLEX for cdotux
DOUBLE COMPLEX for zdotu
Array, DIMENSION at least (1 + (n -1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.incx

COMPLEX for cdotuy
DOUBLE COMPLEX for zdotu
Array, DIMENSION at least (1 + (n -1)*abs(incy)).

INTEGER. Specifies the increment for the elements of y.incy

Output Parameters

COMPLEX for cdotures
DOUBLE COMPLEX for zdotu
Contains the result of the dot product of x and y, if n is
positive. Otherwise, res contains 0.

59

BLAS and Sparse BLAS Routines 2

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine dotu interface are the following:

Holds the vector of length(n).x

Holds the vector of length (n).y

?nrm2
Computes the Euclidean norm of a vector.

Syntax

Fortran 77:

res = snrm2(n, x, incx)

res = dnrm2(n, x, incx)

res = scnrm2(n, x, incx)

res = dznrm2(n, x, incx)

Fortran 95:

res = nrm2(x)

Description

The ?nrm2 functions perform a vector reduction operation defined as

res = | |x| |,

where:

x is a vector

res is a value containing the Euclidean norm of the elements of x.

Input Parameters

INTEGER. Specifies the order of vector x.n

REAL for snrm2x

60

2 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dnrm2
COMPLEX for scnrm2
DOUBLE COMPLEX for dznrm2
Array, DIMENSION at least (1 + (n -1)*abs (incx)).

INTEGER. Specifies the increment for the elements of x.incx

Output Parameters

REAL for snrm2res
DOUBLE PRECISION for dnrm2
REAL for scnrm2
DOUBLE PRECISION for dznrm2
Contains the Euclidean norm of the vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine nrm2 interface are the following:

Holds the vector of length(n).x

?rot
Performs rotation of points in the plane.

Syntax

Fortran 77:

call srot(n, x, incx, y, incy, c, s)

call drot(n, x, incx, y, incy, c, s)

call csrot(n, x, incx, y, incy, c, s)

call zdrot(n, x, incx, y, incy, c, s)

Fortran 95:

call rot(x, y [,c] [,s])

61

BLAS and Sparse BLAS Routines 2

Description

Given two complex vectors x and y, each vector element of these vectors is replaced as follows:

x(i) = c*x(i) + s*y(i)

y(i) = c*y(i) - s*x(i)

Input Parameters

INTEGER. Specifies the order of vectors x and y.n

REAL for srotx
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot
Array, DIMENSION at least (1 + (n -1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.incx

REAL for sroty
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot
Array, DIMENSION at least (1 + (n -1)*abs(incy)).

INTEGER. Specifies the increment for the elements of y.incy

REAL for srotc
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot
A scalar.

REAL for srots
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot
A scalar.

Output Parameters

Each element is replaced by c*x + s*y.x

Each element is replaced by c*y - s*x.y

62

2 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine rot interface are the following:

Holds the vector of length(n).x

Holds the vector of length (n).y

The default value is 1.c

The default value is 1.s

?rotg
Computes the parameters for a Givens rotation.

Syntax

Fortran 77:

call srotg(a, b, c, s)

call drotg(a, b, c, s)

call crotg(a, b, c, s)

call zrotg(a, b, c, s)

Fortran 95:

call rotg(a, b, c, s)

Description

Given the cartesian coordinates (a, b) of a point p, these routines return the parameters a,
b, c, and s associated with the Givens rotation that zeros the y-coordinate of the point.

See a more accurate LAPACK version ?lartg.

Input Parameters

REAL for srotga
DOUBLE PRECISION for drotg
COMPLEX for crotg

63

BLAS and Sparse BLAS Routines 2

DOUBLE COMPLEX for zrotg
Provides the x-coordinate of the point p.

REAL for srotgb
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg
Provides the y-coordinate of the point p.

Output Parameters

Contains the parameter r associated with the Givens
rotation.

a

Contains the parameter z associated with the Givens
rotation.

b

REAL for srotgc
DOUBLE PRECISION for drotg
REAL for crotg
DOUBLE PRECISION for zrotg
Contains the parameter c associated with the Givens
rotation.

REAL for srotgs
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg
Contains the parameter s associated with the Givens
rotation.

?rotm
Performs rotation of points in the modified plane.

Syntax

Fortran 77:

call srotm(n, x, incx, y, incy, param)

call drotm(n, x, incx, y, incy, param)

64

2 Intel® Math Kernel Library Reference Manual

Fortran 95:

call rotm(x, y [,param])

Description

Given two complex vectors x and y, each vector element of these vectors is replaced as follows:

x(i) = H*x(i) + H*y(i)

y(i) = H*y(i) - H*x(i)

where:

H is a modified Givens transformation matrix whose values are stored in the param(2) through
param(5) array. See discussion on the param argument.

Input Parameters

INTEGER. Specifies the order of vectors x and y.n

REAL for srotmx
DOUBLE PRECISION for drotm
Array, DIMENSION at least (1 + (n -1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.incx

REAL for srotmy
DOUBLE PRECISION for drotm
Array, DIMENSION at least (1 + (n -1)*abs(incy)).

INTEGER. Specifies the increment for the elements of y.incy

REAL for srotmparam
DOUBLE PRECISION for drotm
Array, DIMENSION 5.
The elements of the param array are:
param(1) contains a switch, flag. param(2-5) contain h11,
h21, h12, and h22, respectively, the components of the array
H.
Depending on the values of flag, the components of H are
set as follows:

65

BLAS and Sparse BLAS Routines 2

In the above cases, the matrix entries of 1., -1., and 0. are
assumed based on the last three values of flag and are not
actually loaded into the param vector.

Output Parameters

Each element is replaced by h11*x + h12*y.x

Each element is replaced by h21*x + h22*y.y

Givens transformation matrix updated.H

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine rotm interface are the following:

66

2 Intel® Math Kernel Library Reference Manual

Holds the vector of length(n).x

Holds the vector of length (n).y

The default value for param(1) is -2.param

?rotmg
Computes the modified parameters for a Givens
rotation.

Syntax

Fortran 77:

call srotmg(d1, d2, x1, y1, param)

call drotmg(d1, d2, x1, y1, param)

Fortran 95:

call rotmg(x1, y1, param [, d1] [d2])

Description

Given cartesian coordinates (x1, y1) of an input vector, these routines compute the components
of a modified Givens transformation matrix H that zeros the y-component of the resulting vector:

Input Parameters

REAL for srotmgd1
DOUBLE PRECISION for drotmg
Provides the updated scaling factor for the x-coordinate of
the input vector (sqrt(d1)x1).

REAL for srotmgd2
DOUBLE PRECISION for drotmg

67

BLAS and Sparse BLAS Routines 2

Provides the updated scaling factor for the y-coordinate of
the input vector (sqrt(d2)y1).

REAL for srotmgx1
DOUBLE PRECISION for drotmg
Provides the rotated x-coordinate of the input vector.

REAL for srotmgy1
DOUBLE PRECISION for drotmg
Provides the y-coordinate of the input vector.

Output Parameters

REAL for srotmgparam
DOUBLE PRECISION for drotmg
Array, DIMENSION 5.
The elements of the param array are:
param(1) contains a switch, flag. param(2-5) contain h11,
h21, h12, and h22, respectively, the components of the array
H.
Depending on the values of flag, the components of H are
set as follows:

68

2 Intel® Math Kernel Library Reference Manual

In the above cases, the matrix entries of 1., -1., and 0. are
assumed based on the last three values of flag and are not
actually loaded into the param vector.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine rotmg interface are the following:

The default value is 1.d1

The default value is 1.d2

?scal
Computes a vector by a scalar product.

Syntax

Fortran 77:

call sscal(n, a, x, incx)

call dscal(n, a, x, incx)

call cscal(n, a, x, incx)

call zscal(n, a, x, incx)

call csscal(n, a, x, incx)

call zdscal(n, a, x, incx)

Fortran 95:

call scal(x, a)

69

BLAS and Sparse BLAS Routines 2

Description

The ?scal routines perform a vector-vector operation defined as

x = a*x

where:

a is a scalar, x is an n-element vector.

Input Parameters

INTEGER. Specifies the order of vector x.n

REAL for sscal and csscala
DOUBLE PRECISION for dscal and zdscal
COMPLEX for cscal
DOUBLE COMPLEX for zscal
Specifies the scalar a.

REAL for sscalx
DOUBLE PRECISION for dscal
COMPLEX for cscal and csscal
DOUBLE COMPLEX for zscal and zdscal
Array, DIMENSION at least (1 + (n -1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.incx

Output Parameters

Overwritten by the updated vector x.x

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine scal interface are the following:

Holds the vector of length(n).x

NOTE. Note that scalar parameter a is declared as a required parameter in Fortran-95
interface for the routine scal to distinguish between routine flavors that operate on
different data types.

70

2 Intel® Math Kernel Library Reference Manual

?swap
Swaps a vector with another vector.

Syntax

Fortran 77:

call sswap(n, x, incx, y, incy)

call dswap(n, x, incx, y, incy)

call cswap(n, x, incx, y, incy)

call zswap(n, x, incx, y, incy)

Fortran 95:

call swap(x, y)

Description

Given the two complex vectors x and y, the ?swap routines return vectors y and x swapped,
each replacing the other.

Input Parameters

INTEGER. Specifies the order of vectors x and y.n

REAL for sswapx
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap
Array, DIMENSION at least (1 + (n -1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.incx

REAL for sswapy
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap
Array, DIMENSION at least (1 + (n -1)*abs(incy)).

INTEGER. Specifies the increment for the elements of y.incy

71

BLAS and Sparse BLAS Routines 2

Output Parameters

Contains the resultant vector x.x

Contains the resultant vector y.y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine swap interface are the following:

Holds the vector of length(n).x

Holds the vector of length (n).y

i?amax
Finds the element of a vector that has the largest
absolute value.

Syntax

Fortran 77:

res = isamax(n, x, incx)

index = idamax(n, x, incx)

index = icamax(n, x, incx)

index = izamax(n, x, incx)

Fortran 95:

res = iamax(x)

Description

Given a vector x, the i?amax functions return the position of the vector element x(i) that has
the largest absolute value for real flavors, or the largest sum |Rex(i)|+|Imx(i)| for complex
flavors.

If n is not positive, 0 is returned.

72

2 Intel® Math Kernel Library Reference Manual

If more than one vector element is found with the same largest absolute value, the index of
the first one encountered is returned.

Input Parameters

INTEGER. Specifies the order of the vector x.n

REAL for isamaxx
DOUBLE PRECISION for idamax
COMPLEX for icamax
DOUBLE COMPLEX for izamax
Array, DIMENSION at least (1+(n-1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.incx

Output Parameters

INTEGER. Contains the position of vector element x that has
the largest absolute value.

index

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine amax interface are the following:

Holds the vector of length (n).x

i?amin
Finds the element of a vector that has the smallest
absolute value.

Syntax

Fortran 77:

index = isamin(n, x, incx)

index = idamin(n, x, incx)

index = icamin(n, x, incx)

index = izamin(n, x, incx)

73

BLAS and Sparse BLAS Routines 2

Fortran 95:

res = iamin(x)

Description

Given a vector x, the i?amin functions return the position of the vector element x(i) that has
the smallest absolute value for real dlavors, or the smallest sum |Rex(i)|+|Imx(i)| for
complex flavors.

If n is not positive, 0 is returned.

If more than one vector element is found with the same smallest absolute value, the index of
the first one encountered is returned.

Input Parameters

INTEGER. On entry, n specifies the order of the vector x.n

REAL for isaminx
DOUBLE PRECISION for idamin
COMPLEX for icamin
DOUBLE COMPLEX for izamin
Array, DIMENSION at least (1+(n-1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.incx

Output Parameters

INTEGER. Contains the position of vector element x that has
the smallest absolute value.

index

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine amin interface are the following:

Holds the vector of length (n).x

74

2 Intel® Math Kernel Library Reference Manual

dcabs1
Computes absolute value of double complex
number.

Syntax

Fortran 77:

res = dcabs1(z)

Fortran 95:

res = dcabs1(z)

Description

The dcabs1 is an auxiliary routine for a few BLAS Level 1 routines. This function performs an
operation defined as

res=|Re(z)|+|Im(z)|,

where z is a scalar and res is a value containing the absolute value of a double complex number
z.

Input Parameters

DOUBLE COMPLEX scalar.z

Output Parameters

DOUBLE PRECISION.res
Contains the absolute value of a double complex number z.

BLAS Level 2 Routines
This section describes BLAS Level 2 routines, which perform matrix-vector operations. Table
2-2 lists the BLAS Level 2 routine groups and the data types associated with them.

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types

DescriptionData TypesRoutine Groups

Matrix-vector product using a general band matrixs, d, c, z?gbmv

75

BLAS and Sparse BLAS Routines 2

DescriptionData TypesRoutine Groups

Matrix-vector product using a general matrixs, d, c, z?gemv

Rank-1 update of a general matrixs, d?ger

Rank-1 update of a conjugated general matrixc, z?gerc

Rank-1 update of a general matrix, unconjugatedc, z?geru

Matrix-vector product using a Hermitian band matrixc, z?hbmv

Matrix-vector product using a Hermitian matrixc, z?hemv

Rank-1 update of a Hermitian matrixc, z?her

Rank-2 update of a Hermitian matrixc, z?her2

Matrix-vector product using a Hermitian packed
matrix

c, z?hpmv

Rank-1 update of a Hermitian packed matrixc, z?hpr

Rank-2 update of a Hermitian packed matrixc, z?hpr2

Matrix-vector product using symmetric band matrixs, d?sbmv

Matrix-vector product using a symmetric packed
matrix

s, d?spmv

Rank-1 update of a symmetric packed matrixs, d?spr

Rank-2 update of a symmetric packed matrixs, d?spr2

Matrix-vector product using a symmetric matrixs, d?symv

Rank-1 update of a symmetric matrixs, d?syr

Rank-2 update of a symmetric matrixs, d?syr2

Matrix-vector product using a triangular band matrixs, d, c, z?tbmv

Linear solution of a triangular band matrixs, d, c, z?tbsv

76

2 Intel® Math Kernel Library Reference Manual

DescriptionData TypesRoutine Groups

Matrix-vector product using a triangular packed
matrix

s, d, c, z?tpmv

Linear solution of a triangular packed matrixs, d, c, z?tpsv

Matrix-vector product using a triangular matrixs, d, c, z?trmv

Linear solution of a triangular matrixs, d, c, z?trsv

?gbmv
Computes a matrix-vector product using a general
band matrix

Syntax

Fortran 77:

call sgbmv(trans, m, n, kl, ku, alpha, a, lda, x, inxc, beta, y, incy)

call dgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)

call cgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)

call zgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)

Fortran 95:

call gbmv(a, x, y [,kl][,m] [,alpha][,beta] [,trans])

Description

The ?gbmv routines perform a matrix-vector operation defined as

y := alpha*A*x + beta*y

or

y := alpha*A'*x + beta*y,

or

y := alpha *conjg(A')*x + beta*y,

where:

77

BLAS and Sparse BLAS Routines 2

alpha and beta are scalars,

x and y are vectors,

A is an m-by-n band matrix, with kl sub-diagonals and ku super-diagonals.

Input Parameters

CHARACTER*1. Specifies the operation to be performed, as
follows:

trans

Operation to be Performedtrans value

y := alpha*A*x + beta*yN or n

y := alpha*A'*x + beta*yT or t

y := alpha *conjg(A')*x + beta*yC or c

INTEGER. Specifies the number of rows of the matrix A.m
The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix A.n
The value of n must be at least zero.

INTEGER. Specifies the number of sub-diagonals of the
matrix A.

kl

The value of kl must satisfy 0 ≤ kl.

INTEGER. Specifies the number of super-diagonals of the
matrix A.

ku

The value of ku must satisfy 0 ≤ ku.

REAL for sgbmvalpha
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv
Specifies the scalar alpha.

REAL for sgbmva
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv
Array, DIMENSION (lda, n).
Before entry, the leading (kl + ku + 1) by n part of the
array a must contain the matrix of coefficients. This matrix
must be supplied column-by-column, with the leading

78

2 Intel® Math Kernel Library Reference Manual

diagonal of the matrix in row (ku + 1) of the array, the
first super-diagonal starting at position 2 in row ku, the first
sub-diagonal starting at position 1 in row (ku + 2), and
so on. Elements in the array a that do not correspond to
elements in the band matrix (such as the top left ku by ku
triangle) are not referenced.
The following program segment transfers a band matrix
from conventional full matrix storage to band storage:

do 20, j = 1, n

k = ku + 1 - j

do 10, i = max(1, j-ku), min(m,
j+kl)

a(k+i, j) = matrix(i,j)

10 continue

20 continue

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
(kl + ku + 1).

lda

REAL for sgbmvx
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv
Array, DIMENSION at least (1 + (n - 1)*abs(incx))
when trans = 'N' or 'n', and at least (1 + (m -
1)*abs(incx)) otherwise. Before entry, the incremented
array x must contain the vector x.

INTEGER. Specifies the increment for the elements of x.
incx must not be zero.

incx

REAL for sgbmvbeta
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv
Specifies the scalar beta. When beta is equal to zero, then
y need not be set on input.

REAL for sgbmvy

79

BLAS and Sparse BLAS Routines 2

DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv
Array, DIMENSION at least (1 +(m - 1)*abs(incy)) when
trans = 'N' or 'n' and at least (1 +(n -
1)*abs(incy)) otherwise. Before entry, the incremented
array y must contain the vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

Output Parameters

Overwritten by the updated vector y.y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbmv interface are the following:

Holds the array a of size (kl+ku+1,n).a

Holds the vector of length (rx), where rx = n if trans = 'N',rx
= m otherwise.

x

Holds the vector of length (ry), where ry = m if trans = 'N',ry
= n otherwise.

y

Must be 'N', 'C', or 'T'.trans
The default value is 'N'.

If omitted, assumed kl= ku.kl

Restored as ku= lda-kl-1.ku

If omitted, assumed m= n.m

The default value is 1.alpha

The default value is 1.beta

80

2 Intel® Math Kernel Library Reference Manual

?gemv
Computes a matrix-vector product using a general
matrix

Syntax

Fortran 77:

call sgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

call dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

call cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

call zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

Fortran 95:

call gemv(a, x, y [,alpha][,beta] [,trans])

Description

The ?gemv routines perform a matrix-vector operation defined as

y := alpha*A*x + beta*y,

or

y := alpha*A'*x + beta*y,

or

y := alpha*conjg(A')*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

A is an m-by-n matrix.

Input Parameters

CHARACTER*1. Specifies the operation to be performed, as
follows:

trans

Operation to be Performedtrans value

y := alpha*A*x + beta*yN or n

81

BLAS and Sparse BLAS Routines 2

y := alpha*A'*x + beta*yT or t

y := alpha *conjg(A')*x + beta*yC or c

INTEGER. Specifies the number of rows of the matrix A. The
value of m must be at least zero.

m

INTEGER. Specifies the number of columns of the matrix A.
The value of n must be at least zero.

n

REAL for sgemvalpha
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv
Specifies the scalar alpha.

REAL for sgemva
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv
Array, DIMENSION (lda, n). Before entry, the leading
m-by-n part of the array a must contain the matrix of
coefficients.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1, m).

lda

REAL for sgemvx
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv
Array, DIMENSION at least (1+(n-1)*abs(incx)) when
trans = 'N' or 'n' and at least (1+(m - 1)*abs(incx))
otherwise. Before entry, the incremented array x must
contain the vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

REAL for sgemvbeta
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

82

2 Intel® Math Kernel Library Reference Manual

Specifies the scalar beta. When beta is set to zero, then y
need not be set on input.

REAL for sgemvy
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv
Array, DIMENSION at least (1 +(m - 1)*abs(incy)) when
trans = 'N' or 'n' and at least (1 +(n -
1)*abs(incy)) otherwise. Before entry with non-zero beta
, the incremented array y must contain the vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

Output Parameters

Overwritten by the updated vector y.y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gemv interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (rx) where rx = n if trans = 'N',
rx = m otherwise.

x

Holds the vector of length (ry) where ry = m if trans = 'N',
ry = n otherwise.

y

Must be 'N', 'C', or 'T'.trans
The default value is 'N'.

The default value is 1.alpha

The default value is 1.beta

83

BLAS and Sparse BLAS Routines 2

?ger
Performs a rank-1 update of a general matrix.

Syntax

Fortran 77:

call sger(m, n, alpha, x, incx, y, incy, a, lda)

call dger(m, n, alpha, x, incx, y, incy, a, lda)

Fortran 95:

call ger(a, x, y [,alpha])

Description

The ?ger routines perform a matrix-vector operation defined as

A := alpha*x*y'+ A,

where:

alpha is a scalar,

x is an m-element vector,

y is an n-element vector,

A is an m-by-n matrix.

Input Parameters

INTEGER. Specifies the number of rows of the matrix A.m
The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix A.n
The value of n must be at least zero.

REAL for sgeralpha
DOUBLE PRECISION for dger
Specifies the scalar alpha.

REAL for sgerx
DOUBLE PRECISION for dger

84

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least (1 + (m - 1)*abs(incx)).
Before entry, the incremented array x must contain the
m-element vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

REAL for sgery
DOUBLE PRECISION for dger
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

REAL for sgera
DOUBLE PRECISION for dger
Array, DIMENSION (lda, n).
Before entry, the leading m-by-n part of the array a must
contain the matrix of coefficients.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1, m).

lda

Output Parameters

Overwritten by the updated matrix.a

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ger interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (m).x

Holds the vector of length (n).y

The default value is 1.alpha

85

BLAS and Sparse BLAS Routines 2

?gerc
Performs a rank-1 update (conjugated) of a general
matrix.

Syntax

Fortran 77:

call cgerc(m, n, alpha, x, incx, y, incy, a, lda)

call zgerc(m, n, alpha, x, incx, y, incy, a, lda)

Fortran 95:

call gerc(a, x, y [,alpha])

Description

The ?gerc routines perform a matrix-vector operation defined as

A := alpha*x*conjg(y') + A,

where:

alpha is a scalar,

x is an m-element vector,

y is an n-element vector,

A is an m-by-n matrix.

Input Parameters

INTEGER. Specifies the number of rows of the matrix A.m
The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix A.n
The value of n must be at least zero.

SINGLE PRECISION COMPLEX for cgercalpha
DOUBLE PRECISION COMPLEX for zgerc
Specifies the scalar alpha.

SINGLE PRECISION COMPLEX for cgercx
DOUBLE PRECISION COMPLEX for zgerc

86

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least (1 + (m - 1)*abs(incx)).
Before entry, the incremented array x must contain the
m-element vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

COMPLEX for cgercy
DOUBLE COMPLEX for zgerc
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

COMPLEX for cgerca
DOUBLE COMPLEX for zgerc
Array, DIMENSION (lda, n).
Before entry, the leading m-by-n part of the array a must
contain the matrix of coefficients.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1, m).

lda

Output Parameters

Overwritten by the updated matrix.a

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gerc interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (m).x

Holds the vector of length (n).y

The default value is 1.alpha

87

BLAS and Sparse BLAS Routines 2

?geru
Performs a rank-1 update (unconjugated) of a
general matrix.

Syntax

Fortran 77:

call cgeru(m, n, alpha, x, incx, y, incy, a, lda)

call zgeru(m, n, alpha, x, incx, y, incy, a, lda)

Fortran 95:

call geru(a, x, y [,alpha])

Description

The ?geru routines perform a matrix-vector operation defined as

A := alpha*x*y ' + A,

where:

alpha is a scalar,

x is an m-element vector,

y is an n-element vector,

A is an m-by-n matrix.

Input Parameters

INTEGER. Specifies the number of rows of the matrix A.m
The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix A.n
The value of n must be at least zero.

COMPLEX for cgerualpha
DOUBLE COMPLEX for zgeru
Specifies the scalar alpha.

COMPLEX for cgerux
DOUBLE COMPLEX for zgeru

88

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least (1 + (m - 1)*abs(incx)).
Before entry, the incremented array x must contain the
m-element vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

COMPLEX for cgeruy
DOUBLE COMPLEX for zgeru
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

COMPLEX for cgerua
DOUBLE COMPLEX for zgeru
Array, DIMENSION (lda, n).
Before entry, the leading m-by-n part of the array a must
contain the matrix of coefficients.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1, m).

lda

Output Parameters

Overwritten by the updated matrix.a

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine geru interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (m).x

Holds the vector of length (n).y

The default value is 1.alpha

89

BLAS and Sparse BLAS Routines 2

?hbmv
Computes a matrix-vector product using a
Hermitian band matrix.

Syntax

Fortran 77:

call chbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

call zhbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

Fortran 95:

call hbmv(a, x, y [,uplo][,alpha] [,beta])

Description

The ?hbmv routines perform a matrix-vector operation defined as

y := alpha*A*x + beta*y,

where:

alpha and beta are scalars,

x and y are n-element vectors,

A is an n-by-n Hermitian band matrix, with k super-diagonals.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the band matrix A is being supplied, as
follows:

uplo

Part of Matrix A Supplieduplo value

The upper triangular part of matrix A is
being supplied.

U or u

The lower triangular part of matrix A is
being supplied.

L or l

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

90

2 Intel® Math Kernel Library Reference Manual

INTEGER. Specifies the number of super-diagonals of the
matrix A.

k

The value of k must satisfy 0 ≤ k.

COMPLEX for chbmvalpha
DOUBLE COMPLEX for zhbmv
Specifies the scalar alpha.

COMPLEX for chbmva
DOUBLE COMPLEX for zhbmv
Array, DIMENSION (lda, n).
Before entry with uplo = 'U' or 'u', the leading (k + 1)
by n part of the array a must contain the upper triangular
band part of the Hermitian matrix. The matrix must be
supplied column-by-column, with the leading diagonal of
the matrix in row (k + 1) of the array, the first
super-diagonal starting at position 2 in row k, and so on.
The top left k by k triangle of the array a is not referenced.
The following program segment transfers the upper
triangular part of a Hermitian band matrix from conventional
full matrix storage to band storage:

do 20, j = 1, n

m = k + 1 - j

do 10, i = max(1, j - k), j

a(m + i, j) = matrix(i, j)

10 continue

20 continue

Before entry with uplo = 'L' or 'l', the leading (k + 1)
by n part of the array a must contain the lower triangular
band part of the Hermitian matrix, supplied
column-by-column, with the leading diagonal of the matrix
in row 1 of the array, the first sub-diagonal starting at
position 1 in row 2, and so on. The bottom right k by k
triangle of the array a is not referenced.

91

BLAS and Sparse BLAS Routines 2

The following program segment transfers the lower
triangular part of a Hermitian band matrix from conventional
full matrix storage to band storage:

do 20, j = 1, n

m = 1 - j

do 10, i = j, min(n, j + k)

a(m + i, j) = matrix(i, j)

10 continue

20 continue

The imaginary parts of the diagonal elements need not be
set and are assumed to be zero.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
(k + 1).

lda

COMPLEX for chbmvx
DOUBLE COMPLEX for zhbmv
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

COMPLEX for chbmvbeta
DOUBLE COMPLEX for zhbmv
Specifies the scalar beta.

COMPLEX for chbmvy
DOUBLE COMPLEX for zhbmv
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

Output Parameters

Overwritten by the updated vector y.y

92

2 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hbmv interface are the following:

Holds the array a of size (k+1,n).a

Holds the vector of length (n).x

Holds the vector of length (n).y

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

The default value is 1.beta

?hemv
Computes a matrix-vector product using a
Hermitian matrix.

Syntax

Fortran 77:

call chemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

call zhemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

Fortran 95:

call hemv(a, x, y [,uplo][,alpha] [,beta])

Description

The ?hemv routines perform a matrix-vector operation defined as

y := alpha*A*x + beta*y,

where:

alpha and beta are scalars,

x and y are n-element vectors,

A is an n-by-n Hermitian matrix.

93

BLAS and Sparse BLAS Routines 2

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as follows:

uplo

Part of Array a To Be Referenceduplo value

The upper triangular part of array a is to
be referenced.

U or u

The lower triangular part of array a is to
be referenced.

L or l

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

COMPLEX for chemvalpha
DOUBLE COMPLEX for zhemv
Specifies the scalar alpha.

COMPLEX for chemva
DOUBLE COMPLEX for zhemv
Array, DIMENSION (lda, n).
Before entry with uplo = 'U' or 'u', the leading n-by-n
upper triangular part of the array a must contain the upper
triangular part of the Hermitian matrix and the strictly lower
triangular part of a is not referenced. Before entry with uplo
= 'L' or 'l', the leading n-by-n lower triangular part of
the array a must contain the lower triangular part of the
Hermitian matrix and the strictly upper triangular part of a
is not referenced.
The imaginary parts of the diagonal elements need not be
set and are assumed to be zero.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1, n).

lda

COMPLEX for chemvx
DOUBLE COMPLEX for zhemv
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x.incx

94

2 Intel® Math Kernel Library Reference Manual

The value of incx must not be zero.

COMPLEX for chemvbeta
DOUBLE COMPLEX for zhemv
Specifies the scalar beta. When beta is supplied as zero
then y need not be set on input.

COMPLEX for chemvy
DOUBLE COMPLEX for zhemv
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

Output Parameters

Overwritten by the updated vector y.y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hemv interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n).x

Holds the vector of length (n).y

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

The default value is 1.beta

95

BLAS and Sparse BLAS Routines 2

?her
Performs a rank-1 update of a Hermitian matrix.

Syntax

Fortran 77:

call cher(uplo, n, alpha, x, incx, a, lda)

call zher(uplo, n, alpha, x, incx, a, lda)

Fortran 95:

call her(a, x [,uplo] [, alpha])

Description

The ?her routines perform a matrix-vector operation defined as

A := alpha*x*conjg(x') + A,

where:

alpha is a real scalar,

x is an n-element vector,

A is an n-by-n Hermitian matrix.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as follows:

uplo

Part of Array a To Be Referenceduplo value

The upper triangular part of array a is to
be referenced.

U or u

The lower triangular part of array a is to
be referenced.

L or l

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

REAL for cheralpha
DOUBLE PRECISION for zher
Specifies the scalar alpha.

96

2 Intel® Math Kernel Library Reference Manual

COMPLEX for cherx
DOUBLE COMPLEX for zher
Array, dimension at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

COMPLEX for chera
DOUBLE COMPLEX for zher
Array, DIMENSION (lda, n).
Before entry with uplo = 'U' or 'u', the leading n-by-n
upper triangular part of the array a must contain the upper
triangular part of the Hermitian matrix and the strictly lower
triangular part of a is not referenced.
Before entry with uplo = 'L' or 'l', the leading n-by-n
lower triangular part of the array a must contain the lower
triangular part of the Hermitian matrix and the strictly upper
triangular part of a is not referenced.
The imaginary parts of the diagonal elements need not be
set and are assumed to be zero.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1, n).

lda

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the
array a is overwritten by the upper triangular part of the
updated matrix.

a

With uplo = 'L' or 'l', the lower triangular part of the
array a is overwritten by the lower triangular part of the
updated matrix.
The imaginary parts of the diagonal elements are set to
zero.

97

BLAS and Sparse BLAS Routines 2

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine her interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n).x

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

?her2
Performs a rank-2 update of a Hermitian matrix.

Syntax

Fortran 77:

call cher2(uplo, n, alpha, x, incx, y, incy, a, lda)

call zher2(uplo, n, alpha, x, incx, y, incy, a, lda)

Fortran 95:

call her2(a, x, y [,uplo][,alpha])

Description

The ?her2 routines perform a matrix-vector operation defined as

A := alpha *x*conjg(y') + conjg(alpha)*y *conjg(x') + A,

where:

alpha is a scalar,

x and y are n-element vectors,

A is an n-by-n Hermitian matrix.

98

2 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as follows:

uplo

Part of Array a To Be Referenceduplo value

The upper triangular part of array a is to
be referenced.

U or u

The lower triangular part of array a is to
be referenced.

L or l

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

COMPLEX for cher2alpha
DOUBLE COMPLEX for zher2
Specifies the scalar alpha.

COMPLEX for cher2x
DOUBLE COMPLEX for zher2
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

COMPLEX for cher2y
DOUBLE COMPLEX for zher2
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

COMPLEX for cher2a
DOUBLE COMPLEX for zher2
Array, DIMENSION (lda, n).
Before entry with uplo = 'U' or 'u', the leading n-by-n
upper triangular part of the array a must contain the upper
triangular part of the Hermitian matrix and the strictly lower
triangular part of a is not referenced.

99

BLAS and Sparse BLAS Routines 2

Before entry with uplo = 'L' or 'l', the leading n-by-n
lower triangular part of the array a must contain the lower
triangular part of the Hermitian matrix and the strictly upper
triangular part of a is not referenced.
The imaginary parts of the diagonal elements need not be
set and are assumed to be zero.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1, n).

lda

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the
array a is overwritten by the upper triangular part of the
updated matrix.

a

With uplo = 'L' or 'l', the lower triangular part of the
array a is overwritten by the lower triangular part of the
updated matrix.
The imaginary parts of the diagonal elements are set to
zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine her2 interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n).x

Holds the vector of length (n).y

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

100

2 Intel® Math Kernel Library Reference Manual

?hpmv
Computes a matrix-vector product using a
Hermitian packed matrix.

Syntax

Fortran 77:

call chpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

call zhpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

Fortran 95:

call hpmv(a, x, y [,uplo][,alpha] [,beta])

Description

The ?hpmv routines perform a matrix-vector operation defined as

y := alpha*A*x + beta*y,

where:

alpha and beta are scalars,

x and y are n-element vectors,

A is an n-by-n Hermitian matrix, supplied in packed form.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix A is supplied in the packed
array ap, as follows:

uplo

Part of Matrix A Supplieduplo value

The upper triangular part of matrix A is
supplied in ap.

U or u

The lower triangular part of matrix A is
supplied in ap.

L or l

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

COMPLEX for chpmvalpha

101

BLAS and Sparse BLAS Routines 2

DOUBLE COMPLEX for zhpmv
Specifies the scalar alpha.

COMPLEX for chpmvap
DOUBLE COMPLEX for zhpmv
Array, DIMENSION at least ((n*(n + 1))/2). Before entry
with uplo = 'U' or 'u', the array ap must contain the
upper triangular part of the Hermitian matrix packed
sequentially, column-by-column, so that ap(1) contains
a(1, 1), ap(2) and ap(3) contain a(1, 2) and a(2, 2)
respectively, and so on. Before entry with uplo = 'L' or
'l', the array ap must contain the lower triangular part of
the Hermitian matrix packed sequentially,
column-by-column, so that ap(1) contains a(1, 1), ap(2)
and ap(3) contain a(2, 1) and a(3, 1) respectively, and
so on.
The imaginary parts of the diagonal elements need not be
set and are assumed to be zero.

COMPLEX for chpmvx
DOUBLE PRECISION COMPLEX for zhpmv
Array, DIMENSION at least (1 +(n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

COMPLEX for chpmvbeta
DOUBLE COMPLEX for zhpmv
Specifies the scalar beta.
When beta is equal to zero then y need not be set on input.

COMPLEX for chpmvy
DOUBLE COMPLEX for zhpmv
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

102

2 Intel® Math Kernel Library Reference Manual

Output Parameters

Overwritten by the updated vector y.y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hpmv interface are the following:

Holds the array a of size (n*(n+1)/2).a

Holds the vector of length (n).x

Holds the vector of length (n).y

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

The default value is 1.beta

?hpr
Performs a rank-1 update of a Hermitian packed
matrix.

Syntax

Fortran 77:

call chpr(uplo, n, alpha, x, incx, ap)

call zhpr(uplo, n, alpha, x, incx, ap)

Fortran 95:

call hpr(a, x [,uplo] [, alpha])

Description

The ?hpr routines perform a matrix-vector operation defined as

A := alpha*x*conjg(x') + A,

where:

alpha is a real scalar,

103

BLAS and Sparse BLAS Routines 2

x is an n-element vector,

A is an n-by-n Hermitian matrix, supplied in packed form.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix A is supplied in the packed
array ap, as follows:

uplo

Part of Matrix A Supplieduplo value

The upper triangular part of matrix A is
supplied in ap.

U or u

The lower triangular part of matrix A is
supplied in ap.

L or l

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

REAL for chpralpha
DOUBLE PRECISION for zhpr
Specifies the scalar alpha.

COMPLEX for chprx
DOUBLE COMPLEX for zhpr
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x.
incx must not be zero.

incx

COMPLEX for chprap
DOUBLE COMPLEX for zhpr
Array, DIMENSION at least ((n*(n + 1))/2). Before entry
with uplo = 'U' or 'u', the array ap must contain the
upper triangular part of the Hermitian matrix packed
sequentially, column-by-column, so that ap(1) contains
a(1, 1), ap(2) and ap(3) contain a(1, 2) and a(2, 2)
respectively, and so on.

104

2 Intel® Math Kernel Library Reference Manual

Before entry with uplo = 'L' or 'l', the array ap must
contain the lower triangular part of the Hermitian matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1, 1), ap(2) and ap(3) contain a(2, 1) and
a(3, 1) respectively, and so on.
The imaginary parts of the diagonal elements need not be
set and are assumed to be zero.

Output Parameters

With uplo = 'U' or 'u', overwritten by the upper
triangular part of the updated matrix.

ap

With uplo = 'L' or 'l', overwritten by the lower triangular
part of the updated matrix.
The imaginary parts of the diagonal elements are set to
zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hpr interface are the following:

Holds the array a of size (n*(n+1)/2).a

Holds the vector of length (n).x

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

?hpr2
Performs a rank-2 update of a Hermitian packed
matrix.

Syntax

Fortran 77:

call chpr2(uplo, n, alpha, x, incx, y, incy, ap)

call zhpr2(uplo, n, alpha, x, incx, y, incy, ap)

105

BLAS and Sparse BLAS Routines 2

Fortran 95:

call hpr2(a, x, y [,uplo][,alpha])

Description

The ?hpr2 routines perform a matrix-vector operation defined as

A := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A,

where:

alpha is a scalar,

x and y are n-element vectors,

A is an n-by-n Hermitian matrix, supplied in packed form.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix A is supplied in the packed
array ap, as follows

uplo

Part of Matrix A Supplieduplo value

The upper triangular part of matrix A is
supplied in ap.

U or u

The lower triangular part of matrix A is
supplied in ap.

L or l

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

COMPLEX for chpr2alpha
DOUBLE COMPLEX for zhpr2
Specifies the scalar alpha.

COMPLEX for chpr2x
DOUBLE COMPLEX for zhpr2
Array, dimension at least (1 +(n - 1)*abs(incx)). Before
entry, the incremented array x must contain the n-element
vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

COMPLEX for chpr2y

106

2 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX for zhpr2
Array, DIMENSION at least (1 +(n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

COMPLEX for chpr2ap
DOUBLE COMPLEX for zhpr2
Array, DIMENSION at least ((n*(n + 1))/2). Before entry
with uplo = 'U' or 'u', the array ap must contain the
upper triangular part of the Hermitian matrix packed
sequentially, column-by-column, so that ap(1) contains
a(1,1), ap(2) and ap(3) contain a(1,2) and a(2,2)
respectively, and so on.
Before entry with uplo = 'L' or 'l', the array ap must
contain the lower triangular part of the Hermitian matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1,1), ap(2) and ap(3) contain a(2,1) and
a(3,1) respectively, and so on.
The imaginary parts of the diagonal elements need not be
set and are assumed to be zero.

Output Parameters

With uplo = 'U' or 'u', overwritten by the upper
triangular part of the updated matrix.

ap

With uplo = 'L' or 'l', overwritten by the lower triangular
part of the updated matrix.
The imaginary parts of the diagonal elements need are set
to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hpr2 interface are the following:

Holds the array a of size (n*(n+1)/2).a

107

BLAS and Sparse BLAS Routines 2

Holds the vector of length (n).x

Holds the vector of length (n).y

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

?sbmv
Computes a matrix-vector product using a
symmetric band matrix.

Syntax

Fortran 77:

call ssbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

call dsbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

Fortran 95:

call sbmv(a, x, y [,uplo][,alpha] [,beta])

Description

The ?sbmv routines perform a matrix-vector operation defined as

y := alpha*A*x + beta*y,

where:

alpha and beta are scalars,

x and y are n-element vectors,

A is an n-by-n symmetric band matrix, with k super-diagonals.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the band matrix A is being supplied, as
follows:

uplo

Part of Matrix A Supplieduplo value

The upper triangular part of matrix A is
supplied.

U or u

108

2 Intel® Math Kernel Library Reference Manual

The lower triangular part of matrix A is
supplied.

L or l

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

INTEGER. Specifies the number of super-diagonals of the
matrix A.

k

The value of k must satisfy 0 ≤ k.

REAL for ssbmvalpha
DOUBLE PRECISION for dsbmv
Specifies the scalar alpha.

REAL for ssbmva
DOUBLE PRECISION for dsbmv
Array, DIMENSION (lda, n). Before entry with uplo =
'U' or 'u', the leading (k + 1) by n part of the array a
must contain the upper triangular band part of the
symmetric matrix, supplied column-by-column, with the
leading diagonal of the matrix in row (k + 1) of the array,
the first super-diagonal starting at position 2 in row k, and
so on. The top left k by k triangle of the array a is not
referenced.
The following program segment transfers the upper
triangular part of a symmetric band matrix from conventional
full matrix storage to band storage:

do 20, j = 1, n

m = k + 1 - j

do 10, i = max(1, j - k), j

a(m + i, j) = matrix(i, j)

10 continue

20 continue

Before entry with uplo = 'L' or 'l', the leading (k + 1)
by n part of the array a must contain the lower triangular
band part of the symmetric matrix, supplied
column-by-column, with the leading diagonal of the matrix

109

BLAS and Sparse BLAS Routines 2

in row 1 of the array, the first sub-diagonal starting at
position 1 in row 2, and so on. The bottom right k by k
triangle of the array a is not referenced.
The following program segment transfers the lower
triangular part of a symmetric band matrix from conventional
full matrix storage to band storage:

do 20, j = 1, n

m = 1 - j

do 10, i = j, min(n, j + k)

a(m + i, j) = matrix(i, j)

10 continue

20 continue

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
(k + 1).

lda

REAL for ssbmvx
DOUBLE PRECISION for dsbmv
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

REAL for ssbmvbeta
DOUBLE PRECISION for dsbmv
Specifies the scalar beta.

REAL for ssbmvy
DOUBLE PRECISION for dsbmv
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

110

2 Intel® Math Kernel Library Reference Manual

Output Parameters

Overwritten by the updated vector y.y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sbmv interface are the following:

Holds the array a of size (k+1,n).a

Holds the vector of length (n).x

Holds the vector of length (n).y

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

The default value is 1.beta

?spmv
Computes a matrix-vector product using a
symmetric packed matrix.

Syntax

Fortran 77:

call sspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

call dspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

Fortran 95:

call spmv(a, x, y [,uplo][,alpha] [,beta])

Description

The ?spmv routines perform a matrix-vector operation defined as

y := alpha*A*x + beta*y,

where:

alpha and beta are scalars,

111

BLAS and Sparse BLAS Routines 2

x and y are n-element vectors,

A is an n-by-n symmetric matrix, supplied in packed form.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix A is supplied in the packed
array ap, as follows:

uplo

Part of Matrix A Supplieduplo value

The upper triangular part of matrix A is
supplied in ap.

U or u

The lower triangular part of matrix A is
supplied in ap.

L or l

INTEGER. Specifies the order of the matrix a. The value of
n must be at least zero.

n

REAL for sspmvalpha
DOUBLE PRECISION for dspmv
Specifies the scalar alpha.

REAL for sspmvap
DOUBLE PRECISION for dspmv
Array, DIMENSION at least ((n*(n + 1))/2).
Before entry with uplo = 'U' or 'u', the array ap must
contain the upper triangular part of the symmetric matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1,1), ap(2) and ap(3) contain a(1,2) and
a(2, 2) respectively, and so on. Before entry with uplo
= 'L' or 'l', the array ap must contain the lower triangular
part of the symmetric matrix packed sequentially,
column-by-column, so that ap(1) contains a(1,1), ap(2)
and ap(3) contain a(2,1) and a(3,1) respectively, and
so on.

REAL for sspmvx
DOUBLE PRECISION for dspmv
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

112

2 Intel® Math Kernel Library Reference Manual

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

REAL for sspmvbeta
DOUBLE PRECISION for dspmv
Specifies the scalar beta.
When beta is supplied as zero, then y need not be set on
input.

REAL for sspmvy
DOUBLE PRECISION for dspmv
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

Output Parameters

Overwritten by the updated vector y.y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spmv interface are the following:

Holds the array a of size (n*(n+1)/2).a

Holds the vector of length (n).x

Holds the vector of length (n).y

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

The default value is 1.beta

113

BLAS and Sparse BLAS Routines 2

?spr
Performs a rank-1 update of a symmetric packed
matrix.

Syntax

Fortran 77:

call sspr(uplo, n, alpha, x, incx, ap)

call dspr(uplo, n, alpha, x, incx, ap)

Fortran 95:

call spr(a, x [,uplo] [, alpha])

Description

The ?spr routines perform a matrix-vector operation defined as

a:= alpha*x*x'+ A,

where:

alpha is a real scalar,

x is an n-element vector,

A is an n-by-n symmetric matrix, supplied in packed form.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix A is supplied in the packed
array ap, as follows:

uplo

Part of Matrix A Supplieduplo value

The upper triangular part of matrix A is
supplied in ap.

U or u

The lower triangular part of matrix A is
supplied in ap.

L or l

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

REAL for sspralpha

114

2 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dspr
Specifies the scalar alpha.

REAL for ssprx
DOUBLE PRECISION for dspr
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

REAL for ssprap
DOUBLE PRECISION for dspr
Array, DIMENSION at least ((n*(n + 1))/2). Before entry
with uplo = 'U' or 'u', the array ap must contain the
upper triangular part of the symmetric matrix packed
sequentially, column-by-column, so that ap(1) contains
a(1,1), ap(2) and ap(3) contain a(1,2) and a(2,2)
respectively, and so on.
Before entry with uplo = 'L' or 'l', the array ap must
contain the lower triangular part of the symmetric matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1,1), ap(2) and ap(3) contain a(2,1) and
a(3,1) respectively, and so on.

Output Parameters

With uplo = 'U' or 'u', overwritten by the upper
triangular part of the updated matrix.

ap

With uplo = 'L' or 'l', overwritten by the lower triangular
part of the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spr interface are the following:

Holds the array a of size (n*(n+1)/2).a

Holds the vector of length (n).x

115

BLAS and Sparse BLAS Routines 2

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

?spr2
Performs a rank-2 update of a symmetric packed
matrix.

Syntax

Fortran 77:

call sspr2(uplo, n, alpha, x, incx, y, incy, ap)

call dspr2(uplo, n, alpha, x, incx, y, incy, ap)

Fortran 95:

call spr2(a, x, y [,uplo][,alpha])

Description

The ?spr2 routines perform a matrix-vector operation defined as

A:= alpha*x*y'+ alpha*y*x' + A,

where:

alpha is a scalar,

x and y are n-element vectors,

A is an n-by-n symmetric matrix, supplied in packed form.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix A is supplied in the packed
array ap, as follows:

uplo

Part of Matrix A Supplieduplo value

The upper triangular part of matrix A is
supplied in ap.

U or u

The lower triangular part of matrix A is
supplied in ap.

L or l

116

2 Intel® Math Kernel Library Reference Manual

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

REAL for sspr2alpha
DOUBLE PRECISION for dspr2
Specifies the scalar alpha.

REAL for sspr2x
DOUBLE PRECISION for dspr2
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

REAL for sspr2y
DOUBLE PRECISION for dspr2
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

INTEGER. Specifies the increment for the elements of y. The
value of incy must not be zero.

incy

REAL for sspr2ap
DOUBLE PRECISION for dspr2
Array, DIMENSION at least ((n*(n + 1))/2). Before entry
with uplo = 'U' or 'u', the array ap must contain the
upper triangular part of the symmetric matrix packed
sequentially, column-by-column, so that ap(1) contains
a(1,1), ap(2) and ap(3) contain a(1,2) and a(2,2)
respectively, and so on.
Before entry with uplo = 'L' or 'l', the array ap must
contain the lower triangular part of the symmetric matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1,1), ap(2) and ap(3) contain a (2,1) and
a(3,1) respectively, and so on.

Output Parameters

With uplo = 'U' or 'u', overwritten by the upper
triangular part of the updated matrix.

ap

117

BLAS and Sparse BLAS Routines 2

With uplo = 'L' or 'l', overwritten by the lower triangular
part of the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spr2 interface are the following:

Holds the array a of size (n*(n+1)/2).a

Holds the vector of length (n).x

Holds the vector of length (n).y

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

?symv
Computes a matrix-vector product for a symmetric
matrix.

Syntax

Fortran 77:

call ssymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

call dsymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

Fortran 95:

call symv(a, x, y [,uplo][,alpha] [,beta])

Description

The ?symv routines perform a matrix-vector operation defined as

y := alpha*A*x + beta*y,

where:

alpha and beta are scalars,

x and y are n-element vectors,

118

2 Intel® Math Kernel Library Reference Manual

A is an n-by-n symmetric matrix.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as follows:

uplo

Part of Array a To Be Referenceduplo value

The upper triangular part of array a is to
be referenced.

U or u

The lower triangular part of array a is to
be referenced.

L or l

INTEGER. Specifies the order of the matrix a. The value of
n must be at least zero.

n

REAL for ssymvalpha
DOUBLE PRECISION for dsymv
Specifies the scalar alpha.

REAL for ssymva
DOUBLE PRECISION for dsymv
Array, DIMENSION (lda, n).
Before entry with uplo = 'U' or 'u', the leading n-by-n
upper triangular part of the array a must contain the upper
triangular part of the symmetric matrix A and the strictly
lower triangular part of a is not referenced. Before entry
with uplo = 'L' or 'l', the leading n-by-n lower triangular
part of the array a must contain the lower triangular part
of the symmetric matrix A and the strictly upper triangular
part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1, n).

lda

REAL for ssymvx
DOUBLE PRECISION for dsymv
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x.incx

119

BLAS and Sparse BLAS Routines 2

The value of incx must not be zero.

REAL for ssymvbeta
DOUBLE PRECISION for dsymv
Specifies the scalar beta.
When beta is supplied as zero, then y need not be set on
input.

REAL for ssymvy
DOUBLE PRECISION for dsymv
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

INTEGER. Specifies the increment for the elements of y.incy
The value of incy must not be zero.

Output Parameters

Overwritten by the updated vector y.y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine symv interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n).x

Holds the vector of length (n).y

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

The default value is 1.beta

120

2 Intel® Math Kernel Library Reference Manual

?syr
Performs a rank-1 update of a symmetric matrix.

Syntax

Fortran 77:

call ssyr(uplo, n, alpha, x, incx, a, lda)

call dsyr(uplo, n, alpha, x, incx, a, lda)

Fortran 95:

call syr(a, x [,uplo] [, alpha])

Description

The ?syr routines perform a matrix-vector operation defined as

A := alpha*x*x' + A ,

where:

alpha is a real scalar,

x is an n-element vector,

A is an n-by-n symmetric matrix.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as follows:

uplo

Part of Array a To Be Referenceduplo value

The upper triangular part of array a is to
be referenced.

U or u

The lower triangular part of array a is to
be referenced.

L or l

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

REAL for ssyralpha
DOUBLE PRECISION for dsyr

121

BLAS and Sparse BLAS Routines 2

Specifies the scalar alpha.

REAL for ssyrx
DOUBLE PRECISION for dsyr
Array, DIMENSION at least (1 + (n-1)*abs(incx)). Before
entry, the incremented array x must contain the n-element
vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

REAL for ssyra
DOUBLE PRECISION for dsyr
Array, DIMENSION (lda, n).
Before entry with uplo = 'U' or 'u', the leading n-by-n
upper triangular part of the array a must contain the upper
triangular part of the symmetric matrix A and the strictly
lower triangular part of a is not referenced.
Before entry with uplo = 'L' or 'l', the leading n-by-n
lower triangular part of the array a must contain the lower
triangular part of the symmetric matrix A and the strictly
upper triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1, n).

lda

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the
array a is overwritten by the upper triangular part of the
updated matrix.

a

With uplo = 'L' or 'l', the lower triangular part of the
array a is overwritten by the lower triangular part of the
updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine syr interface are the following:

122

2 Intel® Math Kernel Library Reference Manual

Holds the matrix A of size (n,n).a

Holds the vector of length (n).x

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

?syr2
Performs a rank-2 update of symmetric matrix.

Syntax

Fortran 77:

call ssyr2(uplo, n, alpha, x, incx, y, incy, a, lda)

call dsyr2(uplo, n, alpha, x, incx, y, incy, a, lda)

Fortran 95:

call syr2(a, x, y [,uplo][,alpha])

Description

The ?syr2 routines perform a matrix-vector operation defined as

A := alpha*x*y'+ alpha*y*x' + A,

where:

alpha is a scalar,

x and y are n-element vectors,

A is an n-by-n symmetric matrix.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as follows:

uplo

Part of Array a To Be Referenceduplo value

The upper triangular part of array a is to
be referenced.

U or u

123

BLAS and Sparse BLAS Routines 2

The lower triangular part of array a is to
be referenced.

L or l

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

REAL for ssyr2alpha
DOUBLE PRECISION for dsyr2
Specifies the scalar alpha.

REAL for ssyr2x
DOUBLE PRECISION for dsyr2
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

REAL for ssyr2y
DOUBLE PRECISION for dsyr2
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

INTEGER. Specifies the increment for the elements of y. The
value of incy must not be zero.

incy

REAL for ssyr2a
DOUBLE PRECISION for dsyr2
Array, DIMENSION (lda, n).
Before entry with uplo = 'U' or 'u', the leading n-by-n
upper triangular part of the array a must contain the upper
triangular part of the symmetric matrix and the strictly lower
triangular part of a is not referenced.
Before entry with uplo = 'L' or 'l', the leading n-by-n
lower triangular part of the array a must contain the lower
triangular part of the symmetric matrix and the strictly upper
triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1, n).

lda

124

2 Intel® Math Kernel Library Reference Manual

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the
array a is overwritten by the upper triangular part of the
updated matrix.

a

With uplo = 'L' or 'l', the lower triangular part of the
array a is overwritten by the lower triangular part of the
updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine syr2 interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector x of length (n).x

Holds the vector y of length (n).y

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

?tbmv
Computes a matrix-vector product using a
triangular band matrix.

Syntax

Fortran 77:

call stbmv(uplo, trans, diag, n, k, a, lda, x, incx)

call dtbmv(uplo, trans, diag, n, k, a, lda, x, incx)

call ctbmv(uplo, trans, diag, n, k, a, lda, x, incx)

call ztbmv(uplo, trans, diag, n, k, a, lda, x, incx)

Fortran 95:

call tbmv(a, x [,uplo] [, trans] [,diag])

125

BLAS and Sparse BLAS Routines 2

Description

The ?tbmv routines perform one of the matrix-vector operations defined as

x := A*x, or x := A'*x, or x := conjg(A')*x,

where:

x is an n-element vector,

A is an n-by-n unit, or non-unit, upper or lower triangular band matrix, with (k +1) diagonals.

Input Parameters

CHARACTER*1. Specifies whether the matrix is an upper or
lower triangular matrix, as follows:

uplo

Matrix Auplo value

An upper triangular matrix.U or u

A lower triangular matrix.L or l

CHARACTER*1. Specifies the operation to be performed, as
follows:

trans

Operation to be Performedtrans value

x := A*xN or n

x := A'*xT or t

x := conjg(A')*xC or c

CHARACTER*1. Specifies whether or not A is unit triangular,
as follows:

diag

Matrix adiag value

Matrix a is a unit triangular.U or u

Matrix a is not a unit triangular.N or n

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

INTEGER. On entry with uplo = 'U' or 'u', k specifies the
number of super-diagonals of the matrix A. On entry with
uplo = 'L' or 'l', k specifies the number of sub-diagonals
of the matrix a.

k

The value of k must satisfy 0 ≤ k.

126

2 Intel® Math Kernel Library Reference Manual

REAL for stbmva
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for ztbmv
Array, DIMENSION (lda, n).
Before entry with uplo = 'U' or 'u', the leading (k + 1)
by n part of the array a must contain the upper triangular
band part of the matrix of coefficients, supplied
column-by-column, with the leading diagonal of the matrix
in row (k + 1) of the array, the first super-diagonal starting
at position 2 in row k, and so on. The top left k by k triangle
of the array a is not referenced. The following program
segment transfers an upper triangular band matrix from
conventional full matrix storage to band storage:

do 20, j = 1, n

m = k + 1 - j

do 10, i = max(1, j - k), j

a(m + i, j) = matrix(i, j)

10 continue

20 continue

Before entry with uplo = 'L' or 'l', the leading (k + 1)
by n part of the array a must contain the lower triangular
band part of the matrix of coefficients, supplied
column-by-column, with the leading diagonal of the matrix
in row1 of the array, the first sub-diagonal starting at
position 1 in row 2, and so on. The bottom right k by k

127

BLAS and Sparse BLAS Routines 2

triangle of the array a is not referenced. The following
program segment transfers a lower triangular band matrix
from conventional full matrix storage to band storage:

do 20, j = 1, n

m = 1 - j

do 10, i = j, min(n, j + k)

a(m + i, j) = matrix (i, j)

10 continue

20 continue

Note that when diag = 'U' or 'u', the elements of the
array a corresponding to the diagonal elements of the matrix
are not referenced, but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
(k + 1).

lda

REAL for stbmvx
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for ztbmv
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

Output Parameters

Overwritten with the transformed vector x.x

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tbmv interface are the following:

128

2 Intel® Math Kernel Library Reference Manual

Holds the array a of size (k+1,n).a

Holds the vector of length (n).x

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'.trans
The default value is 'N'.

Must be 'N' or 'U'. The default value is 'N'.diag

?tbsv
Solves a system of linear equations whose
coefficients are in a triangular band matrix.

Syntax

Fortran 77:

call stbsv(uplo, trans, diag, n, k, a, lda, x, incx)

call dtbsv(uplo, trans, diag, n, k, a, lda, x, incx)

call ctbsv(uplo, trans, diag, n, k, a, lda, x, incx)

call ztbsv(uplo, trans, diag, n, k, a, lda, x, incx)

Fortran 95:

call tbsv(a, x [,uplo] [, trans] [,diag])

Description

The ?tbsv routines solve one of the following systems of equations:

A*x = b, or A'*x = b, or conjg(A')*x = b,

where:

b and x are n-element vectors,

A is an n-by-n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals.

The routine does not test for singularity or near-singularity.

Such tests must be performed before calling this routine.

129

BLAS and Sparse BLAS Routines 2

Input Parameters

CHARACTER*1. Specifies whether the matrix A is an upper
or lower triangular matrix, as follows:

uplo

Matrix Auplo value

An upper triangular matrix.U or u

A lower triangular matrix.L or l

CHARACTER*1. Specifies the operation to be performed, as
follows:

trans

Operation to be Performedtrans value

A*x = bN or n

A'*x = bT or t

conjg(A')*x = bC or c

CHARACTER*1. Specifies whether or not A is unit triangular,
as follows:

diag

Matrix Adiag value

Matrix A is a unit triangular.U or u

Matrix A is not a unit triangular.N or n

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

INTEGER. On entry with uplo = 'U' or 'u', k specifies the
number of super-diagonals of the matrix A. On entry with
uplo = 'L' or 'l', k specifies the number of sub-diagonals
of the matrix A.

k

The value of k must satisfy 0 ≤ k.

REAL for stbsva
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv
Array, DIMENSION (lda, n).
Before entry with uplo = 'U' or 'u', the leading (k + 1)
by n part of the array a must contain the upper triangular
band part of the matrix of coefficients, supplied

130

2 Intel® Math Kernel Library Reference Manual

column-by-column, with the leading diagonal of the matrix
in row (k + 1) of the array, the first super-diagonal starting
at position 2 in row k, and so on. The top left k by k triangle
of the array a is not referenced.
The following program segment transfers an upper triangular
band matrix from conventional full matrix storage to band
storage:

do 20, j = 1, n

m = k + 1 - j

do 10, i = max(1, j - k), jl

a(m + i, j) = matrix (i, j)

10 continue

20 continue

Before entry with uplo = 'L' or 'l', the leading (k + 1)
by n part of the array a must contain the lower triangular
band part of the matrix of coefficients, supplied
column-by-column, with the leading diagonal of the matrix
in row 1 of the array, the first sub-diagonal starting at
position 1 in row 2, and so on. The bottom right k by k
triangle of the array a is not referenced.
The following program segment transfers a lower triangular
band matrix from conventional full matrix storage to band
storage:

do 20, j = 1, n

m = 1 - j

do 10, i = j, min(n, j + k)

a(m + i, j) = matrix (i, j)

10 continue

20 continue

When diag = 'U' or 'u', the elements of the array a
corresponding to the diagonal elements of the matrix are
not referenced, but are assumed to be unity.

131

BLAS and Sparse BLAS Routines 2

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
(k + 1).

lda

REAL for stbsvx
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element right-hand side vector b.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

Output Parameters

Overwritten with the solution vector x.x

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tbsv interface are the following:

Holds the array a of size (k+1,n).a

Holds the vector of length (n).x

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'.trans
The default value is 'N'.

Must be 'N' or 'U'. The default value is 'N'.diag

132

2 Intel® Math Kernel Library Reference Manual

?tpmv
Computes a matrix-vector product using a
triangular packed matrix.

Syntax

Fortran 77:

call stpmv(uplo, trans, diag, n, ap, x, incx)

call dtpmv(uplo, trans, diag, n, ap, x, incx)

call ctpmv(uplo, trans, diag, n, ap, x, incx)

call ztpmv(uplo, trans, diag, n, ap, x, incx)

Fortran 95:

call tpmv(a, x [,uplo] [, trans] [,diag])

Description

The ?tpmv routines perform one of the matrix-vector operations defined as

x := A*x, or x := A'*x, or x := conjg(A')*x,

where:

x is an n-element vector,

A is an n-by-n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

Input Parameters

CHARACTER*1. Specifies whether the matrix A is an upper
or lower triangular matrix, as follows:

uplo

133

BLAS and Sparse BLAS Routines 2

Matrix Auplo value

An upper triangular matrix.U or u

A lower triangular matrix.L or l

CHARACTER*1. Specifies the operation to be performed, as
follows:

trans

Operation To Be Performedtrans value

x := A*xN or n

x := A'*xT or t

x := conjg(A')*xC or c

CHARACTER*1. Specifies whether or not A is unit triangular,
as follows:

diag

Matrix Adiag value

Matrix A is assumed to be unit triangular.U or u

Matrix A is not assumed to be unit
triangular.

N or n

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

REAL for stpmvap
DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for ztpmv
Array, DIMENSION at least ((n*(n + 1))/2). Before entry
with uplo = 'U' or 'u', the array ap must contain the
upper triangular matrix packed sequentially,
column-by-column, so that ap(1) contains a(1,1), ap(2)
and ap(3) contain a(1,2) and a(2,2) respectively, and
so on. Before entry with uplo = 'L' or 'l', the array ap
must contain the lower triangular matrix packed
sequentially, column-by-column, so that ap(1) contains
a(1,1), ap(2) and ap(3) contain a(2,1) and a(3,1)
respectively, and so on. When diag = 'U' or 'u', the
diagonal elements of a are not referenced, but are assumed
to be unity.

134

2 Intel® Math Kernel Library Reference Manual

REAL for stpmvx
DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for ztpmv
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

Output Parameters

Overwritten with the transformed vector x.x

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tpmv interface are the following:

Holds the array a of size (n*(n+1)/2).a

Holds the vector of length (n).x

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'.trans
The default value is 'N'.

Must be 'N' or 'U'. The default value is 'N'.diag

135

BLAS and Sparse BLAS Routines 2

?tpsv
Solves a system of linear equations whose
coefficients are in a triangular packed matrix.

Syntax

Fortran 77:

call stpsv(uplo, trans, diag, n, ap, x, incx)

call dtpsv(uplo, trans, diag, n, ap, x, incx)

call ctpsv(uplo, trans, diag, n, ap, x, incx)

call ztpsv(uplo, trans, diag, n, ap, x, incx)

Fortran 95:

call tpsv(a, x [,uplo] [, trans] [,diag])

Description

The ?tpsv routines solve one of the following systems of equations

A*x = b, or A'*x = b, or conjg(A')*x = b,

where:

b and x are n-element vectors,

A is an n-by-n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

This routine does not test for singularity or near-singularity.

Such tests must be performed before calling this routine.

Input Parameters

CHARACTER*1. Specifies whether the matrix A is an upper
or lower triangular matrix, as follows:

uplo

Matrix Auplo value

An upper triangular matrix.U or u

A lower triangular matrix.L or l

CHARACTER*1. Specifies the operation to be performed, as
follows:

trans

136

2 Intel® Math Kernel Library Reference Manual

Operation To Be Performedtrans value

A*x = bN or n

A'*x = bT or t

conjg(A')*x = bC or c

CHARACTER*1. Specifies whether or not the matrix A is unit
triangular, as follows:

diag

Matrix Adiag value

Matrix A is assumed to be unit triangular.U or u

Matrix A is not assumed to be unit
triangular.

N or n

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

REAL for stpsvap
DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv
DOUBLE COMPLEX for ztpsv
Array, DIMENSION at least ((n*(n + 1))/2). Before entry
with uplo = 'U' or 'u', the array ap must contain the
upper triangular matrix packed sequentially,
column-by-column, so that ap(1) contains a(1, +1), ap(2)
and ap(3) contain a(1, 2) and a(2, 2) respectively, and
so on.
Before entry with uplo = 'L' or 'l', the array ap must
contain the lower triangular matrix packed sequentially,
column-by-column, so that ap(1) contains a(1, +1), ap(2)
and ap(3) contain a(2, +1) and a(3, +1) respectively,
and so on.
When diag = 'U' or 'u', the diagonal elements of a are
not referenced, but are assumed to be unity.

REAL for stpsvx
DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv
DOUBLE COMPLEX for ztpsv

137

BLAS and Sparse BLAS Routines 2

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element right-hand side vector b.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

Output Parameters

Overwritten with the solution vector x.x

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tpsv interface are the following:

Holds the array a of size (n*(n+1)/2).a

Holds the vector of length (n).x

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'.trans
The default value is 'N'.

Must be 'N' or 'U'. The default value is 'N'.diag

?trmv
Computes a matrix-vector product using a
triangular matrix.

Syntax

Fortran 77:

call strmv(uplo, trans, diag, n, a, lda, x, incx)

call dtrmv(uplo, trans, diag, n, a, lda, x, incx)

call ctrmv(uplo, trans, diag, n, a, lda, x, incx)

call ztrmv(uplo, trans, diag, n, a, lda, x, incx)

138

2 Intel® Math Kernel Library Reference Manual

Fortran 95:

call trmv(a, x [,uplo] [, trans] [,diag])

Description

The ?trmv routines perform one of the following matrix-vector operations defined as

x := A*x, or x := A'*x, or x := conjg(A')*x,

where:

x is an n-element vector,

A is an n-by-n unit, or non-unit, upper or lower triangular matrix.

Input Parameters

CHARACTER*1. Specifies whether the matrix A is an upper
or lower triangular matrix, as follows:

uplo

Matrix Auplo value

An upper triangular matrix.U or u

A lower triangular matrix.L or l

CHARACTER*1. Specifies the operation to be performed, as
follows:

trans

Operation To Be Performedtrans value

x := A*xN or n

x := A'*xT or t

x := conjg(A')*xC or c

CHARACTER*1. Specifies whether or not A is unit triangular,
as follows:

diag

Matrix Adiag value

Matrix A is assumed to be unit triangular.U or u

Matrix A is not assumed to be unit
triangular.

N or n

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

REAL for strmva

139

BLAS and Sparse BLAS Routines 2

DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for ztrmv
Array, DIMENSION (lda,n). Before entry with uplo = 'U'
or 'u', the leading n-by-n upper triangular part of the array
a must contain the upper triangular matrix and the strictly
lower triangular part of a is not referenced. Before entry
with uplo = 'L' or 'l', the leading n-by-n lower triangular
part of the array a must contain the lower triangular matrix
and the strictly upper triangular part of a is not referenced.
When diag = 'U' or 'u', the diagonal elements of a are
not referenced either, but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1, n).

lda

REAL for strmvx
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for ztrmv
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

Output Parameters

Overwritten with the transformed vector x.x

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trmv interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n).x

140

2 Intel® Math Kernel Library Reference Manual

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'.trans
The default value is 'N'.

Must be 'N' or 'U'. The default value is 'N'.diag

?trsv
Solves a system of linear equations whose
coefficients are in a triangular matrix.

Syntax

Fortran 77:

call strsv(uplo, trans, diag, n, a, lda, x, incx)

call dtrsv(uplo, trans, diag, n, a, lda, x, incx)

call ctrsv(uplo, trans, diag, n, a, lda, x, incx)

call ztrsv(uplo, trans, diag, n, a, lda, x, incx)

Fortran 95:

call trsv(a, x [,uplo] [, trans] [,diag])

Description

The ?trsv routines solve one of the systems of equations:

A*x = b, or A'*x = b, or conjg(A')*x = b,

where:

b and x are n-element vectors,

A is an n-by-n unit, or non-unit, upper or lower triangular matrix.

The routine does not test for singularity or near-singularity.

Such tests must be performed before calling this routine.

Input Parameters

CHARACTER*1. Specifies whether the matrix is an upper or
lower triangular matrix, as follows:

uplo

141

BLAS and Sparse BLAS Routines 2

Matrix Auplo value

An upper triangular matrix.U or u

A lower triangular matrix.L or l

CHARACTER*1. Specifies the operation to be performed, as
follows:

trans

Operation To Be Performedtrans value

A*x = bN or n

A'*x = bT or t

conjg(A')*x = bC or c

CHARACTER*1. Specifies whether or not A is unit triangular,
as follows:

diag

Matrix adiag value

Matrix a is a unit triangular.U or u

Matrix a is not a unit triangular.N or n

INTEGER. Specifies the order of the matrix A. The value of
n must be at least zero.

n

REAL for strsva
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv
Array, DIMENSION (lda,n). Before entry with uplo = 'U'
or 'u', the leading n-by-n upper triangular part of the array
a must contain the upper triangular matrix and the strictly
lower triangular part of a is not referenced. Before entry
with uplo = 'L' or 'l', the leading n-by-n lower triangular
part of the array a must contain the lower triangular matrix
and the strictly upper triangular part of a is not referenced.
When diag = 'U' or 'u', the diagonal elements of a are
not referenced either, but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1, n).

lda

REAL for strsvx

142

2 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element right-hand side vector b.

INTEGER. Specifies the increment for the elements of x.incx
The value of incx must not be zero.

Output Parameters

Overwritten with the solution vector x.x

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trsv interface are the following:

Holds the matrix a of size (n,n).a

Holds the vector of length (n).x

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'.trans
The default value is 'N'.

Must be 'N' or 'U'. The default value is 'N'.diag

BLAS Level 3 Routines
BLAS Level 3 routines perform matrix-matrix operations. Table 2-3 lists the BLAS Level 3
routine groups and the data types associated with them.

Table 2-3 BLAS Level 3 Routine Groups and Their Data Types

DescriptionData TypesRoutine Group

Matrix-matrix product of general matricess, d, c, z?gemm

Matrix-matrix product of Hermitian matricesc, z?hemm

143

BLAS and Sparse BLAS Routines 2

DescriptionData TypesRoutine Group

Rank-k update of Hermitian matricesc, z?herk

Rank-2k update of Hermitian matricesc, z?her2k

Matrix-matrix product of symmetric matricess, d, c, z?symm

Rank-k update of symmetric matricess, d, c, z?syrk

Rank-2k update of symmetric matricess, d, c, z?symm

Matrix-matrix product of triangular matricess, d, c, z?trmm

Linear matrix-matrix solution for triangular matricess, d, c, z?trsm

Symmetric Multiprocessing Version of Intel® MKL

Many applications spend considerable time for executing BLAS level 3 routines. This time can
be scaled by the number of processors available on the system through using the symmetric
multiprocessing(SMP) feature built into the Intel MKL Library. The performance enhancements
based on the parallel use of the processors are available without any programming effort on
your part.

To enhance performance, the library uses the following methods:

• The operation of BLAS level 3 matrix-matrix functions permits to restructure the code in a
way which increases the localization of data reference, enhances cache memory use, and
reduces the dependency on the memory bus.

• Once the code has been effectively blocked as described above, one of the matrices is
distributed across the processors to be multiplied by the second matrix. Such distribution
ensures effective cache management which reduces the dependency on the memory bus
performance and brings good scaling results.

144

2 Intel® Math Kernel Library Reference Manual

?gemm
Computes a scalar-matrix-matrix product and adds
the result to a scalar-matrix product.

Syntax

Fortran 77:

call sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

Fortran 95:

call gemm(a, b, c [,transa][,transb] [,alpha][,beta])

Description

The ?gemm routines perform a matrix-matrix operation with general matrices. The operation is
defined as

C := alpha*op(A)*op(B) + beta*C,

where:

op(x) is one of op(x) = x, or op(x) = x', or op(x) = conjg(x'),

alpha and beta are scalars,

A, B and C are matrices:

op(A) is an m-by-k matrix,

op(B) is a k-by-n matrix,

C is an m-by-n matrix.

Input Parameters

CHARACTER*1. Specifies the form of op(A) to be used in
the matrix multiplication as follows:

transa

145

BLAS and Sparse BLAS Routines 2

Form of op(a)transa value

op(A) = AN or n

op(A) = A'T or t

op(A) = conjg(A')C or c

CHARACTER*1. Specifies the form of op(B) to be used in
the matrix multiplication as follows:

transb

Form of op(b)transb value

op(B) = BN or n

op(B) = B'T or t

op(B) = conjg(B')C or c

INTEGER. Specifies the number of rows of the matrix op(A)
and of the matrix C. The value of m must be at least zero.

m

INTEGER. Specifies the number of columns of the matrix
op(B) and the number of columns of the matrix C.

n

The value of n must be at least zero.

INTEGER. Specifies the number of columns of the matrix
op(A) and the number of rows of the matrix op(B).

k

The value of k must be at least zero.

REAL for sgemmalpha
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm
Specifies the scalar alpha.

REAL for sgemma
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm
Array, DIMENSION (lda, ka), where ka is k when transa=
'N' or 'n', and is m otherwise. Before entry with transa=
'N' or 'n', the leading m-by-k part of the array a must
contain the matrix A, otherwise the leading k-by-m part of
the array a must contain the matrix A.

146

2 Intel® Math Kernel Library Reference Manual

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. When transa= 'N' or 'n', then
lda must be at least max(1, m), otherwise lda must be at
least max(1, k).

lda

REAL for sgemmb
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm
Array, DIMENSION (ldb, kb), where kb is n when transb
= 'N' or 'n', and is k otherwise. Before entry with transb
= 'N' or 'n', the leading k-by-n part of the array b must
contain the matrix B, otherwise the leading n-by-k part of
the array b must contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program. When transb = 'N' or 'n', then
ldb must be at least max(1, k), otherwise ldb must be at
least max(1, n).

ldb

REAL for sgemmbeta
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm
Specifies the scalar beta.
When beta is equal to zero, then c need not be set on input.

REAL for sgemmc
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm
Array, DIMENSION (ldc, n).
Before entry, the leading m-by-n part of the array c must
contain the matrix C, except when beta is equal to zero, in
which case c need not be set on entry.

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program. The value of ldc must be at least
max(1, m).

ldc

147

BLAS and Sparse BLAS Routines 2

Output Parameters

Overwritten by the m-by-n matrix (alpha*op(A)*op(B) +
beta*C).

c

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gemm interface are the following:

Holds the matrix A of size (ma,ka) wherea
ka = k if transa= 'N',
ka = m otherwise,
ma = m if transa= 'N',
ma = k otherwise.

Holds the matrix B of size (mb,kb) whereb
kb = n if transb = 'N',
kb = k otherwise,
mb = k if transb = 'N',
mb = n otherwise.

Holds the matrix C of size (m,n).c

Must be 'N', 'C', or 'T'.transa
The default value is 'N'.

Must be 'N', 'C', or 'T'.transb
The default value is 'N'.

The default value is 1.alpha

The default value is 1.beta

148

2 Intel® Math Kernel Library Reference Manual

?hemm
Computes a scalar-matrix-matrix product (either
one of the matrices is Hermitian) and adds the
result to scalar-matrix product.

Syntax

Fortran 77:

call chemm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

call zhemm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

Fortran 95:

call hemm(a, b, c [,side][,uplo] [,alpha][,beta])

Description

The ?hemm routines perform a matrix-matrix operation using Hermitian matrices. The operation
is defined as

C := alpha*A*B + beta*C

or

C := alpha*B*A + beta*C,

where:

alpha and beta are scalars,

A is an Hermitian matrix,

B and C are m-by-n matrices.

Input Parameters

CHARACTER*1. Specifies whether the Hermitian matrix A
appears on the left or right in the operation as follows:

side

Operation To Be Performedsidevalue

C := alpha*A*B + beta*CL or l

C := alpha*B*A + beta*CR or r

149

BLAS and Sparse BLAS Routines 2

CHARACTER*1. Specifies whether the upper or lower
triangular part of the Hermitian matrix A is to be referenced
as follows:

uplo

Part of Matrix A To Be Referenceduplo value

Only the upper triangular part of the
Hermitian matrix is to be referenced.

U or u

Only the lower triangular part of the
Hermitian matrix is to be referenced.

L or l

INTEGER. Specifies the number of rows of the matrix C.m
The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix C.n
The value of n must be at least zero.

COMPLEX for chemmalpha
DOUBLE COMPLEX for zhemm
Specifies the scalar alpha.

COMPLEX for chemma
DOUBLE COMPLEX for zhemm
Array, DIMENSION (lda,ka), where ka is m when side =
'L' or 'l' and is n otherwise. Before entry with side =
'L' or 'l', the m-by-m part of the array a must contain the
Hermitian matrix, such that when uplo = 'U' or 'u', the
leading m-by-m upper triangular part of the array a must
contain the upper triangular part of the Hermitian matrix
and the strictly lower triangular part of a is not referenced,
and when uplo = 'L' or 'l', the leading m-by-m lower
triangular part of the array a must contain the lower
triangular part of the Hermitian matrix, and the strictly upper
triangular part of a is not referenced.
Before entry with side = 'R' or 'r', the n-by-n part of
the array a must contain the Hermitian matrix, such that
when uplo = 'U' or 'u', the leading n-by-n upper
triangular part of the array a must contain the upper
triangular part of the Hermitian matrix and the strictly lower
triangular part of a is not referenced, and when uplo =
'L' or 'l', the leading n-by-n lower triangular part of the
array a must contain the lower triangular part of the

150

2 Intel® Math Kernel Library Reference Manual

Hermitian matrix, and the strictly upper triangular part of
a is not referenced. The imaginary parts of the diagonal
elements need not be set, they are assumed to be zero.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub) program. When side = 'L' or 'l' then
lda must be at least max(1, m), otherwise lda must be at
least max(1,n).

lda

COMPLEX for chemmb
DOUBLE COMPLEX for zhemm
Array, DIMENSION (ldb,n).
Before entry, the leading m-by-n part of the array b must
contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program. The value of ldb must be at least
max(1, m).

ldb

COMPLEX for chemmbeta
DOUBLE COMPLEX for zhemm
Specifies the scalar beta.
When beta is supplied as zero, then c need not be set on
input.

COMPLEX for chemmc
DOUBLE COMPLEX for zhemm
Array, DIMENSION (c, n). Before entry, the leading m-by-n
part of the array c must contain the matrix C, except when
beta is zero, in which case c need not be set on entry.

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program. The value of ldc must be at least
max(1, m).

ldc

Output Parameters

Overwritten by the m-by-n updated matrix.c

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

151

BLAS and Sparse BLAS Routines 2

Specific details for the routine hemm interface are the following:

Holds the matrix A of size (k,k) wherea
k = m if side = 'L',
k = n otherwise.

Holds the matrix B of size (m,n).b

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

The default value is 1.beta

?herk
Performs a rank-n update of a Hermitian matrix.

Syntax

Fortran 77:

call cherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

call zherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

Fortran 95:

call herk(a, c [,uplo] [, trans] [,alpha][,beta])

Description

The ?herk routines perform a matrix-matrix operation using Hermitian matrices. The operation
is defined as

C := alpha*A*conjg(A') + beta*C,

or

C := alpha*conjg(A')*A + beta*C,

where:

alpha and beta are real scalars,

C is an n-by-n Hermitian matrix,

152

2 Intel® Math Kernel Library Reference Manual

A is an n-by-k matrix in the first case and a k-by-n matrix in the second case.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the array c is to be referenced as follows:

uplo

Part of Array c To Be Referenceduplo value

Only the upper triangular part of c is to
be referenced.

U or u

Only the lower triangular part of c is to
be referenced.

L or l

CHARACTER*1. Specifies the operation to be performed as
follows:

trans

Operation to be Performedtrans value

C:= alpha*A*conjg(A')+beta*CN or n

C:= alpha*conjg(A')*A+beta*CC or c

INTEGER. Specifies the order of the matrix C. The value of
n must be at least zero.

n

INTEGER. With trans = 'N' or 'n', k specifies the number
of columns of the matrix A, and with trans = 'C' or 'c',
k specifies the number of rows of the matrix A.

k

The value of k must be at least zero.

REAL for cherkalpha
DOUBLE PRECISION for zherk
Specifies the scalar alpha.

COMPLEX for cherka
DOUBLE COMPLEX for zherk
Array, DIMENSION (lda, ka), where ka is k when trans
= 'N' or 'n', and is n otherwise. Before entry with trans
= 'N' or 'n', the leading n-by-k part of the array a must
contain the matrix a, otherwise the leading k-by-n part of
the array a must contain the matrix A.

153

BLAS and Sparse BLAS Routines 2

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. When trans = 'N' or 'n', then
lda must be at least max(1, n), otherwise lda must be at
least max(1, k).

lda

REAL for cherkbeta
DOUBLE PRECISION for zherk
Specifies the scalar beta.

COMPLEX for cherkc
DOUBLE COMPLEX for zherk
Array, DIMENSION (ldc,n).
Before entry with uplo = 'U' or 'u', the leading n-by-n
upper triangular part of the array c must contain the upper
triangular part of the Hermitian matrix and the strictly lower
triangular part of c is not referenced.
Before entry with uplo = 'L' or 'l', the leading n-by-n
lower triangular part of the array c must contain the lower
triangular part of the Hermitian matrix and the strictly upper
triangular part of c is not referenced.
The imaginary parts of the diagonal elements need not be
set, they are assumed to be zero.

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program. The value of ldc must be at least
max(1, n).

ldc

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the
array c is overwritten by the upper triangular part of the
updated matrix.

c

With uplo = 'L' or 'l', the lower triangular part of the
array c is overwritten by the lower triangular part of the
updated matrix.
The imaginary parts of the diagonal elements are set to
zero.

154

2 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine herk interface are the following:

Holds the matrix A of size (ma,ka) wherea
ka = k if transa= 'N',
ka = n otherwise,
ma = n if transa= 'N',
ma = k otherwise.

Holds the matrix C of size (n,n).c

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'C'. The default value is 'N'.trans

The default value is 1.alpha

The default value is 1.beta

?her2k
Performs a rank-2k update of a Hermitian matrix.

Syntax

Fortran 77:

call cher2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call zher2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

Fortran 95:

call her2k(a, b, c [,uplo][,trans] [,alpha][,beta])

Description

The ?her2k routines perform a rank-2k matrix-matrix operation using Hermitian matrices. The
operation is defined as

C := alpha*A*conjg(B') + conjg(alpha)*B*conjg(A') + beta*C,

155

BLAS and Sparse BLAS Routines 2

or

C := alpha *conjg(B')*A + conjg(alpha) *conjg(A')*B + beta*C,

where:

alpha is a scalar and beta is a real scalar,

C is an n-by-n Hermitian matrix,

A and B are n-by-k matrices in the first case and k-by-n matrices in the second case.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the array c is to be referenced as follows:

uplo

Part of Array c To Be Referenceduplo value

Only the upper triangular part of c is to
be referenced.

U or u

Only the lower triangular part of c is to
be referenced.

L or l

CHARACTER*1. Specifies the operation to be performed as
follows:

trans

Operation to be Performedtrans value

C:=alpha*A*conjg(B') +
alpha*B*conjg(A') + beta*C

N or n

C:=alpha*conjg(A')*B +
alpha*conjg(B')*A + beta*C

C or c

INTEGER. Specifies the order of the matrix C. The value of
n must be at least zero.

n

INTEGER. With trans = 'N' or 'n', k specifies the number
of columns of the matrix A, and with trans = 'C' or 'c',
k specifies the number of rows of the matrix A.

k

The value of k must be at least equal to zero.

COMPLEX for cher2kalpha
DOUBLE COMPLEX for zher2k
Specifies the scalar alpha.

COMPLEX for cher2ka
DOUBLE COMPLEX for zher2k

156

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (lda, ka), where ka is k when trans
= 'N' or 'n', and is n otherwise. Before entry with trans
= 'N' or 'n', the leading n-by-k part of the array a must
contain the matrix A, otherwise the leading k-by-n part of
the array a must contain the matrix A.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. When trans = 'N' or 'n', then
lda must be at least max(1, n), otherwise lda must be at
least max(1, k).

lda

REAL for cher2kbeta
DOUBLE PRECISION for zher2k
Specifies the scalar beta.

COMPLEX for cher2kb
DOUBLE COMPLEX for zher2k
Array, DIMENSION (ldb, kb), where kb is k when trans
= 'N' or 'n', and is n otherwise. Before entry with trans
= 'N' or 'n', the leading n-by-k part of the array b must
contain the matrix B, otherwise the leading k-by-n part of
the array b must contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program. When trans = 'N' or 'n', then
ldb must be at least max(1, n), otherwise ldb must be at
least max(1, k).

ldb

COMPLEX for cher2kc
DOUBLE COMPLEX for zher2k
Array, DIMENSION (ldc,n).
Before entry with uplo = 'U' or 'u', the leading n-by-n
upper triangular part of the array c must contain the upper
triangular part of the Hermitian matrix and the strictly lower
triangular part of c is not referenced.
Before entry with uplo = 'L' or 'l', the leading n-by-n
lower triangular part of the array c must contain the lower
triangular part of the Hermitian matrix and the strictly upper
triangular part of c is not referenced.
The imaginary parts of the diagonal elements need not be
set, they are assumed to be zero.

157

BLAS and Sparse BLAS Routines 2

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program. The value of ldc must be at least
max(1, n).

ldc

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the
array c is overwritten by the upper triangular part of the
updated matrix.

c

With uplo = 'L' or 'l', the lower triangular part of the
array c is overwritten by the lower triangular part of the
updated matrix.
The imaginary parts of the diagonal elements are set to
zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine her2k interface are the following:

Holds the matrix A of size (ma,ka) wherea
ka = k if trans = 'N',
ka = n otherwise,
ma = n if trans = 'N',
ma = k otherwise.

Holds the matrix B of size (mb,kb) whereb
kb = k if trans = 'N',
kb = n otherwise,
mb = n if trans = 'N',
mb = k otherwise.

Holds the matrix C of size (n,n).c

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'C'. The default value is 'N'.trans

The default value is 1.alpha

The default value is 1.beta

158

2 Intel® Math Kernel Library Reference Manual

?symm
Performs a scalar-matrix-matrix product(one matrix
operand is symmetric) and adds the result to a
scalar-matrix product.

Syntax

Fortran 77:

call ssymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

call dsymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

call csymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

call zsymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

Fortran 95:

call symm(a, b, c [,side][,uplo] [,alpha][,beta])

Description

The ?symm routines perform a matrix-matrix operation using symmetric matrices. The operation
is defined as

C := alpha*A*B + beta*C,

or

C := alpha*B*A + beta*C,

where:

alpha and beta are scalars,

A is a symmetric matrix,

B and C are m-by-n matrices.

Input Parameters

CHARACTER*1. Specifies whether the symmetric matrix A
appears on the left or right in the operation as follows:

side

Operation to be Performedside value

Ac := alpha*A*B + beta*CL or l

159

BLAS and Sparse BLAS Routines 2

c := alpha*B*A + beta*CR or r

CHARACTER*1. Specifies whether the upper or lower
triangular part of the symmetric matrix A is to be referenced
as follows:

uplo

Part of Array a To Be Referenceduplo value

Only the upper triangular part of the
symmetric matrix is to be referenced.

U or u

Only the lower triangular part of the
symmetric matrix is to be referenced.

L or l

INTEGER. Specifies the number of rows of the matrix C.m
The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix C.n
The value of n must be at least zero.

REAL for ssymmalpha
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Specifies the scalar alpha.

REAL for ssymma
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Array, DIMENSION (lda, ka), where ka is m when side =
'L' or 'l' and is n otherwise.
Before entry with side = 'L' or 'l', the m-by-m part of
the array a must contain the symmetric matrix, such that
when uplo = 'U' or 'u', the leading m-by-m upper
triangular part of the array a must contain the upper
triangular part of the symmetric matrix and the strictly lower
triangular part of a is not referenced, and when uplo =
'L' or 'l', the leading m-by-m lower triangular part of the
array a must contain the lower triangular part of the
symmetric matrix and the strictly upper triangular part of
a is not referenced.

160

2 Intel® Math Kernel Library Reference Manual

Before entry with side = 'R' or 'r', the n-by-n part of
the array a must contain the symmetric matrix, such that
when uplo = 'U' or 'u', the leading n-by-n upper
triangular part of the array a must contain the upper
triangular part of the symmetric matrix and the strictly lower
triangular part of a is not referenced, and when uplo =
'L' or 'l', the leading n-by-n lower triangular part of the
array a must contain the lower triangular part of the
symmetric matrix and the strictly upper triangular part of
a is not referenced.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. When side = 'L' or 'l' then
lda must be at least max(1, m), otherwise lda must be at
least max(1, n).

lda

REAL for ssymmb
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Array, DIMENSION (ldb,n). Before entry, the leading m-by-n
part of the array b must contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program. The value of ldb must be at least
max(1, m).

ldb

REAL for ssymmbeta
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Specifies the scalar beta.
When beta is set to zero, then c need not be set on input.

REAL for ssymmc
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Array, DIMENSION (ldc,n). Before entry, the leading m-by-n
part of the array c must contain the matrix C, except when
beta is zero, in which case c need not be set on entry.

161

BLAS and Sparse BLAS Routines 2

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program. The value of ldc must be at least
max(1, m).

ldc

Output Parameters

Overwritten by the m-by-n updated matrix.c

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine symm interface are the following:

Holds the matrix A of size (k,k) wherea
k = m if side = 'L',
k = n otherwise.

Holds the matrix B of size (m,n).b

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'U' or 'L'. The default value is 'U'.uplo

The default value is 1.alpha

The default value is 1.beta

?syrk
Performs a rank-n update of a symmetric matrix.

Syntax

Fortran 77:

call ssyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

call dsyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

call csyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

call zsyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

162

2 Intel® Math Kernel Library Reference Manual

Fortran 95:

call syrk(a, c [,uplo] [, trans] [,alpha][,beta])

Description

The ?syrk routines perform a matrix-matrix operation using symmetric matrices. The operation
is defined as

C := alpha*A*A' + beta*C,

or

C := alpha*A'*A + beta*C,

where:

alpha and beta are scalars,

C is an n-by-n symmetric matrix,

A is an n-by-k matrix in the first case and a k-by-n matrix in the second case.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the array c is to be referenced as follows:

uplo

Part of Array c To Be Referenceduplo value

Only the upper triangular part of c is to
be referenced.

U or u

Only the lower triangular part of c is to
be referenced.

L or l

CHARACTER*1. Specifies the operation to be performed as
follows:

trans

Operation to be Performedtrans value

C := alpha*A*A' + beta*CN or n

C := alpha*A'*A + beta*CT or t

C := alpha*A'*A + beta*CC or c

INTEGER. Specifies the order of the matrix C. The value of
n must be at least zero.

n

163

BLAS and Sparse BLAS Routines 2

INTEGER. On entry with trans = 'N' or 'n', k specifies
the number of columns of the matrix a, and on entry with
trans = 'T' or 't' or 'C' or 'c', k specifies the number
of rows of the matrix a.

k

The value of k must be at least zero.

REAL for ssyrkalpha
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Specifies the scalar alpha.

REAL for ssyrka
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Array, DIMENSION (lda,ka), where ka is k when trans =
'N' or 'n', and is n otherwise. Before entry with trans =
'N' or 'n', the leading n-by-k part of the array a must
contain the matrix A, otherwise the leading k-by-n part of
the array a must contain the matrix A.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. When trans = 'N' or 'n', then
lda must be at least max(1,n), otherwise lda must be at
least max(1, k).

lda

REAL for ssyrkbeta
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Specifies the scalar beta.

REAL for ssyrkc
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Array, DIMENSION (ldc,n). Before entry with uplo = 'U'
or 'u', the leading n-by-n upper triangular part of the array
c must contain the upper triangular part of the symmetric
matrix and the strictly lower triangular part of c is not
referenced.

164

2 Intel® Math Kernel Library Reference Manual

Before entry with uplo = 'L' or 'l', the leading n-by-n
lower triangular part of the array c must contain the lower
triangular part of the symmetric matrix and the strictly upper
triangular part of c is not referenced.

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program. The value of ldc must be at least
max(1, n).

ldc

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the
array c is overwritten by the upper triangular part of the
updated matrix.

c

With uplo = 'L' or 'l', the lower triangular part of the
array c is overwritten by the lower triangular part of the
updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine syrk interface are the following:

Holds the matrix A of size (ma,ka) wherea
ka = k if transa= 'N',
ka = n otherwise,
ma = n if transa= 'N',
ma = k otherwise.

Holds the matrix C of size (n,n).c

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'.trans
The default value is 'N'.

The default value is 1.alpha

The default value is 1.beta

165

BLAS and Sparse BLAS Routines 2

?syr2k
Performs a rank-2k update of a symmetric matrix.

Syntax

Fortran 77:

call ssyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call dsyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call csyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call zsyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

Fortran 95:

call syr2k(a, b, c [,uplo][,trans] [,alpha][,beta])

Description

The ?syr2k routines perform a rank-2k matrix-matrix operation using symmetric matrices.
The operation is defined as

C := alpha*A*B' + alpha*B*A' + beta*C,

or

C := alpha*a'*B + alpha*B'*A + beta*C,

where:

alpha and beta are scalars,

C is an n-by-n symmetric matrix,

A and B are n-by-k matrices in the first case, and k-by-n matrices in the second case.

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the array c is to be referenced as follows:

uplo

Part of Array c To Be Referenceduplo value

Only the upper triangular part of c is to
be referenced.

U or u

166

2 Intel® Math Kernel Library Reference Manual

Only the lower triangular part of c is to
be referenced.

L or l

CHARACTER*1. Specifies the operation to be performed as
follows:

trans

Operation to be Performedtrans value

C := alpha*A*B'+alpha*B*A'+beta*CN or n

C := alpha*A'*B +alpha*B'*A
+beta*C

T or t

C := alpha*A'*B +alpha*B'*A
+beta*C

C or c

INTEGER. Specifies the order of the matrix C. The value of
n must be at least zero.

n

INTEGER. On entry with trans = 'N' or 'n', k specifies
the number of columns of the matrices A and B, and on
entry with trans = 'T' or 't' or 'C' or 'c', k specifies
the number of rows of the matrices A and B. The value of k
must be at least zero.

k

REAL for ssyr2kalpha
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Specifies the scalar alpha.

REAL for ssyr2ka
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Array, DIMENSION (lda,ka), where ka is k when trans =
'N' or 'n', and is n otherwise. Before entry with trans =
'N' or 'n', the leading n-by-k part of the array a must
contain the matrix A, otherwise the leading k-by-n part of
the array a must contain the matrix A.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. When trans = 'N' or 'n', then
lda must be at least max(1, n), otherwise lda must be at
least max(1, k).

lda

167

BLAS and Sparse BLAS Routines 2

REAL for ssyr2kb
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Array, DIMENSION (ldb, kb) where kb is k when trans =
'N' or 'n' and is 'n' otherwise. Before entry with trans
= 'N' or 'n', the leading n-by-k part of the array b must
contain the matrix B, otherwise the leading k-by-n part of
the array b must contain the matrix B.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. When trans = 'N' or 'n', then
ldb must be at least max(1, n), otherwise ldb must be at
least max(1, k).

ldb

REAL for ssyr2kbeta
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Specifies the scalar beta.

REAL for ssyr2kc
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Array, DIMENSION (ldc,n). Before entry with uplo = 'U'
or 'u', the leading n-by-n upper triangular part of the array
c must contain the upper triangular part of the symmetric
matrix and the strictly lower triangular part of c is not
referenced.
Before entry with uplo = 'L' or 'l', the leading n-by-n
lower triangular part of the array c must contain the lower
triangular part of the symmetric matrix and the strictly upper
triangular part of c is not referenced.

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program. The value of ldc must be at least
max(1, n).

ldc

168

2 Intel® Math Kernel Library Reference Manual

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the
array c is overwritten by the upper triangular part of the
updated matrix.

c

With uplo = 'L' or 'l', the lower triangular part of the
array c is overwritten by the lower triangular part of the
updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine syr2k interface are the following:

Holds the matrix A of size (ma,ka) wherea
ka = k if trans = 'N',
ka = n otherwise,
ma = n if trans = 'N',
ma = k otherwise.

Holds the matrix B of size (mb,kb) whereb
kb = k if trans = 'N',
kb = n otherwise,
mb = n if trans = 'N',
mb = k otherwise.

Holds the matrix C of size (n,n).c

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'.trans
The default value is 'N'.

The default value is 1.alpha

The default value is 1.beta

169

BLAS and Sparse BLAS Routines 2

?trmm
Computes a scalar-matrix-matrix product (one
matrix operand is triangular).

Syntax

Fortran 77:

call strmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

call dtrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

call ctrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

call ztrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

Fortran 95:

call trmm(a, b [,side] [, uplo] [,transa][,diag] [,alpha])

Description

The ?trmm routines perform a matrix-matrix operation using triangular matrices. The operation
is defined as

B := alpha*op(A)*B

or

B := alpha*B*op(A)

where:

alpha is a scalar,

B is an m-by-n matrix,

A is a unit, or non-unit, upper or lower triangular matrix

op(A) is one of op(A) = A, or op(A) = A', or op(A) = conjg(A').

Input Parameters

CHARACTER*1. Specifies whether op(A) multiplies B from
the left or right in the operation as follows:

side

Operation To Be Performedside value

B := alpha*op(A)*BL or l

170

2 Intel® Math Kernel Library Reference Manual

B := alpha*B*op(A)R or r

CHARACTER*1. Specifies whether the matrix A is an upper
or lower triangular matrix as follows:

uplo

Matrix Auplo value

Matrix A is an upper triangular matrix.U or u

Matrix A is a lower triangular matrix.L or l

CHARACTER*1. Specifies the form of op(A) to be used in
the matrix multiplication as follows:

transa

Form of op(A)transa value

op(A) = AN or n

op(A) = A'T or t

op(A) = conjg(A')C or c

CHARACTER*1. Specifies whether or not A is unit triangular
as follows:

diag

Matrix Adiag value

Matrix A is assumed to be unit triangular.U or u

Matrix A is not assumed to be unit
triangular.

N or n

INTEGER. Specifies the number of rows of B. The value of
m must be at least zero.

m

INTEGER. Specifies the number of columns of B. The value
of n must be at least zero.

n

REAL for strmmalpha
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm
Specifies the scalar alpha.
When alpha is zero, then a is not referenced and b need
not be set before entry.

REAL for strmma
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm

171

BLAS and Sparse BLAS Routines 2

DOUBLE COMPLEX for ztrmm
Array, DIMENSION (lda,k), where k is m when side = 'L'
or 'l' and is n when side = 'R' or 'r'. Before entry with
uplo = 'U' or 'u', the leading k by k upper triangular
part of the array a must contain the upper triangular matrix
and the strictly lower triangular part of a is not referenced.
Before entry with uplo = 'L' or 'l', the leading k by k
lower triangular part of the array a must contain the lower
triangular matrix and the strictly upper triangular part of a
is not referenced.
When diag = 'U' or 'u', the diagonal elements of a are
not referenced either, but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. When side = 'L' or 'l', then
lda must be at least max(1, m), when side = 'R' or 'r',
then lda must be at least max(1, n).

lda

REAL for strmmb
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm
Array, DIMENSION (ldb,n).
Before entry, the leading m-by-n part of the array b must
contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program. The value of ldb must be at least
max(1, m).

ldb

Output Parameters

Overwritten by the transformed matrix.b

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trmm interface are the following:

Holds the matrix A of size (k,k) wherea

172

2 Intel® Math Kernel Library Reference Manual

k = m if side = 'L',
k = n otherwise.

Holds the matrix B of size (m,n).b

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'.transa
The default value is 'N'.

Must be 'N' or 'U'. The default value is 'N'.diag

The default value is 1.alpha

?trsm
Solves a matrix equation (one matrix operand is
triangular).

Syntax

Fortran 77:

call strsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

call dtrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

call ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

call ztrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

Fortran 95:

call trsm(a, b [,side] [, uplo] [,transa][,diag] [,alpha])

Description

The ?trsm routines solve one of the following matrix equations:

op(A)*X = alpha*B,

or

X*op(A) = alpha*B,

where:

alpha is a scalar,

173

BLAS and Sparse BLAS Routines 2

X and B are m-by-n matrices,

A is a unit, or non-unit, upper or lower triangular matrix

op(A) is one of op(A) = A, or op(A) = A', or op(A) = conjg(A').

The matrix B is overwritten by the solution matrix X.

Input Parameters

CHARACTER*1. Specifies whether op(A) appears on the left
or right of X for the operation to be performed as follows:

side

Operation To Be Performedside value

op(A)*X = alpha*BL or l

X*op(A) = alpha*BR or r

CHARACTER*1. Specifies whether the matrix A is an upper
or lower triangular matrix as follows:

uplo

Matrix Auplo value

Matrix A is an upper triangular matrix.U or u

Matrix A is a lower triangular matrix.L or l

CHARACTER*1. Specifies the form of op(a) to be used in
the matrix multiplication as follows:

transa

Form of op(a)transa value

op(A) = AN or n

op(A) = A'T or t

op(A) = conjg(A')C or c

CHARACTER*1. Specifies whether or not the matrix A is unit
triangular as follows:

diag

Matrix Adiag value

Matrix A is assumed to be unit triangular.U or u

Matrix A is not assumed to be unit
triangular.

N or n

INTEGER. Specifies the number of rows of B. The value of
m must be at least zero.

m

174

2 Intel® Math Kernel Library Reference Manual

INTEGER. Specifies the number of columns of B. The value
of n must be at least zero.

n

REAL for strsmalpha
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm
Specifies the scalar alpha.
When alpha is zero, then a is not referenced and b need
not be set before entry.

REAL for strsma
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm
Array, DIMENSION (lda, k), where k is m when side =
'L' or 'l' and is n when side = 'R' or 'r'. Before entry
with uplo = 'U' or 'u', the leading k by k upper triangular
part of the array a must contain the upper triangular matrix
and the strictly lower triangular part of a is not referenced.
Before entry with uplo = 'L' or 'l', the leading k by k
lower triangular part of the array a must contain the lower
triangular matrix and the strictly upper triangular part of a
is not referenced.
When diag = 'U' or 'u', the diagonal elements of a are
not referenced either, but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. When side = 'L' or 'l', then
lda must be at least max(1, m), when side = 'R' or 'r',
then lda must be at least max(1, n).

lda

REAL for strsmb
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm
Array, DIMENSION (ldb,n). Before entry, the leading m-by-n
part of the array b must contain the right-hand side matrix
B.

175

BLAS and Sparse BLAS Routines 2

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program. The value of ldb must be at least
max(1, +m).

ldb

Output Parameters

Overwritten by the solution matrix X.b

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trsm interface are the following:

Holds the matrix A of size (k,k) where k = m if side = 'L', k =
n otherwise.

a

Holds the matrix B of size (m,n).b

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'.transa
The default value is 'N'.

Must be 'N' or 'U'. The default value is 'N'.diag

The default value is 1.alpha

Sparse BLAS Level 1 Routines and Functions
This section describes Sparse BLAS Level 1, an extension of BLAS Level 1 included in the Intel®
Math Kernel Library beginning with the Intel MKL release 2.1. Sparse BLAS Level 1 is a group
of routines and functions that perform a number of common vector operations on sparse vectors
stored in compressed form.

Sparse vectors are those in which the majority of elements are zeros. Sparse BLAS routines
and functions are specially implemented to take advantage of vector sparsity. This allows you
to achieve large savings in computer time and memory. If nz is the number of non-zero vector
elements, the computer time taken by Sparse BLAS operations will be O(nz).

176

2 Intel® Math Kernel Library Reference Manual

Vector Arguments

Compressed sparse vectors. Let a be a vector stored in an array, and assume that the only
non-zero elements of a are the following:

a(k1), a (k2), a (k3) . . . a(knz),

where nz is the total number of non-zero elements in a.

In Sparse BLAS, this vector can be represented in compressed form by two FORTRAN arrays,
x (values) and indx (indices). Each array has nz elements:

x(1)=a(k1), x(2)=a(k2), . . . x(nz)= a(knz),

indx(1)=k1, indx(2)=k2, . . . indx(nz)= knz.

Thus, a sparse vector is fully determined by the triple (nz, x, indx). If you pass a negative or
zero value of nz to Sparse BLAS, the subroutines do not modify any arrays or variables.

Full-storage vectors. Sparse BLAS routines can also use a vector argument fully stored in a
single FORTRAN array (a full-storage vector). If y is a full-storage vector, its elements must
be stored contiguously: the first element in y(1), the second in y(2), and so on. This
corresponds to an increment incy = 1 in BLAS Level 1. No increment value for full-storage
vectors is passed as an argument to Sparse BLAS routines or functions.

Naming Conventions

Similar to BLAS, the names of Sparse BLAS subprograms have prefixes that determine the data
type involved: s and d for single- and double-precision real; c and z for single- and
double-precision complex respectively.

If a Sparse BLAS routine is an extension of a “dense” one, the subprogram name is formed by
appending the suffix i (standing for indexed) to the name of the corresponding “dense”
subprogram. For example, the Sparse BLAS routine saxpyi corresponds to the BLAS routine
saxpy, and the Sparse BLAS function cdotci corresponds to the BLAS function cdotc.

Routines and Data Types

Routines and data types supported in the Intel MKL implementation of Sparse BLAS are listed
in Table 2-4 .

177

BLAS and Sparse BLAS Routines 2

Table 2-4 Sparse BLAS Routines and Their Data Types

DescriptionData TypesRoutine/Function

Scalar-vector product plus vector (routines)s, d, c, z?axpyi

Dot product (functions)s, d?doti

Complex dot product conjugated (functions)c, z?dotci

Complex dot product unconjugated (functions)c, z?dotui

Gathering a full-storage sparse vector into
compressed form nz, x, indx (routines)

s, d, c, z?gthr

Gathering a full-storage sparse vector into
compressed form and assigning zeros to gathered
elements in the full-storage vector (routines)

s, d, c, z?gthrz

Givens rotation (routines)s, d?roti

Scattering a vector from compressed form to
full-storage form (routines)

s, d, c, z?sctr

BLAS Level 1 Routines That Can Work With Sparse Vectors

The following BLAS Level 1 routines will give correct results when you pass to them a
compressed-form array x(with the increment incx=1):

sum of absolute values of vector elements?asum

copying a vector?copy

Euclidean norm of a vector?nrm2

scaling a vector?scal

index of the element with the largest absolute value for real flavors, or
the largest sum |Rex(i)|+|Imx(i)| for complex flavors.

i?amax

index of the element with the smallest absolute value for real flavors,
or the smallest sum |Rex(i)|+|Imx(i)| for complex flavors.

i?amin

The result i returned by i?amax and i?amin should be interpreted as index in the
compressed-form array, so that the largest (smallest) value is x(i); the corresponding index
in full-storage array is indx(i).

178

2 Intel® Math Kernel Library Reference Manual

You can also call ?roti to compute the parameters of Givens rotation and then pass these
parameters to the Sparse BLAS routines ?roti.

?axpyi
Adds a scalar multiple of compressed sparse vector
to a full-storage vector.

Syntax

Fortran 77:

call saxpyi(nz, a, x, indx, y)

call daxpyi(nz, a, x, indx, y)

call caxpyi(nz, a, x, indx, y)

call zaxpyi(nz, a, x, indx, y)

Fortran 95:

call axpyi(x, indx, y [, a])

Description

The ?axpyi routines perform a vector-vector operation defined as

y := a*x + y

where:

a is a scalar,

x is a sparse vector stored in compressed form,

y is a vector in full storage form.

The ?axpyi routines reference or modify only the elements of y whose indices are listed in the
array indx.

The values in indx must be distinct.

Input Parameters

INTEGER. The number of elements in x and indx.nz

REAL for saxpyia
DOUBLE PRECISION for daxpyi

179

BLAS and Sparse BLAS Routines 2

COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Specifies the scalar a.

REAL for saxpyix
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, DIMENSION at least nz.

INTEGER. Specifies the indices for the elements of x.indx
Array, DIMENSION at least nz.

REAL for saxpyiy
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, DIMENSION at least max(indx(i)).

Output Parameters

Contains the updated vector y.y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine axpyi interface are the following:

Holds the vector of length (nz).x

Holds the vector of length (nz).indx

Holds the vector of length (nz).y

The default value is 1.a

180

2 Intel® Math Kernel Library Reference Manual

?doti
Computes the dot product of a compressed sparse
real vector by a full-storage real vector.

Syntax

Fortran 77:

res = sdoti(nz, x, indx, y)

res = ddoti(nz, x, indx, y)

Fortran 95:

res = doti(x, indx, y)

Description

The ?doti functions return the dot product of x and y defined as

x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+ x(nz)*y(indx(nz))

where the triple (nz, x, indx) defines a sparse real vector stored in compressed form, and y is
a real vector in full storage form. The functions reference only the elements of y whose indices
are listed in the array indx. The values in indx must be distinct.

Input Parameters

INTEGER. The number of elements in x and indx .nz

REAL for sdotix
DOUBLE PRECISION for ddoti
Array, DIMENSION at least nz.

INTEGER. Specifies the indices for the elements of x.indx
Array, DIMENSION at least nz.

REAL for sdotiy
DOUBLE PRECISION for ddoti
Array, DIMENSION at least max(indx(i)).

Output Parameters

REAL for sdotires
DOUBLE PRECISION for ddoti

181

BLAS and Sparse BLAS Routines 2

Contains the dot product of x and y, if nz is positive.
Otherwise, res contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine doti interface are the following:

Holds the vector of length (nz).x

Holds the vector of length (nz).indx

Holds the vector of length (nz).y

?dotci
Computes the conjugated dot product of a
compressed sparse complex vector with a
full-storage complex vector.

Syntax

Fortran 77:

res = cdotci(nz, x, indx, y)

res = zdotci(nz, x, indx, y)

Fortran 95:

res = dotci(x, indx, y)

Description

The ?dotci functions return the dot product of x and y defined as

conjg(x(1))*y(indx(1)) + ... + conjg(x(nz))*y(indx(nz))

where the triple (nz, x, indx) defines a sparse complex vector stored in compressed form, and
y is a real vector in full storage form. The functions reference only the elements of y whose
indices are listed in the array indx. The values in indx must be distinct.

182

2 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. The number of elements in x and indx .nz

COMPLEX for cdotcix
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least nz.

INTEGER. Specifies the indices for the elements of x.indx
Array, DIMENSION at least nz.

COMPLEX for cdotciy
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least max(indx(i)).

Output Parameters

COMPLEX for cdotcires
DOUBLE COMPLEX for zdotci
Contains the conjugated dot product of x and y, if nz is
positive. Otherwise, res contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine dotci interface are the following:

Holds the vector of length (nz).x

Holds the vector of length (nz).indx

Holds the vector of length (nz).y

183

BLAS and Sparse BLAS Routines 2

?dotui
Computes the dot product of a compressed sparse
complex vector by a full-storage complex vector.

Syntax

Fortran 77:

res = cdotui(nz, x, indx, y)

res = zdotui(nz, x, indx, y)

Fortran 95:

res = dotui(x, indx, y)

Description

The ?dotui functions return the dot product of x and y defined as

x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+ x(nz)*y(indx(nz))

where the triple (nz, x, indx) defines a sparse complex vector stored in compressed form, and
y is a real vector in full storage form. The functions reference only the elements of y whose
indices are listed in the array indx. The values in indx must be distinct.

Input Parameters

INTEGER. The number of elements in x and indx .nz

COMPLEX for cdotuix
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least nz.

INTEGER. Specifies the indices for the elements of x.indx
Array, DIMENSION at least nz.

COMPLEX for cdotuiy
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least max(indx(i)).

Output Parameters

COMPLEX for cdotuires
DOUBLE COMPLEX for zdotui

184

2 Intel® Math Kernel Library Reference Manual

Contains the dot product of x and y, if nz is positive.
Otherwise, res contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine dotui interface are the following:

Holds the vector of length (nz).x

Holds the vector of length (nz).indx

Holds the vector of length (nz).y

?gthr
Gathers a full-storage sparse vector's elements
into compressed form.

Syntax

Fortran 77:

call sgthr(nz, y, x, indx)

call dgthr(nz, y, x, indx)

call cgthr(nz, y, x, indx)

call zgthr(nz, y, x, indx)

Fortran 95:

res = gthr(x, indx, y)

Description

The ?gthr routines gather the specified elements of a full-storage sparse vector y into
compressed form(nz, x, indx). The routines reference only the elements of y whose indices
are listed in the array indx:

x(i) = y(indx(i)), for i=1,2,... +nz.

185

BLAS and Sparse BLAS Routines 2

Input Parameters

INTEGER. The number of elements of y to be gathered.nz

INTEGER. Specifies indices of elements to be gathered.indx
Array, DIMENSION at least nz.

REAL for sgthry
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least max(indx(i)).

Output Parameters

REAL for sgthrx
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least nz.
Contains the vector converted to the compressed form.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gthr interface are the following:

Holds the vector of length (nz).x

Holds the vector of length (nz).indx

Holds the vector of length (nz).y

186

2 Intel® Math Kernel Library Reference Manual

?gthrz
Gathers a sparse vector's elements into
compressed form, replacing them by zeros.

Syntax

Fortran 77:

call sgthrz(nz, y, x, indx)

call dgthrz(nz, y, x, indx)

call cgthrz(nz, y, x, indx)

call zgthrz(nz, y, x, indx)

Fortran 95:

res = gthrz(x, indx, y)

Description

The ?gthrz routines gather the elements with indices specified by the array indx from a
full-storage vector y into compressed form (nz, x, indx) and overwrite the gathered elements
of y by zeros. Other elements of y are not referenced or modified (see also ?gthr).

Input Parameters

INTEGER. The number of elements of y to be gathered.nz

INTEGER. Specifies indices of elements to be gathered.indx
Array, DIMENSION at least nz.

REAL for sgthrzy
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz
DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least max(indx(i)).

Output Parameters

REAL for sgthrzx
DOUBLE PRECISION for d gthrz
COMPLEX for cgthrz

187

BLAS and Sparse BLAS Routines 2

DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least nz.
Contains the vector converted to the compressed form.

The updated vector y.y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gthrz interface are the following:

Holds the vector of length (nz).x

Holds the vector of length (nz).indx

Holds the vector of length (nz).y

?roti
Applies Givens rotation to sparse vectors one of
which is in compressed form.

Syntax

Fortran 77:

call sroti(nz, x, indx, y, c, s)

call droti(nz, x, indx, y, c, s)

Fortran 95:

call roti(x, indx, y [, c] [,s])

Description

The ?roti routines apply the Givens rotation to elements of two real vectors, x (in compressed
form nz, x, indx) and y (in full storage form):

x(i) = c*x(i) + s*y(indx(i))

y(indx(i)) = c*y(indx(i))- s*x(i)

The routines reference only the elements of y whose indices are listed in the array indx. The
values in indx must be distinct.

188

2 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. The number of elements in x and indx.nz

REAL for srotix
DOUBLE PRECISION for droti
Array, DIMENSION at least nz.

INTEGER. Specifies the indices for the elements of x.indx
Array, DIMENSION at least nz.

REAL for srotiy
DOUBLE PRECISION for droti
Array, DIMENSION at least max(indx(i)).

A scalar: REAL for srotic
DOUBLE PRECISION for droti.

A scalar: REAL for srotis
DOUBLE PRECISION for droti.

Output Parameters

The updated arrays.x and y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine roti interface are the following:

Holds the vector of length (nz).x

Holds the vector of length (nz).indx

Holds the vector of length (nz).y

The default value is 1.c

The default value is 1.s

189

BLAS and Sparse BLAS Routines 2

?sctr
Converts compressed sparse vectors into full
storage form.

Syntax

Fortran 77:

call ssctr(nz, x, indx, y)

call dsctr(nz, x, indx, y)

call csctr(nz, x, indx, y)

call zsctr(nz, x, indx, y)

Fortran 95:

call sctr(x, indx, y)

Description

The ?sctr routines scatter the elements of the compressed sparse vector (nz, x, indx) to a
full-storage vector y. The routines modify only the elements of y whose indices are listed in
the array indx:

y(indx(i) = x(i), for i=1,2,... +nz.

Input Parameters

INTEGER. The number of elements of x to be scattered.nz

INTEGER. Specifies indices of elements to be scattered.indx
Array, DIMENSION at least nz.

REAL for ssctrx
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, DIMENSION at least nz.
Contains the vector to be converted to full-storage form.

Output Parameters

REAL for ssctry

190

2 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, DIMENSION at least max(indx(i)).
Contains the vector y with updated elements.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sctr interface are the following:

Holds the vector of length (nz).x

Holds the vector of length (nz).indx

Holds the vector of length (nz).y

Sparse BLAS Level 2 and Level 3
This section describes Sparse BLAS Level 2 and Level 3 included in the Intel® Math Kernel
Library. Sparse BLAS Level 2 is a group of routines and functions that perform operations on
a sparse matrix and dense vectors. Sparse BLAS Level 3 is a group of routines and functions
that perform operations on a sparse matrix and a dense matrices.

Sparse matrix is a matrix in which the majority of elements are zeros. Intel MKL sparse BLAS
routines and functions are specially implemented to take advantage of matrix sparsity. This
allows to achieve large savings in computer time and memory. The sparse BLAS routines can
be considered as building blocks for “Iterative Sparse Solvers based on Reverse Communication
Interface (RCI ISS)” in Chapter 8 of the manual.

Naming Conventions in Sparse BLAS Level 2 and Level 3

Each Sparse BLAS routine has a six- or eight-characters base name preceding with the prefix
mkl_ (mkl_cspblas_ for routines with simplified interface and zero-based indexing). The
routines with standard interfaces have six-characters base names, the routines with simplified
interfaces have eight-characters base names in accordance with the templates:
mkl<character code> <data> <operation>()

191

BLAS and Sparse BLAS Routines 2

or
mkl<character code> <data> <mtype> <operation>()

mkl_cspblas_<character code> <data> <mtype> <operation>()

The <character code> is a character that indicates the data type:

real, single precisions

complex, single precisionc

real, double precisiond

complex, double precisionz

NOTE. Current version of the Intel MKL Sparse BLAS supports only real data with double
precision.

The <data> field indicates the data structure of the sparse matrix (see section Sparse Matrix
Data Structures):

coordinate formatcoo

compressed sparse row format and its variationscsr

compressed sparse column format and its variationscsc

diagonal formatdia

skyline storage formatsky

block sparse row format and its variationsbsr

The <operation> field indicates the type of operation.

matrix-vector product (Level 2)mv

matrix-matrix product (Level 3)mm

solving a single triangular system (Level 2)sm

solving triangular systems with multiple right-hand sides (Level 3)sm

An optional field <mtype> indicates a matrix type and used in the routines with simplified
interfaces:

sparse representation of a general matrixge

sparse representation of the upper or lower triangle of a symmetric
matrix

sy

sparse representation of a triangular matrixtr

192

2 Intel® Math Kernel Library Reference Manual

Sparse Matrix Data Structures

In the current version of Intel MKL sparse BLAS Level 2 and Level 3 the following point entry
[Duff86] sparse matrix data structures are supported:

• compressed sparse row format(CSR) and its variation;

• compressed sparse column format(CSC);

• coordinate format;

• diagonal format;

• skyline storage format.

• block sparse row format(BSR) and its variations.

For more information on matrix storage schemes, see “Sparse Storage Formats for Sparse
BLAS Levels 2-3” in Appendix A.

Routines and Supported Operations

This section describes two main types of routines and supported operations. The following
notations are used here:

A - is a sparse matrix;

B and C - are dense matrices;

D - is a diagonal scaling matrix;

x and y - are dense vectors;

alpha and beta - are scalars;

op(A) is one of the possible operations:

op(A) = A;

op(A) = A' - transpose of A;

op(A) = conj(A') - conjugated transpose of A.

Complete list of all routines is given in the Table 2-9 .

Routines with Standard Interface

Intel MKL Sparse BlAS routines support the following operations:

193

BLAS and Sparse BLAS Routines 2

Level 2.

• computing a sparse matrix-dense vector product:

y := alpha*op(A)*x + beta*y

• solving a single triangular system:

y := alpha*inv(op(A))*x

Level 3.

• computing a sparse matrix-dense matrix product:

C := alpha*op(A)*B + beta*C

• solving a sparse triangular system with multiple right-hand sides:

C := alpha*inv(op(A))*B

These routines have native interface that differs from the interface used in the NIST Sparse
BLAS library [Rem05]. Detailed consideration of these differences can be found in the section
Interface Consideration.

Routines with Simplified Interface

Some software packages and libraries (PARDISO package used in the Intel MKL, Sparskit 2
[Saad94], Compaq Extended Math Library (CXML)[CXML01]) use different (early) variation of
the CSR format and support only level 2 operations with simplified interfaces. Intel MKL provides
a set of level 2 routines with similar simplified interfaces. Each of these routines operates on
a matrix of the fixed type. The following operations are supported:

y :=op(A)*x (general and symmetric matrices)

y := inv(op(A))*x (triangular matrices)

Matrix type is indicated by the field <mtype> in the routine name (see section Naming
Conventions in Sparse BLAS Level 2 and Level 3).

The detail consideration of interfaces for these routines is given in the Interface Consideration
section.

These routines can operate only with four sparse data storage formats, specifically:

CSR format in variation accepted in PARDISO and CXML;

DIA format accepted in CXML;

COO format.

194

2 Intel® Math Kernel Library Reference Manual

BSR format.

Note that routines in both groups described above use the same computational kernel routines
that work with certain internal data structures.

Interface Consideration

Differences Between Intel MKL and NIST Interfaces

The Intel MKL Sparse BLAS Level 3 routines have the following standard interfaces:

mkl_xyyymm(transa, m, n, k, alpha, matdescra, arg(A), b, ldb, beta, c, ldc),
for matrix-matrix product;

mkl_xyyysm(transa, m, n, alpha, matdescra, arg(A), b, ldb, c, ldc), for triangular
solvers with multiple right-hand sides.

Here x denotes data type, and yyy - sparse matrix data structure (storage format).

The analogous NIST Sparse BLAS (NSB) library routines have the following interfaces:

xyyymm(transa, m, n, k, alpha, descra, arg(A), b, ldb, beta, c, ldc, work,
lwork), for matrix-matrix product;

xyyysm(transa, m, n, unitd, dv, alpha, descra, arg(A), b, ldb, beta, c, ldc,
work, lwork), for triangular solvers with multiple right-hand sides.

Some similar arguments are used in both libraries. The argument transa indicates how to
operate with the matrix and is slightly different in the NSB library (see Table 2-5). The
arguments m and k are the number of rows and column in the matrix A, respectively, n is the
number of columns in the matrix C. The arguments alpha and beta are scalar alpha and beta
respectively. (beta is not used in the Intel MKL triangular solvers.) The arguments b and c are
rectangular arrays with the first dimension ldb and ldc, respectively. The symbol arg(A)
denotes the list of arguments that describe the sparse representation of A.

Table 2-5 Parameter transa

OperationNSB interfaceMKL interface

INTEGERCHARACTER*1data type

op(A) = A0N or nvalue

195

BLAS and Sparse BLAS Routines 2

OperationNSB interfaceMKL interface

op(A) = A'1T or t

op(A) = A'2C or c

The argument matdescra describes the relevant characteristics of the matrix A.

It corresponds to the argument descra from NSB library (see Table 2-6 for more details).

Table 2-6 Possible Values of the Parameter matdescra (descra)

Matrix characteristicsNSB
interface

MKL interface

zero-based
indexing

one-based
indexing

INTEGERCharCHARACTERdata type

matrix structuredescra(1)Matdescra[0]matdescra(1)1st element

general0GGvalue

symmetric (A = A')1SS

Hermitian (A=conjg(A'))2HH

triangular3TT

skew(anti)-symmetric (A=-A')4AA

diagonal5DD

upper/lower triangular indicatordescra(2)Matdescra[1]matdescra(2)2nd element

lower1LLvalue

upper2UU

main diagonal typedescra(3)Matdescra[2]matdescra(3)3rd element

196

2 Intel® Math Kernel Library Reference Manual

Matrix characteristicsNSB
interface

MKL interface

non-unit0NNvalue

unit1UU

type of indexing
Matdescra[3]matdescra(4)4th element

one-based indexing
Fvalue

zero-based indexing
C

Note that matdescra has some specifics in the Intel MKL routines. In particular, for routines
that perform matrix-matrix and matrix-vector multiplication, they are as follows:

for general matrices (matdescra(1)='G', values of matdescra(2) and matdescra(3) are
ignored;

for skew-symmetrical matrices (matdescra(1)='A', values of matdescra(3) are ignored;

for diagonal matrices (matdescra(1)='D', values of matdescra(2) are ignored;

If matdescra(1) is not set to 'G' or 'T', and matdescra(2) and matdescra(3) are not
defined, then the following default values are assigned: matdescra(2)='L' and
matdescra(3)='N';

matdescra(1)='G' is not supported for the routines operating with the skyline storage
format.

For triangular solvers if matdescra(1)='D', then matdescra(2) is ignored.

For triangular solvers Intel MKL supports only matdescra(1)=T,D;

For both multiplication routines and triangular solvers when matdescra(3)='U', and the sparse
matrix is not in the skyline format, then non-zero diagonal elements can be stored in the sparse
representation even if they are non-unit; when the sparse matrix is in the skyline format, the
diagonal elements must be stored in the sparse representation even if they are zero.

The current version of NSB library supports only descra(1) for matrix-matrix multiplication;
descra(2), descra(3) are supported for triangular solvers only if descra(1)=3.

The argument work is a work array, and lwork is its dimension.

These arguments are not used in the Intel MKL.

197

BLAS and Sparse BLAS Routines 2

The arguments unitd and dv are used only in NSB triangular solvers. First of them indicates
whether or not the diagonal matrix D is unitary. If unitd=1, D is the identity matrix. The linear
array dv contains the diagonal scaling matrix D if the argument unitd = 2 (the rows of A are
scaled) or unitd = 3 (the columns of A are scaled).

Simplified Interfaces

The Intel MKL Sparse BLAS Level 2 routines with simplified interfaces have the following
interfaces (x denotes data type, and yyy - sparse matrix storage format):

one-based indexing

mkl_xyyygemv(transa, m, arg(A), x, y), matrix-vector product for general sparse
matrices;

mkl_xyyysymv(uplo, transa, m, arg(A), x, y), matrix-vector product for symmetrical
sparse matrix;

mkl_xyyytrsv(uplo, transa, diag, m, arg(A), x, y) solution of the systems of
equations with a sparse triangular matrix.

zero-based indexing

mkl_cspblas_xyyygemv(transa, m, arg(A), x, y), matrix-vector product for general
sparse matrices;

mkl_cspblas_xyyysymv(uplo, transa, m, arg(A), x, y), matrix-vector product for
symmetrical sparse matrix;

mkl_cspblas_xyyytrsv(uplo, transa, diag, m, arg(A), x, y) solution of the
systems of equations with a sparse triangular matrix.

The argument transa indicates how to operate with the matrix (see Table 2-5). The argument
uplo specifies whether an upper or low triangle of the sparse matrix will be considered. The
argument diag specifies whether A is a unit triangular or not. The arguments m is the number
of rows in the matrix A. The arg(A) denotes the list of arguments that describe the sparse
representation of A.

The array x contains the input vector, and the array y contains the result of the performed
operation.

Note that all routines for matrix-vector multiplication are able to extract triangles and/or a
main diagonal from a sparse representation of the matrix A.

198

2 Intel® Math Kernel Library Reference Manual

Operations with Partial Matrices

One of the distinctive feature of the Intel MKL Sparse BLAS routines is a possibility to perform
operations only on certain parts (triangles and main diagonal) of the input sparse matrix
specifying the parameter matdescra. Assume that the sparse matrix A can be decomposed as

A = L + D + U

where L is the strict lower triangle of A, U is the strict upper triangle of A, D is the main diagonal.

Table 2-7 shows correspondence between the output matrix for matrix-matrix multiplication
routines and values of matdescra for real sparse matrix A. Analogous correspondence exists
for matrix-vector multiplication routines.

Table 2-7 Correspondence Between Output Matrix and Values of matdescra (Routines
for Matrix-Matrix Multiplication)

Output Matrixmatdescra(3)matdescra(2)matdescra(1)

alpha*op(A)*B + beta*CignoredignoredG

alpha*op(L+D+L')*B + beta*CNLS or H

alpha*op(L+I+L')*B + beta*CULS or H

alpha*op(U'+D+U)*B + beta*CNUS or H

alpha*op(U'+I+U)*B + beta*CUUS or H

alpha*op(L+I)*B + beta*CULT

alpha*op(L+D)*B + beta*CNLT

alpha*op(U+I)*B + beta*CUUT

alpha*op(U+D)*B + beta*CNUT

alpha*op(L-L')*B + beta*CignoredLA

alpha*op(U-U')*B + beta*CignoredUA

alpha*D*B + beta*CNignoredD

alpha*B + beta*CUignoredD

199

BLAS and Sparse BLAS Routines 2

Table 2-8 shows correspondence between the output matrix for triangular solvers and values
of matdescra for real sparse matrix A.

Table 2-8 Correspondence Between Output Matrix and Values of matdescra (Triangular
Solvers)

Output Matrixmatdescra(3)matdescra(2)matdescra(1)

alpha*inv(op(L+L))*BNLT

alpha*inv(op(L+L))*BULT

alpha*inv(op(U+U))*BNUT

alpha*inv(op(U+U))*BUUT

alpha*inv(D)*BNignoredD

alpha*BUignoredD

Restrictions for Triangular Solver Routines

There are important restrictions for all Intel MKL triangular solvers, specifically:

Column indices for the compressed sparse row format must be sorted in increasing order
for each row;

Row indices for the compressed sparse column format must be sorted in increasing order
for each column;

For the diagonal format, elements of the array containing the diagonal numbers of the
non-zero diagonals of a sparse matrix must be sorted in increasing order.

Sparse BLAS Level 2 and Level 3 Routines.

Table 2-9 lists the sparse BLAS Level 2 and Level 3 routines described in more detail later in
this section.

200

2 Intel® Math Kernel Library Reference Manual

Table 2-9 Sparse BLAS Level 2 and Level 3 Routines

DescriptionRoutine/Function

Level 2

Computes matrix - vector product of a sparse matrix stored in the
CSR format.

mkl_dcsrmv

Computes matrix - vector product of a sparse general matrix stored
in the CSR format (PARDISO variation)

mkl_dcsrgemv

Computes matrix - vector product of a sparse symmetrical matrix
stored in the CSR format (PARDISO variation)

mkl_dcsrsymv

Computes matrix - vector product of a sparse symmetrical matrix
stored in the CSR format (PARDISO variation) with zero-based
indexing

mkl_cspblas_dcsrsymv

Computes matrix - vector product for a sparse matrix in CSC format.mkl_dcscmv

Computes matrix - vector product for a sparse matrix in the
coordinate format.

mkl_dcoomv

Computes matrix - vector product of a sparse general matrix stored
in the coordinate format.

mkl_dcoogemv

Computes matrix - vector product of a sparse symmetrical matrix
stored in the coordinate format.

mkl_dcoosymv

Computes matrix - vector product of a sparse matrix stored in the
diagonal format.

mkl_ddiamv

Computes matrix - vector product of a sparse general matrix stored
in the diagonal format.

mkl_ddiagemv

Computes matrix - vector product of a sparse symmetrical matrix
stored in the diagonal format.

mkl_ddiasymv

Computes matrix - vector product for a sparse matrix in the skyline
storage format.

mkl_dskymv

Computes matrix - vector product of a sparse matrix stored in the
BSR format.

mkl_dbsrmv

201

BLAS and Sparse BLAS Routines 2

DescriptionRoutine/Function

Computes matrix - vector product of a sparse symmetrical matrix
stored in the BSR format (PARDISO variation).

mkl_dbsrsymv

Computes matrix - vector product of a sparse symmetrical matrix
stored in the BSR format (PARDISO variation) with zero-based
indexing.

mkl_cspblas_dbsrsymv

Solves a system of linear equations for a sparse matrix in the CSR
format.

mkl_dcsrsv

Triangular solvers with simplified interface for a sparse matrix in
the CSR format (PARDISO variation).

mkl_dcsrtrsv

Solves a system of linear equations for a sparse matrix in the
compressed sparse column format.

mkl_dcscsv

Solves a system of linear equations for a sparse matrix in the
coordinate format.

mkl_dcoosv

Triangular solvers with simplified interface for a sparse matrix in
the coordinate format.

mkl_dcootrsv

Solves a system of linear equations for a sparse matrix in the
diagonal format.

mkl_ddiasv

Triangular solvers with simplified interface for a sparse matrix in
the diagonal format.

mkl_ddiatrsv

Solves a system of linear equations for a sparse matrix in the skyline
format.

mkl_dskysv

Level 3

Computes matrix - matrix product of a sparse matrix stored in the
compressed sparse row format

mkl_dcsrmm

Computes matrix - matrix product of a sparse matrix stored in the
compressed sparse column format

mkl_dcscmm

Computes matrix - matrix product of a sparse matrix stored in the
coordinate format.

mkl_dcoomm

202

2 Intel® Math Kernel Library Reference Manual

DescriptionRoutine/Function

Computes matrix - matrix product of a sparse matrix stored in the
diagonal format.

mkl_ddiamm

Computes matrix - matrix product of a sparse matrix stored in the
skyline storage format.

mkl_dskymm

Solves a system of linear matrix equations for a sparse matrix in
the CSR format.

mkl_dcsrsm

Solves a system of linear matrix equations for a sparse matrix in
the CSC format.

mkl_dcscsm

Solves a system of linear matrix equations for a sparse matrix in
the coordinate format.

mkl_dcoosm

Solves a system of linear matrix equations for a sparse matrix in
the diagonal format.

mkl_ddiasm

Solves a system of linear matrix equations for a sparse matrix
stored in the skyline storage format.

mkl_dskysm

mkl_dcsrmv
Computes matrix - vector product of a sparse
matrix stored in the CSR format.

Syntax

Fortran:

call mkl_dcsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x,
beta, y)

C:

mkl_dcsrmv(&transa, &m, &k, &alpha, matdescra, val, indx, pntrb, pntre, x,
&beta, y);

203

BLAS and Sparse BLAS Routines 2

Description

The mkl_dcsrmv routine performs a matrix-vector operation defined as

y := alpha*A*x + beta*y

or

y := alpha*A'*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

A is an m-by-k sparse matrix in the CSR format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-vector product is
computed as y := alpha*A*x + beta*y
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as y := alpha*A'*x + beta*y,

INTEGER. Number of rows of the matrix A.m

INTEGER. Number of columns of the matrix A.k

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing non-zero elements of the matrix
A. Its length is pntre(m - pntrb(1).

val

Refer to values array description in CSR Format for more
details.

INTEGER. Array containing the column indices for each
non-zero element of the matrix A.Its length is equal to length
of the val array.

indx

204

2 Intel® Math Kernel Library Reference Manual

Refer to columns array description in CSR Format for more
details.

INTEGER. Array of length m, contains row indices, such that
pntrb(i) - pntrb(1)+1 is the first index of row i in the
arrays val and indx. Refer to pointerb array description
in CSR Format for more details.

pntrb

INTEGER. Array of length m, contains row indices, such that
pntre(i) - pntrb(1) is the last index of row i in the
arrays val and indx. Refer to pointerE array description
in CSR Format for more details.

pntre

REAL*8.x
Array, DIMENSION at least k if transa = 'N' or 'n' and
at least m otherwise. Before entry, the array x must contain
the vector x.

REAL*8. Specifies the scalar beta.beta

REAL*8.y
Array, DIMENSION at least m if transa = 'N' or 'n' and
at least k otherwise. Before entry, the array y must contain
the vector y.

Output Parameters

Overwritten by the updated vector y.y

Interfaces

Fortran 77:
SUBROUTINE mkl_dcsrmv(transa, m, k, alpha, matdescra, val, indx,

pntrb, pntre, x, beta, y)

CHARACTER*1 transa

CHARACTER matdescra(*)

205

BLAS and Sparse BLAS Routines 2

INTEGER m, k

INTEGER indx(*), pntrb(m), pntre(m)

REAL*8 alpha, beta

REAL*8 val(*), x(*), y(*)

C:
void mkl_dcsrmv(char *transa, int *m, int *k, double *alpha, char *matdescra,

double *val, int *indx, int *pntrb, int *pntre, double *x, double *beta,
double *y);

mkl_dcsrgemv
Computes matrix - vector product of a sparse
general matrix stored in the CSR format (PARDISO
variation).

Syntax

Fortran:

call mkl_dcsrgemv(transa, m, a, ia, ja, x, y)

C:

mkl_dcsrgemv(&transa, &m, a, ia, ja, x, y);

Description

The mkl_dcsrgemv routine performs a matrix-vector operation defined as

y := A*x

or

y := A'*x,

where:

x and y are vectors,

A is an m-by-m sparse square matrix in the CSR format (PARDISO variation), A' is the transpose
of A.

206

2 Intel® Math Kernel Library Reference Manual

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-vector product is
computed as y := A*x
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as y := A'*x,

INTEGER. Number of rows of the matrix A.m

REAL*8. Array containing non-zero elements of the matrix
A. Its length is equal to the number of non-zero elements
in the matrix A. Refer to values array description in Sparse
Matrix Storage Formats for more details.

a

INTEGER. Array of length m + 1, containing indices of
elements in the array a, such that ia(i) is the index in the
array a of the first non-zero element from the row i. The

ia

value of the last element ia(m + 1)-1 is equal to the
number of non-zeros plus one. Refer to rowIndex array
description in Sparse Matrix Storage Formats for more
details.

REAL*8. Array containing the column indices for each
non-zero element of the matrix A.

ja

Its length is equal to the length of the array a. Refer to
columns array description in Sparse Matrix Storage Formats
for more details.

REAL*8.x
Array, DIMENSION is m.
Before entry, the array x must contain the vector x.

Output Parameters

REAL*8.y
Array, DIMENSION at least m.
On exit, the array y must contain the vector y.

207

BLAS and Sparse BLAS Routines 2

Interfaces

Fortran 77:
SUBROUTINE mkl_dcsrgemv(transa, m, a, ia, ja, x, y)

CHARACTER*1 transa

INTEGER m

INTEGER ia(*), ja(*)

REAL*8 a(*), x(*), y(*)

C:
void mkl_dcsrgemv(char *transa, int *m, double *a, int *ia, int *ja, double
*x, double *y);

mkl_dcsrsymv
Computes matrix - vector product of a sparse
symmetrical matrix stored in the CSR format
(PARDISO variation).

Syntax

Fortran:

call mkl_dcsrsymv(uplo, m, a, ia, ja, x, y)

C:

mkl_dcsrsymv(&uplo, &m, a, ia, ja, x, y);

Description

The mkl_dcsrsymv routine performs a matrix-vector operation defined as

y := A*x

or

y := A'*x,

where:

x and y are vectors,

208

2 Intel® Math Kernel Library Reference Manual

A is an upper or lower triangle of the symmetrical sparse matrix in the CSR format (PARDISO
variation), A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies whether the upper or low triangle
of the matrix A is considered.

uplo

If uplo = 'U' or 'u', the upper triangle of the matrix A is
used.
If uplo = 'L' or 'l', the low triangle of the matrix A is
used.

INTEGER. Number of rows of the matrix A.m

REAL*8. Array containing non-zero elements of the matrix
A. Its length is equal to the number of non-zero elements
in the matrix A. Refer to values array description in Sparse
Matrix Storage Formats for more details.

a

INTEGER. Array of length m + 1, containing indices of
elements in the array a, such that ia(i) is the index in the
array a of the first non-zero element from the row i. The

ia

value of the last element ia(m + 1)-1 is equal to the
number of non-zeros plus one. Refer to rowIndex array
description in Sparse Matrix Storage Formats for more
details.

REAL*8. Array containing the column indices for each
non-zero element of the matrix A.

ja

Its length is equal to the length of the array a. Refer to
columns array description in Sparse Matrix Storage Formats
for more details.

REAL*8.x
Array, DIMENSION is m.
Before entry, the array x must contain the vector x.

209

BLAS and Sparse BLAS Routines 2

Output Parameters

REAL*8.y
Array, DIMENSION at least m.
On exit, the array y must contain the vector y.

Interfaces

Fortran 77:
SUBROUTINE mkl_dcsrsymv(uplo, m, a, ia, ja, x, y)

CHARACTER*1 uplo

INTEGER m

INTEGER ia(*), ja(*)

REAL*8 a(*), x(*), y(*)

C:
void mkl_dcsrsymv(char *uplo, int *m, double *a, int *ia, int *ja, double
*x, double *y);

mkl_cspblas_dcsrsymv
Computes matrix - vector product of a sparse
symmetrical matrix stored in the CSR format
(PARDISO variation) with zero-based indexing.

Syntax

Fortran:

call mkl_cspblas_dcsrsymv(uplo, m, a, ia, ja, x, y)

C:

mkl_cspblas_dcsrsymv(&uplo, &m, a, ia, ja, x, y);

Description

The mkl_cspblas_dcsrsymv routine performs a matrix-vector operation defined as

y := A*x

210

2 Intel® Math Kernel Library Reference Manual

or

y := A'*x,

where:

x and y are vectors,

A is an upper or lower triangle of the symmetrical sparse matrix in the CSR format (PARDISO
variation) with zero-based indexing, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies whether the upper or low triangle
of the matrix A is considered.

uplo

If uplo = 'U' or 'u', the upper triangle of the matrix A is
used.
If uplo = 'L' or 'l', the low triangle of the matrix A is
used.

INTEGER. Number of rows of the matrix A.m

REAL*8. Array containing non-zero elements of the matrix
A. Its length is equal to the number of non-zero elements
in the matrix A. Refer to values array description in Sparse
Matrix Storage Formats for more details.

a

INTEGER. Array of length m + 1, containing indices of
elements in the array a, such that ia(i) is the index in the
array a of the first non-zero element from the row i. The

ia

value of the last element ia(m + 1) is equal to the number
of non-zeros. Refer to rowIndex array description in Sparse
Matrix Storage Formats for more details.

REAL*8. Array containing the column indices for each
non-zero element of the matrix A.

ja

Its length is equal to the length of the array a. Refer to
columns array description in Sparse Matrix Storage Formats
for more details.

REAL*8.x

211

BLAS and Sparse BLAS Routines 2

Array, DIMENSION is m.
Before entry, the array x must contain the vector x.

Output Parameters

REAL*8.y
Array, DIMENSION at least m.
On exit, the array y must contain the vector y.

Interfaces

Fortran 77:
SUBROUTINE mkl_cspblas_dcsrsymv(uplo, m, a, ia, ja, x, y)

CHARACTER*1 uplo

INTEGER m

INTEGER ia(*), ja(*)

REAL*8 a(*), x(*), y(*)

C:
void mkl_cspblas_dcsrsymv(char *uplo, int *m, double *a, int *ia, int *ja,
double *x, double *y);

mkl_dcscmv
Computes matrix - vector product for a sparse
matrix in the compressed sparse column format.

Syntax

Fortran:

call mkl_dcscmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x,
beta, y)

C:

mkl_dcscmv(&transa, &m, &k, &alpha, matdescra, val, indx, pntrb, pntre, x,
&beta, y);

212

2 Intel® Math Kernel Library Reference Manual

Description

The mkl_dcscmv routine performs a matrix-vector operation defined as

y := alpha*A*x + beta*y

or

y := alpha*A'*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

A is an m-by-k sparse matrix in compressed sparse column format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-vector product is
computed as y := alpha*A*x + beta*y
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as y := alpha*A'*x + beta*y,

INTEGER. Number of rows of the matrix A.m

INTEGER. Number of columns of the matrix A.k

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing non-zero elements of the matrix
A. Its length is pntre(k) - pntrb(1).

val

Refer to values array description in CSC Format for more
details.

INTEGER. Array containing the row indices for each non-zero
element of the matrix A.Its length is equal to length of the
val array.

indx

213

BLAS and Sparse BLAS Routines 2

Refer to rows array description in CSC Format for more
details.

INTEGER. Array of length k, contains row indices, such that
pntrb(i) - pntrb(1)+1 is the starting index of column
i in the arrays val and indx. Refer to pointerb array
description in CSC Format for more details.

pntrb

INTEGER. Array of length k, contains row indices, such that
pntre(i) - pntrb(1) is the last index of column i in the
arrays val and indx. Refer to pointerE array description
in CSC Format for more details.

pntre

REAL*8.x
Array, DIMENSION at least k if transa = 'N' or 'n' and
at least m otherwise. Before entry, the array x must contain
the vector x.

REAL*8. Specifies the scalar beta.beta

REAL*8.y
Array, DIMENSION at least m if transa = 'N' or 'n' and
at least k otherwise. Before entry, the array y must contain
the vector y.

Output Parameters

Overwritten by the updated vector y.y

Interfaces

Fortran 77:
SUBROUTINE mkl_dcscmv(transa, m, k, alpha, matdescra, val, indx, pntrb,
pntre, x, beta, y)

CHARACTER*1 transa

CHARACTER matdescra(*)

214

2 Intel® Math Kernel Library Reference Manual

INTEGER m, k, ldb, ldc

INTEGER indx(*), pntrb(m), pntre(m)

REAL*8 alpha, beta

REAL*8 val(*), x(*), y(*)

C:
void mkl_dcscmv(char *transa, int *m, int *k, double *alpha, char *matdescra,
double *val, int *indx, int *pntrb, int *pntre, double *x, double *beta,
double *y);

mkl_dcoomv
Computes matrix - vector product for a sparse
matrix in the coordinate format.

Syntax

Fortran:

call mkl_dcoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x,
beta, y)

C:

mkl_dcoomv(&transa, &m, &k, &alpha, matdescra, val, rowind, colind, &nnz, x,
&beta, y);

Description

The mkl_dcoomv routine performs a matrix-vector operation defined as

y := alpha*A*x + beta*y

or

y := alpha*A'*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

A is an m-by-k sparse matrix in compressed coordinate format, A' is the transpose of A.

215

BLAS and Sparse BLAS Routines 2

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-vector product is
computed as y := alpha*A*x + beta*y
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as y := alpha*A'*x + beta*y,

INTEGER. Number of rows of the matrix A.m

INTEGER. Number of columns of the matrix A.k

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array of length nnz, contains non-zero elements
of the matrix A in the arbitrary order.

val

Refer to values array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the row indices for
each non-zero element of the matrix A.

rowind

Refer to rows array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the column indices
for each non-zero element of the matrix A. Refer to columns
array description in Coordinate Format for more details.

colind

INTEGER. Specifies the number of non-zero element of the
matrix A.

nnz

Refer to nnz description in Coordinate Format for more
details.

REAL*8.x
Array, DIMENSION at least k if transa = 'N' or 'n' and
at least m otherwise. Before entry, the array x must contain
the vector x.

REAL*8. Specifies the scalar beta.beta

216

2 Intel® Math Kernel Library Reference Manual

REAL*8.y
Array, DIMENSION at least m if transa = 'N' or 'n' and
at least k otherwise. Before entry, the array y must contain
the vector y.

Output Parameters

Overwritten by the updated vector y.y

Interfaces

Fortran 77:
SUBROUTINE mkl_dcoomv(transa, m, k, alpha, matdescra, val, rowind, colind,
nnz, x, beta, y)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, k, nnz

INTEGER rowind(*), colind(*)

REAL*8 alpha, beta

REAL*8 val(*), x(*), y(*)

C:
void mkl_dcoomv(char *transa, int *m, int *k, double *alpha, char *matdescra,
double *val, int *rowind, int *colind, int *nnz, double *x, double *beta,
double *y);

mkl_dcoogemv
Computes matrix - vector product of a sparse
general matrix stored in the coordinate format.

Syntax

Fortran:

call mkl_dcoogemv(transa, m, val, rowind, colind, nnz, x, y)

217

BLAS and Sparse BLAS Routines 2

C:

mkl_dcoogemv(&transa, &m, val, rowind, colind, &nnz, x, y);

Description

The mkl_dcoogemv routine performs a matrix-vector operation defined as

y := A*x

or

y := A'*x,

where:

x and y are vectors,

A is an m-by-m sparse square matrix in the coordinate format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-vector product is
computed as y := A*x
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as y := A'*x,

INTEGER. Number of rows of the matrix A.m

REAL*8. Array of length nnz, contains non-zero elements
of the matrix A in the arbitrary order.

val

Refer to values array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the row indices for
each non-zero element of the matrix A.

rowind

Refer to rows array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the column indices
for each non-zero element of the matrix A. Refer to columns
array description in Coordinate Format for more details.

colind

218

2 Intel® Math Kernel Library Reference Manual

INTEGER. Specifies the number of non-zero element of the
matrix A.

nnz

Refer to nnz description in Coordinate Format for more
details.

REAL*8.x
Array, DIMENSION is m.
Before entry, the array x must contain the vector x.

Output Parameters

REAL*8.y
Array, DIMENSION at least m.
On exit, the array y must contain the vector y.

Interfaces

Fortran 77:
SUBROUTINE mkl_dcoogemv(transa, m, val, rowind, colind, nnz, x, y)

CHARACTER*1 transa

INTEGER m, nnz

INTEGER rowind(*), colind(*)

REAL*8 val(*), x(*), y(*)

C:
void mkl_dcoogemv(char *transa, int *m, double *val, int *rowind, int
*colind, int *nnz, double *x, double *y);

mkl_dcoosymv
Computes matrix - vector product of a sparse
symmetrical matrix stored in the coordinate format.

Syntax

Fortran:

call mkl_dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)

219

BLAS and Sparse BLAS Routines 2

C:

mkl_dcoosymv(&uplo, &m, val, rowind, colind, &nnz, x, y);

Description

The mkl_dcoosymv routine performs a matrix-vector operation defined as

y := A*x

or

y := A'*x,

where:

x and y are vectors,

A is an upper or lower triangle of the symmetrical sparse matrix in the coordinate format, A'
is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies whether the upper or low triangle
of the matrix A is considered.

uplo

If uplo = 'U' or 'u', the upper triangle of the matrix A is
used.
If uplo = 'L' or 'l', the low triangle of the matrix A is
used.

INTEGER. Number of rows of the matrix A.m

REAL*8. Array of length nnz, contains non-zero elements
of the matrix A in the arbitrary order.

val

Refer to values array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the row indices for
each non-zero element of the matrix A.

rowind

Refer to rows array description in Coordinate Format for
more details.

220

2 Intel® Math Kernel Library Reference Manual

INTEGER. Array of length nnz, contains the column indices
for each non-zero element of the matrix A. Refer to columns
array description in Coordinate Format for more details.

colind

INTEGER. Specifies the number of non-zero element of the
matrix A.

nnz

Refer to nnz description in Coordinate Format for more
details.

REAL*8.x
Array, DIMENSION is m.
Before entry, the array x must contain the vector x.

Output Parameters

REAL*8.y
Array, DIMENSION at least m.
On exit, the array y must contain the vector y.

Interfaces

Fortran 77:
SUBROUTINE mkl_dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)

CHARACTER*1 uplo

INTEGER m, nnz

INTEGER rowind(*), colind(*)

REAL*8 val(*), x(*), y(*)

C:
void mkl_dcoosymv(char *uplo, int *m, double *val, int *rowind, int *colind,
int *nnz, double *x, double *y);

221

BLAS and Sparse BLAS Routines 2

mkl_ddiamv
Computes matrix - vector product for a sparse
matrix in the diagonal format.

Syntax

Fortran:

call mkl_ddiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag, x,
beta, y)

C:

mkl_ddiamv(&transa, &m, &k, &alpha, matdescra, val, &lval, idiag, &ndiag, x,
&beta, y);

Description

The mkl_ddiamv routine performs a matrix-vector operation defined as

y := alpha*A*x + beta*y

or

y := alpha*A'*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

A is an m-by-k sparse matrix stored in the diagonal format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-vector product is
computed as y := alpha*A*x + beta*y,
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as y := alpha*A'*x + beta*y.

INTEGER. Number of rows of the matrix A.m

222

2 Intel® Math Kernel Library Reference Manual

INTEGER. Number of columns of the matrix A.k

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Two-dimensional array of size lval by ndiag,
contains non-zero diagonals of the matrix A. Refer to values
array description in Diagonal Storage Scheme for more
details.

val

INTEGER. Leading dimension of val, lval ≥min(m, k).
Refer to lval description in Diagonal Storage Scheme for
more details.

lval

INTEGER. Array of length ndiag, contains the distances
between main diagonal and each non-zero diagonals in the
matrix A.

idiag

Refer to distance array description in Diagonal Storage
Scheme for more details.

INTEGER. Specifies the number of non-zero diagonals of the
matrix A.

ndiag

REAL*8.x
Array, DIMENSION at least k if transa = 'N' or 'n', and
at least m otherwise. Before entry, the array x must contain
the vector x.

REAL*8. Specifies the scalar beta.beta

REAL*8.y
Array, DIMENSION at least m if transa = 'N' or 'n', and
at least k otherwise. Before entry, the array y must contain
the vector y.

Output Parameters

Overwritten by the updated vector y.y

223

BLAS and Sparse BLAS Routines 2

Interfaces

Fortran 77:
SUBROUTINE mkl_ddiamv(transa, m, k, alpha, matdescra, val, lval, idiag,
ndiag, x, beta, y)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, k, lval, ndiag

INTEGER idiag(*)

REAL*8 alpha, beta

REAL*8 val(lval,*), x(*), y(*)

C:
void mkl_ddiamv(char *transa, int *m, int *k, double *alpha, char *matdescra,
double *val, int *lval, int *idiag, int *ndiag, double *x, double *beta,
double *y);

mkl_ddiagemv
Computes matrix - vector product of a sparse
general matrix stored in the diagonal format.

Syntax

Fortran:

call mkl_ddiagemv(transa, m, val, lval, idiag, ndiag, x, y)

C:

mkl_ddiagemv(&transa, &m, val, &lval, idiag, &ndiag, x, y);

Description

The mkl_ddiagemv routine performs a matrix-vector operation defined as

y := A*x

224

2 Intel® Math Kernel Library Reference Manual

or

y := A'*x,

where:

x and y are vectors,

A is an m-by-m sparse square matrix in the diagonal storage format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-vector product is
computed as y := A*x
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as y := A'*x,

INTEGER. Number of rows of the matrix A.m

REAL*8. Two-dimensional array of size lval by ndiag,
contains non-zero diagonals of the matrix A. Refer to values
array description in Diagonal Storage Scheme for more
details.

val

INTEGER. Leading dimension of val, lval≥min(m, k).
Refer to lval description in Diagonal Storage Scheme for
more details.

lval

INTEGER. Array of length ndiag, contains the distances
between main diagonal and each non-zero diagonals in the
matrix A.

idiag

Refer to distance array description in Diagonal Storage
Scheme for more details.

INTEGER. Specifies the number of non-zero diagonals of the
matrix A.

ndiag

REAL*8.x
Array, DIMENSION is m.
Before entry, the array x must contain the vector x.

225

BLAS and Sparse BLAS Routines 2

Output Parameters

REAL*8.y
Array, DIMENSION at least m.
On exit, the array y must contain the vector y.

Interfaces

Fortran 77:
SUBROUTINE mkl_ddiagemv(transa, m, val, lval, idiag, ndiag, x, y)

CHARACTER*1 transa

INTEGER m, lval, ndiag

INTEGER idiag(*)

REAL*8 val(lval,*), x(*), y(*)

C:
void mkl_ddiagemv(char *transa, int *m, double *val, int *lval, int *idiag,
int *ndiag, double *x, double *y);

mkl_ddiasymv
Computes matrix - vector product of a sparse
symmetrical matrix stored in the diagonal format.

Syntax

Fortran:

call mkl_ddiasymv(uplo, m, val, lval, idiag, ndiag, x, y)

C:

mkl_ddiasymv(&uplo, &m, val, &lval, idiag, &ndiag, x, y);

Description

The mkl_ddiasymv routine performs a matrix-vector operation defined as

y := A*x

226

2 Intel® Math Kernel Library Reference Manual

or

y := A'*x,

where:

x and y are vectors,

A is an upper or lower triangle of the symmetrical sparse matrix, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies whether the upper or low triangle
of the matrix A is considered.

uplo

If uplo = 'U' or 'u', the upper triangle of the matrix A is
used.
If uplo = 'L' or 'l', the low triangle of the matrix A is
used.

INTEGER. Number of rows of the matrix A.m

REAL*8. Two-dimensional array of size lval by ndiag,
contains non-zero diagonals of the matrix A. Refer to values
array description in Diagonal Storage Scheme for more
details.

val

INTEGER. Leading dimension of val, val, lval ≥min(m,
k). Refer to lval description in Diagonal Storage Scheme
for more details.

lval

INTEGER. Array of length ndiag, contains the distances
between main diagonal and each non-zero diagonals in the
matrix A.

idiag

Refer to distance array description in Diagonal Storage
Scheme for more details.

INTEGER. Specifies the number of non-zero diagonals of the
matrix A.

ndiag

REAL*8.x
Array, DIMENSION is m.
Before entry, the array x must contain the vector x.

227

BLAS and Sparse BLAS Routines 2

Output Parameters

REAL*8.y
Array, DIMENSION at least m.
On exit, the array y must contain the vector y.

Interfaces

Fortran 77:
SUBROUTINE mkl_ddiasymv(uplo, m, val, lval, idiag, ndiag, x, y)

CHARACTER*1 uplo

INTEGER m, lval, ndiag

INTEGER idiag(*)

REAL*8 val(lval,*), x(*), y(*)

C:
void mkl_ddiasymv(char *uplo, int *m, double *val, int *lval, int *idiag,
int *ndiag, double *x, double *y);

mkl_dskymv
Computes matrix - vector product for a sparse
matrix in the skyline storage format.

Syntax

Fortran:

call mkl_dskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)

C:

mkl_dskymv(&transa, &m, &k, &alpha, matdescra, val, pntr, x, &beta, y);

Description

The mkl_dskymv routine performs a matrix-vector operation defined as

y := alpha*A*x + beta*y

228

2 Intel® Math Kernel Library Reference Manual

or

y := alpha*A'*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

A is an m-by-k sparse matrix stored using the skyline storage scheme, A' is the transpose of
A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-vector product is
computed as y := alpha*A*x + beta*y
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as y := alpha*A'*x + beta*y,

INTEGER. Number of rows of the matrix A.m

INTEGER. Number of columns of the matrix A.k

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing the set of elements of the matrix
A in the skyline profile form.

val

If matdescrsa(2)= 'L', then val contains elements from
the low triangle of the matrix A.
If matdescrsa(2)= 'U', then val contains elements from
the upper triangle of the matrix A.
Refer to values array description in Skyline Storage Scheme
for more details.

INTEGER. Array of length (m+m) for lower triangle, and
(k+k) for upper triangle.

pntr

229

BLAS and Sparse BLAS Routines 2

It contains the indices specifying in the val the positions of
the first element in each row (column) of the matrix A. Refer
to pointers array description in Skyline Storage Scheme
for more details.

REAL*8.x
Array, DIMENSION at least k if transa = 'N' or 'n' and
at least m otherwise. Before entry, the array x must contain
the vector x.

REAL*8. Specifies the scalar beta.beta

REAL*8.y
Array, DIMENSION at least m if transa = 'N' or 'n' and
at least k otherwise. Before entry, the array y must contain
the vector y.

Output Parameters

Overwritten by the updated vector y.y

Interfaces

Fortran 77:
SUBROUTINE mkl_dskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta,
y)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, k

INTEGER pntr(*)

REAL*8 alpha, beta

REAL*8 val(*), x(*), y(*)

C:
void mkl_dskymv (char *transa, int *m, int *k, double *alpha, char *matdescra,
double *val, int *pntr, double *x, double *beta, double *y);

230

2 Intel® Math Kernel Library Reference Manual

mkl_dbsrmv
Computes matrix - vector product of a sparse
matrix stored in the BSR format.

Syntax

Fortran:

call mkl_dbsrmv(transa, m, k, lb, alpha, matdescra, val, indx, pntrb, pntre,
x, beta, y)

C:

mkl_dbsrmv(&transa, &m, &k, &lb, &alpha, matdescra, val, indx, pntrb, pntre,
x, &beta, y);

Description

The mkl_dbsrmv routine performs a matrix-vector operation defined as

y := alpha*A*x + beta*y

or

y := alpha*A'*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

A is an m-by-k block sparse matrix in the BSR format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-vector product is
computed as y := alpha*A*x + beta*y
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as y := alpha*A'*x + beta*y,

INTEGER. Number of block rows of the matrix A.m

231

BLAS and Sparse BLAS Routines 2

INTEGER. Number of block columns of the matrix A.k

INTEGER. Size of the block in the matrix A.lb

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing elements of non-zero blocks of
the matrix A. Its length is equal to the number number of
non-zero blocks in the matrix A multiplied by lb*lb.

val

Refer to values array description in BSR Format for more
details.

INTEGER. Array containing the column indices for each
non-zero block in the matrix A. Its length is equal to the
number of non-zero blocks in the matrix A.

indx

Refer to columns array description in BSR Format for more
details.

INTEGER. Array of length m.pntrb
For one-based indexing: this array contains row indices,
such that pntrb(i) - pntrb(1)+1 is the first index of
block row i in the array indx.
For zero-based indexing: this array contains row indices,
such that pntrb(i) - pntrb(0) is the first index of block
row i in the array indx
Refer to pointerB array description in BSR Format for more
details.

INTEGER. Array of length m.pntre
For one-based intexing this array contains row indices, such
that pntre(i) - pntrb(1) is the last index of block row
i in the array indx.
For zero-based intexing this array contains row indices, such
that pntre(i) - pntrb(0)-1 is the last index of block
row i in the array indx.
Refer to pointerE array description in BSR Format for more
details.

REAL*8.x

232

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least (k*lb) if transa = 'N' or 'n',
and at least (m*lb) otherwise. Before entry, the array x
must contain the vector x.

REAL*8. Specifies the scalar beta.beta

REAL*8.y
Array, DIMENSION at least (m*lb) if transa = 'N' or 'n',
and at least (k*lb) otherwise. Before entry, the array y
must contain the vector y.

Output Parameters

Overwritten by the updated vector y.y

Interfaces

Fortran 77:
SUBROUTINE mkl_dbsrmv(transa, m, k, lb, alpha, matdescra, val, indx,

pntrb, pntre, x, beta, y)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, k, lb

INTEGER indx(*), pntrb(m), pntre(m)

REAL*8 alpha, beta

REAL*8 val(*), x(*), y(*)

C:
void mkl_dbsrmv(char *transa, int *m, int *k, int *lb, double *alpha, char
*matdescra,

double *val, int *indx, int *pntrb, int *pntre, double *x, double *beta,
double *y);

233

BLAS and Sparse BLAS Routines 2

mkl_dbsrsymv
Computes matrix - vector product of a sparse
symmetrical matrix stored in the BSR format
(PARDISO variation).

Syntax

Fortran:

call mkl_dbsrsymv(uplo, m, lb, a, ia, ja, x, y)

C:

mkl_dbsrsymv(&uplo, &m, &lb, a, ia, ja, x, y);

Description

The mkl_dbsrsymv routine performs a matrix-vector operation defined as

y := A*x

or

y := A'*x,

where:

x and y are vectors,

A is an upper or lower triangle of the symmetrical sparse matrix in the BSR format (PARDISO
variation), A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies whether the upper or low triangle
of the matrix A is considered.

uplo

If uplo = 'U' or 'u', the upper triangle of the matrix A is
used.
If uplo = 'L' or 'l', the low triangle of the matrix A is
used.

234

2 Intel® Math Kernel Library Reference Manual

INTEGER. Number of block rows of the matrix A.m

INTEGER. Size of the block in the matrix A.lb

REAL*8. Array containing elements of non-zero blocks of
the matrix A. Its length is equal to the number of non-zero
blocks in the matrix A multiplied by lb*lb. Refer to values
array description in BSR Format for more details.

a

INTEGER. Array of length (m + 1), containing indices of
block in the array a, such that ia(i) is the index in the
array a of the first non-zero element from the row i. The

ia

value of the last element ia(m + 1) is equal to the number
of non-zero blocks plus one. Refer to rowIndex array
description in BSR Format for more details.

REAL*8. Array containing the column indices for each
non-zero block in the matrix A.

ja

Its length is equal to the number of non-zero blocks of the
matrix A. Refer to columns array description in BSR Format
for more details.

REAL*8.x
Array, DIMENSION (m*lb).
Before entry, the array x must contain the vector x.

Output Parameters

REAL*8.y
Array, DIMENSION at least (m*lb).
On exit, the array y must contain the vector y.

Interfaces

Fortran 77:
SUBROUTINE mkl_dbsrsymv(uplo, m, lb, a, ia, ja, x, y)

CHARACTER*1 uplo

INTEGER m, lb

INTEGER ia(*), ja(*)

REAL*8 a(*), x(*), y(*)

235

BLAS and Sparse BLAS Routines 2

C:
void mkl_dbsrsymv(char *uplo, int *m, int *lb, double *a, int *ia, int *ja,
double *x, double *y);

mkl_cspblas_dbsrsymv
Computes matrix - vector product of a sparse
symmetrical matrix stored in the BSR format
(PARDISO variation) with zero-based indexing.

Syntax

Fortran:

call mkl_cspblas_dbsrsymv(uplo, m, lb, a, ia, ja, x, y)

C:

mkl_cspblas_dbsrsymv(&uplo, &m, &lb, a, ia, ja, x, y);

Description

The mkl_cspblas_dbsrsymv routine performs a matrix-vector operation defined as

y := A*x

or

y := A'*x,

where:

x and y are vectors,

A is an upper or lower triangle of the symmetrical sparse matrix in the BSR format (PARDISO
variation) with zero-based indexing, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies whether the upper or low triangle
of the matrix A is considered.

uplo

236

2 Intel® Math Kernel Library Reference Manual

If uplo = 'U' or 'u', the upper triangle of the matrix A is
used.
If uplo = 'L' or 'l', the low triangle of the matrix A is
used.

INTEGER. Number of block rows of the matrix A.m

INTEGER. Size of the block in the matrix A.lb

REAL*8. Array containing elements of non-zero blocks of
the matrix A. Its length is equal to the number of non-zero
blocks in the matrix A multiplied by lb*lb. Refer to values
array description in BSR Format for more details.

a

INTEGER. Array of length (m + 1), containing indices of
block in the array a, such that ia(i) is the index in the
array a of the first non-zero element from the row i. The

ia

value of the last element ia(m + 1) is equal to the number
of non-zero blocks plus one. Refer to rowIndex array
description in BSR Format for more details.

REAL*8. Array containing the column indices for each
non-zero block in the matrix A.

ja

Its length is equal to the number of non-zero blocks of the
matrix A. Refer to columns array description in BSR Format
for more details.

REAL*8.x
Array, DIMENSION (m*lb).
Before entry, the array x must contain the vector x.

Output Parameters

REAL*8.y
Array, DIMENSION at least (m*lb).
On exit, the array y must contain the vector y.

237

BLAS and Sparse BLAS Routines 2

Interfaces

Fortran 77:
SUBROUTINE mkl_cspblas_dbsrsymv(uplo, m, lb, a, ia, ja, x, y)

CHARACTER*1 uplo

INTEGER m, lb

INTEGER ia(*), ja(*)

REAL*8 a(*), x(*), y(*)

C:
void mkl_cspblas_dbsrsymv(char *uplo, int *m, int *lb, double *a, int *ia,
int *ja, double *x, double *y);

mkl_dcsrsv
Solves a system of linear equations for a sparse
matrix in the CSR format.

Syntax

Fortran:

call mkl_dcsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)

C:

mkl_dcsrsv(&transa, &m, &alpha, matdescra, val, indx, pntrb, pntre, x, y);

Description

The mkl_dcsrsv routine solves a system of linear equations with matrix-vector operations for
a sparse matrix in the CSR format:

y := alpha*inv(A)*x

or

y := alpha*inv(A')*x,

where:

238

2 Intel® Math Kernel Library Reference Manual

alpha is scalar, x and y are vectors, A is a sparse upper or lower triangular matrix with unit or
non-unit main diagonal, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', y := alpha*inv(A)*x
If transa = 'T' or 't' or 'C' or 'c', y :=
alpha*inv(A')*x,

INTEGER. Number of columns of the matrix A.m

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing non-zero elements of the matrix
A. Its length is pntre(m) - pntrb(1).

val

Refer to values array description in CSR Format for more
details.

INTEGER. Array containing the column indices for each
non-zero element of the matrix A.Its length is equal to length
of the val array.

indx

Refer to columns array description in CSR Format for more
details.

INTEGER. Array of length m, contains row indices, such that
pntrb(i) - pntrb(1)+1 is the starting index of row i in
the arrays val and indx. Refer to pointerb array description
in CSR Format for more details.

pntrb

INTEGER. Array of length m, contains row indices, such that
pntre(i) - pntrb(1) is the last index of row i in the
arrays val and indx. Refer to pointerE array description
in CSR Format for more details.

pntre

REAL*8.x
Array, DIMENSION at least m.

239

BLAS and Sparse BLAS Routines 2

Before entry, the array x must contain the vector x. The
elements are accessed with unit increment.

REAL*8.y
Array, DIMENSION at least m.
Before entry, the array y must contain the vector y. The
elements are accessed with unit increment.

Output Parameters

Contains solution vector x.y

Interfaces

Fortran 77:
SUBROUTINE mkl_dcsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre,
x, y)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m

INTEGER indx(*), pntrb(m), pntre(m)

REAL*8 alpha

REAL*8 val(*)

REAL*8 x(*), y(*)

C:
void mkl_dcsrsv(char *transa, int *m, double *alpha, char *matdescra, double
*val, int *indx, int *pntrb, int *pntre, double *x, double *y);

240

2 Intel® Math Kernel Library Reference Manual

mkl_dcsrtrsv
Triangular solvers with simplified interface for a
sparse matrix in the CSR format (PARDISO
variation).

Syntax

Fortran:

call mkl_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)

C:

mkl_dcsrtrsv(&uplo, &transa, &diag, &m, a, ia, ja, x, y);

Description

The mkl_dcsrtrsv routine solves a system of linear equations with matrix-vector operations
for a sparse matrix stored in the CSR format accepted in PARDISO:

A*y = x

or

A'*y = x,

where:

x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies whether the upper or low triangle
of the matrix A is considered.

uplo

If uplo = 'U' or 'u', the upper triangle of the matrix A is
used.
If uplo = 'L' or 'l', the low triangle of the matrix A is
used.

241

BLAS and Sparse BLAS Routines 2

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', A*y = x
If transa = 'T' or 't' or 'C' or 'c', A'*y = x,

CHARACTER*1. Specifies whether A is a unit triangular or
not.

diag

If diag = 'U' or 'u', A is assumed to be a unit triangular.
If diag = 'N' or 'n', A is not assumed to be a unit
triangular.

INTEGER. Number of rows of the matrix A.m

REAL*8. Array containing non-zero elements of the matrix
A. Its length is equal to the number of non-zero elements
in the matrix A. Refer to values array description in Sparse
Matrix Storage Formats for more details.

a

INTEGER. Array of length m + 1, containing indices of
elements in the array a, such that ia(i) is the index in the
array a of the first non-zero element from the row i. The

ia

value of the last element ia(m + 1)-1 is equal to the
number of non-zeros plus one. Refer to rowIndex array
description in Sparse Matrix Storage Formats for more
details.

REAL*8. Array containing the column indices for each
non-zero element of the matrix A.

ja

Its length is equal to the length of the array a. Refer to
columns array description in Sparse Matrix Storage Formats
for more details.

REAL*8.x
Array, DIMENSION is m.
Before entry, the array x must contain the vector x.

Output Parameters

REAL*8.y
Array, DIMENSION at least m.
Contains the vector y.

242

2 Intel® Math Kernel Library Reference Manual

Interfaces

Fortran 77:
SUBROUTINE mkl_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)

CHARACTER*1 uplo, transa, diag

INTEGER m

INTEGER ia(*), ja(*)

REAL*8 a(*), x(*), y(*)

C:
void mkl_dcsrtrsv(char *uplo, char *transa, char *diag, int *m, double *a,
int *ia, int *ja, double *x, double *y);

mkl_dcscsv
Solves a system of linear equations for a sparse
matrix in the CSC format.

Syntax

Fortran:

call mkl_dcscsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)

C:

mkl_dcscsv(&transa, &m, &alpha, matdescra, val, indx, pntrb, pntre, x, y);

Description

The mkl_dcsrsv routine solves a system of linear equations with matrix-vector operations for
a sparse matrix in the CSC format:

y := alpha*inv(A)*x

or

y := alpha*inv(A')* x,

where:

243

BLAS and Sparse BLAS Routines 2

alpha is scalar, x and y are vectors, A is a sparse upper or lower triangular matrix with unit or
non-unit main diagonal, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', y := alpha*inv(A)*x
If transa= 'T' or 't' or 'C' or 'c', y :=
alpha*inv(A')* x,

INTEGER. Number of columns of the matrix A.m

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing non-zero elements of the matrix
A. Its length is pntre(m) - pntrb(1).

val

Refer to values array description in CSC Format for more
details.

INTEGER. Array containing the column indices for each
non-zero element of the matrix A. Its length is equal to
length of the val array.

indx

Refer to columns array description in CSC Format for more
details.

INTEGER. Array of length m, contains row indices, such that
pntrb(i) - pntrb(1)+1 is the starting index of row i in
the arrays val and indx. Refer to pointerb array description
in CSC Format for more details.

pntrb

INTEGER. Array of length m, contains row indices, such that
pntre(i) - pntrb(1) is the last index of row i in the
arrays val and indx. Refer to pointerE array description
in CSC Format for more details.

pntre

REAL*8.x
Array, DIMENSION at least m.

244

2 Intel® Math Kernel Library Reference Manual

Before entry, the array x must contain the vector x. The
elements are accessed with unit increment.

REAL*8.y
Array, DIMENSION at least m.
Before entry, the array y must contain the vector y. The
elements are accessed with unit increment.

Output Parameters

Contains the solution vector x.y

Interfaces

Fortran 77:
SUBROUTINE mkl_dcscsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre,
x, y)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m

INTEGER indx(*), pntrb(m), pntre(m)

REAL*8 alpha

REAL*8 val(*)

REAL*8 x(*), y(*)

C:
void mkl_dcscsv(char *transa, int *m, double *alpha, char *matdescra, double
*val, int *indx, int *pntrb, int *pntre, double *x, double *y);

245

BLAS and Sparse BLAS Routines 2

mkl_dcoosv
Solves a system of linear equations for a sparse
matrix in the coordinate format.

Syntax

Fortran:

call mkl_dcoosv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x,
y)

C:

mkl_dcoosv(&transa, &m, &k, &alpha, matdescra, val, rowind, colind, &nnz, x,
y);

Description

The mkl_dcoosv routine solves a system of linear equations with matrix-vector operations for
a sparse matrix in the coordinate format:

y := alpha*inv(A)*x

or

y := alpha*inv(A')*x,

where:

alpha is scalar, x and y are vectors, A is a sparse upper or lower triangular matrix with unit or
non-unit main diagonal, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', y := alpha*inv(A)*x
If transa = 'T' or 't' or 'C' or 'c', y :=
alpha*inv(A')* x,

INTEGER. Number of rows of the matrix A.m

REAL*8. Specifies the scalar alpha.alpha

246

2 Intel® Math Kernel Library Reference Manual

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array of length nnz, contains non-zero elements
of the matrix A in the arbitrary order.

val

Refer to values array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the row indices for
each non-zero element of the matrix A.

rowind

Refer to rows array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the column indices
for each non-zero element of the matrix A. Refer to columns
array description in Coordinate Format for more details.

colind

INTEGER. Specifies the number of non-zero element of the
matrix A.

nnz

Refer to nnz description in Coordinate Format for more
details.

REAL*8.x
Array, DIMENSION at least m.
Before entry, the array x must contain the vector x. The
elements are accessed with unit increment.

REAL*8.y
Array, DIMENSION at least m.
Before entry, the array y must contain the vector y. The
elements are accessed with unit increment.

Output Parameters

Contains solution vector x.y

247

BLAS and Sparse BLAS Routines 2

Interfaces

Fortran 77:
SUBROUTINE mkl_dcoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz,
x, y)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, nnz

INTEGER rowind(*), colind(*)

REAL*8 alpha

REAL*8 val(*)

REAL*8 x(*), y(*)

C:
void mkl_dcoosv(char *transa, int *m, double *alpha, char *matdescra, double
*val, int *rowind, int *colind, int *nnz, double *x, double *y);

mkl_dcootrsv
Triangular solvers with simplified interface for a
sparse matrix in the coordinate format.

Syntax

Fortran:

call mkl_dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)

C:

mkl_dcootrsv(&uplo, &transa, &diag, &m, val, rowind, colind, &nnz, x, y);

Description

The mkl_dcootrsv routine solves a system of linear equations with matrix-vector operations
for a sparse matrix stored in the coordinate format:

A*y = x

248

2 Intel® Math Kernel Library Reference Manual

or

A'*y = x,

where:

x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies whether the upper or low triangle
of the matrix A is considered.

uplo

If uplo = 'U' or 'u', the upper triangle of the matrix A is
used.
If uplo = 'L' or 'l', the low triangle of the matrix A is
used.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', A*y = x
If transa = 'T' or 't' or 'C' or 'c', A'*y = x,

CHARACTER*1. Specifies whether or not A is a unit triangular
or not.

diag

If diag = 'U' or 'u', A is assumed to be a unit triangular.
If diag = 'N' or 'n', A is not assumed to be a unit
triangular.

INTEGER. Number of rows of the matrix A.m

REAL*8. Array of length nnz, contains non-zero elements
of the matrix A in the arbitrary order.

val

Refer to values array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the row indices for
each non-zero element of the matrix A.

rowind

Refer to rows array description in Coordinate Format for
more details.

249

BLAS and Sparse BLAS Routines 2

INTEGER. Array of length nnz, contains the column indices
for each non-zero element of the matrix A. Refer to columns
array description in Coordinate Format for more details.

colind

INTEGER. Specifies the number of non-zero element of the
matrix A.

nnz

Refer to nnz description in Coordinate Format for more
details.

REAL*8.x
Array, DIMENSION is m.
Before entry, the array x must contain the vector x.

Output Parameters

REAL*8.y
Array, DIMENSION at least m.
Contains the vector y.

Interfaces

Fortran 77:
SUBROUTINE mkl_dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x,
y)

CHARACTER*1 uplo, transa, diag

INTEGER m, nnz

INTEGER rowind(*), colind(*)

REAL*8 val(*), x(*), y(*)

C:
void mkl_dcootrsv(char *uplo, char *transa, char *diag, int *m, double *alpha,
char *matdescra, double *val, int *rowind, int *colind, int *nnz, double
*x, double *y);

250

2 Intel® Math Kernel Library Reference Manual

mkl_ddiasv
Solves a system of linear equations for a sparse
matrix in the diagonal format.

Syntax

Fortran:

call mkl_ddiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)

C:

mkl_ddiasv(&transa, &m, &alpha, matdescra, val, &lval, idiag, &ndiag, x, y);

Description

The mkl_ddiasv routine solves a system of linear equations with matrix-vector operations for
a sparse matrix stored in the diagonal format:

y := alpha*inv(A)*x

or

y := alpha*inv(A')* x,

where:

alpha is scalar, x and y are vectors, A is a sparse upper or lower triangular matrix with unit or
non-unit main diagonal, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', y := alpha*inv(A)*x
If transa = 'T' or 't' or 'C' or 'c', y :=
alpha*inv(A')*x,

INTEGER. Number of rows of the matrix A.m

REAL*8. Specifies the scalar alpha.alpha

251

BLAS and Sparse BLAS Routines 2

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Two-dimensional array of size lval by ndiag,
contains non-zero diagonals of the matrix A. Refer to values
array description in Diagonal Storage Scheme for more
details.

val

INTEGER. Leading dimension of val, lval≥m. Refer to lval

description in Diagonal Storage Scheme for more details.

lval

INTEGER. Array of length ndiag, contains the distances
between main diagonal and each non-zero diagonals in the
matrix A.

idiag

Refer to distance array description in Diagonal Storage
Scheme for more details.

INTEGER. Specifies the number of non-zero diagonals of the
matrix A.

ndiag

REAL*8.x
Array, DIMENSION at least m.
Before entry, the array x must contain the vector x. The
elements are accessed with unit increment.

REAL*8.y
Array, DIMENSION at least m.
Before entry, the array y must contain the vector y. The
elements are accessed with unit increment.

Output Parameters

Contains solution vector x.y

252

2 Intel® Math Kernel Library Reference Manual

Interfaces

Fortran 77:
SUBROUTINE mkl_ddiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag,
x, y)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, lval, ndiag

INTEGER indiag(*)

REAL*8 alpha

REAL*8 val(lval,*), x(*), y(*)

C:
void mkl_ddiasv(char *transa, int *m, double *alpha, char *matdescra, double
*val, int *lval, int *idiag, int *ndiag, double *x, double *y);

mkl_ddiatrsv
Triangular solvers with simplified interface for a
sparse matrix in the diagonal format.

Syntax

Fortran:

call mkl_ddiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)

C:

mkl_ddiatrsv(&uplo, &transa, &diag, &m, val, &lval, idiag, &ndiag, x, y);

Description

The mkl_ddiatrsv routine solves a system of linear equations with matrix-vector operations
for a sparse matrix stored in the diagonal:

A*y = x

253

BLAS and Sparse BLAS Routines 2

or

A'*y = x,

where:

x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies whether the upper or low triangle
of the matrix A is considered.

uplo

If uplo = 'U' or 'u', the upper triangle of the matrix A is
used.
If uplo = 'L' or 'l', the low triangle of the matrix A is
used.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', then A*y = x
If transa = 'T' or 't' or 'C' or 'c', then A'*y = x,

CHARACTER*1. Specifies whether A is a unit triangular or
not.

diag

If diag = 'U' or 'u', A is assumed to be a unit triangular.
If diag = 'N' or 'n', A is not assumed to be a unit
triangular.

INTEGER. Number of rows of the matrix A.m

REAL*8. Two-dimensional array of size lval by ndiag,
contains non-zero diagonals of the matrix A. Refer to values
array description in Diagonal Storage Schemefor more
details.

val

INTEGER. Leading dimension of val, lval≥m. Refer to lval

description in Diagonal Storage Scheme for more details.

lval

INTEGER. Array of length ndiag, contains the distances
between main diagonal and each non-zero diagonals in the
matrix A.

idiag

254

2 Intel® Math Kernel Library Reference Manual

Refer to distance array description in Diagonal Storage
Scheme for more details.

INTEGER. Specifies the number of non-zero diagonals of the
matrix A.

ndiag

REAL*8.x
Array, DIMENSION is m.
Before entry, the array x must contain the vector x.

Output Parameters

REAL*8.y
Array, DIMENSION at least m.
Contains the vector y.

Interfaces

Fortran 77:
SUBROUTINE mkl_ddiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x,
y)

CHARACTER*1 uplo, transa, diag

INTEGER m, lval, ndiag

INTEGER indiag(*)

REAL*8 val(lval,*), x(*), y(*)

C:
void mkl_ddiatrsv(char *uplo, char *transa, char *diag, int *m, double *val,
int *lval, int *idiag, int *ndiag, double *x, double *y);

255

BLAS and Sparse BLAS Routines 2

mkl_dskysv
Solves a system of linear equations for a sparse
matrix in the skyline format.

Syntax

Fortran:

call mkl_dskysv(transa, m, alpha, matdescra, val, pntr, x, y)

C:

mkl_dskysv(&transa, &m, &alpha, matdescra, val, pntr, x, y);

Description

The mkl_dskysv routine solves a system of linear equations with matrix-vector operations for
a sparse matrix in the skyline storage format:

y := alpha*inv(A)*x

or

y := alpha*inv(A')*x,

where:

alpha is scalar, x and y are vectors, A is a sparse upper or lower triangular matrix with unit or
non-unit main diagonal, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', then y := alpha*inv(A)*x
If transa = 'T' or 't' or 'C' or 'c', then y :=
alpha*inv(A')* x,

INTEGER. Number of rows of the matrix A.m

REAL*8. Specifies the scalar alpha.alpha

256

2 Intel® Math Kernel Library Reference Manual

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing the set of elements of the matrix
A in the skyline profile form.

val

If matdescrsa(2)= 'L', then val contains elements from
the low triangle of the matrix A.
If matdescrsa(2)= 'U', then val contains elements from
the upper triangle of the matrix A.
Refer to values array description in Skyline Storage Scheme
for more details.

INTEGER. Array of length (m+m) for lower triangle, and
(k+k) for upper triangle.

pntr

It contains the indices specifying in the val the positions of
the first element in each row (column) of the matrix A. Refer
to pointers array description in Skyline Storage Scheme
for more details.

REAL*8.x
Array, DIMENSION at least m.
Before entry, the array x must contain the vector x. The
elements are accessed with unit increment.

REAL*8.y
Array, DIMENSION at least m.
Before entry, the array y must contain the vector y. The
elements are accessed with unit increment.

Output Parameters

Contains solution vector x.y

Interfaces

Fortran 77:
SUBROUTINE mkl_dskysv(transa, m, alpha, matdescra, val, pntr, x, y)

CHARACTER*1 transa

CHARACTER matdescra(*)

257

BLAS and Sparse BLAS Routines 2

INTEGER m

INTEGER pntr(*)

REAL*8 alpha

REAL*8 val(*), x(*), y(*)

C:
void mkl_dskysv(char *transa, int *m, double *alpha, char *matdescra, double
*val, int *pntr, double *x, double *y);

mkl_dcsrmm
Computes matrix - matrix product of a sparse
matrix stored in the CSR format.

Syntax

Fortran:

call mkl_dcsrmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre,
b, ldb, beta, c, ldc)

C:

mkl_dcsrmm(&transa, &m, &n, &k, &alpha, matdescra, val, indx, pntrb, pntre,
b, &ldb, &beta, c, &ldc);

Description

The mkl_dcsrmm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

or

C := alpha*A'*B + beta*C,

where:

alpha and beta are scalars,

B and C are dense matrices, A is an m-by-k sparse matrix in compressed sparse row format, A'
is the transpose of A.

258

2 Intel® Math Kernel Library Reference Manual

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-matrix product is
computed as C := alpha*A*B + beta*C
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as C := alpha*A'*B + beta*C,

INTEGER. Number of rows of the matrix A.m

INTEGER. Number of columns of the matrix C.n

INTEGER. Number of columns of the matrix A.k

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing non-zero elements of the matrix
A. Its length is pntre(m) - pntrb(1).

val

Refer to values array description in CSR Format for more
details.

INTEGER. Array containing the column indices for each
non-zero element of the matrix A. Its length is equal to
length of the val array.

indx

Refer to columns array description in CSR Format for more
details.

INTEGER. Array of length m, contains row indices, such that
pntrb(i) - pntrb(1)+1 is the starting index of row i in
the arrays val and indx. Refer to pointerb array description
in CSR Format for more details.

pntrb

INTEGER. Array of length m, contains row indices, such that
pntre(i) - pntrb(1) is the last index of row i in the
arrays val and indx. Refer to pointerE array description
in CSR Format for more details.

pntre

REAL*8.b
Array, DIMENSION (ldb, n).

259

BLAS and Sparse BLAS Routines 2

Before entry with transa= 'N' or 'n', the leading k-by-n
part of the array b must contain the matrix B, otherwise the
leading m-by-n part of the array b must contain the matrix
B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program.

ldb

REAL*8. Specifies the scalar beta.beta

REAL*8.c
Array, DIMENSION (ldc, n).
Before entry, the leading m-by-n part of the array c must
contain the matrix C, otherwise the leading k-by-n part of
the array c must contain the matrix C.

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program.

ldc

Output Parameters

Overwritten by the matrix (alpha*A*B + beta* C) or
(alpha*A'*B + beta*C).

c

Interfaces

Fortran 77:
SUBROUTINE mkl_dcsrmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb,
pntre, b, ldb, beta, c, ldc)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, n, k, ldb, ldc

INTEGER indx(*), pntrb(m), pntre(m)

REAL*8 alpha, beta

REAL*8 val(*), b(ldb,*), c(ldc,*)

260

2 Intel® Math Kernel Library Reference Manual

C:
void mkl_dcsrmm(char *transa, int *m, int *n, int *k, double *alpha, char
*matdescra, double *val, int *indx, int *pntrb, int *pntre, double *b, int
*ldb, double *beta, double *c, int *ldc,);

mkl_dcscmm
Computes matrix-matrix product of a sparse matrix
stored in the CSC format.

Syntax

Fortran:

call mkl_dcscmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre,
b, ldb, beta, c, ldc)

C:

mkl_dcscmm(&transa, &m, &n, &k, &alpha, matdescra, val, indx, pntrb, pntre,
b, &ldb, &beta, c, &ldc);

Description

The mkl_dcscmm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

or

C := alpha*A'*B + beta*C,

where:

alpha and beta are scalars,

B and C are dense matrices, A is an m-by-k sparse matrix in compressed sparse column format,
A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa

261

BLAS and Sparse BLAS Routines 2

If transa = 'N' or 'n', the matrix-matrix product is
computed as C := alpha*A* B + beta*C
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as C := alpha*A'*B + beta*C,

INTEGER. Number of rows of the matrix A.m

INTEGER. Number of columns of the matrix C.n

INTEGER. Number of columns of the matrix A.k

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing non-zero elements of the matrix
A. Its length is pntre(k) - pntrb(1).

val

Refer to values array description in CSC Format for more
details.

INTEGER. Array containing the row indices for each non-zero
element of the matrix A.Its length is equal to length of the
val array.

indx

Refer to rows array description in CSC Format for more
details.

INTEGER. Array of length k, contains row indices, such that
pntrb(i) - pntrb(1)+1 is the starting index of column
i in the arrays val and indx. Refer to pointerb array
description in CSC Format for more details.

pntrb

INTEGER. Array of length k, contains row indices, such that
pntre(i) - pntrb(1) is the last index of column i in the
arrays val and indx. Refer to pointerE array description
in CSC Format for more details.

pntre

REAL*8.b
Array, DIMENSION (ldb, n).
Before entry with transa = 'N' or 'n', the leading k-by-n
part of the array b must contain the matrix B, otherwise the
leading m-by-n part of the array b must contain the matrix
B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program.

ldb

262

2 Intel® Math Kernel Library Reference Manual

REAL*8. Specifies the scalar beta.beta

REAL*8.c
Array, DIMENSION (ldc, n).
Before entry, the leading m-by-n part of the array c must
contain the matrix C, otherwise the leading k-by-n part of
the array c must contain the matrix C.

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program.

ldc

Output Parameters

Overwritten by the matrix (alpha*A*B + beta* C) or
(alpha*A'*B + beta*C).

c

Interfaces

Fortran 77:
SUBROUTINE mkl_dcscmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb,
pntre, b, ldb, beta, c, ldc)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, n, k, ldb, ldc

INTEGER indx(*), pntrb(k), pntre(k)

REAL*8 alpha, beta

REAL*8 val(*), b(ldb,*), c(ldc,*)

C:
void mkl_dcscmm(char *transa, int *m, int *n, int *k, double *alpha, char
*matdescra, double *val, int *indx, int *pntrb, int *pntre, double *b, int
*ldb, double *beta, double *c, int *ldc);

263

BLAS and Sparse BLAS Routines 2

mkl_dcoomm
Computes matrix-matrix product of a sparse matrix
stored in the coordinate format.

Syntax

Fortran:

call mkl_dcoomm(transa, m, n, k, alpha, matdescra, val, rowind, colind, nnz,
b, ldb, beta, c, ldc)

C:

mkl_dcoomm(&transa, &m, &n, &k, &alpha, matdescra, val, rowind, colind, &nnz,
b, &ldb, &beta, c, &ldc);

Description

The mkl_dcoomm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

or

C := alpha*A'*B + beta*C,

where:

alpha and beta are scalars,

B and C are dense matrices, A is an m-by-k sparse matrix in the coordinate format, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-matrix product is
computed as C := alpha*A*B + beta*C
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as C := alpha*A'*B + beta*C,

INTEGER. Number of rows of the matrix A.m

264

2 Intel® Math Kernel Library Reference Manual

INTEGER. Number of columns of the matrix C.n

INTEGER. Number of columns of the matrix A.k

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array of length nnz, contains non-zero elements
of the matrix A in the arbitrary order.

val

Refer to values array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the row indices for
each non-zero element of the matrix A.

rowind

Refer to rows array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the column indices
for each non-zero element of the matrix A. Refer to columns
array description in Coordinate Format for more details.

colind

INTEGER. Specifies the number of non-zero element of the
matrix A.

nnz

Refer to nnz description in Coordinate Format for more
details.

REAL*8.b
Array, DIMENSION (ldb, n).
Before entry with transa = 'N' or 'n', the leading k-by-n
part of the array b must contain the matrix B, otherwise the
leading m-by-n part of the array b must contain the matrix
B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program.

ldb

REAL*8. Specifies the scalar beta.beta

REAL*8.c
Array, DIMENSION (ldc, n).
Before entry, the leading m-by-n part of the array c must
contain the matrix C, otherwise the leading k-by-n part of
the array c must contain the matrix C.

265

BLAS and Sparse BLAS Routines 2

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program.

ldc

Output Parameters

Overwritten by the matrix (alpha*A*B + beta*C) or
(alpha*A'*B + beta*C).

c

Interfaces

Fortran 77:
SUBROUTINE mkl_dcoomm(transa, m, n, k, alpha, matdescra, val, rowind, colind,
nnz, b, ldb, beta, c, ldc)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, n, k, ldb, ldc, nnz

INTEGER rowind(*), colind(*)

REAL*8 alpha, beta

REAL*8 val(*), b(ldb,*), c(ldc,*)

C:
void mkl_dcoomm(char *transa, int *m, int *n, int *k, double *alpha, char
*matdescra, double *val, int *rowind, int *colind, int *nnz, double *b, int
*ldb, double *beta, double *c, int *ldc);

mkl_ddiamm
Computes matrix-matrix product of a sparse matrix
stored in the diagonal format.

Syntax

Fortran:

call mkl_ddiamm(transa, m, n, k, alpha, matdescra, val, lval, idiag, ndiag,
b, ldb, beta, c, ldc)

266

2 Intel® Math Kernel Library Reference Manual

C:

mkl_ddiamm(&transa, &m, &n, &k, &alpha, matdescra, val, &lval, idiag, &ndiag,
b, &ldb, &beta, c, &ldc);

Description

The mkl_ddiamm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

or

C := alpha*A'*B + beta*C,

where:

alpha and beta are scalars,

B and C are dense matrices, A is an m-by-k sparse matrix in the diagonal format, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-matrix product is
computed as C := alpha*A*B + beta*C,
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as C := alpha*A'*B + beta*C.

INTEGER. Number of rows of the matrix A.m

INTEGER. Number of columns of the matrix C.n

INTEGER. Number of columns of the matrix A.k

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

267

BLAS and Sparse BLAS Routines 2

REAL*8. Two-dimensional array of size lval by ndiag,
contains non-zero diagonals of the matrix A. Refer to values
array description in Diagonal Storage Scheme for more
details.

val

INTEGER. Leading dimension of val, lval≥min(m, k).
Refer to lval description in Diagonal Storage Scheme for
more details.

lval

INTEGER. Array of length ndiag, contains the distances
between main diagonal and each non-zero diagonals in the
matrix A.

idiag

Refer to distance array description in Diagonal Storage
Scheme for more details.

INTEGER. Specifies the number of non-zero diagonals of the
matrix A.

ndiag

REAL*8.b
Array, DIMENSION (ldb, n).
Before entry with transa = 'N' or 'n', the leading k-by-n
part of the array b must contain the matrix B, otherwise the
leading m-by-n part of the array b must contain the matrix
B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program.

ldb

REAL*8. Specifies the scalar beta.beta

REAL*8.c
Array, DIMENSION (ldc, n).
Before entry, the leading m-by-n part of the array c must
contain the matrix C, otherwise the leading k-by-n part of
the array c must contain the matrix C.

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program.

ldc

Output Parameters

Overwritten by the matrix (alpha*A*B + beta*C) or
(alpha*A'*B + beta*C).

c

268

2 Intel® Math Kernel Library Reference Manual

Interfaces

Fortran 77:
SUBROUTINE mkl_ddiamm(transa, m, n, k, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, beta, c, ldc)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, n, k, ldb, ldc, lval, ndiag

INTEGER idiag(*)

REAL*8 alpha, beta

REAL*8 val(lval,*), b(ldb,*), c(ldc,*)

C:
void mkl_ddiamm(char *transa, int *m, int *n, int *k, double *alpha, char
*matdescra, double *val, int *lval, int *idiag, int *ndiag, double *b, int
*ldb, double *beta, double *c, int *ldc);

mkl_dskymm
Computes matrix-matrix product of a sparse matrix
stored using the skyline storage scheme.

Syntax

Fortran:

call mkl_dskymm(transa, m, n, k, alpha, matdescra, val, pntr, b, ldb, beta,
c, ldc)

C:

mkl_dskymm(&transa, &m, &n, &k, &alpha, matdescra, val, pntr, b, &ldb, &beta,
c, &ldc);

Description

The mkl_dskymm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

269

BLAS and Sparse BLAS Routines 2

or

C := alpha*A'*B + beta*C,

where:

alpha and beta are scalars,

B and C are dense matrices, A is an m-by-k sparse matrix in the skyline storage format, A' is
the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-matrix product is
computed as C := alpha*A*B + beta*C,
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as C := alpha*A'*B + beta*C,

INTEGER. Number of rows of the matrix A.m

INTEGER. Number of columns of the matrix C.n

INTEGER. Number of columns of the matrix A.k

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing the set of elements of the matrix
A in the skyline profile form.

val

If matdescrsa(2)= 'L', then val contains elements from
the low triangle of the matrix A.
If matdescrsa(2)= 'U', then val contains elements from
the upper triangle of the matrix A.
Refer to values array description in Skyline Storage
Schemefor more details.

INTEGER. Array of length (m+m) for lower triangle, and
(k+k) for upper triangle.

pntr

270

2 Intel® Math Kernel Library Reference Manual

It contains the indices specifying in the val the positions of
the first element in each row (column) of the matrix A. Refer
to pointers array description in Skyline Storage Scheme
for more details.

REAL*8.b
Array, DIMENSION (ldb, n).
Before entry with transa = 'N' or 'n', the leading k-by-n
part of the array b must contain the matrix B, otherwise the
leading m-by-n part of the array b must contain the matrix
B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program.

ldb

REAL*8. Specifies the scalar beta.beta

REAL*8.c
Array, DIMENSION (ldc, n).
Before entry, the leading m-by-n part of the array c must
contain the matrix C, otherwise the leading k-by-n part of
the array c must contain the matrix C.

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program.

ldc

Output Parameters

Overwritten by the matrix (alpha*A*B + beta*C) or
(alpha*A'*B + beta*C).

c

Interfaces

Fortran 77:
SUBROUTINE mkl_dskymm(transa, m, n, k, alpha, matdescra, val, pntr, b, ldb,
beta, c, ldc)

CHARACTER*1 transa

CHARACTER matdescra(*)

271

BLAS and Sparse BLAS Routines 2

INTEGER m, n, k, ldb, ldc

INTEGER pntr(*)

REAL*8 alpha, beta

REAL*8 val(*), b(ldb,*), c(ldc,*)

C:
void mkl_dskymm(char *transa, int *m, int *n, int *k, double *alpha, char
*matdescra, double *val, int *pntr, double *b, int *ldb, double *beta, double
*c, int *ldc);

mkl_dcsrsm
Solves a system of linear matrix equations for a
sparse matrix in the CSR format.

Syntax

Fortran:

call mkl_dcsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b,
ldb, c, ldc)

C:

mkl_dcsrsm(&transa, &m, &n, &alpha, matdescra, val, indx, pntrb, pntre, b,
&ldb, c, &ldc);

Description

The mkl_dcsrsm routine solves a system of linear equations with matrix-matrix operations for
a sparse matrix in the CSR format:

C := alpha*inv(A)*B

or

C := alpha*inv(A')*B,

where:

alpha is scalar, B and C are dense matrices, A is a sparse upper or lower triangular matrix with
unit or non-unit main diagonal, A' is the transpose of A.

272

2 Intel® Math Kernel Library Reference Manual

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-matrix product is
computed as C := alpha*inv(A)*B
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as C := alpha*inv(A')*B,

INTEGER. Number of columns of the matrix A.m

INTEGER. Number of columns of the matrix C.n

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing non-zero elements of the matrix
A. Its length is pntre(m) - pntrb(1).

val

Refer to values array description in CSR Format for more
details.

INTEGER. Array containing the column indices for each
non-zero element of the matrix A.Its length is equal to length
of the val array.

indx

Refer to columns array description in CSR Format for more
details.

INTEGER. Array of length m, contains row indices, such that
pntrb(i) - pntrb(1)+1 is the starting index of row i in
the arrays val and indx. Refer to pointerb array description
in CSR Format for more details.

pntrb

INTEGER. Array of length m, contains row indices, such that
pntre(i) - pntrb(1) is the last index of row i in the
arrays val and indx. Refer to pointerE array description
in CSR Format for more details.

pntre

REAL*8.b
Array, DIMENSION (ldb, n).

273

BLAS and Sparse BLAS Routines 2

Before entry the leading m-by-n part of the array b must
contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program.

ldb

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program.

ldc

Output Parameters

REAL*8.c
Array, DIMENSION (ldc, n).
The leading m-by-n part of the array c contains the output
matrix C.

Interfaces

Fortran 77:
SUBROUTINE mkl_dcsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb,
pntre, b, ldb, c, ldc)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, n, ldb, ldc

INTEGER indx(*), pntrb(m), pntre(m)

REAL*8 alpha

REAL*8 val(*), b(ldb,*), c(ldc,*)

C:
void mkl_dcsrsm(char *transa, int *m, int *n, double *alpha, char *matdescra,
double *val, int *indx, int *pntrb, int *pntre, double *b, int *ldb, double
*c, int *ldc);

274

2 Intel® Math Kernel Library Reference Manual

mkl_dcscsm
Solves a system of linear matrix equations for a
sparse matrix in the CSC format.

Syntax

Fortran:

call mkl_dcscsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b,
ldb, c, ldc)

C:

mkl_dcscsm(&transa, &m, &n, &alpha, matdescra, val, indx, pntrb, pntre, b,
&ldb, c, &ldc);

Description

The mkl_dcscsm routine solves a system of linear equations with matrix-matrix operations for
a sparse matrix in the CSC format:

C := alpha*inv(A)*B

or

C := alpha*inv(A')*B,

where:

alpha is scalar, B and C are dense matrices, A is a sparse upper or lower triangular matrix with
unit or non-unit main diagonal, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-matrix product is
computed as C := alpha*inv(A)*B
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as C := alpha*inv(A')*B,

INTEGER. Number of columns of the matrix A.m

275

BLAS and Sparse BLAS Routines 2

INTEGER. Number of columns of the matrix C.n

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing non-zero elements of the matrix
A. Its length is pntre(m) - pntrb(1).

val

Refer to values array description in CSC Format for more
details.

INTEGER. Array containing the row indices for each non-zero
element of the matrix A. Its length is equal to length of the
val array.

indx

Refer to rows array description in CSC Format for more
details.

INTEGER. Array of length k, contains row indices, such that
pntrb(i) - pntrb(1)+1 is the starting index of column
i in the arrays val and indx. Refer to pointerb array
description in CSC Format for more details.

pntrb

INTEGER. Array of length k, contains row indices, such that
pntre(i) - pntrb(1) is the last index of column i in the
arrays val and indx. Refer to pointerE array description
in CSC Format for more details.

pntre

REAL*8.b
Array, DIMENSION (ldb, n).
Before entry the leading m-by-n part of the array b must
contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program.

ldb

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program.

ldc

Output Parameters

REAL*8.c
Array, DIMENSION (ldc, n).
The leading m-by-n part of the array c contains the output
matrix C.

276

2 Intel® Math Kernel Library Reference Manual

Interfaces

Fortran 77:
SUBROUTINE mkl_dcscsm(transa, m, n, alpha, matdescra, val, indx, pntrb,
pntre, b, ldb, c, ldc)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, n, ldb, ldc

INTEGER indx(*), pntrb(m), pntre(m)

REAL*8 alpha

REAL*8 val(*), b(ldb,*), c(ldc,*)

C:
void mkl_dcscsm(char *transa, int *m, int *n, double *alpha, char *matdescra,
double *val, int *indx, int *pntrb, int *pntre, double *b, int *ldb, double
*c, int *ldc);

mkl_dcoosm
Solves a system of linear matrix equations for a
sparse matrix in the coordinate format.

Syntax

Fortran:

call mkl_dcoosm(transa, m, n, alpha, matdescra, val, rowind, colind, nnz, b,
ldb, c, ldc)

C:

mkl_dcoosm(&transa, &m, &n, &alpha, matdescra, val, rowind, colind, &nnz, b,
&ldb, c, &ldc);

277

BLAS and Sparse BLAS Routines 2

Description

The mkl_dcoosm routine solves a system of linear equations with matrix-matrix operations for
a sparse matrix in the coordinate format:

C := alpha*inv(A)*B

or

C := alpha*inv(A')*B,

where:

alpha is scalar, B and C are dense matrices, A is a sparse upper or lower triangular matrix with
unit or non-unit main diagonal, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-matrix product is
computed as C := alpha*inv(A)*B
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as C := alpha*inv(A')*B,

INTEGER. Number of rows of the matrix A.m

INTEGER. Number of columns of the matrix C.n

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array of length nnz, contains non-zero elements
of the matrix A in the arbitrary order.

val

Refer to values array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the row indices for
each non-zero element of the matrix A.

rowind

Refer to rows array description in Coordinate Format for
more details.

278

2 Intel® Math Kernel Library Reference Manual

INTEGER. Array of length nnz, contains the column indices
for each non-zero element of the matrix A. Refer to columns
array description in Coordinate Format for more details.

colind

INTEGER. Specifies the number of non-zero element of the
matrix A.

nnz

Refer to nnz description in Coordinate Format for more
details.

REAL*8.b
Array, DIMENSION (ldb, n).
Before entry the leading m-by-n part of the array b must
contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program.

ldb

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program.

ldc

Output Parameters

REAL*8.c
Array, DIMENSION (ldc, n).
The leading m-by-n part of the array c contains the output
matrix C.

Interfaces

Fortran 77:
SUBROUTINE mkl_dcoosm(transa, m, n, alpha, matdescra, val, rowind, colind,
nnz, b, ldb, c, ldc)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, n, ldb, ldc, nnz

INTEGER rowind(*), colind(*)

REAL*8 alpha

REAL*8 val(*), b(ldb,*), c(ldc,*)

279

BLAS and Sparse BLAS Routines 2

C:
void mkl_dcoosm(char *transa, int *m, int *n, double *alpha, char *matdescra,
double *val, int *rowind, int *colind, int *nnz, double *b, int *ldb, double
*c, int *ldc);

mkl_ddiasm
Solves a system of linear matrix equations for a
sparse matrix in the diagonal format.

Syntax

Fortran:

call mkl_ddiasm(transa, m, n, alpha, matdescra, val, lval, idiag, ndiag, b,
ldb, c, ldc)

C:

mkl_ddiasm(&transa, &m, &n, &alpha, matdescra, val, &lval, idiag, &ndiag, b,
&ldb, c, &ldc);

Description

The mkl_ddiasm routine solves a system of linear equations with matrix-matrix operations for
a sparse matrix in the diagonal format:

C := alpha*inv(A)*B

or

C := alpha*inv(A')*B,

where:

alpha is scalar, B and C are dense matrices, A is a sparse upper or lower triangular matrix with
unit or non-unit main diagonal, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa

280

2 Intel® Math Kernel Library Reference Manual

If transa = 'N' or 'n', the matrix-matrix product is
computed as C := alpha*inv(A)*B,
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as C := alpha*inv(A')*B.

INTEGER. Number of rows of the matrix A.m

INTEGER. Number of columns of the matrix C.n

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Two-dimensional array of size lval by ndiag,
contains non-zero diagonals of the matrix A. Refer to values
array description in Diagonal Storage Scheme for more
details.

val

INTEGER. Leading dimension of val, lval≥m. Refer to lval

description in Diagonal Storage Scheme for more details.

lval

INTEGER. Array of length ndiag, contains the distances
between main diagonal and each non-zero diagonals in the
matrix A.

idiag

Refer to distance array description in Diagonal Storage
Scheme for more details.

INTEGER. Specifies the number of non-zero diagonals of the
matrix A.

ndiag

REAL*8.b
Array, DIMENSION (ldb, n).
Before entry the leading m-by-n part of the array b must
contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program.

ldb

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program.

ldc

Output Parameters

REAL*8.c
Array, DIMENSION (ldc, n).

281

BLAS and Sparse BLAS Routines 2

The leading m-by-n part of the array c contains the matrix
C.

Interfaces

Fortran 77:
SUBROUTINE mkl_ddiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, c, ldc)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, n, ldb, ldc, lval, ndiag

INTEGER idiag(*)

REAL*8 alpha

REAL*8 val(lval,*), b(ldb,*), c(ldc,*)

C:
void mkl_ddiasm(char *transa, int *m, int *n, double *alpha, char *matdescra,
double *val, int *lval, int *idiag, int *ndiag, double *b, int *ldb, double
*c, int *ldc);

mkl_dskysm
Solves a system of linear matrix equations for a
sparse matrix stored using the skyline storage
scheme.

Syntax

Fortran:

call mkl_dskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)

C:

mkl_dskysm(&transa, &m, &n, &alpha, matdescra, val, pntr, b, &ldb, c, &ldc);

282

2 Intel® Math Kernel Library Reference Manual

Description

The mkl_dskysm routine solves a system of linear equations with matrix-matrix operations for
a sparse matrix in the skyline storage format:

C := alpha*inv(A)*B

or

C := alpha*inv(A')*B,

where:

alpha is scalar, B and C are dense matrices, A is a sparse upper or lower triangular matrix with
unit or non-unit main diagonal, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different
interfaces are described in the section “Interfaces” below.

CHARACTER*1. Specifies the operation to be performed.transa
If transa = 'N' or 'n', the matrix-matrix product is
computed as C := alpha*inv(A)*B,
If transa = 'T' or 't' or 'C' or 'c', the matrix-vector
product is computed as C := alpha*inv(A')*B,

INTEGER. Number of rows of the matrix A.m

INTEGER. Number of columns of the matrix C.n

REAL*8. Specifies the scalar alpha.alpha

CHARACTER. Array of six elements, specifies properties of
the matrix used for operation. Only first four array elements
are used, their possible values are given in the Table 2-6 .

matdescra

REAL*8. Array containing the set of elements of the matrix
A in the skyline profile form.

val

If matdescrsa(2)= 'L', then val contains elements from
the low triangle of the matrix A.
If matdescrsa(2)= 'U', then val contains elements from
the upper triangle of the matrix A.
Refer to values array description in Skyline Storage Scheme
for more details.

283

BLAS and Sparse BLAS Routines 2

INTEGER. Array of length (m+m). It contains the indices
specifying in the val the positions of the first non-zero
element of each i-row (column) of the matrix A such that
pointers(i)- pointers(1)+1. Refer to pointers array
description in Skyline Storage Scheme for more details.

pntr

REAL*8.b
Array, DIMENSION (ldb, n).
Before entry the leading m-by-n part of the array b must
contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in
the calling (sub)program.

ldb

INTEGER. Specifies the first dimension of c as declared in
the calling (sub)program.

ldc

Output Parameters

REAL*8.c
Array, DIMENSION (ldc, n).
The leading m-by-n part of the array c contains the matrix
C.

Interfaces

Fortran 77:

SUBROUTINE mkl_dskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c,
ldc)

CHARACTER*1 transa

CHARACTER matdescra(*)

INTEGER m, n, ldb, ldc

INTEGER pntr(*)

REAL*8 alpha

REAL*8 val(*), b(ldb,*), c(ldc,*)

284

2 Intel® Math Kernel Library Reference Manual

C:
void mkl_dskysm(char *transa, int *m, int *n, double *alpha, char *matdescra,
double *val, int *pntr, double *b, int *ldb, double *c, int *ldc,);

285

BLAS and Sparse BLAS Routines 2

3LAPACK Routines: Linear
Equations

This chapter describes the Intel® Math Kernel Library implementation of routines from the LAPACK package
that are used for solving systems of linear equations and performing a number of related computational
tasks. The library includes LAPACK routines for both real and complex data. Routines are supported for
systems of equations with the following types of matrices:

• general

• banded

• symmetric or Hermitian positive-definite (both full and packed storage)

• symmetric or Hermitian positive-definite banded

• symmetric or Hermitian indefinite (both full and packed storage)

• symmetric or Hermitian indefinite banded

• triangular (both full and packed storage)

• triangular banded

• tridiagonal.

For each of the above matrix types, the library includes routines for performing the following computations:

– factoring the matrix (except for triangular matrices)

– equilibrating the matrix

– solving a system of linear equations

– estimating the condition number of a matrix

– refining the solution of linear equations and computing its error bounds

– inverting the matrix.

To solve a particular problem, you can call two or more computational routines or call a corresponding
driver routine that combines several tasks in one call, such as ?gesv for factoring and solving. For example,
to solve a system of linear equations with a general matrix, call ?getrf (LU factorization) and then ?getrs
(computing the solution). Then, call ?gerfs to refine the solution and get the error bounds. Alternatively,
use the driver routine ?gesvx that performs all these tasks in one call.

WARNING. LAPACK routines expect that input matrices do not contain INF or NaN values.
When input data is inappropriate for LAPACK, problems may arise, including possible hangs.

287

Starting from release 8.0, Intel MKL along with Fortran-77 interface to LAPACK computational and
driver routines also supports Fortran-95 interface which uses simplified routine calls with shorter
argument lists. The syntax section of the routine description gives the calling sequence for Fortran-95
interface immediately after Fortran-77 calls.

Routine Naming Conventions
To call each routine introduced in this chapter from the Fortran-77 program, you can use the
LAPACK name.

LAPACK names are listed in Table 3-1 and Table 3-2 , and have the structure ?yyzzz or
?yyzz, which is described below.

The initial symbol ? indicates the data type:

real, single precisions

complex, single precisionc

real, double precisiond

complex, double precisionz

The second and third letters yy indicate the matrix type and storage scheme:

generalge

general bandgb

general tridiagonalgt

symmetric or Hermitian positive-definitepo

symmetric or Hermitian positive-definite (packed storage)pp

symmetric or Hermitian positive-definite bandpb

symmetric or Hermitian positive-definite tridiagonalpt

symmetric indefinitesy

symmetric indefinite (packed storage)sp

Hermitian indefinitehe

Hermitian indefinite (packed storage)hp

triangulartr

triangular (packed storage)tp

triangular bandtb

For computational routines, the last three letters zzz indicate the computation performed:

288

3 Intel® Math Kernel Library Reference Manual

form a triangular matrix factorizationtrf

solve the linear system with a factored matrixtrs

estimate the matrix condition numbercon

refine the solution and compute error boundsrfs

compute the inverse matrix using the factorizationtri

equilibrate a matrix.equ

For example, the sgetrf routine performs the triangular factorization of general real matrices
in single precision; the corresponding routine for complex matrices is cgetrf.

For driver routines, the names can end with -sv (meaning a simple driver), or with -svx
(meaning an expert driver).

Names of the LAPACK computational and driver routines for Fortran-95 interface in Intel MKL
are the same as Fortran-77 names but without the first letter that indicates the data type. For
example, the name of the routine that performs triangular factorization of general real matrices
in Fortran-95 interface is getrf. Different data types are handled through defining a specific
internal parameter that refers to a module block with named constants for single and double
precision.

Fortran-95 Interface Conventions
Fortran-95 interface to LAPACK is implemented through wrappers that call respective Fortran-77
routines. This interface uses such features of Fortran-95 as assumed-shape arrays and optional
arguments to provide simplified calls to LAPACK routines with fewer arguments.

The main conventions for Fortran-95 interface are as follows:

• The names of arguments used in Fortran-95 call are typically the same as for the respective
generic (Fortran-77) interface. However, to reduce the number of argument names used in
the library, Fortran-95 interface uses the following identity settings of formal argument
names:

Fortran-95
Argument Name

Generic Argument
Name

aap

aab

afafb

289

LAPACK Routines: Linear Equations 3

Fortran-95
Argument Name

Generic Argument
Name

afafp

bbp

bbb

selectselctg

Note that these name changes of formal arguments have no impact on program semantics
and follow the unification conventions.

• Input arguments such as array dimensions are not required in Fortran-95 and are skipped
from the calling sequence. Array dimensions are reconstructed from the user data that must
exactly follow the required array shape.

Another type of generic arguments that are skipped in Fortran-95 interface are arguments
that represent workspace arrays (such as work, rwork, and so on). The only exception are
cases when workspace arrays return significant information on output.

An argument can also be skipped if its value is completely defined by the presence or absence
of another argument in the calling sequence, and the restored value is the only meaningful
value for the skipped argument.

• Some generic arguments are declared as optional in Fortran-95 interface and may or may
not be present in the calling sequence. An argument can be declared optional if it satisfies
one of the following conditions:

– If the argument value is completely defined by the presence or absence of another
argument in the calling sequence, it can be declared as optional. The difference from the
skipped argument in this case is that the optional argument can have some meaningful
values that are distinct from the value reconstructed by default. For example, if some
argument (like jobz) can take only two values and one of these values directly implies
the use of another argument, then the value of jobz can be uniquely reconstructed from
the actual presence or absence of this second argument, and jobz can be omitted.

– If an input argument can take only a few possible values, it can be declared as optional.
The default value of such argument is typically set as the first value in the list and all
exceptions to this rule are explicitly stated in the routine description.

– If an input argument has a natural default value, it can be declared as optional. The
default value of such optional argument is set to its natural default value.

• Argument info is declared as optional in Fortran-95 interface. If it is present in the calling
sequence, the value assigned to info is interpreted as follows:

290

3 Intel® Math Kernel Library Reference Manual

– If this value is more than -1000, its meaning is the same as in Fortran-77 routine.

– If this value is equal to -1000, it means that there is not enough work memory.

– If this value is equal to -1001, incompatible arguments are present in the calling sequence.

• Optional arguments are given in square brackets in Fortran-95 call syntax.

“Fortran-95 Notes” subsection at the end of the topic describing each routine details concrete
rules for reconstructing the values of omitted optional parameters.

MKL Fortran-95 Interfaces for LAPACK Routines vs. Netlib Implementation

The following list presents general digressions of Intel MKL LAPACK-95 implementation from
the Netlib analog:

• Intel® MKL Fortran-95 interfaces are provided for pure procedures.

• Names of interfaces do not contain LA_ prefix.

• An optional array argument always has the target attribute.

• Functionality of MKL LAPACK-95 wrapper is close to FORTRAN-77 original implementation
in getrf, gbtrf, and potrf interfaces.

• If jobz argument value specifies presence or absence of z argument, then z is always
declared as optional and jobz is restored depending on whether z is present or not. It is
not always so in the Netlib version (see “Modified Netlib Interfaces” in Appendix E).

• To avoid double error checking, processing of info parameter is limited to checking of
allocated memory and disarranging of optional parameters.

• If an argument that is present in the list of arguments completely defines another argument,
the latter is always declared as optional.

You can transform an application that uses the Netlib LAPACK interfaces to ensure its work with
Intel MKL interfaces by meeting two conditions:

a. The application is correct, that is, unambiguous, compiler-independent, and contains no
errors.

b. Each routine name denotes only one specific routine. If any routine name in the application
coincides with a name of the original Netlib routine (for example, after removing LA_ prefix)
but denotes a routine different from that Netlib original routine, this name should be modified
through context replacement.

You should transform your application in the following five cases (see Appendix E for specific
differences of individual interfaces):

1. When using Netlib routines that differ from the Intel MKL routines only by the LA_ prefix or
in the array attribute target. The only transformation required in this case is context name
replacement. See “Interfaces Identical to Netlib” in Appendix E for details.

291

LAPACK Routines: Linear Equations 3

2. When using Netlib routines that differ from the Intel MKL routines by the LA_ prefix, the
target array attribute, and the names of formal arguments. In the case of positional passing
of arguments, no additional transformation except context name replacement is required.
In the case of the key passing of arguments, in addition to the context name replacement
the names of mismatching keys should also be modified. See “Interfaces with Replaced
Argument Names” in Appendix E for details.

3. When using Netlib routines that differ from the Intel MKL routines by the LA_ prefix, the
target array attribute, sequence of the arguments, arguments missing in MKL but present
in Netlib and, vice versa, present in MKL but missing in Netlib. Remove the differences in
sequence and range of the arguments in process of all the transformations specified in items
2 and 3. See “Modified Netlib Interfaces” in Appendix E for details.

4. When using getrf, gbtrf, and potrf interfaces, that is, new functionality implemented in
MKL but unavailable in Netlib source. To overcome the differences, build the desired
functionality explicitly with MKL means or create a new subroutine with the new functionality,
using specific MKL interfaces corresponding to LAPACK-77 routines. You can call the latter
routines directly but using new MKL interfaces is preferable. See “Interfaces Absent From
Netlib” and “Interfaces of New Functionality”in Appendix E for details.

Note that if the transformed application calls getrf, gbtrf or potrf without controlling
arguments rcond and norm, just context replacement is enough in modifying the calls into
MKL interfaces, as described in point 1 above. Netlib functionality is preserved in such cases.

5. When using Netlib auxiliary routines. In this case, call a corresponding subroutine directly,
using MKL LAPACK-77 interfaces.

You can transform your application as follows:

1. Make sure conditions a. and b. are met.

2. Select Netlib LAPACK-95 calls. For each call do the following:

• Select the case of digression and do the required transformations.
• Revise results to eliminate unneeded code or data, which may appear after several

identical calls.

3. Make sure the transformations are correct and complete.

Matrix Storage Schemes
LAPACK routines use the following matrix storage schemes:

• Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element
aij stored in the array element a(i,j).

292

3 Intel® Math Kernel Library Reference Manual

• Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices
more compactly: the upper or lower triangle of the matrix is packed by columns in a
one-dimensional array.

• Band storage: an m-by-n band matrix with kl sub-diagonals and ku superdiagonals is
stored compactly in a two-dimensional array ab with kl+ku+1 rows and n columns. Columns
of the matrix are stored in the corresponding columns of the array, and diagonals of the
matrix are stored in rows of the array.

In Chapters 4 and 5 , arrays that hold matrices in packed storage have names ending in p;
arrays with matrices in band storage have names ending in b.

For more information on matrix storage schemes, see “Matrix Arguments” in Appendix B.

Mathematical Notation
Descriptions of LAPACK routines use the following notation:

A system of linear equations with an n-by-n matrix A = {aij},
a right-hand side vector b = {bi}, and an unknown vector
x = {xi}.

Ax = b

A set of systems with a common matrix A and multiple
right-hand sides. The columns of B are individual right-hand
sides, and the columns of X are the corresponding solutions.

AX = B

the vector with elements |xi| (absolute values of xi).|x|

the matrix with elements |aij| (absolute values of aij).|A|

The infinity-norm of the vector x.||x||∞ = maxi|xi|

The infinity-norm of the matrix A.||A||∞ = maxiΣj|aij|

The one-norm of the matrix A. ||A||1 = ||AT||∞ = ||AH||∞||A||1 = maxjΣi|aij|

The condition number of the matrix A.κ(A) = ||A|| ||A-1||

Error Analysis
In practice, most computations are performed with rounding errors. Besides, you often need
to solve a system Ax = b, where the data (the elements of A and b) are not known exactly.
Therefore, it is important to understand how the data errors and rounding errors can affect the
solution x.

293

LAPACK Routines: Linear Equations 3

Data perturbations. If x is the exact solution of Ax = b, and x + δx is the exact solution of

a perturbed problem (A + δA)x = (b + δb), then

where

In other words, relative errors in A or b may be amplified in the solution vector x by a factor

κ(A) = ||A|| ||A-1|| called the condition number of A.

Rounding errors have the same effect as relative perturbations c(n)ε in the original data.

Here ε is the machine precision, and c(n) is a modest function of the matrix order n. The
corresponding solution error is

||δx||/||x||≤ c(n)κ(A)ε. (The value of c(n) is seldom greater than 10n.)

Thus, if your matrix A is ill-conditioned (that is, its condition number κ(A) is very large),
then the error in the solution x is also large; you may even encounter a complete loss of

precision. LAPACK provides routines that allow you to estimate κ(A) (see Routines for Estimating
the Condition Number) and also give you a more precise estimate for the actual solution error
(see Refining the Solution and Estimating Its Error).

Computational Routines
Table 3-1 lists the LAPACK computational routines (Fortran-77 and Fortran-95 interfaces) for
factorizing, equilibrating, and inverting real matrices, estimating their condition numbers,
solving systems of equations with real matrices, refining the solution, and estimating its error.
Table 3-2 lists similar routines for complex matrices. Respective routine names in Fortran-95
interface are without the first symbol (see Routine Naming Conventions).

294

3 Intel® Math Kernel Library Reference Manual

Table 3-1 Computational Routines for Systems of Equations with Real Matrices

Invert matrixEstimate
error

Condition
number

Solve
system

Equilibrate
matrix

Factorize
matrix

Matrix type,
storage scheme

?getri?gerfs?gecon?getrs?geequ?getrfgeneral

?gbrfs?gbcon?gbtrs?gbequ?gbtrfgeneral band

?gtrfs?gtcon?gttrs?gttrfgeneral
tridiagonal

?potri?porfs?pocon?potrs?poequ?potrfsymmetric
positive-definite

?pptri?pprfs?ppcon?pptrs?ppequ?pptrfsymmetric
positive-definite,
packed storage

?pbrfs?pbcon?pbtrs?pbequ?pbtrfsymmetric
positive-definite,
band

?ptrfs?ptcon?pttrs?pttrfsymmetric
positive-definite,
tridiagonal

?sytri?syrfs?sycon?sytrs?sytrfsymmetric
indefinite

?sptri?sprfs?spcon?sptrs?sptrfsymmetric
indefinite, packed
storage

?trtri?trrfs?trcon?trtrstriangular

?tptri?tprfs?tpcon?tptrstriangular,
packed storage

?tbrfs?tbcon?tbtrstriangular band

In the table above, ? denotes s (single precision) or d (double precision) for Fortran-77 interface.

295

LAPACK Routines: Linear Equations 3

Table 3-2 Computational Routines for Systems of Equations with Complex Matrices

Invert matrixEstimate
error

Condition
number

Solve
system

Equilibrate
matrix

Factorize
matrix

Matrix type,
storage scheme

?getri?gerfs?gecon?getrs?geequ?getrfgeneral

?gbrfs?gbcon?gbtrs?gbequ?gbtrfgeneral band

?gtrfs?gtcon?gttrs?gttrfgeneral
tridiagonal

?potri?porfs?pocon?potrs?poequ?potrfHermitian
positive-definite

?pptri?pprfs?ppcon?pptrs?ppequ?pptrfHermitian
positive-definite,
packed storage

?pbrfs?pbcon?pbtrs?pbequ?pbtrfHermitian
positive-definite,
band

?ptrfs?ptcon?pttrs?pttrfHermitian
positive-definite,
tridiagonal

?hetri?herfs?hecon?hetrs?hetrfHermitian
indefinite

?sytri?syrfs?sycon?sytrs?sytrfsymmetric
indefinite

?hptri?hprfs?hpcon?hptrs?hptrfHermitian
indefinite, packed
storage

?sptri?sprfs?spcon?sptrs?sptrfsymmetric
indefinite, packed
storage

?trtri?trrfs?trcon?trtrstriangular

?tptri?tprfs?tpcon?tptrstriangular,
packed storage

296

3 Intel® Math Kernel Library Reference Manual

Invert matrixEstimate
error

Condition
number

Solve
system

Equilibrate
matrix

Factorize
matrix

Matrix type,
storage scheme

?tbrfs?tbcon?tbtrstriangular band

In the table above, ? stands for c (single precision complex) or z (double precision complex)
for Fortran-77 interface.

Routines for Matrix Factorization

This section describes the LAPACK routines for matrix factorization. The following factorizations
are supported:

• LU factorization

• Cholesky factorization of real symmetric positive-definite matrices

• Cholesky factorization of Hermitian positive-definite matrices

• Bunch-Kaufman factorization of real and complex symmetric matrices

• Bunch-Kaufman factorization of Hermitian matrices.

You can compute:

• the LU factorization using full and band storage of matrices

• the Cholesky factorization using full, packed, and band storage

• the Bunch-Kaufman factorization using full and packed storage.

?getrf
Computes the LU factorization of a general m-by-n
matrix.

Syntax

Fortran 77:

call sgetrf(m, n, a, lda, ipiv, info)

call dgetrf(m, n, a, lda, ipiv, info)

call cgetrf(m, n, a, lda, ipiv, info)

call zgetrf(m, n, a, lda, ipiv, info)

297

LAPACK Routines: Linear Equations 3

Fortran 95:

call getrf(a [,ipiv] [,info])

Description

The routine computes the LU factorization of a general m-by-n matrix A as

A = P*L*U,

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower
trapezoidal if m > n) and U is upper triangular (upper trapezoidal if m < n). Usually A is square
(m = n), and both L and U are triangular. The routine uses partial pivoting, with row interchanges.

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A; n ≥ 0.n

REAL for sgetrfa
DOUBLE PRECISION for dgetrf
COMPLEX for cgetrf
DOUBLE COMPLEX for zgetrf.
Array, DIMENSION (lda,*). Contains the matrix A. The second
dimension of a must be at least max(1, n).

INTEGER. The first dimension of array a.lda

Output Parameters

Overwritten by L and U. The unit diagonal elements of L are not stored.a

INTEGER.ipiv
Array, DIMENSION at least max(1,min(m, n)). The pivot indices: row
i was interchanged with row ipiv(i).

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, uii is 0. The factorization has been completed, but U is
exactly singular. Division by 0 will occur if you use the factor U for
solving a system of linear equations.

298

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine getrf interface are as follows:

Holds the matrix A of size (m,n).a

Holds the vector of length min(m,n).ipiv

Application Notes

The computed L and U are the exact factors of a perturbed matrix A + E, where

|E| ≤ c(min(m,n))ε P|L||U|

c(n) is a modest linear function of n, and ε is the machine precision.

The approximate number of floating-point operations for real flavors is

If m = n,(2/3)n3

If m > n,(1/3)n2(3m-n)

If m < n.(1/3)m2(3n-m)

The number of operations for complex flavors is four times greater.

After calling this routine with m = n, you can call the following:

to solve A*x = B or ATX = B or AHX = B?getrs

to estimate the condition number of A?gecon

to compute the inverse of A.?getri

299

LAPACK Routines: Linear Equations 3

?gbtrf
Computes the LU factorization of a general m-by-n
band matrix.

Syntax

Fortran 77:

call sgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)

call dgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)

call cgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)

call zgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)

Fortran 95:

call gbtrf(a [,kl] [,m] [,ipiv] [,info])

Description

The routine forms the LU factorization of a general m-by-n band matrix A with kl non-zero
subdiagonals and ku non-zero superdiagonals. Usually A is square (m = n), and then

A = P*L*U,

where P is a permutation matrix; L is lower triangular with unit diagonal elements and at most
kl non-zero elements in each column; U is an upper triangular band matrix with kl + ku
superdiagonals. The routine uses partial pivoting, with row interchanges (which creates the
additional kl superdiagonals in U).

Input Parameters

INTEGER. The number of rows in matrix A (m ≥ 0).m

INTEGER. The number of columns in matrix A; n ≥ 0.n

INTEGER. The number of subdiagonals within the band of A; kl ≥ 0.kl

INTEGER. The number of superdiagonals within the band of A; ku ≥ 0.ku

REAL for sgbtrfab
DOUBLE PRECISION for dgbtrf
COMPLEX for cgbtrf
DOUBLE COMPLEX for zgbtrf.

300

3 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (ldab,*). The array ab contains the matrix A in
band storage (see Matrix Storage Schemes). The second dimension of
ab must be at least max(1, n).

INTEGER. The first dimension of the array ab. (ldab ≥ 2*kl + ku + 1)ldab

Output Parameters

Overwritten by L and U. The diagonal and kl + ku superdiagonals of
U are stored in the first 1 + kl + ku rows of ab. The multipliers used
to form L are stored in the next kl rows.

ab

INTEGER.ipiv
Array, DIMENSION at least max(1,min(m, n)). The pivot indices: row
i was interchanged with row ipiv(i).

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, uii is 0. The factorization has been completed, but U is
exactly singular. Division by 0 will occur if you use the factor U for
solving a system of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gbtrf interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(2*kl+ku+1,n).

a

Holds the vector of length min(m,n).ipiv

If omitted, assumed kl = ku.kl

Restored as ku = lda-2*kl-1.ku

If omitted, assumed m = n.m

Application Notes

The computed L and U are the exact factors of a perturbed matrix A + E, where

|E| ≤ c(kl+ku+1) ε P|L||U|

301

LAPACK Routines: Linear Equations 3

c(k) is a modest linear function of k, and ε is the machine precision.

The total number of floating-point operations for real flavors varies between approximately
2n(ku+1)kl and 2n(kl+ku+1)kl. The number of operations for complex flavors is four times
greater. All these estimates assume that kl and ku are much less than min(m,n).

After calling this routine with m = n, you can call the following routines:

to solve A*X = B or AT*X = B or AH*X = Bgbtrs

to estimate the condition number of A.gbcon

?gttrf
Computes the LU factorization of a tridiagonal
matrix.

Syntax

Fortran 77:

call sgttrf(n, dl, d, du, du2, ipiv, info)

call dgttrf(n, dl, d, du, du2, ipiv, info)

call cgttrf(n, dl, d, du, du2, ipiv, info)

call zgttrf(n, dl, d, du, du2, ipiv, info)

Fortran 95:

call gttrf(dl, d, du, du2 [, ipiv] [,info])

Description

The routine computes the LU factorization of a real or complex tridiagonal matrix A in the form

A = P*L*U,

where P is a permutation matrix; L is lower bidiagonal with unit diagonal elements; and U is
an upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.
The routine uses elimination with partial pivoting and row interchanges.

Input Parameters

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for sgttrfdl, d, du

302

3 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Arrays containing elements of A.
The array dl of dimension (n - 1) contains the subdiagonal elements
of A.
The array d of dimension n contains the diagonal elements of A.
The array du of dimension (n - 1) contains the superdiagonal elements
of A.

Output Parameters

Overwritten by the (n-1) multipliers that define the matrix L from the
LU factorization of A.

dl

Overwritten by the n diagonal elements of the upper triangular matrix
U from the LU factorization of A.

d

Overwritten by the (n-1) elements of the first superdiagonal of U.du

REAL for sgttrfdu2
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Array, dimension (n-2). On exit, du2 contains (n-2) elements of the
second superdiagonal of U.

INTEGER.ipiv
Array, dimension (n). The pivot indices: row i was interchanged with
row ipiv(i).

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, uii is 0. The factorization has been completed, but U is
exactly singular. Division by zero will occur if you use the factor U for
solving a system of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gttrf interface are as follows:

303

LAPACK Routines: Linear Equations 3

Holds the vector of length (n-1).dl

Holds the vectror of length (n).d

Holds the vector of length (n-1).du

Holds the vector of length (n-2).du2

Holds the vector of length (n).ipiv

Application Notes

to solve A*X = B or AT*X = B or AH*X = B?gbtrs

to estimate the condition number of A.?gbcon

?potrf
Computes the Cholesky factorization of a
symmetric (Hermitian) positive-definite matrix.

Syntax

Fortran 77:

call spotrf(uplo, n, a, lda, info)

call dpotrf(uplo, n, a, lda, info)

call cpotrf(uplo, n, a, lda, info)

call zpotrf(uplo, n, a, lda, info)

Fortran 95:

call potrf(a [, uplo] [,info])

Description

This routine forms the Cholesky factorization of a symmetric positive-definite or, for complex
data, Hermitian positive-definite matrix A:

if uplo='U'A = UH*U

if uplo='L',A = L*LH

where L is a lower triangular matrix and U is upper triangular.

304

3 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored and
how A is factored:
If uplo = 'U', the array a stores the upper triangular part of the matrix
A, and A is factored as UH*U.
If uplo = 'L', the array a stores the lower triangular part of the matrix
A; A is factored as L*LH.

INTEGER. The order of matrix A; n ≥ 0.n

REAL for spotrfa
DOUBLE PRECISION for dpotrf
COMPLEX for cpotrf
DOUBLE COMPLEX for zpotrf.
Array, DIMENSION (lda,*). The array a contains either the upper or
the lower triangular part of the matrix A (see uplo). The second
dimension of a must be at least max(1, n).

INTEGER. The first dimension of a.lda

Output Parameters

The upper or lower triangular part of a is overwritten by the Cholesky
factor U or L, as specified by uplo.

a

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, the leading minor of order i (and therefore the matrix A
itself) is not positive-definite, and the factorization could not be
completed. This may indicate an error in forming the matrix A.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine potrf interface are as follows:

Holds the matrix A of size (n, n).a

Must be 'U' or 'L'. The default value is 'U'.uplo

305

LAPACK Routines: Linear Equations 3

Application Notes

If uplo = 'U', the computed factor U is the exact factor of a perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for real flavors or
(4/3)n3 for complex flavors.

After calling this routine, you can call the following routines:

to solve A*X = B?potrs

to estimate the condition number of A?pocon

to compute the inverse of A.?potri

?pptrf
Computes the Cholesky factorization of a
symmetric (Hermitian) positive-definite matrix
using packed storage.

Syntax

Fortran 77:

call spptrf(uplo, n, ap, info)

call dpptrf(uplo, n, ap, info)

call cpptrf(uplo, n, ap, info)

call zpptrf(uplo, n, ap, info)

Fortran 95:

call pptrf(a [, uplo] [,info])

306

3 Intel® Math Kernel Library Reference Manual

Description

This routine forms the Cholesky factorization of a symmetric positive-definite or, for complex
data, Hermitian positive-definite packed matrix A:

if uplo='U'A = UH*U

if uplo='L',A = L*LH

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is packed in
the array ap, and how A is factored:
If uplo = 'U', the array ap stores the upper triangular part of the
matrix A, and A is factored as UH*U.
If uplo = 'L', the array ap stores the lower triangular part of the matrix
A; A is factored as L*LH.

INTEGER. The order of matrix A; n ≥ 0.n

REAL for spptrfap
DOUBLE PRECISION for dpptrf
COMPLEX for cpptrf
DOUBLE COMPLEX for zpptrf.
Array, DIMENSION at least max(1, n(n+1)/2). The array ap contains
either the upper or the lower triangular part of the matrix A (as specified
by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

The upper or lower triangular part of A in packed storage is overwritten
by the Cholesky factor U or L, as specified by uplo.

ap

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, the leading minor of order i (and therefore the matrix A
itself) is not positive-definite, and the factorization could not be
completed. This may indicate an error in forming the matrix A.

307

LAPACK Routines: Linear Equations 3

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pptrf interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of
size (n*(n+1)/2).

a

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

If uplo = 'U', the computed factor U is the exact factor of a perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for real flavors and
(4/3)n3 for complex flavors.

After calling this routine, you can call the following routines:

to solve A*X = B?pptrs

to estimate the condition number of A?ppcon

to compute the inverse of A.?pptri

308

3 Intel® Math Kernel Library Reference Manual

?pbtrf
Computes the Cholesky factorization of a
symmetric (Hermitian) positive-definite band
matrix.

Syntax

Fortran 77:

call spbtrf(uplo, n, kd, ab, ldab, info)

call dpbtrf(uplo, n, kd, ab, ldab, info)

call cpbtrf(uplo, n, kd, ab, ldab, info)

call zpbtrf(uplo, n, kd, ab, ldab, info)

Fortran 95:

call pbtrf(a [, uplo] [,info])

Description

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex
data, Hermitian positive-definite band matrix A:

if uplo='U'A = UT*U for real
data, A = UH*U for
complex data

if uplo='L',A = L*LT for real
data, A = L*LH for
complex data

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored in
the array ab, and how A is factored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

309

LAPACK Routines: Linear Equations 3

INTEGER. The number of superdiagonals or subdiagonals in the matrix

A(kd ≥ 0).

kd

REAL for spbtrfab
DOUBLE PRECISION for dpbtrf
COMPLEX for cpbtrf
DOUBLE COMPLEX for zpbtrf.
Array, DIMENSION (,*). The array ap contains either the upper or the
lower triangular part of the matrix A (as specified by uplo) in band
storage (see Matrix Storage Schemes). The second dimension of ab
must be at least max(1, n).

INTEGER. The first dimension of the array ab. (ldab ≥ kd + 1)ldab

Output Parameters

The upper or lower triangular part of A (in band storage) is overwritten
by the Cholesky factor U or L, as specified by uplo.

ap

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, the leading minor of order i (and therefore the matrix A
itself) is not positive-definite, and the factorization could not be
completed. This may indicate an error in forming the matrix A.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pbtrf interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

If uplo = 'U', the computed factor U is the exact factor of a perturbed matrix A + E, where

310

3 Intel® Math Kernel Library Reference Manual

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

The total number of floating-point operations for real flavors is approximately n(kd+1)2. The
number of operations for complex flavors is 4 times greater. All these estimates assume that
kd is much less than n.

After calling this routine, you can call the following routines:

to solve A*X = B?pbtrs

to estimate the condition number of A.?pbcon

?pttrf
Computes the factorization of a symmetric
(Hermitian) positive-definite tridiagonal matrix.

Syntax

Fortran 77:

call spttrf(n, d, e, info)

call dpttrf(n, d, e, info)

call cpttrf(n, d, e, info)

call zpttrf(n, d, e, info)

Fortran 95:

call pttrf(d, e [,info])

Description

This routine forms the factorization of a symmetric positive-definite or, for complex data,
Hermitian positive-definite tridiagonal matrix A:

A = L*D*L',

where D is diagonal and L is unit lower bidiagonal. The factorization may also be regarded as
having the form A = U'*D*U, where D is unit upper bidiagonal.

311

LAPACK Routines: Linear Equations 3

Input Parameters

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for spttrf, cpttrfd
DOUBLE PRECISION for dpttrf, zpttrf.
Array, dimension (n). Contains the diagonal elements of A.

REAL for spttrfe
DOUBLE PRECISION for dpttrf
COMPLEX for cpttrf
DOUBLE COMPLEX for zpttrf. Array, dimension (n -1). Contains the
subdiagonal elements of A.

Output Parameters

Overwritten by the n diagonal elements of the diagonal matrix D from
the L*D*L' factorization of A.

d

Overwritten by the (n - 1) off-diagonal elements of the unit bidiagonal
factor L or U from the factorization of A.

e

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, the leading minor of order i (and therefore the matrix A
itself) is not positive-definite; if i < n, the factorization could not be
completed, while if i = n, the factorization was completed, but d(n)

≤ 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pttrf interface are as follows:

Holds the vector of length (n).d

Holds the vector of length (n-1).e

312

3 Intel® Math Kernel Library Reference Manual

?sytrf
Computes the Bunch-Kaufman factorization of a
symmetric matrix.

Syntax

Fortran 77:

call ssytrf(uplo, n, a, lda, ipiv, work, lwork, info)

call dsytrf(uplo, n, a, lda, ipiv, work, lwork, info)

call csytrf(uplo, n, a, lda, ipiv, work, lwork, info)

call zsytrf(uplo, n, a, lda, ipiv, work, lwork, info)

Fortran 95:

call sytrf(a [, uplo] [,ipiv] [, info])

Description

This routine forms the Bunch-Kaufman factorization of a symmetric matrix:

if uplo='U', A = P*U*D*UT*PT

if uplo='L', A = P*L*D*LT*PT,

where A is the input matrix, P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks
of D.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored and
how A is factored:
If uplo = 'U', the array a stores the upper triangular part of the
matrix A, and A is factored as P*U*D*UT*PT.
If uplo = 'L', the array a stores the lower triangular part of the matrix
A, and A is factored as P*L*D*LT*PT.

INTEGER. The order of matrix A; n ≥ 0.n

313

LAPACK Routines: Linear Equations 3

REAL for ssytrfa
DOUBLE PRECISION for dsytrf
COMPLEX for csytrf
DOUBLE COMPLEX for zsytrf.
Array, DIMENSION (lda,*). The array a contains either the upper or
the lower triangular part of the matrix A (see uplo). The second
dimension of a must be at least max(1, n).

INTEGER. The first dimension of a; at least max(1, n).lda

Same type as a. A workspace array, dimension at least max(1,lwork).work

INTEGER. The size of the work array (lwork ≥ n).lwork

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

The upper or lower triangular part of a is overwritten by details of the
block-diagonal matrix D and the multipliers used to obtain the factor U
(or L).

a

If info=0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

work(1)

INTEGER.ipiv
Array, DIMENSION at least max(1, n). Contains details of the
interchanges and the block structure of D. If ipiv(i) = k >0, then
dii is a 1-by-1 block, and the i-th row and column of A was
interchanged with the k-th row and column.
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)-th row and column of A
was interchanged with the m-th row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)-th row and column of A
was interchanged with the m-th row and column.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

314

3 Intel® Math Kernel Library Reference Manual

If info = i, dii is 0. The factorization has been completed, but D is
exactly singular. Division by 0 will occur if you use D for solving a system
of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sytrf interface are as follows:

holds the matrix A of size (n, n)a

holds the vector of length (n)ipiv

must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L are stored in the corresponding columns of the array a, but
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L) are stored explicitly in
the corresponding elements of the array a.

315

LAPACK Routines: Linear Equations 3

If uplo = 'U', the computed factors U and D are the exact factors of a perturbed matrix A +
E, where

|E| ≤ c(n)ε P|U||D||UT|PT

c(n) is a modest linear function of n, and ε is the machine precision. A similar estimate holds
for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for real flavors or
(4/3)n3 for complex flavors.

After calling this routine, you can call the following routines:

to solve A*X = B?sytrs

to estimate the condition number of A?sycon

to compute the inverse of A.?sytri

?hetrf
Computes the Bunch-Kaufman factorization of a
complex Hermitian matrix.

Syntax

Fortran 77:

call chetrf(uplo, n, a, lda, ipiv, work, lwork, info)

call zhetrf(uplo, n, a, lda, ipiv, work, lwork, info)

Fortran 95:

call hetrf(a [, uplo] [,ipiv] [,info])

Description

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix:

if uplo='U', A = P*U*D*UH*PT

if uplo='L', A = P*L*D*LH*PT,

316

3 Intel® Math Kernel Library Reference Manual

where A is the input matrix, P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks
of D.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored and
how A is factored:
If uplo = 'U', the array a stores the upper triangular part of the
matrix A, and A is factored as P*U*D*UH*PT.
If uplo = 'L', the array a stores the lower triangular part of the matrix
A, and A is factored as P*L*D*LH*PT.

INTEGER. The order of matrix A; n ≥ 0.n

COMPLEX for chetrfa, work
DOUBLE COMPLEX for zhetrf.
Arrays, DIMENSION a(lda,*), work(*).
The array a contains the upper or the lower triangular part of the matrix
A (see uplo). The second dimension of a must be at least max(1, n).
work(*) is a workspace array of dimension at least max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The size of the work array (lwork ≥ n).lwork

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

The upper or lower triangular part of a is overwritten by details of the
block-diagonal matrix D and the multipliers used to obtain the factor U
(or L).

a

If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

work(1)

INTEGER.ipiv

317

LAPACK Routines: Linear Equations 3

Array, DIMENSION at least max(1, n). Contains details of the
interchanges and the block structure of D. If ipiv(i) = k > 0, then
dii is a 1-by-1 block, and the i-th row and column of A was
interchanged with the k-th row and column.
If uplo = 'U' and ipiv(i) = ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and the (i-1)-th row and column of
A was interchanged with the m-th row and column.
If uplo = 'L' and ipiv(i) = ipiv(i+1) = -m < 0, then D has a
2-by-2 block in rows/columns i and i+1, and the (i+1)-th row and
column of A was interchanged with the m-th row and column.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular. Division by 0 will occur if you use D for solving a system
of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hetrf interface are as follows:

holds the matrix A of size (n, n)a

holds the vector of length (n)ipiv

must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

This routine is suitable for Hermitian matrices that are not known to be positive-definite. If A
is in fact positive-definite, the routine does not perform interchanges, and no 2-by-2 diagonal
blocks occur in D.

For better performance, try using lwork = n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

318

3 Intel® Math Kernel Library Reference Manual

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L are stored in the corresponding columns of the array a, but
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L) are stored explicitly in
the corresponding elements of the array a.

If uplo = 'U', the computed factors U and D are the exact factors of a perturbed matrix A +
E, where

|E| ≤ c(n)ε P|U||D||UT|PT

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (4/3)n3.

After calling this routine, you can call the following routines:

to solve A*X = B?hetrs

to estimate the condition number of A?hecon

to compute the inverse of A.?hetri

319

LAPACK Routines: Linear Equations 3

?sptrf
Computes the Bunch-Kaufman factorization of a
symmetric matrix using packed storage.

Syntax

Fortran 77:

call ssptrf(uplo, n, ap, ipiv, info)

call dsptrf(uplo, n, ap, ipiv, info)

call csptrf(uplo, n, ap, ipiv, info)

call zsptrf(uplo, n, ap, ipiv, info)

Fortran 95:

call sptrf(a [,uplo] [,ipiv] [,info])

Description

This routine forms the Bunch-Kaufman factorization of a symmetric matrix A using packed
storage:

if uplo='U', A = P*U*D*UT*PT

if uplo='L', A = P*L*D*LT*PT,

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks.
U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is packed in
the array ap and how A is factored:
If uplo = 'U', the array ap stores the upper triangular part of the
matrix A, and A is factored as P*U*D*UT*PT.
If uplo = 'L', the array ap stores the lower triangular part of the
matrix A, and A is factored as P*L*D*LT*PT.

INTEGER. The order of matrix A; n ≥ 0.n

320

3 Intel® Math Kernel Library Reference Manual

REAL for ssptrfap
DOUBLE PRECISION for dsptrf
COMPLEX for csptrf
DOUBLE COMPLEX for zsptrf.
Array, DIMENSION at least max(1, n(n+1)/2). The array ap contains
the upper or the lower triangular part of the matrix A (as specified by
uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

The upper or lower triangle of A (as specified by uplo) is overwritten
by details of the block-diagonal matrix D and the multipliers used to
obtain the factor U (or L).

ap

INTEGER.ipiv
Array, DIMENSION at least max(1, n). Contains details of the
interchanges and the block structure of D. If ipiv(i) = k > 0, then
dii is a 1-by-1 block, and the i-th row and column of A was
interchanged with the k-th row and column.
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and the (i-1)-th row and column of
A was interchanged with the m-th row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and the (i+1)-th row and column of
A was interchanged with the m-th row and column.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular. Division by 0 will occur if you use D for solving a system
of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sptrf interface are as follows:

stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

321

LAPACK Routines: Linear Equations 3

holds the vector of length (n).ipiv

must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L overwrite elements of the corresponding columns of the matrix
A, but additional row interchanges are required to recover U or L explicitly (which is seldom
necessary).

If ipiv(i) = i for all i = 1...n, then all off-diagonal elements of U (L) are stored explicitly
in packed form.

If uplo = 'U', the computed factors U and D are the exact factors of a perturbed matrix A +
E, where

|E| ≤ c(n)ε P|U||D||UT|PT

c(n) is a modest linear function of n, and ε is the machine precision. A similar estimate holds
for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for real flavors or
(4/3)n3 for complex flavors.

After calling this routine, you can call the following routines:

to solve A*X = B?sptrs

to estimate the condition number of A?spcon

to compute the inverse of A.?sptri

?hptrf
Computes the Bunch-Kaufman factorization of a
complex Hermitian matrix using packed storage.

Syntax

Fortran 77:

call chptrf(uplo, n, ap, ipiv, info)

call zhptrf(uplo, n, ap, ipiv, info)

322

3 Intel® Math Kernel Library Reference Manual

Fortran 95:

call hptrf(a [,uplo] [,ipiv] [,info])

Description

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix using packed storage:

if uplo='U', A = P*U*D*UH*PT

if uplo='L', A = P*L*D*LH*PT,

where A is the input matrix, P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks
of D.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is packed and
how A is factored:
If uplo = 'U', the array ap stores the upper triangular part of the
matrix A, and A is factored as P*U*D*UH*PT.
If uplo = 'L', the array ap stores the lower triangular part of the
matrix A, and A is factored as P*L*D*LH*PT.

INTEGER. The order of matrix A; n ≥ 0.n

COMPLEX for chptrfap
DOUBLE COMPLEX for zhptrf.
Array, DIMENSION at least max(1, n(n+1)/2). The array ap contains
the upper or the lower triangular part of the matrix A (as specified by
uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

The upper or lower triangle of A (as specified by uplo) is overwritten
by details of the block-diagonal matrix D and the multipliers used to
obtain the factor U (or L).

ap

INTEGER.ipiv

323

LAPACK Routines: Linear Equations 3

Array, DIMENSION at least max(1, n). Contains details of the
interchanges and the block structure of D. If ipiv(i) = k > 0, then
dii is a 1-by-1 block, and the i-th row and column of A was
interchanged with the k-th row and column.
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and the (i-1)-th row and column of
A was interchanged with the m-th row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and the (i+1)-th row and column of
A was interchanged with the m-th row and column.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular. Division by 0 will occur if you use D for solving a system
of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hptrf interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L are stored in the corresponding columns of the array a, but
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i = 1...n, then all off-diagonal elements of U (L) are stored explicitly
in the corresponding elements of the array a.

If uplo = 'U', the computed factors U and D are the exact factors of a perturbed matrix A +
E, where

|E| ≤ c(n)ε P|U||D||UT|PT

324

3 Intel® Math Kernel Library Reference Manual

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (4/3)n3.

After calling this routine, you can call the following routines:

to solve A*X = B?hptrs

to estimate the condition number of A?hpcon

to compute the inverse of A.?hptri

Routines for Solving Systems of Linear Equations

This section describes the LAPACK routines for solving systems of linear equations. Before
calling most of these routines, you need to factorize the matrix of your system of equations
(see Routines for Matrix Factorization in this chapter). However, the factorization is not necessary
if your system of equations has a triangular matrix.

?getrs
Solves a system of linear equations with an
LU-factored square matrix, with multiple right-hand
sides.

Syntax

Fortran 77:

call sgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call dgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call cgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call zgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)

Fortran 95:

call getrs(a, ipiv, b [, trans] [,info])

Description

This routine solves for X the following systems of linear equations:

if trans='N',A*X = B

325

LAPACK Routines: Linear Equations 3

if trans='T',AT*X = B

if trans='C' (for complex matrices only).AH*X = B

Before calling this routine, you must call ?getrf to compute the LU factorization of A.

Input Parameters

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', then A*X = B is solved for X.
If trans = 'T', then AT*X = B is solved for X.
If trans = 'C', then AH*X = B is solved for X.

INTEGER. The order of A; the number of rows in B(n ≥ 0).n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for sgetrsa, b
DOUBLE PRECISION for dgetrs
COMPLEX for cgetrs
DOUBLE COMPLEX for zgetrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains LU factorization of matrix A resulting from the call
of ?getrf .
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of a must be at least max(1,n), the second
dimension of b at least max(1,nrhs).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The ipiv array, as returned by
?getrf.

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

326

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine getrs interface are as follows:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, nrhs).b

Holds the vector of length (n).ipiv

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system
of equations (A + E)x = b, where

|E| ≤ c(n)ε P|L||U|

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH

might or might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is 2n2

for real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?gecon.

To refine the solution and estimate the error, call ?gerfs.

327

LAPACK Routines: Linear Equations 3

?gbtrs
Solves a system of linear equations with an
LU-factored band matrix, with multiple right-hand
sides.

Syntax

Fortran 77:

call sgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call dgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call cgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call zgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

Fortran 95:

call gbtrs(a, b, ipiv, [, kl] [, trans] [, info])

Description

This routine solves for X the following systems of linear equations:

if trans='N',A*X = B

if trans='T',AT*X = B

if trans='C' (for complex matrices only).A
H*X = B

Here A is an LU-factored general band matrix of order n with kl non-zero subdiagonals and ku
nonzero superdiagonals. Before calling this routine, call ?gbtrf to compute the LU factorization
of A.

Input Parameters

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans

INTEGER. The order of A; the number of rows in B; n ≥ 0.n

INTEGER. The number of subdiagonals within the band of A; kl ≥ 0.kl

INTEGER. The number of superdiagonals within the band of A; ku ≥ 0.ku

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for sgbtrsab, b

328

3 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dgbtrs
COMPLEX for cgbtrs
DOUBLE COMPLEX for zgbtrs.
Arrays: ab(ldab,*), b(ldb,*).
The array ab contains the matrix A in band storage (see Matrix Storage
Schemes).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of ab must be at least max(1, n), and the
second dimension of b at least max(1,nrhs).

INTEGER. The leading dimension of the array ab; ldab ≥ 2*kl + ku +1.ldab

INTEGER. The leading dimension of b; ldb ≥ max(1, n).ldb

INTEGER. Array, DIMENSION at least max(1, n). The ipiv array, as
returned by ?gbtrf.

ipiv

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gbtrs interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(2*kl+ku+1,n).

a

Holds the matrix B of size (n, nrhs).b

Holds the vector of length min(m, n).ipiv

If omitted, assumed kl = ku.kl

Restored as lda-2*kl-1.ku

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

329

LAPACK Routines: Linear Equations 3

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system
of equations (A + E)x = b, where

|E| ≤ c(kl + ku + 1)ε P|L||U|

c(k) is a modest linear function of k, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH

might or might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector is 2n(ku
+ 2kl) for real flavors. The number of operations for complex flavors is 4 times greater. All
these estimates assume that kl and ku are much less than min(m,n).

To estimate the condition number κ∞(A), call ?gbcon.

To refine the solution and estimate the error, call ?gbrfs.

330

3 Intel® Math Kernel Library Reference Manual

?gttrs
Solves a system of linear equations with a
tridiagonal matrix using the LU factorization
computed by ?gttrf.

Syntax

Fortran 77:

call sgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call dgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call cgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call zgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

Fortran 95:

call gttrs(dl, d, du, du2, b, ipiv [, trans] [,info])

Description

This routine solves for X the following systems of linear equations with multiple right hand
sides:

if trans='N',A*X = B

if trans='T',AT*X = B

if trans='C' (for complex matrices only).A
H*X = B

Before calling this routine, you must call ?gttrf to compute the LU factorization of A.

Input Parameters

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', then A*X = B is solved for X.
If trans = 'T', then AT*X = B is solved for X.
If trans = 'C', then AH*X = B is solved for X.

INTEGER. The order of A; n ≥ 0.n

INTEGER. The number of right-hand sides, that is, the number of

columns in B; nrhs ≥ 0.

nrhs

331

LAPACK Routines: Linear Equations 3

REAL for sgttrsdl,d,du,du2,b
DOUBLE PRECISION for dgttrs
COMPLEX for cgttrs
DOUBLE COMPLEX for zgttrs.
Arrays: dl(n -1), d(n), du(n -1), du2(n -2), b(ldb,nrhs).
The array dl contains the (n - 1) multipliers that define the matrix
L from the LU factorization of A.
The array d contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
The array du contains the (n - 1) elements of the first superdiagonal
of U.
The array du2 contains the (n - 2) elements of the second superdiagonal
of U.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

INTEGER. The leading dimension of b; ldb ≥ max(1, n).ldb

INTEGER. Array, DIMENSION (n). The ipiv array, as returned by
?gttrf.

ipiv

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gttrs interface are as follows:

Holds the vector of length (n-1).dl

Holds the vector of length (n).d

Holds the vector of length (n-1).du

Holds the vector of length (n-2).du2

Holds the matrix B of size (n, nrhs).b

332

3 Intel® Math Kernel Library Reference Manual

Holds the vector of length (n).ipiv

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system
of equations (A + E)x = b, where

|E| ≤ c(n)ε P|L||U|

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH

might or might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is 7n
(including n divisions) for real flavors and 34n (including 2n divisions) for complex flavors.

To estimate the condition number κ∞(A), call ?gtcon.

To refine the solution and estimate the error, call ?gtrfs.

333

LAPACK Routines: Linear Equations 3

?potrs
Solves a system of linear equations with a
Cholesky-factored symmetric (Hermitian)
positive-definite matrix.

Syntax

Fortran 77:

call spotrs(uplo, n, nrhs, a, lda, b, ldb, info)

call dpotrs(uplo, n, nrhs, a, lda, b, ldb, info)

call cpotrs(uplo, n, nrhs, a, lda, b, ldb, info)

call zpotrs(uplo, n, nrhs, a, lda, b, ldb, info)

Fortran 95:

call potrs(a, b [,uplo] [, info])

Description

This routine solves for X the system of linear equations A*X = B with a symmetric
positive-definite or, for complex data, Hermitian positive-definite matrix A, given the Cholesky
factorization of A:

If uplo = 'U'A = UT*U for real
data, A = UH*U for
complex data

If uplo = 'L',A = L*LT for real
data, A = L*LH for
complex data

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?potrf to compute the Cholesky factorization of A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the upper triangle of A is stored.

334

3 Intel® Math Kernel Library Reference Manual

If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides (nrhs ≥ 0).nrhs

REAL for spotrsa, b
DOUBLE PRECISION for dpotrs
COMPLEX for cpotrs
DOUBLE COMPLEX for zpotrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of a must be at least max(1,n), the second
dimension of b at least max(1,nrhs).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine potrs interface are as follows:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, nrhs).b

Must be 'U' or 'L'. The default value is 'U'.uplo

335

LAPACK Routines: Linear Equations 3

Application Notes

If uplo = 'U', the computed solution for each right-hand side b is the exact solution of a
perturbed system of equations (A + E)x = b, where

|E| ≤ c(n)ε |UH||U|

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'. If x0 is the true solution, the computed solution x

satisfies this error bound:

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞ (A). The approximate number of floating-point
operations for one right-hand side vector b is 2n2 for real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?pocon.

To refine the solution and estimate the error, call ?porfs.

?pptrs
Solves a system of linear equations with a packed
Cholesky-factored symmetric (Hermitian)
positive-definite matrix.

Syntax

Fortran 77:

call spptrs(uplo, n, nrhs, ap, b, ldb, info)

call dpptrs(uplo, n, nrhs, ap, b, ldb, info)

call cpptrs(uplo, n, nrhs, ap, b, ldb, info)

call zpptrs(uplo, n, nrhs, ap, b, ldb, info)

336

3 Intel® Math Kernel Library Reference Manual

Fortran 95:

call pptrs(a, b [,uplo] [,info])

Description

This routine solves for X the system of linear equations A*X = B with a packed symmetric
positive-definite or, for complex data, Hermitian positive-definite matrix A, given the Cholesky
factorization of A:

If uplo = 'U'A = UT*U for real
data, A = UH*U for
complex data

If uplo = 'L',A = L*LT for real
data, A = L*LH for
complex data

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pptrf to compute the Cholesky factorization of A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides (nrhs ≥ 0).nrhs

REAL for spptrsap, b
DOUBLE PRECISION for dpptrs
COMPLEX for cpptrs
DOUBLE COMPLEX for zpptrs.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor U or L, as specified by uplo, in packed
storage (see Matrix Storage Schemes).

337

LAPACK Routines: Linear Equations 3

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1, nrhs).

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pptrs interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the matrix B of size (n, nrhs).b

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

If uplo = 'U', the computed solution for each right-hand side b is the exact solution of a
perturbed system of equations (A + E)x = b, where

|E| ≤ c(n)ε |UH||U|

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

If x0 is the true solution, the computed solution x satisfies this error bound:

338

3 Intel® Math Kernel Library Reference Manual

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is 2n2

for real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?ppcon.

To refine the solution and estimate the error, call ?pprfs.

?pbtrs
Solves a system of linear equations with a
Cholesky-factored symmetric (Hermitian)
positive-definite band matrix.

Syntax

Fortran 77:

call spbtrs(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call dpbtrs(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call cpbtrs(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call zpbtrs(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

Fortran 95:

call pbtrs(a, b [,uplo] [,info])

Description

This routine solves for real data a system of linear equations A*X = B with a symmetric
positive-definite or, for complex data, Hermitian positive-definite band matrix A, given the
Cholesky factorization of A:

If uplo='U'A = UT*U for real
data, A = UH*U for
complex data

339

LAPACK Routines: Linear Equations 3

If uplo='L',A = L*LT for real
data, A = L*LH for
complex data

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pbtrf to compute the Cholesky factorization of A in
the band storage form.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the upper triangular factor is stored in ab.
If uplo = 'L', the lower triangular factor is stored in ab.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of superdiagonals or subdiagonals in the matrix

A; kd ≥ 0.

kd

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for spbtrsab, b
DOUBLE PRECISION for dpbtrs
COMPLEX for cpbtrs
DOUBLE COMPLEX for zpbtrs.
Arrays: ab(ldab,*), b(ldb,*).
The array ab contains the Cholesky factor, as returned by the
factorization routine, in band storage form.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of ab must be at least max(1, n), and the
second dimension of b at least max(1,nrhs).

INTEGER. The first dimension of the array ab; ldab ≥ kd +1.ldab

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

340

3 Intel® Math Kernel Library Reference Manual

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pbtrs interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the matrix B of size (n, nrhs).b

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system
of equations (A + E)x = b, where

|E| ≤ c(kd + 1)ε P|UH||U| or |E| ≤ c(kd + 1)ε P|LH||L|

c(k) is a modest linear function of k, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The approximate number of floating-point operations for one right-hand side vector is 4n*kd
for real flavors and 16n*kd for complex flavors.

To estimate the condition number κ∞(A), call ?pbcon.

To refine the solution and estimate the error, call ?pbrfs.

341

LAPACK Routines: Linear Equations 3

?pttrs
Solves a system of linear equations with a
symmetric (Hermitian) positive-definite tridiagonal
matrix using the factorization computed by ?pttrf.

Syntax

Fortran 77:

call spttrs(n, nrhs, d, e, b, ldb, info)

call dpttrs(n, nrhs, d, e, b, ldb, info)

call cpttrs(uplo, n, nrhs, d, e, b, ldb, info)

call zpttrs(uplo, n, nrhs, d, e, b, ldb, info)

Fortran 95:

call pttrs(d, e, b [,info])

call pttrs(d, e, b [,uplo] [,info])

Description

This routine solves for X a system of linear equations A*X = B with a symmetric (Hermitian)
positive-definite tridiagonal matrix A. Before calling this routine, call ?pttrf to compute the
L*D*L' for real data and the L*D*L' or U'*D*U factorization of A for complex data.

Input Parameters

CHARACTER*1. Used for cpttrs/zpttrs only. Must be 'U' or 'L'.uplo
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal
matrix A is stored and how A is factored:
If uplo = 'U', the array e stores the superdiagonal of A, and A is
factored as U'*D*U.
If uplo = 'L', the array e stores the subdiagonal of A, and A is factored
as L*D*L'.

INTEGER. The order of A; n ≥ 0.n

INTEGER. The number of right-hand sides, that is, the number of

columns of the matrix B; nrhs ≥ 0.

nrhs

REAL for spttrs, cpttrsd

342

3 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dpttrs, zpttrs.
Array, dimension (n). Contains the diagonal elements of the diagonal
matrix D from the factorization computed by ?pttrf.

REAL for spttrse, b
DOUBLE PRECISION for dpttrs
COMPLEX for cpttrs
DOUBLE COMPLEX for zpttrs.
Arrays: e(n -1), b(ldb, nrhs).
The array e contains the (n - 1) off-diagonal elements of the unit
bidiagonal factor U or L from the factorization computed by ?pttrf
(see uplo).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

INTEGER. The leading dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pttrs interface are as follows:

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Holds the matrix B of size (n, nrhs).b

Used in complex flavors only. Must be 'U' or 'L'. The default value is
'U'.

uplo

343

LAPACK Routines: Linear Equations 3

?sytrs
Solves a system of linear equations with a UDU-
or LDL-factored symmetric matrix.

Syntax

Fortran 77:

call ssytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call dsytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call csytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call zsytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

Fortran 95:

call sytrs(a, b, ipiv [,uplo] [,info])

Description

This routine solves for X the system of linear equations A*X = B with a symmetric matrix A,
given the Bunch-Kaufman factorization of A:

A = P*U*D*UT*PTif uplo='U',

A = P*L*D*LT*PT,if uplo='L',

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B. You must supply to this routine the
factor U (or L) and the array ipiv returned by the factorization routine ?sytrf.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A = P*U*D*UT*PT.
If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = P*L*D*LT*PT.

INTEGER. The order of matrix A; n ≥ 0.n

344

3 Intel® Math Kernel Library Reference Manual

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

INTEGER. Array, DIMENSION at least max(1, n). The ipiv array, as
returned by ?sytrf.

ipiv

REAL for ssytrsa, b
DOUBLE PRECISION for dsytrs
COMPLEX for csytrs
DOUBLE COMPLEX for zsytrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand
sides for the system of equations.
The second dimension of a must be at least max(1,n), and the second
dimension of b at least max(1,nrhs).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sytrs interface are as follows:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, nrhs).b

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

345

LAPACK Routines: Linear Equations 3

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system
of equations (A + E)x = b, where

|E| ≤ c(n)ε P|U||D||UT|PT or |E| ≤ c(n)ε P|L||D||UT|PT

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector is approximately
2n2 for real flavors or 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?sycon.

To refine the solution and estimate the error, call ?syrfs.

?hetrs
Solves a system of linear equations with a UDU-
or LDL-factored Hermitian matrix.

Syntax

Fortran 77:

call chetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call zhetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

Fortran 95:

call hetrs(a, b, ipiv [, uplo] [,info])

346

3 Intel® Math Kernel Library Reference Manual

Description

This routine solves for X the system of linear equations A*X = B with a Hermitian matrix A,
given the Bunch-Kaufman factorization of A:

A = P*U*D*UH*PTif uplo = 'U'

A = P*L*D*LH*PT,if uplo = 'L'

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B. You must supply to this routine the
factor U (or L) and the array ipiv returned by the factorization routine ?hetrf.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A = P*U*D*UH*PT.
If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = P*L*D*LH*PT.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

INTEGER.ipiv
Array, DIMENSION at least max(1, n).
The ipiv array, as returned by ?hetrf.

COMPLEX for chetrsa, b
DOUBLE COMPLEX for zhetrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand
sides for the system of equations.
The second dimension of a must be at least max(1,n), the second
dimension of b at least max(1,nrhs).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

347

LAPACK Routines: Linear Equations 3

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hetrs interface are as follows:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, nrhs).b

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system
of equations (A + E)x = b, where

|E| ≤ c(n)ε P|U||D||UH|PT or |E| ≤ c(n)ε P|L||D||LH|PT

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector is approximately
8n2.

348

3 Intel® Math Kernel Library Reference Manual

To estimate the condition number κ∞(A), call ?hecon.

To refine the solution and estimate the error, call ?herfs.

?sptrs
Solves a system of linear equations with a UDU-
or LDL-factored symmetric matrix using packed
storage.

Syntax

Fortran 77:

call ssptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call dsptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call csptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zsptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)

Fortran 95:

call sptrs(a, b, ipiv [, uplo] [,info])

Description

This routine solves for X the system of linear equations A*X = B with a symmetric matrix A,
given the Bunch-Kaufman factorization of A:

A = PUDUTPTif uplo='U',

A = PLDLTPT,if uplo='L',

where P is a permutation matrix, U and L are upper and lower packed triangular matrices with
unit diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B. You must supply the factor U (or L) and
the array ipiv returned by the factorization routine ?sptrf.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:

349

LAPACK Routines: Linear Equations 3

If uplo = 'U', the array ap stores the packed factor U of the
factorization A = P*U*D*UT*PT. If uplo = 'L', the array ap stores the
packed factor L of the factorization A = P*L*D*LT*PT.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The ipiv array, as returned by
?sptrf.

REAL for ssptrsap, b
DOUBLE PRECISION for dsptrs
COMPLEX for csptrs
DOUBLE COMPLEX for zsptrs.
Arrays: ap(*), b(ldb,*).
The dimension of ap must be at least max(1,n(n+1)/2). The array ap
contains the factor U or L, as specified by uplo, in packed storage
(see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand
sides for the system of equations. The second dimension of b must be
at least max(1, nrhs).

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sptrs interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the matrix B of size (n, nrhs).b

350

3 Intel® Math Kernel Library Reference Manual

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system
of equations (A + E)x = b, where

|E| ≤ c(n)ε P|U||D||UT|PT or |E| ≤ c(n)ε P|L||D||LT|PT

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector is approximately
2n2 for real flavors or 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?spcon.

To refine the solution and estimate the error, call ?sprfs.

351

LAPACK Routines: Linear Equations 3

?hptrs
Solves a system of linear equations with a UDU-
or LDL-factored Hermitian matrix using packed
storage.

Syntax

Fortran 77:

call chptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zhptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)

Fortran 95:

call hptrs(a, b, ipiv [,uplo] [,info])

Description

This routine solves for X the system of linear equations A*X = B with a Hermitian matrix A,
given the Bunch-Kaufman factorization of A:

A = P*U*D*UH*PTif uplo='U',

A = P*L*D*LH*PT,if uplo='L',

where P is a permutation matrix, U and L are upper and lower packed triangular matrices with
unit diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

You must supply to this routine the arrays ap (containing U or L)and ipiv in the form returned
by the factorization routine ?hptrf.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed factor U of the
factorization A = P*U*D*UH*PT. If uplo = 'L', the array ap stores the
packed factor L of the factorization A = P*L*D*LH*PT.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

352

3 Intel® Math Kernel Library Reference Manual

INTEGER. Array, DIMENSION at least max(1, n). The ipiv array, as
returned by ?hptrf.

ipiv

COMPLEX for chptrsap, b
DOUBLE COMPLEX for zhptrs.
Arrays: ap(*), b(ldb,*).
The dimension of ap must be at least max(1,n(n+1)/2). The array ap
contains the factor U or L, as specified by uplo, in packed storage
(see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand
sides for the system of equations. The second dimension of b must be
at least max(1, nrhs).

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hptrs interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the matrix B of size (n, nrhs).b

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system
of equations (A + E)x = b, where

|E| ≤ c(n)ε P|U||D||UH|PT or |E| ≤ c(n)ε P|L||D||LH|PT

353

LAPACK Routines: Linear Equations 3

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector is approximately
8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?hpcon.

To refine the solution and estimate the error, call ?hprfs.

?trtrs
Solves a system of linear equations with a
triangular matrix, with multiple right-hand sides.

Syntax

Fortran 77:

call strtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

call dtrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

call ctrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

call ztrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

Fortran 95:

call trtrs(a, b [,uplo] [, trans] [,diag] [,info])

354

3 Intel® Math Kernel Library Reference Manual

Description

This routine solves for X the following systems of linear equations with a triangular matrix A,
with multiple right-hand sides stored in B:

if trans='N',A*X = B

if trans='T',AT*X = B

if trans='C' (for complex matrices only).A
H*X = B

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
If trans = 'N', then A*X = B is solved for X.
If trans = 'T', then AT*X = B is solved for X.
If trans = 'C', then AH*X = B is solved for X.

CHARACTER*1. Must be 'N' or 'U'.diag
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements of A are
assumed to be 1 and not referenced in the array a.

INTEGER. The order of A; the number of rows in B; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for strtrsa, b
DOUBLE PRECISION for dtrtrs
COMPLEX for ctrtrs
DOUBLE COMPLEX for ztrtrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the matrix A.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of a must be at least max(1,n), the second
dimension of b at least max(1,nrhs).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

355

LAPACK Routines: Linear Equations 3

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine trtrs interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the matrix A of
size (n*(n+1)/2).

a

Holds the matrix B of size (n, nrhs).b

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

Must be 'N' or 'U'. The default value is 'N'.diag

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system
of equations (A + E)x = b, where

|E| ≤ c(n)ε |A|

c(n) is a modest linear function of n, and ε is the machine precision. If x0 is the true solution,
the computed solution x satisfies this error bound:

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

356

3 Intel® Math Kernel Library Reference Manual

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH

might or might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is n2 for
real flavors and 4n2 for complex flavors.

To estimate the condition number κ∞(A), call ?trcon.

To estimate the error in the solution, call ?trrfs.

?tptrs
Solves a system of linear equations with a packed
triangular matrix, with multiple right-hand sides.

Syntax

Fortran 77:

call stptrs(uplo, trans, diag, n, nrhs, ap, b, ldb, info)

call dtptrs(uplo, trans, diag, n, nrhs, ap, b, ldb, info)

call ctptrs(uplo, trans, diag, n, nrhs, ap, b, ldb, info)

call ztptrs(uplo, trans, diag, n, nrhs, ap, b, ldb, info)

Fortran 95:

call tptrs(a, b [,uplo] [, trans] [,diag] [,info])

Description

This routine solves for X the following systems of linear equations with a packed triangular
matrix A, with multiple right-hand sides stored in B:

if trans='N',A*X = B

if trans='T',AT*X = B

if trans='C' (for complex matrices only).A
H
*X = B

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether A is upper or lower triangular:

357

LAPACK Routines: Linear Equations 3

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
If trans = 'N', then A*X = B is solved for X.
If trans = 'T', then AT*X = B is solved for X.
If trans = 'C', then AH*X = B is solved for X.

CHARACTER*1. Must be 'N' or 'U'.diag
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements are assumed
to be 1 and not referenced in the array ap.

INTEGER. The order of A; the number of rows in B; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for stptrsap, b
DOUBLE PRECISION for dtptrs
COMPLEX for ctptrs
DOUBLE COMPLEX for ztptrs.
Arrays: ap(*), b(ldb,*).
The dimension of ap must be at least max(1,n(n+1)/2). The array ap
contains the matrix A in packed storage (see Matrix Storage
Schemes).
The array b contains the matrix B whose columns are the right-hand
sides for the system of equations. The second dimension of b must be
at least max(1, nrhs).

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tptrs interface are as follows:

358

3 Intel® Math Kernel Library Reference Manual

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the matrix B of size (n, nrhs).b

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

Must be 'N' or 'U'. The default value is 'N'.diag

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system
of equations (A + E)x = b, where

|E| ≤ c(n)ε |A|

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH

might or might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is n2 for
real flavors and 4n2 for complex flavors.

To estimate the condition number κ∞(A), call ?tpcon.

To estimate the error in the solution, call ?tprfs.

359

LAPACK Routines: Linear Equations 3

?tbtrs
Solves a system of linear equations with a band
triangular matrix, with multiple right-hand sides.

Syntax

Fortran 77:

call stbtrs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call dtbtrs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call ctbtrs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call ztbtrs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

Fortran 95:

call tbtrs(a, b [,uplo] [, trans] [,diag] [,info])

Description

This routine solves for X the following systems of linear equations with a band triangular matrix
A, with multiple right-hand sides stored in B:

if trans='N',A*X = B

if trans='T',AT*X = B

if trans='C' (for complex matrices only).A
H
*X = B

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
If trans = 'N', then A*X = B is solved for X.
If trans = 'T', then AT*X = B is solved for X.
If trans = 'C', then AH*X = B is solved for X.

CHARACTER*1. Must be 'N' or 'U'.diag
If diag = 'N', then A is not a unit triangular matrix.

360

3 Intel® Math Kernel Library Reference Manual

If diag = 'U', then A is unit triangular: diagonal elements are assumed
to be 1 and not referenced in the array ab.

INTEGER. The order of A; the number of rows in B; n ≥ 0.n

INTEGER. The number of superdiagonals or subdiagonals in the matrix

A; kd ≥ 0.

kd

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for stbtrsab, b
DOUBLE PRECISION for dtbtrs
COMPLEX for ctbtrs
DOUBLE COMPLEX for ztbtrs.
Arrays: ab(ldab,*), b(ldb,*).
The array ab contains the matrix A in band storage form.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of ab must be at least max(1, n), the second
dimension of b at least max(1,nrhs).

INTEGER. The first dimension of ab; ldab ≥ kd + 1.ldab

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tbtrs interface are as follows:

Stands for the argument ab in Fortan 77 interface. Holds the array A
of size (kd+1,n)

a

Holds the matrix B of size (n, nrhs).b

Must be 'U' or 'L'. The default value is 'U'.uplo

361

LAPACK Routines: Linear Equations 3

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

Must be 'N' or 'U'. The default value is 'N'.diag

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system
of equations (A + E)x = b, where

|E|≤ c(n)ε|A|

c(n) is a modest linear function of n, and ε is the machine precision. If x0 is the true solution,
the computed solution x satisfies this error bound:

where cond(A,x)= || |A-1||A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH

might or might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is 2n*kd
for real flavors and 8n*kd for complex flavors.

To estimate the condition number κ∞(A), call ?tbcon.

To estimate the error in the solution, call ?tbrfs.

Routines for Estimating the Condition Number

This section describes the LAPACK routines for estimating the condition number of a matrix.
The condition number is used for analyzing the errors in the solution of a system of linear
equations (see Error Analysis). Since the condition number may be arbitrarily large when the
matrix is nearly singular, the routines actually compute the reciprocal condition number.

362

3 Intel® Math Kernel Library Reference Manual

?gecon
Estimates the reciprocal of the condition number
of a general matrix in the 1-norm or the
infinity-norm.

Syntax

Fortran 77:

call sgecon(norm, n, a, lda, anorm, rcond, work, iwork, info)

call dgecon(norm, n, a, lda, anorm, rcond, work, iwork, info)

call cgecon(norm, n, a, lda, anorm, rcond, work, rwork, info)

call zgecon(norm, n, a, lda, anorm, rcond, work, rwork, info)

Fortran 95:

call gecon(a, anorm, rcond [,norm] [,info])

Description

This routine estimates the reciprocal of the condition number of a general matrix A in the 1-norm
or infinity-norm:

κ1(A) =||A||1||A
-1||1 = κ∞(A

T)= κ∞(A
H)

κ∞(A) =||A||∞||A
-1||∞ = κ1(AT)= κ1(AH).

Before calling this routine:

• compute anorm (either ||A||1 =maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)

• call ?getrf to compute the LU factorization of A.

Input Parameters

CHARACTER*1. Must be '1' or 'O' or 'I'.norm
If norm = '1' or 'O', then the routine estimates the condition number
of matrix A in 1-norm.
If norm = 'I', then the routine estimates the condition number of
matrix A in infinity-norm.

363

LAPACK Routines: Linear Equations 3

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for sgecona, work
DOUBLE PRECISION for dgecon
COMPLEX for cgecon
DOUBLE COMPLEX for zgecon. Arrays: a(lda,*), work(*).
The array a contains the LU-factored matrix A, as returned by ?getrf.
The second dimension of a must be at least max(1,n). The array work
is a workspace for the routine.
The dimension of work must be at least max(1, 4*n) for real flavors
and max(1, 2*n) for complex flavors.

REAL for single precision flavors.anorm
DOUBLE PRECISION for double precision flavors. The norm of the
original matrix A (see Description).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for cgeconrwork
DOUBLE PRECISION for zgecon.
Workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gecon interface are as follows:

364

3 Intel® Math Kernel Library Reference Manual

Holds the matrix A of size (n, n).a

Must be '1', 'O', or 'I'. The default value is '1'.norm

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b or AH*x = b; the number is usually 4 or 5 and never
more than 11. Each solution requires approximately 2*n2 floating-point operations for real
flavors and 8*n2 for complex flavors.

?gbcon
Estimates the reciprocal of the condition number
of a band matrix in the 1-norm or the infinity-norm.

Syntax

Fortran 77:

call sgbcon(norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info
)

call dgbcon(norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info
)

call cgbcon(norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info
)

call zgbcon(norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info
)

Fortran 95:

call gbcon(a, ipiv, anorm, rcond [,kl] [,norm] [,info])

Description

This routine estimates the reciprocal of the condition number of a general band matrix A in the
1-norm or infinity-norm:

κ1(A) =||A||1||A
-1||1 = κ∞(A

T) = κ∞(A
H)

κ∞(A) =||A||∞||A
-1||∞ = κ1(AT) = κ1(AH) .

365

LAPACK Routines: Linear Equations 3

Before calling this routine:

• compute anorm (either ||A||1 =maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)

• call ?gbtrf to compute the LU factorization of A.

Input Parameters

CHARACTER*1. Must be '1' or 'O' or 'I'.norm
If norm = '1' or 'O', then the routine estimates the condition number
of matrix A in 1-norm.
If norm = 'I', then the routine estimates the condition number of
matrix A in infinity-norm.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of subdiagonals within the band of A; kl ≥ 0.kl

INTEGER. The number of superdiagonals within the band of A; ku ≥ 0.ku

INTEGER. The first dimension of the array ab. (ldab ≥ 2*kl + ku +1).ldab

INTEGER. Array, DIMENSION at least max(1, n). The ipiv array, as
returned by ?gbtrf.

ipiv

REAL for sgbconab, work
DOUBLE PRECISION for dgbcon
COMPLEX for cgbcon
DOUBLE COMPLEX for zgbcon.
Arrays: ab(ldab,*), work(*).
The array ab contains the factored band matrix A, as returned by
?gbtrf.
The second dimension of ab must be at least max(1,n). The array work
is a workspace for the routine.
The dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

REAL for single precision flavors.anorm
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for cgbconrwork
DOUBLE PRECISION for zgbcon.
Workspace array, DIMENSION at least max(1, 2*n).

366

3 Intel® Math Kernel Library Reference Manual

Output Parameters

REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond =0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gbcon interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(2*kl+ku+1,n).

a

Holds the vector of length (n).ipiv

Must be '1', 'O', or 'I'. The default value is '1'.norm

If omitted, assumed kl = ku.kl

Restored as ku = lda-2*kl-1.ku

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b or AH*x = b; the number is usually 4 or 5 and never
more than 11. Each solution requires approximately 2n(ku + 2kl) floating-point operations
for real flavors and 8n(ku + 2kl) for complex flavors.

367

LAPACK Routines: Linear Equations 3

?gtcon
Estimates the reciprocal of the condition number
of a tridiagonal matrix using the factorization
computed by ?gttrf.

Syntax

Fortran 77:

call sgtcon(norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info
)

call dgtcon(norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info
)

call cgtcon(norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info)

call zgtcon(norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info)

Fortran 95:

call gtcon(dl, d, du, du2, ipiv, anorm, rcond [,norm] [,info])

Description

This routine estimates the reciprocal of the condition number of a real or complex tridiagonal
matrix A in the 1-norm or infinity-norm:

κ1(A) = ||A||1||A
-1||1

κ∞(A) = ||A||∞||A
-1||∞

An estimate is obtained for ||A-1||, and the reciprocal of the condition number is computed
as rcond = 1 / (||A|| ||A-1||).

Before calling this routine:

• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)

• call ?gttrf to compute the LU factorization of A.

Input Parameters

CHARACTER*1. Must be '1' or 'O' or 'I'.norm

368

3 Intel® Math Kernel Library Reference Manual

If norm = '1' or 'O', then the routine estimates the condition number
of matrix A in 1-norm.
If norm = 'I', then the routine estimates the condition number of
matrix A in infinity-norm.

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for sgtcondl,d,du,du2
DOUBLE PRECISION for dgtcon
COMPLEX for cgtcon
DOUBLE COMPLEX for zgtcon.
Arrays: dl(n -1), d(n), du(n -1), du2(n -2).
The array dl contains the (n - 1) multipliers that define the matrix
L from the LU factorization of A as computed by ?gttrf.
The array d contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
The array du contains the (n - 1) elements of the first superdiagonal
of U.
The array du2 contains the (n - 2) elements of the second superdiagonal
of U.

INTEGER.ipiv
Array, DIMENSION (n). The array of pivot indices, as returned by
?gttrf.

REAL for single precision flavors.anorm
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

REAL for sgtconwork
DOUBLE PRECISION for dgtcon
COMPLEX for cgtcon
DOUBLE COMPLEX for zgtcon.
Workspace array, DIMENSION (2*n).

INTEGER. Workspace array, DIMENSION (n). Used for real flavors only.iwork

Output Parameters

REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.

369

LAPACK Routines: Linear Equations 3

An estimate of the reciprocal of the condition number. The routine sets
rcond=0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gtcon interface are as follows:

Holds the vector of length (n-1).dl

Holds the vector of length (n).d

Holds the vector of length (n-1).du

Holds the vector of length (n-2).du2

Holds the vector of length (n).ipiv

Must be '1', 'O', or 'I'. The default value is '1'.norm

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b; the number is usually 4 or 5 and never more than 11.
Each solution requires approximately 2n2 floating-point operations for real flavors and 8n2 for
complex flavors.

370

3 Intel® Math Kernel Library Reference Manual

?pocon
Estimates the reciprocal of the condition number
of a symmetric (Hermitian) positive-definite matrix.

Syntax

Fortran 77:

call spocon(uplo, n, a, lda, anorm, rcond, work, iwork, info)

call dpocon(uplo, n, a, lda, anorm, rcond, work, iwork, info)

call cpocon(uplo, n, a, lda, anorm, rcond, work, rwork, info)

call zpocon(uplo, n, a, lda, anorm, rcond, work, rwork, info)

Fortran 95:

call pocon(a, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian)
positive-definite matrix A:

κ1(A) = ||A||1 ||A-1||1 (since A is symmetric or Hermitian, κ∞(A) = κ1(A)).

Before calling this routine:

• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)

• call ?potrf to compute the Cholesky factorization of A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for spocona, work
DOUBLE PRECISION for dpocon
COMPLEX for cpocon

371

LAPACK Routines: Linear Equations 3

DOUBLE COMPLEX for zpocon.
Arrays: a(lda,*), work(*).
The array a contains the factored matrix A, as returned by ?potrf. The
second dimension of a must be at least max(1,n).
The array work is a workspace for the routine. The dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

REAL for single precision flavorsanorm
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for cpoconrwork
DOUBLE PRECISION for zpocon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond =0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pocon interface are as follows:

Holds the matrix A of size (n, n).a

Must be 'U' or 'L'. The default value is 'U'.uplo

372

3 Intel® Math Kernel Library Reference Manual

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b; the number is usually 4 or 5 and never more than 11.
Each solution requires approximately 2n2 floating-point operations for real flavors and 8n2 for
complex flavors.

?ppcon
Estimates the reciprocal of the condition number
of a packed symmetric (Hermitian) positive-definite
matrix.

Syntax

Fortran 77:

call sppcon(uplo, n, ap, anorm, rcond, work, iwork, info)

call dppcon(uplo, n, ap, anorm, rcond, work, iwork, info)

call cppcon(uplo, n, ap, anorm, rcond, work, rwork, info)

call zppcon(uplo, n, ap, anorm, rcond, work, rwork, info)

Fortran 95:

call ppcon(a, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a packed symmetric (Hermitian)
positive-definite matrix A:

κ1(A) = ||A||1 ||A-1||1 (since A is symmetric or Hermitian, κ∞(A) = κ1(A)).

Before calling this routine:

• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)

• call ?pptrf to compute the Cholesky factorization of A.

373

LAPACK Routines: Linear Equations 3

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for sppconap, work
DOUBLE PRECISION for dppcon
COMPLEX for cppcon
DOUBLE COMPLEX for zppcon.
Arrays: ap(*), work(*).
The array ap contains the packed factored matrix A, as returned by
?pptrf. The dimension of ap must be at least max(1,n(n+1)/2).
The array work is a workspace for the routine. The dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

REAL for single precision flavorsanorm
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for cppconrwork
DOUBLE PRECISION for zppcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond =0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

374

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ppcon interface are as follows:

Stands for the argument ap in Fortan 77 interface. Holds the array A
of size (n*(n+1)/2).

a

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b; the number is usually 4 or 5 and never more than 11.
Each solution requires approximately 2n2 floating-point operations for real flavors and 8n2 for
complex flavors.

?pbcon
Estimates the reciprocal of the condition number
of a symmetric (Hermitian) positive-definite band
matrix.

Syntax

Fortran 77:

call spbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)

call dpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)

call cpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

call zpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

Fortran 95:

call pbcon(a, anorm, rcond [,uplo] [,info])

375

LAPACK Routines: Linear Equations 3

Description

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian)
positive-definite band matrix A:

κ1(A) = ||A||1 ||A-1||1 (since A is symmetric or Hermitian, κ∞(A) = κ1(A)).

Before calling this routine:

• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)

• call ?pbtrf to compute the Cholesky factorization of A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the upper triangular factor is stored in ab.
If uplo = 'L', the lower triangular factor is stored in ab.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of superdiagonals or subdiagonals in the matrix

A; kd ≥ 0.

kd

INTEGER. The first dimension of the array ab. (ldab ≥ kd +1).ldab

REAL for spbconab, work
DOUBLE PRECISION for dpbcon
COMPLEX for cpbcon
DOUBLE COMPLEX for zpbcon.
Arrays: ab(ldab,*), work(*).
The array ab contains the factored matrix A in band form, as returned
by ?pbtrf. The second dimension of ab must be at least max(1, n).
The array work is a workspace for the routine. The dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

REAL for single precision flavors.anorm
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for cpbconrwork

376

3 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for zpbcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond =0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pbcon interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b; the number is usually 4 or 5 and never more than 11.
Each solution requires approximately 4*n(kd + 1) floating-point operations for real flavors
and 16*n(kd + 1) for complex flavors.

377

LAPACK Routines: Linear Equations 3

?ptcon
Estimates the reciprocal of the condition number
of a symmetric (Hermitian) positive-definite
tridiagonal matrix.

Syntax

Fortran 77:

call sptcon(n, d, e, anorm, rcond, work, info)

call dptcon(n, d, e, anorm, rcond, work, info)

call cptcon(n, d, e, anorm, rcond, work, info)

call zptcon(n, d, e, anorm, rcond, work, info)

Fortran 95:

call ptcon(d, e, anorm, rcond [,info])

Description

This routine computes the reciprocal of the condition number (in the 1-norm) of a real symmetric
or complex Hermitian positive-definite tridiagonal matrix using the factorization A = L*D*LT

for real flavors and A = L*D*LH for complex flavors or A = UT*D*U for real flavors and A =
UH*D*U for complex flavors computed by ?pttrf :

κ1(A) = ||A||1 ||A-1||1 (since A is symmetric or Hermitian, κ∞(A) = κ1(A)).

The norm ||A-1|| is computed by a direct method, and the reciprocal of the condition number
is computed as rcond = 1 / (||A|| ||A-1||).

Before calling this routine:

• compute anorm as ||A||1 = maxj Σi |aij|

• call ?pttrf to compute the factorization of A.

Input Parameters

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for single precision flavorsd, work
DOUBLE PRECISION for double precision flavors.

378

3 Intel® Math Kernel Library Reference Manual

Arrays, dimension (n).
The array d contains the n diagonal elements of the diagonal matrix D
from the factorization of A, as computed by ?pttrf ;
work is a workspace array.

REAL for sptcone
DOUBLE PRECISION for dptcon
COMPLEX for cptcon
DOUBLE COMPLEX for zptcon.
Array, DIMENSION (n -1).
Contains off-diagonal elements of the unit bidiagonal factor U or L from
the factorization computed by ?pttrf .

REAL for single precision flavors.anorm
DOUBLE PRECISION for double precision flavors.
The 1- norm of the original matrix A (see Description).

Output Parameters

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond =0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gtcon interface are as follows:

Holds the vector of length (n).d

Holds the vector of length (n-1).e

379

LAPACK Routines: Linear Equations 3

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b; the number is usually 4 or 5 and never more than 11.
Each solution requires approximately 4*n(kd + 1) floating-point operations for real flavors
and 16*n(kd + 1) for complex flavors.

?sycon
Estimates the reciprocal of the condition number
of a symmetric matrix.

Syntax

Fortran 77:

call ssycon(uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

call dsycon(uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

call csycon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)

call zsycon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)

Fortran 95:

call sycon(a, ipiv, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a symmetric matrix A:

κ1(A) = ||A||1 ||A-1||1 (since A is symmetric, κ∞(A) = κ1(A)).

Before calling this routine:

• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)

• call ?sytrf to compute the factorization of A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo

380

3 Intel® Math Kernel Library Reference Manual

Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A = P*U*D*UT*PT.
If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = P*L*D*LT*PT.

INTEGER. The order of matrix A; n ≥ 0.n

REAL for ssycona, work
DOUBLE PRECISION for dsycon
COMPLEX for csycon
DOUBLE COMPLEX for zsycon.
Arrays: a(lda,*), work(*).
The array a contains the factored matrix A, as returned by ?sytrf. The
second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. Array, DIMENSION at least max(1, n).ipiv
The array ipiv, as returned by ?sytrf.

REAL for single precision flavors.anorm
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

Output Parameters

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond =0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

381

LAPACK Routines: Linear Equations 3

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sycon interface are as follows:

Holds the matrix A of size (n, n).a

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b; the number is usually 4 or 5 and never more than 11.
Each solution requires approximately 2n2 floating-point operations for real flavors and 8n2 for
complex flavors.

?hecon
Estimates the reciprocal of the condition number
of a Hermitian matrix.

Syntax

Fortran 77:

call checon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)

call zhecon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)

Fortran 95:

call hecon(a, ipiv, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a Hermitian matrix A:

κ1(A) = ||A||1 ||A-1||1 (since A is Hermitian, κ∞(A) = κ1(A)).

Before calling this routine:

382

3 Intel® Math Kernel Library Reference Manual

• compute anorm (either ||A||1 =maxj Σi |aij| or ||A||∞ =maxi Σj |aij|)

• call ?hetrf to compute the factorization of A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A = P*U*D*UH*PT.
If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = P*L*D*LH*PT.

INTEGER. The order of matrix A; n ≥ 0.n

COMPLEX for checona, work
DOUBLE COMPLEX for zhecon.
Arrays: a(lda,*), work(*).
The array a contains the factored matrix A, as returned by ?hetrf. The
second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. Array, DIMENSION at least max(1, n).ipiv
The array ipiv, as returned by ?hetrf.

REAL for single precision flavorsanorm
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

Output Parameters

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond =0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

383

LAPACK Routines: Linear Equations 3

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hecon interface are as follows:

Holds the matrix A of size (n, n).a

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b; the number is usually 5 and never more than 11. Each
solution requires approximately 8n2 floating-point operations.

?spcon
Estimates the reciprocal of the condition number
of a packed symmetric matrix.

Syntax

Fortran 77:

call sspcon(uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)

call dspcon(uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)

call cspcon(uplo, n, ap, ipiv, anorm, rcond, work, info)

call zspcon(uplo, n, ap, ipiv, anorm, rcond, work, info)

Fortran 95:

call spcon(a, ipiv, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a packed symmetric matrix A:

κ1(A) = ||A||1 ||A-1||1 (since A is symmetric, κ∞(A) = κ1(A)).

384

3 Intel® Math Kernel Library Reference Manual

Before calling this routine:

• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)

• call ?sptrf to compute the factorization of A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed upper triangular factor
U of the factorization A = P*U*D*UT*PT.
If uplo = 'L', the array ap stores the packed lower triangular factor
L of the factorization A = P*L*D*LT*PT.

INTEGER. The order of matrix A; n ≥ 0.n

REAL for sspconap, work
DOUBLE PRECISION for dspcon
COMPLEX for cspcon
DOUBLE COMPLEX for zspcon.
Arrays: ap(*), work(*).
The array ap contains the packed factored matrix A, as returned by
?sptrf. The dimension of ap must be at least max(1,n(n+1)/2).
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

INTEGER. Array, DIMENSION at least max(1, n).ipiv
The array ipiv, as returned by ?sptrf.

REAL for single precision flavors.anorm
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

Output Parameters

REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.

385

LAPACK Routines: Linear Equations 3

An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine spcon interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b; the number is usually 4 or 5 and never more than 11.
Each solution requires approximately 2n2 floating-point operations for real flavors and 8n2 for
complex flavors.

?hpcon
Estimates the reciprocal of the condition number
of a packed Hermitian matrix.

Syntax

Fortran 77:

call chpcon(uplo, n, ap, ipiv, anorm, rcond, work, info)

call zhpcon(uplo, n, ap, ipiv, anorm, rcond, work, info)

386

3 Intel® Math Kernel Library Reference Manual

Fortran 95:

call hpcon(a, ipiv, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a Hermitian matrix A:

κ1(A) = ||A||1 ||A-1||1 (since A is Hermitian, κ∞(A) = k1(A)).

Before calling this routine:

• compute anorm (either ||A||1 =maxj Σi |aij| or ||A||∞ =maxi Σj |aij|)

• call ?hptrf to compute the factorization of A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed upper triangular factor
U of the factorization A = P*U*D*UT*PT.
If uplo = 'L', the array ap stores the packed lower triangular factor
L of the factorization A = P*L*D*LT*PT.

INTEGER. The order of matrix A; n ≥ 0.n

COMPLEX for chpconap, work
DOUBLE COMPLEX for zhpcon.
Arrays: ap(*), work(*).
The array ap contains the packed factored matrix A, as returned by
?hptrf. The dimension of ap must be at least max(1,n(n+1)/2).
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The array ipiv, as returned by
?hptrf.

REAL for single precision flavorsanorm
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

387

LAPACK Routines: Linear Equations 3

Output Parameters

REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond =0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hbcon interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n).ipiv

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b; the number is usually 5 and never more than 11. Each
solution requires approximately 8n2 floating-point operations.

388

3 Intel® Math Kernel Library Reference Manual

?trcon
Estimates the reciprocal of the condition number
of a triangular matrix.

Syntax

Fortran 77:

call strcon(norm, uplo, diag, n, a, lda, rcond, work, iwork, info)

call dtrcon(norm, uplo, diag, n, a, lda, rcond, work, iwork, info)

call ctrcon(norm, uplo, diag, n, a, lda, rcond, work, rwork, info)

call ztrcon(norm, uplo, diag, n, a, lda, rcond, work, rwork, info)

Fortran 95:

call trcon(a, rcond [,uplo] [,diag] [,norm] [,info])

Description

This routine estimates the reciprocal of the condition number of a triangular matrix A in either
the 1-norm or infinity-norm:

κ1(A) =||A||1 ||A-1||1 = κ∞(AT) = κ∞(AH)

κ∞ (A) =||A||∞ ||A-1||∞ =k1 (AT) = κ1 (AH) .

Input Parameters

CHARACTER*1. Must be '1' or 'O' or 'I'.norm
If norm = '1' or 'O', then the routine estimates the condition number
of matrix A in 1-norm.
If norm = 'I', then the routine estimates the condition number of
matrix A in infinity-norm.

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether A is upper or lower triangular:
If uplo = 'U', the array a stores the upper triangle of A, other array
elements are not referenced.
If uplo = 'L', the array a stores the lower triangle of A, other array
elements are not referenced.

CHARACTER*1. Must be 'N' or 'U'.diag

389

LAPACK Routines: Linear Equations 3

If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements are assumed
to be 1 and not referenced in the array a.

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for strcona, work
DOUBLE PRECISION for dtrcon
COMPLEX for ctrcon
DOUBLE COMPLEX for ztrcon.
Arrays: a(lda,*), work(*).
The array a contains the matrix A. The second dimension of a must be
at least max(1,n).
The array work is a workspace for the routine. The dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for ctrconrwork
DOUBLE PRECISION for ztrcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond =0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

390

3 Intel® Math Kernel Library Reference Manual

Specific details for the routine trcon interface are as follows:

Holds the matrix A of size (n, n).a

Must be '1', 'O', or 'I'. The default value is '1'.norm

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'U'. The default value is 'N'.diag

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b; the number is usually 4 or 5 and never more than 11.
Each solution requires approximately n2 floating-point operations for real flavors and 4n2

operations for complex flavors.

?tpcon
Estimates the reciprocal of the condition number
of a packed triangular matrix.

Syntax

Fortran 77:

call stpcon(norm, uplo, diag, n, ap, rcond, work, iwork, info)

call dtpcon(norm, uplo, diag, n, ap, rcond, work, iwork, info)

call ctpcon(norm, uplo, diag, n, ap, rcond, work, rwork, info)

call ztpcon(norm, uplo, diag, n, ap, rcond, work, rwork, info)

Fortran 95:

call tpcon(a, rcond [,uplo] [,diag] [,norm] [,info])

Description

This routine estimates the reciprocal of the condition number of a packed triangular matrix A
in either the 1-norm or infinity-norm:

κ1(A) =||A||1 ||A-1||1 = κ∞(AT) = κ∞(AH)

κ∞(A) =||A||∞ ||A-1||∞ =κ1 (AT) = κ1(A
H) .

391

LAPACK Routines: Linear Equations 3

Input Parameters

CHARACTER*1. Must be '1' or 'O' or 'I'.norm
If norm = '1' or 'O', then the routine estimates the condition number
of matrix A in 1-norm.
If norm = 'I', then the routine estimates the condition number of
matrix A in infinity-norm.

CHARACTER*1. Must be 'U' or 'L'. Indicates whether A is upper or
lower triangular:

uplo

If uplo = 'U', the array ap stores the upper triangle of A in packed
form.
If uplo = 'L', the array ap stores the lower triangle of A in packed
form.

CHARACTER*1. Must be 'N' or 'U'.diag
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements are assumed
to be 1 and not referenced in the array ap.

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for stpconap, work
DOUBLE PRECISION for dtpcon
COMPLEX for ctpcon
DOUBLE COMPLEX for ztpcon.
Arrays: ap(*), work(*).
The array ap contains the packed matrix A. The dimension of ap must
be at least max(1,n(n+1)/2). The array work is a workspace for the
routine.
The dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for ctpconrwork
DOUBLE PRECISION for ztpcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.

392

3 Intel® Math Kernel Library Reference Manual

An estimate of the reciprocal of the condition number. The routine sets
rcond =0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tpcon interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Must be '1', 'O', or 'I'. The default value is '1'.norm

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'U'. The default value is 'N'.diag

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b; the number is usually 4 or 5 and never more than 11.
Each solution requires approximately n2 floating-point operations for real flavors and 4n2

operations for complex flavors.

393

LAPACK Routines: Linear Equations 3

?tbcon
Estimates the reciprocal of the condition number
of a triangular band matrix.

Syntax

Fortran 77:

call stbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info)

call dtbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info)

call ctbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info)

call ztbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info)

Fortran 95:

call tbcon(a, rcond [,uplo] [,diag] [,norm] [,info])

Description

This routine estimates the reciprocal of the condition number of a triangular band matrix A in
either the 1-norm or infinity-norm:

κ1(A) =||A||1 ||A-1||1 = κ∞(AT) = κ∞(AH)

κ∞(A) =||A||∞ ||A-1||∞ =κ1 (AT) = κ1(A
H) .

Input Parameters

CHARACTER*1. Must be '1' or 'O' or 'I'.norm
If norm = '1' or 'O', then the routine estimates the condition number
of matrix A in 1-norm.
If norm = 'I', then the routine estimates the condition number of
matrix A in infinity-norm.

CHARACTER*1. Must be 'U' or 'L'. Indicates whether A is upper or
lower triangular:

uplo

If uplo = 'U', the array ap stores the upper triangle of A in packed
form.
If uplo = 'L', the array ap stores the lower triangle of A in packed
form.

CHARACTER*1. Must be 'N' or 'U'.diag

394

3 Intel® Math Kernel Library Reference Manual

If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements are assumed
to be 1 and not referenced in the array ab.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of superdiagonals or subdiagonals in the matrix

A; kd ≥ 0.

kd

REAL for stbconab, work
DOUBLE PRECISION for dtbcon
COMPLEX for ctbcon
DOUBLE COMPLEX for ztbcon.
Arrays: ab(ldab,*), work(*).
The array ab contains the band matrix A. The second dimension of ab
must be at least max(1,n). The array work is a workspace for the
routine.
The dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

INTEGER. The first dimension of the array ab. (ldab ≥ kd +1).ldab

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for ctbconrwork
DOUBLE PRECISION for ztbcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond =0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned
or even singular.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

395

LAPACK Routines: Linear Equations 3

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tbcon interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Must be '1', 'O', or 'I'. The default value is '1'.norm

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'U'. The default value is 'N'.diag

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in
practice is nearly always less than 10r. A call to this routine involves solving a number of
systems of linear equations A*x = b; the number is usually 4 or 5 and never more than 11.
Each solution requires approximately 2*n(kd + 1) floating-point operations for real flavors
and 8*n(kd + 1) operations for complex flavors.

Refining the Solution and Estimating Its Error

This section describes the LAPACK routines for refining the computed solution of a system of
linear equations and estimating the solution error. You can call these routines after factorizing
the matrix of the system of equations and computing the solution (see Routines for Matrix
Factorization and Routines for Solving Systems of Linear Equations).

396

3 Intel® Math Kernel Library Reference Manual

?gerfs
Refines the solution of a system of linear equations
with a general matrix and estimates its error.

Syntax

Fortran 77:

call sgerfs(trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call dgerfs(trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call cgerfs(trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

call zgerfs(trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

Fortran 95:

call gerfs(a, af, ipiv, b, x [,trans] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations
A*X = B or AT*X = B or AH*X = B with a general matrix A, with multiple right-hand sides. For
each computed solution vector x, the routine computes the component-wise backward error

β. This error is the smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?getrf

• call the solver routine ?getrs.

397

LAPACK Routines: Linear Equations 3

Input Parameters

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', the system has the form A*X = B.
If trans = 'T', the system has the form AT*X = B.
If trans = 'C', the system has the form AH*X = B.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for sgerfsa,af,b,x,work
DOUBLE PRECISION for dgerfs
COMPLEX for cgerfs
DOUBLE COMPLEX for zgerfs.
Arrays:
a(lda,*) contains the original matrix A, as supplied to ?getrf.
af(ldaf,*) contains the factored matrix A, as returned by ?getrf.
b(ldb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix X.
work(*) is a workspace array.
The second dimension of a and af must be at least max(1, n); the
second dimension of b and x must be at least max(1, nrhs); the
dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of af; ldaf ≥ max(1, n).ldaf

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER.ipiv
Array, DIMENSION at least max(1, n).
The ipiv array, as returned by ?getrf.

INTEGER.iwork
Workspace array, DIMENSION at least max(1, n).

REAL for cgerfsrwork
DOUBLE PRECISION for zgerfs.

398

3 Intel® Math Kernel Library Reference Manual

Workspace array, DIMENSION at least max(1, n).

Output Parameters

The refined solution matrix X.x

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gerfs interface are as follows:

Holds the matrix A of size (n, n).a

Holds the matrix AF of size (n, n).af

Holds the vector of length (n).ipiv

Holds the matrix B of size (n, nrhs).b

Holds the matrix X of size (n, nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate
the actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2

floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition,
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations
(for complex flavors); the number of iterations may range from 1 to 5. Estimating the forward

399

LAPACK Routines: Linear Equations 3

error involves solving a number of systems of linear equations A*x = b; the number is usually
4 or 5 and never more than 11. Each solution requires approximately 2n2 floating-point
operations for real flavors or 8n2 for complex flavors.

?gbrfs
Refines the solution of a system of linear equations
with a general band matrix and estimates its error.

Syntax

Fortran 77:

call sgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x,
ldx, ferr, berr, work, iwork, info)

call dgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x,
ldx, ferr, berr, work, iwork, info)

call cgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x,
ldx, ferr, berr, work, rwork, info)

call zgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x,
ldx, ferr, berr, work, rwork, info)

Fortran 95:

call gbrfs(a, af, ipiv, b, x [,kl] [,trans] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations
A*X = B or AT*X = B or AH*X = B with a band matrix A, with multiple right-hand sides. For
each computed solution vector x, the routine computes the component-wise backward error

β. This error is the smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?gbtrf

400

3 Intel® Math Kernel Library Reference Manual

• call the solver routine ?gbtrs.

Input Parameters

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', the system has the form A*X = B.
If trans = 'T', the system has the form AT*X = B.
If trans = 'C', the system has the form AH*X = B.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of sub-diagonals within the band of A; kl ≥ 0.kl

INTEGER. The number of super-diagonals within the band of A; ku ≥ 0.ku

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for sgbrfsab,afb,b,x,work
DOUBLE PRECISION for dgbrfs
COMPLEX for cgbrfs
DOUBLE COMPLEX for zgbrfs.
Arrays:
ab(ldab,*) contains the original band matrix A, as supplied to ?gbtrf,
but stored in rows from 1 to kl + ku + 1.
afb(ldafb,*) contains the factored band matrix A, as returned by
?gbtrf.
b(ldb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix X.
work(*) is a workspace array.
The second dimension of ab and afb must be at least max(1, n); the
second dimension of b and x must be at least max(1, nrhs); the
dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

INTEGER. The first dimension of ab.ldab

INTEGER. The first dimension of afb .ldafb

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER.ipiv

401

LAPACK Routines: Linear Equations 3

Array, DIMENSION at least max(1, n). The ipiv array, as returned by
?gbtrf.

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for cgbrfsrwork
DOUBLE PRECISION for zgbrfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

The refined solution matrix X.x

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info =0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gbrfs interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kl+ku+1,n).

a

Stands for argument afb in Fortan 77 interface. Holds the array AF of
size (2*kl*ku+1,n).

af

Holds the vector of length (n).ipiv

Holds the matrix B of size (n, nrhs).b

Holds the matrix X of size (n, nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

If omitted, assumed kl = ku.kl

Restored as ku = lda-kl-1.ku

402

3 Intel® Math Kernel Library Reference Manual

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate
the actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n(kl +
ku) floating-point operations (for real flavors) or 16n(kl + ku) operations (for complex flavors).
In addition, each step of iterative refinement involves 2n(4kl + 3ku) operations (for real flavors)
or 8n(4kl + 3ku) operations (for complex flavors); the number of iterations may range from
1 to 5. Estimating the forward error involves solving a number of systems of linear equations
A*x = b; the number is usually 4 or 5 and never more than 11. Each solution requires
approximately 2n2 floating-point operations for real flavors or 8n2 for complex flavors.

?gtrfs
Refines the solution of a system of linear equations
with a tridiagonal matrix and estimates its error.

Syntax

Fortran 77:

call sgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x,
ldx, ferr, berr, work, iwork, info)

call dgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x,
ldx, ferr, berr, work, iwork, info)

call cgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x,
ldx, ferr, berr, work, rwork, info)

call zgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x,
ldx, ferr, berr, work, rwork, info)

Fortran 95:

call gtrfs(dl, d, du, dlf, df, duf, du2, ipiv, b, x [,trans] [,ferr] [,berr]
[,info])

403

LAPACK Routines: Linear Equations 3

Description

This routine performs an iterative refinement of the solution to a system of linear equations
A*X = B or AT*X = B or AH*X = B with a tridiagonal matrix A, with multiple right-hand sides.
For each computed solution vector x, the routine computes the component-wise backward

error β. This error is the smallest relative perturbation in elements of A and b such that x is
the exact solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?gttrf

• call the solver routine ?gttrs.

Input Parameters

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', the system has the form A*X = B.
If trans = 'T', the system has the form AT*X = B.
If trans = 'C', the system has the form AH*X = B.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides, that is, the number of

columns of the matrix B; nrhs ≥ 0.

nrhs

REAL for sgtrfsdl,d,du,dlf,
DOUBLE PRECISION for dgtrfs

df,duf,du2, COMPLEX for cgtrfs
DOUBLE COMPLEX for zgtrfs.

b,x,work Arrays:
dl, dimension (n -1), contains the subdiagonal elements of A.
d, dimension (n), contains the diagonal elements of A.
du, dimension (n -1), contains the superdiagonal elements of A.
dlf, dimension (n -1), contains the (n - 1) multipliers that define the
matrix L from the LU factorization of A as computed by ?gttrf.

404

3 Intel® Math Kernel Library Reference Manual

df, dimension (n), contains the n diagonal elements of the upper
triangular matrix U from the LU factorization of A.
duf, dimension (n -1), contains the (n - 1) elements of the first
superdiagonal of U.
du2, dimension (n -2), contains the (n - 2) elements of the second
superdiagonal of U.
b(ldb,nrhs) contains the right-hand side matrix B.
x(ldx,nrhs) contains the solution matrix X, as computed by ?gttrs.
work(*) is a workspace array; the dimension of work must be at least
max(1, 3*n) for real flavors and max(1, 2*n) for complex flavors.

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The ipiv array, as returned by
?gttrf.

INTEGER. Workspace array, DIMENSION (n). Used for real flavors only.iwork

REAL for cgtrfsrwork
DOUBLE PRECISION for zgtrfs.
Workspace array, DIMENSION (n). Used for complex flavors only.

Output Parameters

The refined solution matrix X.x

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gtrfs interface are as follows:

405

LAPACK Routines: Linear Equations 3

Holds the vector of length (n-1).dl

Holds the vector of length (n).d

Holds the vector of length (n-1).du

Holds the vector of length (n-1).dlf

Holds the vector of length (n).df

Holds the vector of length (n-1).duf

Holds the vector of length (n-2).du2

Holds the vector of length (n).ipiv

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

?porfs
Refines the solution of a system of linear equations
with a symmetric (Hermitian) positive-definite
matrix and estimates its error.

Syntax

Fortran 77:

call sporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call dporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call cporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

call zporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

Fortran 95:

call porfs(a, af, b, x [,uplo] [,ferr] [,berr] [,info])

406

3 Intel® Math Kernel Library Reference Manual

Description

This routine performs an iterative refinement of the solution to a system of linear equations
A*X = B with a symmetric (Hermitian) positive definite matrix A, with multiple right-hand sides.
For each computed solution vector x, the routine computes the component-wise backward

error β. This error is the smallest relative perturbation in elements of A and b such that x is
the exact solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?potrf

• call the solver routine ?potrs.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for sporfsa,af,b,x,work
DOUBLE PRECISION for dporfs
COMPLEX for cporfs
DOUBLE COMPLEX for zporfs.
Arrays:
a(lda,*) contains the original matrix A, as supplied to ?potrf.
af(ldaf,*) contains the factored matrix A, as returned by ?potrf.
b(ldb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix X.
work(*) is a workspace array.
The second dimension of a and af must be at least max(1, n); the
second dimension of b and x must be at least max(1, nrhs); the
dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

407

LAPACK Routines: Linear Equations 3

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of af; ldaf ≥ max(1, n).ldaf

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for cporfsrwork
DOUBLE PRECISION for zporfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

The refined solution matrix X.x

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine porfs interface are as follows:

Holds the matrix A of size (n,n).a

Holds the matrix AF of size (n,n).af

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

408

3 Intel® Math Kernel Library Reference Manual

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate
the actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2

floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition,
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations
(for complex flavors); the number of iterations may range from 1 to 5. Estimating the forward
error involves solving a number of systems of linear equations A*x = b; the number is usually
4 or 5 and never more than 11. Each solution requires approximately 2n2 floating-point
operations for real flavors or 8n2 for complex flavors.

?pprfs
Refines the solution of a system of linear equations
with a packed symmetric (Hermitian)
positive-definite matrix and estimates its error.

Syntax

Fortran 77:

call spprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, iwork,
info)

call dpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, iwork,
info)

call cpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork,
info)

call zpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork,
info)

Fortran 95:

call pprfs(a, af, b, x [,uplo] [,ferr] [,berr] [,info])

409

LAPACK Routines: Linear Equations 3

Description

This routine performs an iterative refinement of the solution to a system of linear equations
A*X = B with a packed symmetric (Hermitian)positive definite matrix A, with multiple right-hand
sides. For each computed solution vector x, the routine computes the component-wise

backward error β. This error is the smallest relative perturbation in elements of A and b such
that x is the exact solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?pptrf

• call the solver routine ?pptrs.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for spprfsap,afp,b,x,work
DOUBLE PRECISION for dpprfs
COMPLEX for cpprfs
DOUBLE COMPLEX for zpprfs.
Arrays:
ap(*) contains the original packed matrix A, as supplied to ?pptrf.
afp(*) contains the factored packed matrix A, as returned by ?pptrf.
b(ldb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix X.
work(*) is a workspace array.

410

3 Intel® Math Kernel Library Reference Manual

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2);
the second dimension of b and x must be at least max(1, nrhs); the
dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for cpprfsrwork
DOUBLE PRECISION for zpprfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

The refined solution matrix X.x

REAL for single precision flavors.ferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pprfs interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Stands for argument apf in Fortan 77 interface. Holds the array AF of
size (n*(n+1)/2).

af

Holds the matrix B of size (n, nrhs).b

Holds the matrix X of size (n, nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

411

LAPACK Routines: Linear Equations 3

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate
the actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2

floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition,
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations
(for complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations A*x =
b; the number of systems is usually 4 or 5 and never more than 11. Each solution requires
approximately 2n2 floating-point operations for real flavors or 8n2 for complex flavors.

?pbrfs
Refines the solution of a system of linear equations
with a band symmetric (Hermitian) positive-definite
matrix and estimates its error.

Syntax

Fortran 77:

call spbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call dpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call cpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

call zpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

Fortran 95:

call pbrfs(a, af, b, x [,uplo] [,ferr] [,berr] [,info])

412

3 Intel® Math Kernel Library Reference Manual

Description

This routine performs an iterative refinement of the solution to a system of linear equations
A*X = B with a symmetric (Hermitian) positive definite band matrix A, with multiple right-hand
sides. For each computed solution vector x, the routine computes the component-wise

backward error β. This error is the smallest relative perturbation in elements of A and b such
that x is the exact solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?pbtrf

• call the solver routine ?pbtrs.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of superdiagonals or subdiagonals in the matrix

A; kd ≥ 0.

kd

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for spbrfsab,afb,b,x,work
DOUBLE PRECISION for dpbrfs
COMPLEX for cpbrfs
DOUBLE COMPLEX for zpbrfs.
Arrays:
ab(ldab,*) contains the original band matrix A, as supplied to ?pbtrf.
afb(ldafb,*) contains the factored band matrix A, as returned by
?pbtrf.
b(ldb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix X.
work(*) is a workspace array.

413

LAPACK Routines: Linear Equations 3

The second dimension of ab and afb must be at least max(1, n); the
second dimension of b and x must be at least max(1, nrhs); the
dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

INTEGER. The first dimension of ab; ldab ≥ kd + 1.ldab

INTEGER. The first dimension of afb; ldafb ≥ kd + 1.ldafb

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for cpbrfsrwork
DOUBLE PRECISION for zpbrfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

The refined solution matrix X.x

REAL for single precision flavors.ferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pbrfs interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1, n).

a

Stands for argument afb in Fortan 77 interface. Holds the array AF of
size (kd+1, n).

af

Holds the matrix B of size (n, nrhs).b

Holds the matrix X of size (n, nrhs).x

414

3 Intel® Math Kernel Library Reference Manual

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate
the actual error.

For each right-hand side, computation of the backward error involves a minimum of 8n*kd
floating-point operations (for real flavors) or 32n*kd operations (for complex flavors). In
addition, each step of iterative refinement involves 12n*kd operations (for real flavors) or
48n*kd operations (for complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations A*x =
b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
4n*kd floating-point operations for real flavors or 16n*kd for complex flavors.

?ptrfs
Refines the solution of a system of linear equations
with a symmetric (Hermitian) positive-definite
tridiagonal matrix and estimates its error.

Syntax

Fortran 77:

call sptrfs(n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info)

call dptrfs(n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info)

call cptrfs(uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

call cptrfs(uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

Fortran 95:

call ptrfs(d, df, e, ef, b, x [,ferr] [,berr] [,info])

call ptrfs(d, df, e, ef, b, x [,uplo] [,ferr] [,berr] [,info])

415

LAPACK Routines: Linear Equations 3

Description

This routine performs an iterative refinement of the solution to a system of linear equations
A*X = B with a symmetric (Hermitian) positive definite tridiagonal matrix A, with multiple
right-hand sides. For each computed solution vector x, the routine computes the

component-wise backward error β. This error is the smallest relative perturbation in elements
of A and b such that x is the exact solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?pttrf

• call the solver routine ?pttrs.

Input Parameters

CHARACTER*1. Used for complex flavors only. Must be 'U' or 'L'.uplo
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal
matrix A is stored and how A is factored:
If uplo = 'U', the array e stores the superdiagonal of A, and A is
factored as UH*D*U.
If uplo = 'L', the array e stores the subdiagonal of A, and A is factored
as L*D*LH.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for single precision flavors DOUBLE PRECISION for double precision
flavors

d, df, rwork

Arrays: d(n), df(n), rwork(n).
The array d contains the n diagonal elements of the tridiagonal matrix
A.
The array df contains the n diagonal elements of the diagonal matrix
D from the factorization of A as computed by ?pttrf.
The array rwork is a workspace array used for complex flavors only.

REAL for sptrfse,ef,b,x,work
DOUBLE PRECISION for dptrfs

416

3 Intel® Math Kernel Library Reference Manual

COMPLEX for cptrfs
DOUBLE COMPLEX for zptrfs.
Arrays: e(n -1), ef(n -1), b(ldb,nrhs), x(ldx,nrhs), work(*).
The array e contains the (n - 1) off-diagonal elements of the tridiagonal
matrix A (see uplo).
The array ef contains the (n - 1) off-diagonal elements of the unit
bidiagonal factor U or L from the factorization computed by ?pttrf
(see uplo).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The array x contains the solution matrix X as computed by ?pttrs.
The array work is a workspace array. The dimension of work must be
at least 2*n for real flavors, and at least n for complex flavors.

INTEGER. The leading dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The leading dimension of x; ldx ≥ max(1, n).ldx

Output Parameters

The refined solution matrix X.x

REAL for single precision flavors.ferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ptrfs interface are as follows:

Holds the vector of length (n).d

Holds the vector of length (n).df

Holds the vector of length (n-1).e

417

LAPACK Routines: Linear Equations 3

Holds the vector of length (n-1).ef

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Used in complex flavors only. Must be 'U' or 'L'. The default value is
'U'.

uplo

?syrfs
Refines the solution of a system of linear equations
with a symmetric matrix and estimates its error.

Syntax

Fortran 77:

call ssyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call dsyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call csyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

call zsyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

Fortran 95:

call syrfs(a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations
A*X = B with a symmetric full-storage matrix A, with multiple right-hand sides. For each

computed solution vector x, the routine computes the component-wise backward error β.
This error is the smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

418

3 Intel® Math Kernel Library Reference Manual

Finally, the routine estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?sytrf

• call the solver routine ?sytrs.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for ssyrfsa,af,b,x,work
DOUBLE PRECISION for dsyrfs
COMPLEX for csyrfs
DOUBLE COMPLEX for zsyrfs.
Arrays:
a(lda,*) contains the original matrix A, as supplied to ?sytrf.
af(ldaf,*) contains the factored matrix A, as returned by ?sytrf.
b(ldb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix X.
work(*) is a workspace array.
The second dimension of a and af must be at least max(1, n); the
second dimension of b and x must be at least max(1, nrhs); the
dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of af; ldaf ≥ max(1, n).ldaf

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER.ipiv

419

LAPACK Routines: Linear Equations 3

Array, DIMENSION at least max(1, n). The ipiv array, as returned by
?sytrf.

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for csyrfsrwork
DOUBLE PRECISION for zsyrfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

The refined solution matrix X.x

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine syrfs interface are as follows:

Holds the matrix A of size (n,n).a

Holds the matrix AF of size (n,n).af

Holds the vector of length (n).ipiv

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate
the actual error.

420

3 Intel® Math Kernel Library Reference Manual

For each right-hand side, computation of the backward error involves a minimum of 4n2

floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition,
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations
(for complex flavors); the number of iterations may range from 1 to 5. Estimating the forward
error involves solving a number of systems of linear equations A*x = b; the number is usually
4 or 5 and never more than 11. Each solution requires approximately 2n2 floating-point
operations for real flavors or 8n2 for complex flavors.

?herfs
Refines the solution of a system of linear equations
with a complex Hermitian matrix and estimates its
error.

Syntax

Fortran 77:

call cherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

call zherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

Fortran 95:

call herfs(a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations
A*X = B with a complex Hermitian full-storage matrix A, with multiple right-hand sides. For
each computed solution vector x, the routine computes the component-wise backward error

β. This error is the smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?hetrf

421

LAPACK Routines: Linear Equations 3

• call the solver routine ?hetrs.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

COMPLEX for cherfsa,af,b,x,work
DOUBLE COMPLEX for zherfs.
Arrays:
a(lda,*) contains the original matrix A, as supplied to ?hetrf.
af(ldaf,*) contains the factored matrix A, as returned by ?hetrf.
b(ldb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix X.
work(*) is a workspace array.
The second dimension of a and af must be at least max(1, n); the
second dimension of b and x must be at least max(1, nrhs); the
dimension of work must be at least max(1, 2*n).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of af; ldaf ≥ max(1, n).ldaf

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The ipiv array, as returned by
?hetrf.

REAL for cherfsrwork
DOUBLE PRECISION for zherfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

The refined solution matrix X.x

REAL for cherfsferr, berr

422

3 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for zherfs.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine herfs interface are as follows:

Holds the matrix A of size (n,n).a

Holds the matrix AF of size (n,n).af

Holds the vector of length (n).ipiv

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate
the actual error.

For each right-hand side, computation of the backward error involves a minimum of 16n2

operations. In addition, each step of iterative refinement involves 24n2 operations; the number
of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations A*x =
b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
8n2 floating-point operations.

The real counterpart of this routine is ?ssyrfs/?dsyrfs

423

LAPACK Routines: Linear Equations 3

?sprfs
Refines the solution of a system of linear equations
with a packed symmetric matrix and estimates the
solution error.

Syntax

Fortran 77:

call ssprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work,
iwork, info)

call dsprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work,
iwork, info)

call csprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

call zsprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

Fortran 95:

call sprfs(a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations
A*X = B with a packed symmetric matrix A, with multiple right-hand sides. For each computed

solution vector x, the routine computes the component-wise backward error β. This error
is the smallest relative perturbation in elements of A and b such that x is the exact solution of
the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?sptrf

• call the solver routine ?sptrs.

424

3 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for ssprfsap,afp,b,x,work
DOUBLE PRECISION for dsprfs
COMPLEX for csprfs
DOUBLE COMPLEX for zsprfs.
Arrays:
ap(*) contains the original packed matrix A, as supplied to ?sptrf.
afp(*) contains the factored packed matrix A, as returned by ?sptrf.
b(ldb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix X.
work(*) is a workspace array.
The dimension of arrays ap and afp must be at least max(1,
n(n+1)/2); the second dimension of b and x must be at least max(1,
nrhs); the dimension of work must be at least max(1, 3*n) for real
flavors and max(1, 2*n) for complex flavors.

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The ipiv array, as returned by
?sptrf.

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for csprfsrwork
DOUBLE PRECISION for zsprfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

The refined solution matrix X.x

REAL for single precision flavors.ferr, berr
DOUBLE PRECISION for double precision flavors.

425

LAPACK Routines: Linear Equations 3

Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sprfs interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Stands for argument afp in Fortan 77 interface. Holds the array AF of
size (n*(n+1)/2).

af

Holds the vector of length (n).ipiv

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate
the actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2

floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition,
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations
(for complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations A*x =
b; the number of systems is usually 4 or 5 and never more than 11. Each solution requires
approximately 2n2 floating-point operations for real flavors or 8n2 for complex flavors.

426

3 Intel® Math Kernel Library Reference Manual

?hprfs
Refines the solution of a system of linear equations
with a packed complex Hermitian matrix and
estimates the solution error.

Syntax

Fortran 77:

call chprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

call zhprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

Fortran 95:

call hprfs(a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations
A*X = B with a packed complex Hermitian matrix A, with multiple right-hand sides. For each

computed solution vector x, the routine computes the component-wise backward error β.
This error is the smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?hptrf

• call the solver routine ?hptrs.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

427

LAPACK Routines: Linear Equations 3

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

COMPLEX for chprfsap,afp,b,x,work
DOUBLE COMPLEX for zhprfs.
Arrays:
ap(*) contains the original packed matrix A, as supplied to ?hptrf.
afp(*) contains the factored packed matrix A, as returned by ?hptrf.
b(ldb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix X.
work(*) is a workspace array.
The dimension of arrays ap and afp must be at least max(1,n(n+1)/2);
the second dimension of b and x must be at least max(1,nrhs); the
dimension of work must be at least max(1, 2*n).

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The ipiv array, as returned by
?hptrf.

REAL for chprfsrwork
DOUBLE PRECISION for zhprfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

The refined solution matrix X.x

REAL for chprfs.ferr, berr
DOUBLE PRECISION for zhprfs.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

428

3 Intel® Math Kernel Library Reference Manual

Specific details for the routine hprfs interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Stands for argument afp in Fortan 77 interface. Holds the array AF of
size (n*(n+1)/2).

af

Holds the vector of length (n).ipiv

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate
the actual error.

For each right-hand side, computation of the backward error involves a minimum of 16n2

operations. In addition, each step of iterative refinement involves 24n2 operations; the number
of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations A*x =
b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
8n2 floating-point operations.

The real counterpart of this routine is ?ssprfs/?dsprfs.

429

LAPACK Routines: Linear Equations 3

?trrfs
Estimates the error in the solution of a system of
linear equations with a triangular matrix.

Syntax

Fortran 77:

call strrfs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call dtrrfs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call ctrrfs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

call ztrrfs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

Fortran 95:

call trrfs(a, b, x [,uplo] [,trans] [,diag] [,ferr] [,berr] [,info])

Description

This routine estimates the errors in the solution to a system of linear equations A*X = B or
AT*X = B or AH*X = B with a triangular matrix A, with multiple right-hand sides. For each

computed solution vector x, the routine computes the component-wise backward error β.
This error is the smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

The routine also estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine, call the solver routine ?trtrs.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether A is upper or lower triangular:

430

3 Intel® Math Kernel Library Reference Manual

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', the system has the form A*X = B.
If trans = 'T', the system has the form AT*X = B.
If trans = 'C', the system has the form AH*X = B.

CHARACTER*1. Must be 'N' or 'U'.diag
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements of A are
assumed to be 1 and not referenced in the array a.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for strrfsa, b, x, work
DOUBLE PRECISION for dtrrfs
COMPLEX for ctrrfs
DOUBLE COMPLEX for ztrrfs.
Arrays:
a(lda,*) contains the upper or lower triangular matrix A, as specified
by uplo.
b(ldb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix X.
work(*) is a workspace array.
The second dimension of a must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of
work must be at least max(1,3*n) for real flavors and max(1,2*n)
for complex flavors.

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for ctrrfsrwork
DOUBLE PRECISION for ztrrfs.
Workspace array, DIMENSION at least max(1, n).

431

LAPACK Routines: Linear Equations 3

Output Parameters

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine trrfs interface are as follows:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

Must be 'N' or 'U'. The default value is 'N'.diag

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate
the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear
equations A*x = b; the number of systems is usually 4 or 5 and never more than 11. Each
solution requires approximately n2 floating-point operations for real flavors or 4n2 for complex
flavors.

432

3 Intel® Math Kernel Library Reference Manual

?tprfs
Estimates the error in the solution of a system of
linear equations with a packed triangular matrix.

Syntax

Fortran 77:

call stprfs(uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work,
iwork, info)

call dtprfs(uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work,
iwork, info)

call ctprfs(uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

call ztprfs(uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

Fortran 95:

call tprfs(a, b, x [,uplo] [,trans] [,diag] [,ferr] [,berr] [,info])

Description

This routine estimates the errors in the solution to a system of linear equations A*X = B or
AT*X = B or AH*X = B with a packed triangular matrix A, with multiple right-hand sides. For
each computed solution vector x, the routine computes the component-wise backward error

β. This error is the smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

The routine also estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine, call the solver routine ?tptrs.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether A is upper or lower triangular:

433

LAPACK Routines: Linear Equations 3

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', the system has the form A*X = B.
If trans = 'T', the system has the form AT*X = B.
If trans = 'C', the system has the form AH*X = B.

CHARACTER*1. Must be 'N' or 'U'.diag
If diag = 'N', A is not a unit triangular matrix.
If diag = 'U', A is unit triangular: diagonal elements of A are assumed
to be 1 and not referenced in the array ap.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for stprfsap, b, x, work
DOUBLE PRECISION for dtprfs
COMPLEX for ctprfs
DOUBLE COMPLEX for ztprfs.
Arrays:
ap(*) contains the upper or lower triangular matrix A, as specified by
uplo.
b(ldb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix X.
work(*) is a workspace array.
The dimension of ap must be at least max(1,n(n+1)/2); the second
dimension of b and x must be at least max(1,nrhs); the dimension of
work must be at least max(1,3*n) for real flavors and max(1,2*n)
for complex flavors.

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for ctprfsrwork
DOUBLE PRECISION for ztprfs.
Workspace array, DIMENSION at least max(1, n).

434

3 Intel® Math Kernel Library Reference Manual

Output Parameters

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tprfs interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

Must be 'N' or 'U'. The default value is 'N'.diag

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate
the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear
equations A*x = b; the number of systems is usually 4 or 5 and never more than 11. Each
solution requires approximately n2 floating-point operations for real flavors or 4n2 for complex
flavors.

435

LAPACK Routines: Linear Equations 3

?tbrfs
Estimates the error in the solution of a system of
linear equations with a triangular band matrix.

Syntax

Fortran 77:

call stbrfs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call dtbrfs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call ctbrfs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

call ztbrfs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

Fortran 95:

call tbrfs(a, b, x [,uplo] [,trans] [,diag] [,ferr] [,berr] [,info])

Description

This routine estimates the errors in the solution to a system of linear equations A*X = B or
AT*X = B or AH*X = B with a triangular band matrix A, with multiple right-hand sides. For each

computed solution vector x, the routine computes the component-wise backward error β.
This error is the smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

|δaij|/|aij| ≤ β|aij|, |δbi|/|bi| ≤ β|bi| such that (A + δA)x = (b + δb).

The routine also estimates the component-wise forward error in the computed solution

||x - xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine, call the solver routine ?tbtrs.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether A is upper or lower triangular:

436

3 Intel® Math Kernel Library Reference Manual

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', the system has the form A*X = B.
If trans = 'T', the system has the form AT*X = B.
If trans = 'C', the system has the form AH*X = B.

CHARACTER*1. Must be 'N' or 'U'.diag
If diag = 'N', A is not a unit triangular matrix.
If diag = 'U', A is unit triangular: diagonal elements of A are assumed
to be 1 and not referenced in the array ab.

INTEGER. The order of the matrix A; n ≥ 0.n

INTEGER. The number of super-diagonals or sub-diagonals in the matrix

A; kd ≥ 0.

kd

INTEGER. The number of right-hand sides; nrhs ≥ 0.nrhs

REAL for stbrfsab, b, x, work
DOUBLE PRECISION for dtbrfs
COMPLEX for ctbrfs
DOUBLE COMPLEX for ztbrfs.
Arrays:
ab(ldab,*) contains the upper or lower triangular matrix A, as specified
by uplo, in band storage format.
b(ldb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix X.
work(*) is a workspace array.
The second dimension of a must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs). The dimension
of work must be at least max(1,3*n) for real flavors and max(1,2*n)
for complex flavors.

INTEGER. The first dimension of the array ab; ldab ≥ kd +1.ldab

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for ctbrfsrwork

437

LAPACK Routines: Linear Equations 3

DOUBLE PRECISION for ztbrfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

REAL for single precision flavors.ferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tbrfs interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

Must be 'N' or 'U'. The default value is 'N'.diag

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate
the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear
equations A*x = b; the number of systems is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n*kd floating-point operations for real flavors or 8n*kd
operations for complex flavors.

438

3 Intel® Math Kernel Library Reference Manual

Routines for Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt
to solve a system of equations Ax = b by first computing A-1 and then forming the matrix-vector
product x = A-1b. Call a solver routine instead (see Routines for Solving Systems of Linear
Equations); this is more efficient and more accurate.

However, matrix inversion routines are provided for the rare occasions when an explicit inverse
matrix is needed.

?getri
Computes the inverse of an LU-factored general
matrix.

Syntax

Fortran 77:

call sgetri(n, a, lda, ipiv, work, lwork, info)

call dgetri(n, a, lda, ipiv, work, lwork, info)

call cgetri(n, a, lda, ipiv, work, lwork, info)

call zgetri(n, a, lda, ipiv, work, lwork, info)

Fortran 95:

call getri(a, ipiv [,info])

Description

This routine computes the inverse inv(A) of a general matrix A. Before calling this routine,
call ?getrf to factorize A.

Input Parameters

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for sgetria, work
DOUBLE PRECISION for dgetri
COMPLEX for cgetri
DOUBLE COMPLEX for zgetri.

439

LAPACK Routines: Linear Equations 3

Arrays: a(lda,*), work(*).
a(lda,*) contains the factorization of the matrix A, as returned by
?getrf: A = P*L*U.
The second dimension of a must be at least max(1,n).
work(*) is a workspace array of dimension at least max(1,lwork).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER.ipiv
Array, DIMENSION at least max(1, n).
The ipiv array, as returned by ?getrf.

INTEGER. The size of the work array; lwork ≥ n.lwork

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes below for the suggested value of lwork.

Output Parameters

Overwritten by the n-by-n matrix inv(A).a

If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

work(1)

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of the factor U is zero, U is
singular, and the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine getri interface are as follows:

Holds the matrix A of size (n,n).a

Holds the vector of length (n).ipiv

440

3 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed inverse X satisfies the following error bound:

|XA - I| ≤ c(n)ε|X|P|L||U|,

where c(n) is a modest linear function of n; ε is the machine precision; I denotes the identity
matrix; P, L, and U are the factors of the matrix factorization A = P*L*U.

The total number of floating-point operations is approximately (4/3)n3 for real flavors and
(16/3)n3 for complex flavors.

441

LAPACK Routines: Linear Equations 3

?potri
Computes the inverse of a symmetric (Hermitian)
positive-definite matrix.

Syntax

Fortran 77:

call spotri(uplo, n, a, lda, info)

call dpotri(uplo, n, a, lda, info)

call cpotri(uplo, n, a, lda, info)

call zpotri(uplo, n, a, lda, info)

Fortran 95:

call potri(a [,uplo] [,info])

Description

This routine computes the inverse inv(A) of a symmetric positive definite or, for complex
flavors, Hermitian positive-definite matrix A. Before calling this routine, call ?potrf to factorize
A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for spotria
DOUBLE PRECISION for dpotri
COMPLEX for cpotri
DOUBLE COMPLEX for zpotri.
Array a(lda,*). Contains the factorization of the matrix A, as returned
by ?potrf.
The second dimension of a must be at least max(1, n).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

442

3 Intel® Math Kernel Library Reference Manual

Output Parameters

Overwritten by the n-by-n matrix inv(A).a

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of the Cholesky factor (and
therefore the factor itself) is zero, and the inversion could not be
completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine potri interface are as follows:

Holds the matrix A of size (n,n).a

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed inverse X satisfies the following error bounds:

||XA - I||2 ≤ c(n)εκ2(A), ||AX - I||2 ≤ c(n)εκ2(A),

where c(n) is a modest linear function of n, and ε is the machine precision; I denotes the
identity matrix.

The 2-norm ||A||2 of a matrix A is defined by ||A||2 = maxx·x=1(Ax·Ax)
1/2, and the condition

number κ2(A) is defined by κ2(A) = ||A||2 ||A-1||2.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and
(8/3)n3 for complex flavors.

443

LAPACK Routines: Linear Equations 3

?pptri
Computes the inverse of a packed symmetric
(Hermitian) positive-definite matrix

Syntax

Fortran 77:

call spptri(uplo, n, ap, info)

call dpptri(uplo, n, ap, info)

call cpptri(uplo, n, ap, info)

call zpptri(uplo, n, ap, info)

Fortran 95:

call pptri(a [,uplo] [,info])

Description

This routine computes the inverse inv(A) of a symmetric positive definite or, for complex
flavors, Hermitian positive-definite matrix A in packed form. Before calling this routine, call
?pptrf to factorize A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular factor is stored in ap:
If uplo = 'U', then the upper triangular factor is stored.
If uplo = 'L', then the lower triangular factor is stored.

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for spptriap
DOUBLE PRECISION for dpptri
COMPLEX for cpptri
DOUBLE COMPLEX for zpptri.
Array, DIMENSION at least max(1, n(n+1)/2).
Contains the factorization of the packed matrix A, as returned by
?pptrf.
The dimension ap must be at least max(1,n(n+1)/2).

444

3 Intel® Math Kernel Library Reference Manual

Output Parameters

Overwritten by the packed n-by-n matrix inv(A).ap

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of the Cholesky factor (and
therefore the factor itself) is zero, and the inversion could not be
completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pptri interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed inverse X satisfies the following error bounds:

||XA - I||2 ≤ c(n)εκ2(A), ||AX - I||2 ≤ c(n)εκ2(A),

where c(n) is a modest linear function of n, and ε is the machine precision; I denotes the
identity matrix.

The 2-norm ||A||2 of a matrix A is defined by ||A||2 =maxx·x=1(Ax·Ax)
1/2, and the condition

number κ2(A) is defined by κ2(A) = ||A||2 ||A-1||2 .

The total number of floating-point operations is approximately (2/3)n3 for real flavors and
(8/3)n3 for complex flavors.

445

LAPACK Routines: Linear Equations 3

?sytri
Computes the inverse of a symmetric matrix.

Syntax

Fortran 77:

call ssytri(uplo, n, a, lda, ipiv, work, info)

call dsytri(uplo, n, a, lda, ipiv, work, info)

call csytri(uplo, n, a, lda, ipiv, work, info)

call zsytri(uplo, n, a, lda, ipiv, work, info)

Fortran 95:

call sytri(a, ipiv [,uplo] [,info])

Description

This routine computes the inverse inv(A) of a symmetric matrix A. Before calling this routine,
call ?sytrf to factorize A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the Bunch-Kaufman factorization A
= P*U*D*UT*PT.
If uplo = 'L', the array a stores the Bunch-Kaufman factorization A
= P*L*D*LT*PT.

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for ssytria, work
DOUBLE PRECISION for dsytri
COMPLEX for csytri
DOUBLE COMPLEX for zsytri.
Arrays:
a(lda,*) contains the factorization of the matrix A, as returned by
?sytrf.
The second dimension of a must be at least max(1,n).
work(*) is a workspace array.

446

3 Intel® Math Kernel Library Reference Manual

The dimension of work must be at least max(1,2*n).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER.ipiv
Array, DIMENSION at least max(1, n).
The ipiv array, as returned by ?sytrf.

Output Parameters

Overwritten by the n-by-n matrix inv(A).a

INTEGER.info
If info = 0, the execution is successful.
If info =-i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of D is zero, D is singular, and
the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sytri interface are as follows:

Holds the matrix A of size (n,n).a

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed inverse X satisfies the following error bounds:

|D*UT*PT*X*P*U - I| ≤ c(n)ε(|D||UT|PT|X|P|U| + |D||D-1|)

for uplo = 'U', and

|D*LT*PT*X*P*L - I| ≤ c(n)ε(|D||LT|PT|X|P|L| + |D||D-1|)

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and
(8/3)n3 for complex flavors.

447

LAPACK Routines: Linear Equations 3

?hetri
Computes the inverse of a complex Hermitian
matrix.

Syntax

Fortran 77:

call chetri(uplo, n, a, lda, ipiv, work, info)

call zhetri(uplo, n, a, lda, ipiv, work, info)

Fortran 95:

call hetri(a, ipiv [,uplo] [,info])

Description

This routine computes the inverse inv(A) of a complex Hermitian matrix A. Before calling this
routine, call ?hetrf to factorize A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the Bunch-Kaufman factorization A
= P*U*D*UH*PT.
If uplo = 'L', the array a stores the Bunch-Kaufman factorization A
= P*L*D*LH*PT.

INTEGER. The order of the matrix A; n ≥ 0.n

COMPLEX for chetria, work
DOUBLE COMPLEX for zhetri.
Arrays:
a(lda,*) contains the factorization of the matrix A, as returned by
?hetrf.
The second dimension of a must be at least max(1,n).
work(*) is a workspace array.
The dimension of work must be at least max(1,n).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER.ipiv

448

3 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least max(1, n). The ipiv array, as returned by
?hetrf.

Output Parameters

Overwritten by the n-by-n matrix inv(A).a

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of D is zero, D is singular, and
the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hetri interface are as follows:

Holds the matrix A of size (n,n).a

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed inverse X satisfies the following error bounds:

|D*UH*PT*X*P*U - I| ≤ c(n)ε(|D||UH|PT|X|P|U| + |D||D-1|)

for uplo = 'U', and

|D*LH*PT*X*P*L - I| ≤ c(n)ε(|D||LH|PT|X|P|L| + |D||D-1|)

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and
(8/3)n3 for complex flavors.

The real counterpart of this routine is ?sytri.

449

LAPACK Routines: Linear Equations 3

?sptri
Computes the inverse of a symmetric matrix using
packed storage.

Syntax

Fortran 77:

call ssptri(uplo, n, ap, ipiv, work, info)

call dsptri(uplo, n, ap, ipiv, work, info)

call csptri(uplo, n, ap, ipiv, work, info)

call zsptri(uplo, n, ap, ipiv, work, info)

Fortran 95:

call sptri(a, ipiv [,uplo] [,info])

Description

This routine computes the inverse inv(A) of a packed symmetric matrix A. Before calling this
routine, call ?sptrf to factorize A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the Bunch-Kaufman factorization
A = P*U*D*UT*PT.
If uplo = 'L', the array ap stores the Bunch-Kaufman factorization
A = P*L*D*LT*PT.

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for ssptriap, work
DOUBLE PRECISION for dsptri
COMPLEX for csptri
DOUBLE COMPLEX for zsptri.
Arrays:
ap(*) contains the factorization of the matrix A, as returned by ?sptrf.
The dimension of ap must be at least max(1,n(n+1)/2).
work(*) is a workspace array.

450

3 Intel® Math Kernel Library Reference Manual

The dimension of work must be at least max(1,n).

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The ipiv array, as returned by
?sptrf.

Output Parameters

Overwritten by the n-by-n matrix inv(A) in packed form.ap

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of D is zero, D is singular, and
the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sptri interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed inverse X satisfies the following error bounds:

|D*UT*PT*X*P*U - I| ≤ c(n)ε(|D||UT|PT|X|P|U| + |D||D-1|)

for uplo = 'U', and

|D*LT*PT*X*P*L - I| ≤ c(n)ε(|D||LT|PT|X|P|L| + |D||D-1|)

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and
(8/3)n3 for complex flavors.

451

LAPACK Routines: Linear Equations 3

?hptri
Computes the inverse of a complex Hermitian
matrix using packed storage.

Syntax

Fortran 77:

call chptri(uplo, n, ap, ipiv, work, info)

call zhptri(uplo, n, ap, ipiv, work, info)

Fortran 95:

call hptri(a, ipiv [,uplo] [,info])

Description

This routine computes the inverse inv(A) of a complex Hermitian matrix A using packed
storage. Before calling this routine, call ?hptrf to factorize A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed Bunch-Kaufman
factorization A = P*U*D*UH*PT.
If uplo = 'L', the array ap stores the packed Bunch-Kaufman
factorization A = P*L*D*LH*PT.

INTEGER. The order of the matrix A; n ≥ 0.n

COMPLEX for chptriap, work
DOUBLE COMPLEX for zhptri.
Arrays:
ap(*) contains the factorization of the matrix A, as returned by ?hptrf.
The dimension of ap must be at least max(1,n(n+1)/2).
work(*) is a workspace array.
The dimension of work must be at least max(1,n).

INTEGER.ipiv
Array, DIMENSION at least max(1, n).
The ipiv array, as returned by ?hptrf.

452

3 Intel® Math Kernel Library Reference Manual

Output Parameters

Overwritten by the n-by-n matrix inv(A).ap

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of D is zero, D is singular, and
the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hptri interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed inverse X satisfies the following error bounds:

|D*UH*PT*X*P*U - I| ≤ c(n)ε(|D||UH|PT|X|P|U| + |D||D-1|)

for uplo = 'U', and

|D*LH*PT*X*PL - I| ≤ c(n)ε(|D||LH|PT|X|P|L| + |D||D-1|)

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and
(8/3)n3 for complex flavors.

The real counterpart of this routine is ?sptri.

453

LAPACK Routines: Linear Equations 3

?trtri
Computes the inverse of a triangular matrix.

Syntax

Fortran 77:

call strtri(uplo, diag, n, a, lda, info)

call dtrtri(uplo, diag, n, a, lda, info)

call ctrtri(uplo, diag, n, a, lda, info)

call ztrtri(uplo, diag, n, a, lda, info)

Fortran 95:

call trtri(a [,uplo] [,diag] [,info])

Description

This routine computes the inverse inv(A) of a triangular matrix A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

CHARACTER*1. Must be 'N' or 'U'.diag
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', A is unit triangular: diagonal elements of A are assumed
to be 1 and not referenced in the array a.

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for strtria
DOUBLE PRECISION for dtrtri
COMPLEX for ctrtri
DOUBLE COMPLEX for ztrtri.
Array: DIMENSION (,*).
Contains the matrix A.
The second dimension of a must be at least max(1,n).

454

3 Intel® Math Kernel Library Reference Manual

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

Output Parameters

Overwritten by the n-by-n matrix inv(A).a

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of A is zero, A is singular, and
the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine trtri interface are as follows:

Holds the matrix A of size (n,n).a

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'U'. The default value is 'N'.diag

Application Notes

The computed inverse X satisfies the following error bounds:

|XA - I| ≤ c(n)ε |X||A|

|XA - I| ≤ c(n)ε |A-1||A||X|,

where c(n) is a modest linear function of n; ε is the machine precision; I denotes the identity
matrix.

The total number of floating-point operations is approximately (1/3)n3 for real flavors and
(4/3)n3 for complex flavors.

455

LAPACK Routines: Linear Equations 3

?tptri
Computes the inverse of a triangular matrix using
packed storage.

Syntax

Fortran 77:

call stptri(uplo, diag, n, ap, info)

call dtptri(uplo, diag, n, ap, info)

call ctptri(uplo, diag, n, ap, info)

call ztptri(uplo, diag, n, ap, info)

Fortran 95:

call tptri(a [,uplo] [,diag] [,info])

Description

This routine computes the inverse inv(A) of a packed triangular matrix A.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

CHARACTER*1. Must be 'N' or 'U'.diag
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', A is unit triangular: diagonal elements of A are assumed
to be 1 and not referenced in the array ap.

INTEGER. The order of the matrix A; n ≥ 0.n

REAL for stptriap
DOUBLE PRECISION for dtptri
COMPLEX for ctptri
DOUBLE COMPLEX for ztptri.
Array, DIMENSION at least max(1,n(n+1)/2).
Contains the packed triangular matrix A.

456

3 Intel® Math Kernel Library Reference Manual

Output Parameters

Overwritten by the packed n-by-n matrix inv(A) .ap

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of A is zero, A is singular, and
the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tptri interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'U'. The default value is 'N'.diag

Application Notes

The computed inverse X satisfies the following error bounds:

|XA - I| ≤ c(n)ε |X||A|

|X - A-1| ≤ c(n)ε |A-1||A||X|,

where c(n) is a modest linear function of n; ε is the machine precision; I denotes the identity
matrix.

The total number of floating-point operations is approximately (1/3)n3 for real flavors and
(4/3)n3 for complex flavors.

Routines for Matrix Equilibration

Routines described in this section are used to compute scaling factors needed to equilibrate a
matrix. Note that these routines do not actually scale the matrices.

457

LAPACK Routines: Linear Equations 3

?geequ
Computes row and column scaling factors intended
to equilibrate a matrix and reduce its condition
number.

Syntax

Fortran 77:

call sgeequ(m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call dgeequ(m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call cgeequ(m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call zgeequ(m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

Fortran 95:

call geequ(a, r, c [,rowcnd] [,colcnd] [,amax] [,info])

Description

This routine computes row and column scalings intended to equilibrate an m-by-n matrix A and
reduce its condition number. The output array r returns the row scale factors and the array c
the column scale factors. These factors are chosen to try to make the largest element in each
row and column of the matrix B with elements bij=r(i)*aij*c(j) have absolute value 1.

See ?laqge auxiliary function that uses scaling factors computed by ?geequ.

Input Parameters

INTEGER. The number of rows of the matrix A; m ≥ 0.m

INTEGER. The number of columns of the matrix A; n ≥ 0.n

REAL for sgeequa
DOUBLE PRECISION for dgeequ
COMPLEX for cgeequ
DOUBLE COMPLEX for zgeequ.
Array: DIMENSION (lda,*).
Contains the m-by-n matrix A whose equilibration factors are to be
computed.
The second dimension of a must be at least max(1,n).

458

3 Intel® Math Kernel Library Reference Manual

INTEGER. The leading dimension of a; lda ≥ max(1, m).lda

Output Parameters

REAL for single precision flavorsr, c
DOUBLE PRECISION for double precision flavors.
Arrays: r(m), c(n).
If info = 0, or info > m, the array r contains the row scale factors
of the matrix A.
If info = 0 , the array c contains the column scale factors of the
matrix A.

REAL for single precision flavorsrowcnd
DOUBLE PRECISION for double precision flavors.
If info = 0 or info > m, rowcnd contains the ratio of the smallest
r(i) to the largest r(i).

REAL for single precision flavorscolcnd
DOUBLE PRECISION for double precision flavors.
If info = 0, colcnd contains the ratio of the smallest c(i) to the
largest c(i).

REAL for single precision flavorsamax
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i and

i ≤ m, the i-th row of A is exactly zero;
i > m, the (i-m)th column of A is exactly zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine geequ interface are as follows:

Holds the matrix A of size (m, n).a

Holds the vector of length (m).r

459

LAPACK Routines: Linear Equations 3

Holds the vector of length (n).c

Application Notes

All the components of r and c are restricted to be between SMLNUM = smallest safe number
and BIGNUM= largest safe number. Use of these scaling factors is not guaranteed to reduce
the condition number of A but works well in practice.

If rowcnd ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by r.

If colcnd ≥ 0.1, it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

?gbequ
Computes row and column scaling factors intended
to equilibrate a band matrix and reduce its
condition number.

Syntax

Fortran 77:

call sgbequ(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)

call dgbequ(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)

call cgbequ(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)

call zgbequ(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)

Fortran 95:

call gbequ(a, r, c [,kl] [,rowcnd] [,colcnd] [,amax] [,info])

Description

This routine computes row and column scalings intended to equilibrate an m-by-n band matrix
A and reduce its condition number. The output array r returns the row scale factors and the
array c the column scale factors. These factors are chosen to try to make the largest element
in each row and column of the matrix B with elements bij=r(i)*aij*c(j) have absolute value
1.

See ?laqgb auxiliary function that uses scaling factors computed by ?gbequ.

460

3 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. The number of rows of the matrix A; m ≥ 0.m

INTEGER. The number of columns of the matrix A; n ≥ 0.n

INTEGER. The number of subdiagonals within the band of A; kl ≥ 0.kl

INTEGER. The number of superdiagonals within the band of A; ku ≥
0.

ku

REAL for sgbequab
DOUBLE PRECISION for dgbequ
COMPLEX for cgbequ
DOUBLE COMPLEX for zgbequ.
Array, DIMENSION (ldab,*).
Contains the original band matrix A stored in rows from 1 to kl + ku
+ 1.
The second dimension of ab must be at least max(1,n);

INTEGER. The leading dimension of ab; ldab ≥ kl+ku+1.ldab

Output Parameters

REAL for single precision flavorsr, c
DOUBLE PRECISION for double precision flavors.
Arrays: r(m), c(n).
If info = 0, or info > m, the array r contains the row scale factors
of the matrix A.
If info = 0 , the array c contains the column scale factors of the
matrix A.

REAL for single precision flavorsrowcnd
DOUBLE PRECISION for double precision flavors.
If info = 0 or info > m, rowcnd contains the ratio of the smallest
r(i) to the largest r(i).

REAL for single precision flavorscolcnd
DOUBLE PRECISION for double precision flavors.
If info = 0, colcnd contains the ratio of the smallest c(i) to the
largest c(i).

REAL for single precision flavorsamax
DOUBLE PRECISION for double precision flavors.

461

LAPACK Routines: Linear Equations 3

Absolute value of the largest element of the matrix A.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i and

i ≤ m, the i-th row of A is exactly zero;
i > m, the (i-m)th column of A is exactly zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gbequ interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kl+ku+1,n).

a

Holds the vector of length (m).r

Holds the vector of length (n).c

If omitted, assumed kl = ku.kl

Restored as ku = lda-kl-1.ku

Application Notes

All the components of r and c are restricted to be between SMLNUM = smallest safe number
and BIGNUM= largest safe number. Use of these scaling factors is not guaranteed to reduce
the condition number of A but works well in practice.

If rowcnd ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by r.

If colcnd ≥ 0.1, it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

462

3 Intel® Math Kernel Library Reference Manual

?poequ
Computes row and column scaling factors intended
to equilibrate a symmetric (Hermitian) positive
definite matrix and reduce its condition number.

Syntax

Fortran 77:

call spoequ(n, a, lda, s, scond, amax, info)

call dpoequ(n, a, lda, s, scond, amax, info)

call cpoequ(n, a, lda, s, scond, amax, info)

call zpoequ(n, a, lda, s, scond, amax, info)

Fortran 95:

call poequ(a, s [,scond] [,amax] [,info])

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian)
positive-definite matrix A and reduce its condition number (with respect to the two-norm). The
output array s returns scale factors computed as

These factors are chosen so that the scaled matrix B with elements bij=s(i)*aij*s(j) has
diagonal elements equal to 1.

This choice of s puts the condition number of B within a factor n of the smallest possible condition
number over all possible diagonal scalings.

See ?laqsy auxiliary function that uses scaling factors computed by ?poequ.

Input Parameters

INTEGER. The order of the matrix A; n ≥ 0.n

463

LAPACK Routines: Linear Equations 3

REAL for spoequa
DOUBLE PRECISION for dpoequ
COMPLEX for cpoequ
DOUBLE COMPLEX for zpoequ.
Array: DIMENSION (lda,*).
Contains the n-by-n symmetric or Hermitian positive definite matrix A
whose scaling factors are to be computed. Only diagonal elements of
A are referenced.
The second dimension of a must be at least max(1,n).

INTEGER. The leading dimension of a; lda ≥ max(1, m).lda

Output Parameters

REAL for single precision flavorss
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info = 0, the array s contains the scale factors for A.

REAL for single precision flavorsscond
DOUBLE PRECISION for double precision flavors.
If info = 0, scond contains the ratio of the smallest s(i) to the largest
s(i).

REAL for single precision flavorsamax
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of A is nonpositive.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine poequ interface are as follows:

Holds the matrix A of size (n,n).a

Holds the vector of length (n).s

464

3 Intel® Math Kernel Library Reference Manual

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by s.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

?ppequ
Computes row and column scaling factors intended
to equilibrate a symmetric (Hermitian) positive
definite matrix in packed storage and reduce its
condition number.

Syntax

Fortran 77:

call sppequ(uplo, n, ap, s, scond, amax, info)

call dppequ(uplo, n, ap, s, scond, amax, info)

call cppequ(uplo, n, ap, s, scond, amax, info)

call zppequ(uplo, n, ap, s, scond, amax, info)

Fortran 95:

call ppequ(a, s [,scond] [,amax] [,uplo] [,info])

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian)
positive definite matrix A in packed storage and reduce its condition number (with respect to
the two-norm). The output array s returns scale factors computed as

These factors are chosen so that the scaled matrix B with elements bij=s(i)*aij*s(j) has
diagonal elements equal to 1.

465

LAPACK Routines: Linear Equations 3

This choice of s puts the condition number of B within a factor n of the smallest possible condition
number over all possible diagonal scalings.

See ?laqsp auxiliary function that uses scaling factors computed by ?ppequ.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is packed in
the array ap:
If uplo = 'U', the array ap stores the upper triangular part of the
matrix A.
If uplo = 'L', the array ap stores the lower triangular part of the
matrix A.

INTEGER. The order of matrix A; n ≥ 0.n

REAL for sppequap
DOUBLE PRECISION for dppequ
COMPLEX for cppequ
DOUBLE COMPLEX for zppequ.
Array, DIMENSION at least max(1,n(n+1)/2). The array ap contains
the upper or the lower triangular part of the matrix A (as specified by
uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

REAL for single precision flavorss
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info = 0, the array s contains the scale factors for A.

REAL for single precision flavorsscond
DOUBLE PRECISION for double precision flavors.
If info = 0, scond contains the ratio of the smallest s(i) to the largest
s(i).

REAL for single precision flavorsamax
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

INTEGER.info
If info = 0, the execution is successful.

466

3 Intel® Math Kernel Library Reference Manual

If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of A is nonpositive.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ppequ interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n).s

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by s.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

?pbequ
Computes row and column scaling factors intended
to equilibrate a symmetric (Hermitian)
positive-definite band matrix and reduce its
condition number.

Syntax

Fortran 77:

call spbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)

call dpbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)

call cpbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)

call zpbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)

Fortran 95:

call pbequ(a, s [,scond] [,amax] [,uplo] [,info])

467

LAPACK Routines: Linear Equations 3

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian)
positive definite matrix A in packed storage and reduce its condition number (with respect to
the two-norm). The output array s returns scale factors computed as

These factors are chosen so that the scaled matrix B with elements bij=s(i)*aij*s(j) has
diagonal elements equal to 1. This choice of s puts the condition number of B within a factor n
of the smallest possible condition number over all possible diagonal scalings.

See ?laqsb auxiliary function that uses scaling factors computed by ?pbequ.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is packed in
the array ab:
If uplo = 'U', the array ab stores the upper triangular part of the
matrix A.
If uplo = 'L', the array ab stores the lower triangular part of the
matrix A.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of superdiagonals or subdiagonals in the matrix

A; kd ≥ 0.

kd

REAL for spbequab
DOUBLE PRECISION for dpbequ
COMPLEX for cpbequ
DOUBLE COMPLEX for zpbequ.
Array, DIMENSION (ldab,*).
The array ap contains either the upper or the lower triangular part of
the matrix A (as specified by uplo) in band storage (see Matrix
Storage Schemes).
The second dimension of ab must be at least max(1, n).

468

3 Intel® Math Kernel Library Reference Manual

INTEGER. The leading dimension of the array ab; ldab ≥ kd +1.ldab

Output Parameters

REAL for single precision flavorss
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info = 0, the array s contains the scale factors for A.

REAL for single precision flavorsscond
DOUBLE PRECISION for double precision flavors.
If info = 0, scond contains the ratio of the smallest s(i) to the largest
s(i).

REAL for single precision flavorsamax
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of A is nonpositive.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pbequ interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the vector of length (n).s

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by s.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

469

LAPACK Routines: Linear Equations 3

Driver Routines
Table 3-3 lists the LAPACK driver routines for solving systems of linear equations with real or
complex matrices.

Table 3-3 Driver Routines for Solving Systems of Linear Equations

Expert DriverSimple DriverMatrix type, storage
scheme

?gesvx?gesvgeneral

?gbsvx?gbsvgeneral band

?gtsvx?gtsvgeneral tridiagonal

?posvx?posvsymmetric/Hermitian
positive-definite

?ppsvx?ppsvsymmetric/Hermitian
positive-definite, storage

?pbsvx?pbsvsymmetric/Hermitian
positive-definite, band

?ptsvx?ptsvsymmetric/Hermitian
positive-definite, tridiagonal

?sysvx/?hesvx?sysv/?hesvsymmetric/Hermitian indefinite

?spsvx/?hpsvx?spsv/?hpsvsymmetric/Hermitian
indefinite, packed storage

?sysvx?sysvcomplex symmetric

?spsvx?spsvcomplex symmetric, packed
storage

In this table ? stands for s (single precision real), d (double precision real), c (single precision
complex), or z (double precision complex). In the description of ?gesv routine ? stands for
combined character codes ds and zc for the mixed precision subroutines.

470

3 Intel® Math Kernel Library Reference Manual

?gesv
Computes the solution to the system of linear
equations with a square matrix A and multiple
right-hand sides.

Syntax

Fortran 77:

call sgesv(n, nrhs, a, lda, ipiv, b, ldb, info)

call dgesv(n, nrhs, a, lda, ipiv, b, ldb, info)

call cgesv(n, nrhs, a, lda, ipiv, b, ldb, info)

call zgesv(n, nrhs, a, lda, ipiv, b, ldb, info)

call dsgesv(n, nrhs, a, lda, ipiv, b, ldb, x, ldx, work, swork, iter, info
)

call zcgesv(n, nrhs, a, lda, ipiv, b, ldb, x, ldx, work, swork, iter, info
)

Fortran 95:

call gesv(a, b [,ipiv] [,info])

Description

This routine solves for X the system of linear equations A*X = B, where A is an n-by-n matrix,
the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions.

The LU decomposition with partial pivoting and row interchanges is used to factor A as A =
P*L*U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular.
The factored form of A is then used to solve the system of equations A*X = B.

The dsgesv and zcgesv are mixed precision iterative refinement subroutines for exploiting
fast single precision hardware. They first attempt to factorize the matrix in single precision
(dsgesv) or single complex precision (zcgesv) and use this factorization within an iterative
refinement procedure to produce a solution with double precision (dsgesv) / double complex
precision (zcgesv) normwise backward error quality (see below). If the approach fails the
method switches to a double precision or double complex precision factorization respectively
and solve.

471

LAPACK Routines: Linear Equations 3

The iterative refinement is not going to be a winning strategy if the ratio single precision
performance over double precision performance is too small. A reasonable strategy should take
the number of right-hand sides and the size of the matrix into account. This might be done
with a call to ilaenv in the future. At present, iterative refinement is implemented.

The iterative refinement process is stopped if

iter > itermax

or for all the RHS:

RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX,

where

• iter is the number of the current iteration in the iterativerefinement process

• RNRM is the infinity-norm of the residual

• XNRM is the infinity-norm of the solution

• ANRM is the infinity-operator-norm of the matrix A

• EPS is the machine epsilon returned by dlamch (‘Epsilon’).

The values itermax and BWDMAX are fixed to 30 and 1.0D+00 respectively.

Input Parameters

INTEGER. The number of linear equations, that is, the order of the

matrix A; n ≥ 0.

n

INTEGER. The number of right-hand sides, that is, the number of

columns of the matrix B; nrhs ≥ 0.

nrhs

REAL for sgesva, b
DOUBLE PRECISION for dgesv and dsgesv
COMPLEX for cgesv
DOUBLE COMPLEX for zgesv and zcgesv.
Arrays: a(lda,*), b(ldb,*).
The array a contains the n-by-n coefficient matrix A.
The array b contains the n-by-nrhs matrix of right hand side matrix B.
The second dimension of a must be at least max(1, n), the second
dimension of b at least max(1, nrhs).

472

3 Intel® Math Kernel Library Reference Manual

INTEGER. The leading dimension of the array a; lda ≥ max(1, n).lda

INTEGER. The leading dimension of the array b; ldb ≥ max(1, n).ldb

INTEGER. The leading dimension of the array x; ldx ≥ max(1, n).ldx

DOUBLE PRECISION for dsgesvwork
DOUBLE COMPLEX for zcgesv.
Workspace array, DIMENSION (n*nrhs). This array is used to hold the
residual vectors.

SINGLE PRECISION for dsgesvswork
COMPLEX for zcgesv.
Workspace array, DIMENSION (n*(n+nrhs)). This array is used to use
the single precision matrix and the right-hand sides or solutions in
single precision.

Output Parameters

Overwritten by the factors L and U from the factorization of A = P*L*U;
the unit diagonal elements of L are not stored.

a

If iterative refinement has been successfully used (info= 0 and iter

≥ 0, see description below), then A is unchanged.
If double precision factorization has been used (info= 0 and iter <
0, see description below), then the array A contains the factors L and
U from the factorization A = P*L*U; the unit diagonal elements of L
are not stored.

Overwritten by the solution matrix X.b

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The pivot indices that define
the permutation matrix P; row i of the matrix was interchanged with
row ipiv(i). Corresponds to the single precision factorization (if info=

0 and iter ≥ 0) or the double precision factorization (if info= 0 and
iter < 0).

DOUBLE PRECISION for dsgesvx
DOUBLE COMPLEX for zcgesv.
Array, DIMENSION (ldx, nrhs). If info = 0, contains the n-by-nrhs
solution matrix X.

INTEGER.iter

473

LAPACK Routines: Linear Equations 3

If iter < 0: iterative refinement has failed, double precision
factorization has been performed

• If iter = -1: taking into account machine parameters, n, nrhs, it
is a priori not worth working in single precision

• If iter = -2: overflow of an entry when moving from double to
single precision

• If iter = -3: failure of sgetrf

• If iter = -31: stop the iterative refinement after the 30th iteration.

If iter > 0: iterative refinement has been sucessfully used. Returns
the number of iterations.

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, U(i, i) (computed in double precision for mixed precision
subroutines) is exactly zero. The factorization has been completed, but
the factor U is exactly singular, so the solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gesv interface are as follows:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,nrhs).b

Holds the vector of length (n).ipiv

NOTE. Fortran 95 Interface is so far not available for the mixed precision subroutines
dsgesv/zcgesv.

474

3 Intel® Math Kernel Library Reference Manual

?gesvx
Computes the solution to the system of linear
equations with a square matrix A and multiple
right-hand sides, and provides error bounds on the
solution.

Syntax

Fortran 77:

call sgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

call zgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

Fortran 95:

call gesvx(a, b, x [,af] [,ipiv] [,fact] [,trans] [,equed] [,r] [,c] [,ferr]
[,berr] [,rcond] [,rpvgrw] [,info])

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations A*X = B, where A is an n-by-n matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?gesvx performs the following steps:

1. If fact = 'E', real scaling factors r and c are computed to equilibrate the system:

trans = 'N': diag(r)*A*diag(c)*inv(diag(c))*X = diag(r)*B

trans = 'T': (diag(r)*A*diag(c))T*inv(diag(r))*X = diag(c)*B

trans = 'C': (diag(r)*A*diag(c))H*inv(diag(r))*X = diag(c)*B

475

LAPACK Routines: Linear Equations 3

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but
if equilibration is used, A is overwritten by diag(r)*A*diag(c) and B by diag(r)*B (if
trans='N') or diag(c)*B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', the LU decomposition is used to factor the matrix A (after
equilibration if fact = 'E') as A = P*L*U, where P is a permutation matrix, L is a unit
lower triangular matrix, and U is upper triangular.

3. If some Ui,i= 0, so that U is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.
If the reciprocal of the condition number is less than machine precision, info = n + 1 is
returned as a warning, but the routine still goes on to solve for X and compute error bounds
as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans = 'N') or
diag(r) (if trans = 'T' or 'C') so that it solves the original system before equilibration.

Input Parameters

CHARACTER*1. Must be 'F', 'N', or 'E'.fact
Specifies whether or not the factored form of the matrix A is supplied
on entry, and if not, whether the matrix A should be equilibrated before
it is factored.
If fact = 'F': on entry, af and ipiv contain the factored form of A.
If equed is not 'N', the matrix A has been equilibrated with scaling
factors given by r and c.

a, af, and ipiv are not modified.
If fact = 'N', the matrix A will be copied to af and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then
copied to af and factored.

CHARACTER*1. Must be 'N', 'T', or 'C'.trans
Specifies the form of the system of equations:
If trans = 'N', the system has the form A*X = B (No transpose).
If trans = 'T', the system has the form AT*X = B (Transpose).
If trans = 'C', the system has the form AH*X = B (Conjugate
transpose).

476

3 Intel® Math Kernel Library Reference Manual

INTEGER. The number of linear equations; the order of the matrix A;

n ≥ 0.

n

INTEGER. The number of right hand sides; the number of columns of

the matrices B and X; nrhs ≥ 0.

nrhs

REAL for sgesvxa,af,b,work
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).
The array a contains the matrix A. If fact = 'F' and equed is not 'N',
then A must have been equilibrated by the scaling factors in r and/or
c. The second dimension of a must be at least max(1,n).
The array af is an input argument if fact = 'F'. It contains the
factored form of the matrix A, that is, the factors L and U from the
factorization A = P*L*U as computed by ?getrf. If equed is not 'N',
then af is the factored form of the equilibrated matrix A. The second
dimension of af must be at least max(1,n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1, nrhs).
work(*) is a workspace array. The dimension of work must be at least
max(1,4*n) for real flavors, and at least max(1,2*n) for complex
flavors.

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of af; ldaf ≥ max(1, n).ldaf

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The array ipiv is an input
argument if fact = 'F'. It contains the pivot indices from the
factorization A = P*L*U as computed by ?getrf; row i of the matrix
was interchanged with row ipiv(i).

CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.equed
equed is an input argument if fact = 'F'. It specifies the form of
equilibration that was done:

477

LAPACK Routines: Linear Equations 3

If equed = 'N', no equilibration was done (always true if fact =
'N').
If equed = 'R', row equilibration was done and A has been
premultiplied by diag(r).
If equed = 'C', column equilibration was done and A has been
postmultiplied by diag(c).
If equed = 'B', both row and column equilibration was done; A has
been replaced by diag(r)*A*diag(c).

REAL for single precision flavorsr, c
DOUBLE PRECISION for double precision flavors.
Arrays: r(n), c(n). The array r contains the row scale factors for A,
and the array c contains the column scale factors for A. These arrays
are input arguments if fact = 'F' only; otherwise they are output
arguments.
If equed = 'R' or 'B', A is multiplied on the left by diag(r); if equed
= 'N' or 'C', r is not accessed.
If fact = 'F' and equed = 'R' or 'B', each element of r must be
positive.
If equed = 'C' or 'B', A is multiplied on the right by diag(c); if
equed = 'N' or 'R', c is not accessed.
If fact = 'F' and equed = 'C' or 'B', each element of c must be
positive.

INTEGER. The first dimension of the output array x; ldx ≥ max(1,
n).

ldx

INTEGER. Workspace array, DIMENSION at least max(1, n); used in
real flavors only.

iwork

REAL for single precision flavorsrwork
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max(1, 2*n); used in complex
flavors only.

Output Parameters

REAL for sgesvxx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.

478

3 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (ldx,*).
If info = 0 or info = n+1, the array x contains the solution matrix
X to the original system of equations. Note that A and B are modified

on exit if equed ≠ 'N', and the solution to the equilibrated system
is:
diag(C)-1*X, if trans = 'N' and equed = 'C' or 'B'; diag(R)-1*X,
if trans = 'T' or 'C' and equed = 'R' or 'B'. The second dimension
of x must be at least max(1,nrhs).

Array a is not modified on exit if fact = 'F' or 'N', or if fact = 'E'

and equed = 'N'. If equed ≠ 'N', A is scaled on exit as follows:

a

equed = 'R': A = diag(R)*A
equed = 'C': A = A*diag(c)
equed = 'B': A = diag(R)*A*diag(c).

If fact = 'N' or 'E', then af is an output argument and on exit
returns the factors L and U from the factorization A = PLU of the original
matrix A (if fact = 'N') or of the equilibrated matrix A (if fact =
'E'). See the description of a for the form of the equilibrated matrix.

af

Overwritten by diag(r)*B if trans = 'N' and equed = 'R' or 'B';b
overwritten by diag(c)*B if trans = 'T' and equed = 'C' or 'B';
not changed if equed = 'N'.

These arrays are output arguments if fact ≠ 'F'. See the description
of r, c in Input Arguments section.

r, c

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done). The routine sets rcond = 0 if the estimate
underflows; in this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0, for the working
precision, the matrix may be poorly conditioned or even singular.

REAL for single precision flavors.ferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

479

LAPACK Routines: Linear Equations 3

If fact = 'N' or 'E', then ipiv is an output argument and on exit
contains the pivot indices from the factorization A = P*L*U of the
original matrix A (if fact = 'N') or of the equilibrated matrix A (if
fact = 'E').

ipiv

If fact ≠ 'F' , then equed is an output argument. It specifies the
form of equilibration that was done (see the description of equed in
Input Arguments section).

equed

On exit, work(1) for real flavors, or rwork(1) for complex flavors,
contains the reciprocal pivot growth factor norm(A)/norm(U). The "max
absolute element" norm is used. If work(1) for real flavors, or

work, rwork

rwork(1) for complex flavors is much less than 1, then the stability
of the LU factorization of the (equilibrated) matrix A could be poor. This
also means that the solution x, condition estimator rcond, and forward
error bound ferr could be unreliable. If factorization fails with 0 <

info ≤ n, then work(1) for real flavors, or rwork(1) for complex
flavors contains the reciprocal pivot growth factor for the leading info
columns of A.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

If info = i, and i ≤ n, then U(i, i) is exactly zero. The factorization
has been completed, but the factor U is exactly singular, so the solution
and error bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n+1, then U is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gesvx interface are as follows:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,nrhs).b

480

3 Intel® Math Kernel Library Reference Manual

Holds the matrix X of size (n,nrhs).x

Holds the matrix AF of size (n,n).af

Holds the vector of length (n).ipiv

Holds the vector of length (n). Default value for each element is r(i)
= 1.0_WP.

r

Holds the vector of length (n). Default value for each element is c(i)
= 1.0_WP.

c

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F',
then both arguments af and ipiv must be present; otherwise, an error
is returned.

fact

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

Must be 'N', 'B', 'C', or 'R'. The default value is 'N'.equed

Real value that contains the reciprocal pivot growth factor
norm(A)/norm(U).

rpvgrw

?gbsv
Computes the solution to the system of linear
equations with a band matrix A and multiple
right-hand sides.

Syntax

Fortran 77:

call sgbsv(n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call dgbsv(n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call cgbsv(n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call zgbsv(n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

Fortran 95:

call gbsv(a, b [,kl] [,ipiv] [,info])

481

LAPACK Routines: Linear Equations 3

Description

This routine solves for X the real or complex system of linear equations A*X = B, where A is
an n-by-n band matrix with kl subdiagonals and ku superdiagonals, the columns of matrix B
are individual right-hand sides, and the columns of X are the corresponding solutions.

The LU decomposition with partial pivoting and row interchanges is used to factor A as A = L*U,
where L is a product of permutation and unit lower triangular matrices with kl subdiagonals,
and U is upper triangular with kl+ku superdiagonals. The factored form of A is then used to
solve the system of equations A*X = B.

Input Parameters

INTEGER. The order of A. The number of rows in B; n ≥ 0.n

INTEGER. The number of subdiagonals within the band of A; kl ≥ 0.kl

INTEGER. The number of superdiagonals within the band of A; ku ≥ 0.ku

INTEGER. The number of right-hand sides. The number of columns in

B; nrhs ≥ 0.

nrhs

REAL for sgbsvab, b
DOUBLE PRECISION for dgbsv
COMPLEX for cgbsv
DOUBLE COMPLEX for zgbsv.
Arrays: ab(ldab,*), b(ldb,*).
The array ab contains the matrix A in band storage (see Matrix Storage
Schemes). The second dimension of ab must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1,nrhs).

INTEGER. The first dimension of the array ab. (ldab ≥ 2kl + ku +1)ldab

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by L and U. The diagonal and kl + ku superdiagonals of U
are stored in the first 1 + kl + ku rows of ab. The multipliers used to
form L are stored in the next kl rows.

ab

Overwritten by the solution matrix X.b

482

3 Intel® Math Kernel Library Reference Manual

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The pivot indices: row i was
interchanged with row ipiv(i).

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, U(i, i) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, so the solution could
not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gbsv interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(2*kl+ku+1,n).

a

Holds the matrix B of size (n,nrhs).b

Holds the vector of length (n).ipiv

If omitted, assumed kl = ku.kl

Restored as ku = lda-2*kl-1.ku

483

LAPACK Routines: Linear Equations 3

?gbsvx
Computes the solution to the real or complex
system of linear equations with a band matrix A
and multiple right-hand sides, and provides error
bounds on the solution.

Syntax

Fortran 77:

call sgbsvx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed,
r, c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dgbsvx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed,
r, c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cgbsvx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed,
r, c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

call zgbsvx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed,
r, c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

Fortran 95:

call gbsvx(a, b, x [,kl] [,af] [,ipiv] [,fact] [,trans] [,equed] [,r] [,c]
[,ferr] [,berr] [,rcond] [,rpvgrw] [,info])

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations A*X = B, AT*X = B, or AH*X = B, where A is a band matrix of order n with kl

subdiagonals and ku superdiagonals, the columns of matrix B are individual right-hand sides,
and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?gbsvx performs the following steps:

1. If fact = 'E', real scaling factors r and c are computed to equilibrate the system:

trans = 'N': diag(r)*A*diag(c) *inv(diag(c))*X = diag(r)*B

trans = 'T': (diag(r)*A*diag(c))T *inv(diag(r))*X = diag(c)*B

trans = 'C': (diag(r)*A*diag(c))H *inv(diag(r))*X = diag(c)*B

484

3 Intel® Math Kernel Library Reference Manual

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but
if equilibration is used, A is overwritten by diag(r)*A*diag(c) and B by diag(r)*B (if
trans='N') or diag(c)*B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', the LU decomposition is used to factor the matrix A (after equilibration
if fact = 'E') as A = L*U, where L is a product of permutation and unit lower triangular
matrices with kl subdiagonals, and U is upper triangular with kl+ku superdiagonals.

3. If some Ui,i = 0, so that U is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.
If the reciprocal of the condition number is less than machine precision, info = n + 1 is
returned as a warning, but the routine still goes on to solve for X and compute error bounds
as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans = 'N') or
diag(r) (if trans = 'T' or 'C') so that it solves the original system before equilibration.

Input Parameters

CHARACTER*1. Must be 'F', 'N', or 'E'.fact
Specifies whether or not the factored form of the matrix A is supplied
on entry, and if not, whether the matrix A should be equilibrated before
it is factored.
If fact = 'F': on entry, afb and ipiv contain the factored form of
A. If equed is not 'N', the matrix A has been equilibrated with scaling
factors given by r and c.

ab, afb, and ipiv are not modified.
If fact = 'N', the matrix A will be copied to afb and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then
copied to afb and factored.

CHARACTER*1. Must be 'N', 'T', or 'C'.trans
Specifies the form of the system of equations:
If trans = 'N', the system has the form A*X = B (No transpose).
If trans = 'T', the system has the form AT*X = B (Transpose).
If trans = 'C', the system has the form AH*X = B (Conjugate
transpose).

485

LAPACK Routines: Linear Equations 3

INTEGER. The number of linear equations, the order of the matrix A;

n ≥ 0.

n

INTEGER. The number of subdiagonals within the band of A; kl ≥ 0.kl

INTEGER. The number of superdiagonals within the band of A; ku ≥ 0.ku

INTEGER. The number of right hand sides, the number of columns of

the matrices B and X; nrhs ≥ 0.

nrhs

REAL for sgesvxab,afb,b,work
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).
The array ab contains the matrix A in band storage (see Matrix Storage
Schemes). The second dimension of ab must be at least max(1, n).
If fact = 'F' and equed is not 'N', then A must have been
equilibrated by the scaling factors in r and/or c.
The array afb is an input argument if fact = 'F'. The second
dimension of afb must be at least max(1,n). It contains the factored
form of the matrix A, that is, the factors L and U from the factorization
A = L*U as computed by ?gbtrf. U is stored as an upper triangular
band matrix with kl + ku superdiagonals in the first 1 + kl + ku rows
of afb. The multipliers used during the factorization are stored in the
next kl rows. If equed is not 'N', then afb is the factored form of the
equilibrated matrix A.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1, nrhs).
work(*) is a workspace array. The dimension of work must be at least
max(1,3*n) for real flavors, and at least max(1,2*n) for complex
flavors.

INTEGER. The first dimension of ab; ldab ≥ kl+ku+1.ldab

INTEGER. The first dimension of afb; ldafb ≥ 2*kl+ku+1.ldafb

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER.ipiv

486

3 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least max(1, n). The array ipiv is an input
argument if fact = 'F'. It contains the pivot indices from the
factorization A = L*U as computed by ?gbtrf; row i of the matrix
was interchanged with row ipiv(i).

CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.equed
equed is an input argument if fact = 'F'. It specifies the form of
equilibration that was done:
If equed = 'N', no equilibration was done (always true if fact =
'N').
If equed = 'R', row equilibration was done and A has been
premultiplied by diag(r).
If equed = 'C', column equilibration was done and A has been
postmultiplied by diag(c).
if equed = 'B', both row and column equilibration was done; A has
been replaced by diag(r)*A*diag(c).

REAL for single precision flavorsr, c
DOUBLE PRECISION for double precision flavors.
Arrays: r(n), c(n).
The array r contains the row scale factors for A, and the array c contains
the column scale factors for A. These arrays are input arguments if
fact = 'F' only; otherwise they are output arguments.
If equed = 'R' or 'B', A is multiplied on the left by diag(r); if equed
= 'N' or 'C', r is not accessed.
If fact = 'F' and equed = 'R' or 'B', each element of r must be
positive.
If equed = 'C' or 'B', A is multiplied on the right by diag(c); if
equed = 'N' or 'R', c is not accessed.
If fact = 'F' and equed = 'C' or 'B', each element of c must be
positive.

INTEGER. The first dimension of the output array x; ldx ≥ max(1,
n).

ldx

INTEGER. Workspace array, DIMENSION at least max(1, n); used in
real flavors only.

iwork

REAL for single precision flavorsrwork
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max(1, n); used in complex
flavors only.

487

LAPACK Routines: Linear Equations 3

Output Parameters

REAL for sgbsvxx
DOUBLE PRECISION for dgbsvx
COMPLEX for cgbsvx
DOUBLE COMPLEX for zgbsvx.
Array, DIMENSION (ldx,*).
If info = 0 or info = n+1, the array x contains the solution matrix
X to the original system of equations. Note that A and B are modified

on exit if equed ≠ 'N', and the solution to the equilibrated system
is: inv(diag(c))*X, if trans = 'N' and equed = 'C' or 'B';
inv(diag(r))*X, if trans = 'T' or 'C' and equed = 'R' or 'B'.
The second dimension of x must be at least max(1,nrhs).

Array ab is not modified on exit if fact = 'F' or 'N', or if fact =
'E' and equed = 'N'.

ab

If equed ≠ 'N', A is scaled on exit as follows:
equed = 'R': A = diag(r)*A
equed = 'C': A = A*diag(c)
equed = 'B': A = diag(r)*A*diag(c).

If fact = 'N' or 'E', then afb is an output argument and on exit
returns details of the LU factorization of the original matrix A (if fact
= 'N') or of the equilibrated matrix A (if fact = 'E'). See the
description of ab for the form of the equilibrated matrix.

afb

Overwritten by diag(r)*b if trans = 'N' and equed = 'R' or 'B';b
overwritten by diag(c)*b if trans = 'T' and equed = 'C' or 'B';
not changed if equed = 'N'.

These arrays are output arguments if fact ≠ 'F'. See the description
of r, c in Input Arguments section.

r, c

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done).
If rcond is less than the machine precision (in particular, if rcond =0),
the matrix is singular to working precision. This condition is indicated
by a return code of info>0.

REAL for single precision flavorsferr, berr

488

3 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

If fact = 'N' or 'E', then ipiv is an output argument and on exit
contains the pivot indices from the factorization A = L*U of the original
matrix A (if fact = 'N') or of the equilibrated matrix A (if fact =
'E').

ipiv

If fact ≠ 'F' , then equed is an output argument. It specifies the
form of equilibration that was done (see the description of equed in
Input Arguments section).

equed

On exit, work(1) for real flavors, or rwork(1) for complex flavors,
contains the reciprocal pivot growth factor norm(A)/norm(U). The "max
absolute element" norm is used. If work(1) for real flavors, or

work, rwork

rwork(1) for complex flavors is much less than 1, then the stability
of the LU factorization of the (equilibrated) matrix A could be poor. This
also means that the solution x, condition estimator rcond, and forward
error bound ferr could be unreliable. If factorization fails with 0 <

info ≤ n, then work(1) for real flavors, or rwork(1) for complex
flavors contains the reciprocal pivot growth factor for the leading info
columns of A.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

If info = i, and i ≤ n, then U(i, i) is exactly zero. The factorization
has been completed, but the factor U is exactly singular, so the solution
and error bounds could not be computed; rcond = 0 is returned. If
info = i, and i = n+1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

489

LAPACK Routines: Linear Equations 3

Specific details for the routine gbsvx interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kl+ku+1,n).

a

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Stands for argument ab in Fortan 77 interface. Holds the array AF of
size (2*kl+ku+1,n).

af

Holds the vector of length (n).ipiv

Holds the vector of length (n). Default value for each element is r(i)
= 1.0_WP.

r

Holds the vector of length (n). Default value for each element is c(i)
= 1.0_WP.

c

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

Must be 'N', 'B', 'C', or 'R'. The default value is 'N'.equed

Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F',
then both arguments af and ipiv must be present; otherwise, an error
is returned.

fact

Real value that contains the reciprocal pivot growth factor
norm(A)/norm(U).

rpvgrw

If omitted, assumed kl = ku.kl

Restored as ku = lda-kl-1.ku

490

3 Intel® Math Kernel Library Reference Manual

?gtsv
Computes the solution to the system of linear
equations with a tridiagonal matrix A and multiple
right-hand sides.

Syntax

Fortran 77:

call sgtsv(n, nrhs, dl, d, du, b, ldb, info)

call dgtsv(n, nrhs, dl, d, du, b, ldb, info)

call cgtsv(n, nrhs, dl, d, du, b, ldb, info)

call zgtsv(n, nrhs, dl, d, du, b, ldb, info)

Fortran 95:

call gtsv(dl, d, du, b [,info])

Description

This routine solves for X the system of linear equations A*X = B, where A is an n-by-n tridiagonal
matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions. The routine uses Gaussian elimination with partial pivoting.

Note that the equation AT*X = B may be solved by interchanging the order of the arguments
du and dl.

Input Parameters

INTEGER. The order of A, the number of rows in B; n ≥ 0.n

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

REAL for sgtsvdl, d, du, b
DOUBLE PRECISION for dgtsv
COMPLEX for cgtsv
DOUBLE COMPLEX for zgtsv.
Arrays: dl(n - 1), d(n), du(n - 1), b(ldb,*).
The array dl contains the (n - 1) subdiagonal elements of A.
The array d contains the diagonal elements of A.

491

LAPACK Routines: Linear Equations 3

The array du contains the (n - 1) superdiagonal elements of A.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1,nrhs).

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the (n-2) elements of the second superdiagonal of the
upper triangular matrix U from the LU factorization of A. These elements
are stored in dl(1), ... , dl(n-2).

dl

Overwritten by the n diagonal elements of U.d

Overwritten by the (n-1) elements of the first superdiagonal of U.du

Overwritten by the solution matrix X.b

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, U(i, i) is exactly zero, and the solution has not been
computed. The factorization has not been completed unless i = n.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gtsv interface are as follows:

Holds the vector of length (n-1).dl

Holds the vector of length (n).d

Holds the vector of length (n-1).dl

Holds the matrix B of size (n,nrhs).b

492

3 Intel® Math Kernel Library Reference Manual

?gtsvx
Computes the solution to the real or complex
system of linear equations with a tridiagonal matrix
A and multiple right-hand sides, and provides error
bounds on the solution.

Syntax

Fortran 77:

call sgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, iwork, info)

call dgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, iwork, info)

call cgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, rwork, info)

call zgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, rwork, info)

Fortran 95:

call gtsvx(dl, d, du, b, x [,dlf] [,df] [,duf] [,du2] [,ipiv] [,fact] [,trans]
[,ferr] [,berr] [,rcond] [,info])

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations A*X = B, AT*X = B, or AH*X = B, where A is a tridiagonal matrix of order n,
the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?gtsvx performs the following steps:

1. If fact = 'N', the LU decomposition is used to factor the matrix A as A = L*U, where L
is a product of permutation and unit lower bidiagonal matrices and U is an upper triangular
matrix with nonzeroes in only the main diagonal and first two superdiagonals.

493

LAPACK Routines: Linear Equations 3

2. If some Ui,i = 0, so that U is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.
If the reciprocal of the condition number is less than machine precision, info = n + 1 is
returned as a warning, but the routine still goes on to solve for X and compute error bounds
as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

CHARACTER*1. Must be 'F' or 'N'.fact
Specifies whether or not the factored form of the matrix A has been
supplied on entry.
If fact = 'F': on entry, dlf, df, duf, du2, and ipiv contain the
factored form of A; arrays dl, d, du, dlf, df, duf, du2, and ipiv will
not be modified.
If fact = 'N', the matrix A will be copied to dlf, df, and duf and
factored.

CHARACTER*1. Must be 'N', 'T', or 'C'.trans
Specifies the form of the system of equations:
If trans = 'N', the system has the form A*X = B (No transpose).
If trans = 'T', the system has the form AT*X = B (Transpose).
If trans = 'C', the system has the form AH*X = B (Conjugate
transpose).

INTEGER. The number of linear equations, the order of the matrix A;

n ≥ 0.

n

INTEGER. The number of right hand sides, the number of columns of

the matrices B and X; nrhs ≥ 0.

nrhs

REAL for sgtsvxdl,d,du,dlf,df,
duf,du2,b, DOUBLE PRECISION for dgtsvx

COMPLEX for cgtsvx
DOUBLE COMPLEX for zgtsvx.x,work
Arrays:
dl, dimension (n -1), contains the subdiagonal elements of A.
d, dimension (n), contains the diagonal elements of A.
du, dimension (n -1), contains the superdiagonal elements of A.

494

3 Intel® Math Kernel Library Reference Manual

dlf, dimension (n -1). If fact = 'F' , then dlf is an input argument
and on entry contains the (n -1) multipliers that define the matrix L
from the LU factorization of A as computed by ?gttrf.
df, dimension (n). If fact = 'F' , then df is an input argument and
on entry contains the n diagonal elements of the upper triangular matrix
U from the LU factorization of A.
duf, dimension (n -1). If fact = 'F' , then duf is an input argument
and on entry contains the (n -1) elements of the first superdiagonal of
U.
du2, dimension (n -2). If fact = 'F' , then du2 is an input argument
and on entry contains the (n-2) elements of the second superdiagonal
of U.
b(ldb*) contains the right-hand side matrix B. The second dimension
of b must be at least max(1, nrhs).
x(ldx*) contains the solution matrix X. The second dimension of x
must be at least max(1, nrhs).
work(*) is a workspace array;
the dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The first dimension of x; ldx ≥ max(1, n).ldx

INTEGER.ipiv
Array, DIMENSION at least max(1, n). If fact = 'F' , then ipiv is
an input argument and on entry contains the pivot indices, as returned
by ?gttrf.

INTEGER. Workspace array, DIMENSION (n). Used for real flavors only.iwork

REAL for cgtsvxrwork
DOUBLE PRECISION for zgtsvx.
Workspace array, DIMENSION (n). Used for complex flavors only.

Output Parameters

REAL for sgtsvxx
DOUBLE PRECISION for dgtsvx
COMPLEX for cgtsvx
DOUBLE COMPLEX for zgtsvx.
Array, DIMENSION (ldx,*).

495

LAPACK Routines: Linear Equations 3

If info = 0 or info = n+1, the array x contains the solution matrix
X. The second dimension of x must be at least max(1, nrhs).

If fact = 'N' , then dlf is an output argument and on exit contains
the (n-1) multipliers that define the matrix L from the LU factorization
of A.

dlf

If fact = 'N' , then df is an output argument and on exit contains
the n diagonal elements of the upper triangular matrix U from the LU
factorization of A.

df

If fact = 'N' , then duf is an output argument and on exit contains
the (n-1) elements of the first superdiagonal of U.

duf

If fact = 'N' , then du2 is an output argument and on exit contains
the (n-2) elements of the second superdiagonal of U.

du2

The array ipiv is an output argument if fact = 'N' and, on exit,
contains the pivot indices from the factorization A = L*U ; row i of
the matrix was interchanged with row ipiv(i). The value of ipiv(i)
will always be i or i+1; ipiv(i)=i indicates a row interchange was
not required.

ipiv

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A. If rcond
is less than the machine precision (in particular, if rcond =0), the matrix
is singular to working precision. This condition is indicated by a return
code of info>0.

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

If info = i, and i ≤ n, then U(i, i) is exactly zero. The factorization
has not been completed unless i = n, but the factor U is exactly
singular, so the solution and error bounds could not be computed;
rcond = 0 is returned. If info = i, and i = n + 1, then U is
nonsingular, but rcond is less than machine precision, meaning that
the matrix is singular to working precision. Nevertheless, the solution

496

3 Intel® Math Kernel Library Reference Manual

and error bounds are computed because there are a number of
situations where the computed solution can be more accurate than the
value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gtsvx interface are as follows:

Holds the vector of length (n-1).dl

Holds the vector of length (n).d

Holds the vector of length (n-1).du

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the vector of length (n-1).dlf

Holds the vector of length (n).df

Holds the vector of length (n-1).duf

Holds the vector of length (n-2).du2

Holds the vector of length (n).ipiv

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then the
arguments dlf, df, duf, du2, and ipiv must be present; otherwise,
an error is returned.

fact

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

497

LAPACK Routines: Linear Equations 3

?posv
Computes the solution to the system of linear
equations with a symmetric or Hermitian
positive-definite matrix A and multiple right-hand
sides.

Syntax

Fortran 77:

call sposv(uplo, n, nrhs, a, lda, b, ldb, info)

call dposv(uplo, n, nrhs, a, lda, b, ldb, info)

call cposv(uplo, n, nrhs, a, lda, b, ldb, info)

call zposv(uplo, n, nrhs, a, lda, b, ldb, info)

Fortran 95:

call posv(a, b [,uplo] [,info])

Description

This routine solves for X the real or complex system of linear equations A*X = B, where A is
an n-by-n symmetric/Hermitian positive-definite matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as

A = UT*U (real flavors) and A = UH*U (complex flavors), if uplo = 'U'

or A = L*LT (real flavors) and A = L*LH (complex flavors), if uplo = 'L',

where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of
A is then used to solve the system of equations A*X = B.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

498

3 Intel® Math Kernel Library Reference Manual

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

REAL for sposva, b
DOUBLE PRECISION for dposv
COMPLEX for cposv
DOUBLE COMPLEX for zposv.
Arrays: a(lda,*), b(ldb,*). The array a contains the upper or the
lower triangular part of the matrix A (see uplo). The second dimension
of a must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1,nrhs).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

If info = 0, the upper or lower triangular part of a is overwritten by
the Cholesky factor U or L, as specified by uplo.

a

Overwritten by the solution matrix X.b

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, the leading minor of order i (and therefore the matrix A
itself) is not positive definite, so the factorization could not be
completed, and the solution has not been computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine posv interface are as follows:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,nrhs).b

Must be 'U' or 'L'. The default value is 'U'.uplo

499

LAPACK Routines: Linear Equations 3

?posvx
Uses the Cholesky factorization to compute the
solution to the system of linear equations with a
symmetric or Hermitian positive definite matrix A,
and provides error bounds on the solution.

Syntax

Fortran 77:

call sposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

call dposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

call cposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

call zposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

Fortran 95:

call posvx(a, b, x [,uplo] [,af] [,fact] [,equed] [,s] [,ferr] [,berr] [,rcond]
[,info])

Description

This routine uses the Cholesky factorization A=UT*U (real flavors) / A=UH*U (complex flavors)
or A=L*LT (real flavors) / A=L*LH (complex flavors) to compute the solution to a real or complex
system of linear equations A*X = B, where A is a n-by-n real symmetric/Hermitian positive
definite matrix, the columns of matrix B are individual right-hand sides, and the columns of X
are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?posvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate the system:

diag(s)*A*diag(s)*inv(diag(s))*X = diag(s)*B.

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but
if equilibration is used, A is overwritten by diag(s)*A*diag(s) and B by diag(s)*B.

500

3 Intel® Math Kernel Library Reference Manual

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the matrix A (after
equilibration if fact = 'E') as

A = UT*U (real), A = UH*U (complex), if uplo = 'U',

or A = L*LT (real), A = L*LH (complex) , if uplo = 'L',

where U is an upper triangular matrix and L is a lower triangular matrix.

3. If the leading i-by-i principal minor is not positive-definite, then the routine returns with
info = i. Otherwise, the factored form of A is used to estimate the condition number of
the matrix A. If the reciprocal of the condition number is less than machine precision, info
= n + 1 is returned as a warning, but the routine still goes on to solve for X and compute
error bounds as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the
original system before equilibration.

Input Parameters

CHARACTER*1. Must be 'F', 'N', or 'E'.fact
Specifies whether or not the factored form of the matrix A is supplied
on entry, and if not, whether the matrix A should be equilibrated before
it is factored.
If fact = 'F': on entry, af contains the factored form of A. If equed
= 'Y', the matrix A has been equilibrated with scaling factors given
by s.

a and af will not be modified.
If fact = 'N', the matrix A will be copied to af and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then
copied to af and factored.

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

501

LAPACK Routines: Linear Equations 3

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

REAL for sposvxa,af,b,work
DOUBLE PRECISION for dposvx
COMPLEX for cposvx
DOUBLE COMPLEX for zposvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).
The array a contains the matrix A as specified by uplo. If fact = 'F'
and equed = 'Y', then A must have been equilibrated by the scaling
factors in s, and a must contain the equilibrated matrix
diag(s)*A*diag(s). The second dimension of a must be at least
max(1,n).
The array af is an input argument if fact = 'F'. It contains the
triangular factor U or L from the Cholesky factorization of A in the same
storage format as A. If equed is not 'N', then af is the factored form
of the equilibrated matrix diag(s)*A*diag(s). The second dimension
of af must be at least max(1,n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1, nrhs).
work(*) is a workspace array. The dimension of work must be at least
max(1,3*n) for real flavors, and at least max(1,2*n) for complex
flavors.

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of af; ldaf ≥ max(1, n).ldaf

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

CHARACTER*1. Must be 'N' or 'Y'.equed
equed is an input argument if fact = 'F'. It specifies the form of
equilibration that was done:
if equed = 'N', no equilibration was done (always true if fact =
'N');
if equed = 'Y', equilibration was done and A has been replaced by
diag(s)*A*diag(s).

REAL for single precision flavorss
DOUBLE PRECISION for double precision flavors.

502

3 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (n). The array s contains the scale factors for A. This
array is an input argument if fact = 'F' only; otherwise it is an output
argument.
If equed = 'N', s is not accessed.
If fact = 'F' and equed = 'Y', each element of s must be positive.

INTEGER. The first dimension of the output array x; ldx ≥ max(1,
n).

ldx

INTEGER. Workspace array, DIMENSION at least max(1, n); used in
real flavors only.

iwork

REAL for cposvxrwork
DOUBLE PRECISION for zposvx.
Workspace array, DIMENSION at least max(1, n); used in complex
flavors only.

Output Parameters

REAL for sposvxx
DOUBLE PRECISION for dposvx
COMPLEX for cposvx
DOUBLE COMPLEX for zposvx.
Array, DIMENSION (ldx,*).
If info = 0 or info = n+1, the array x contains the solution matrix
X to the original system of equations. Note that if equed = 'Y', A and
B are modified on exit, and the solution to the equilibrated system is
inv(diag(s))*X. The second dimension of x must be at least
max(1,nrhs).

Array a is not modified on exit if fact = 'F' or 'N', or if fact = 'E'
and equed = 'N'.

a

If fact = 'E' and equed = 'Y', A is overwritten by
diag(s)*A*diag(s).

If fact = 'N' or 'E', then af is an output argument and on exit
returns the triangular factor U or L from the Cholesky factorization
A=UT*U or A=L*LT (real routines), A=UH*U or A=L*LH (complex routines)

af

of the original matrix A (if fact = 'N'), or of the equilibrated matrix
A (if fact = 'E'). See the description of a for the form of the
equilibrated matrix.

503

LAPACK Routines: Linear Equations 3

Overwritten by diag(s)*B , if equed = 'Y'; not changed if equed =
'N'.

b

This array is an output argument if fact ≠ 'F'. See the description
of s in Input Arguments section.

s

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond =0), the matrix is singular to working precision.
This condition is indicated by a return code of info>0.

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

If fact ≠ 'F' , then equed is an output argument. It specifies the
form of equilibration that was done (see the description of equed in
Input Arguments section).

equed

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

If info = i, and i ≤ n, the leading minor of order i (and therefore
the matrix A itself) is not positive-definite, so the factorization could
not be completed, and the solution and error bounds could not be
computed; rcond =0 is returned.
If info = i, and i = n + 1, then U is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine posvx interface are as follows:

504

3 Intel® Math Kernel Library Reference Manual

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the matrix AF of size (n,n).af

Holds the vector of length (n). Default value for each element is s(i)
= 1.0_WP.

s

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F',
then af must be present; otherwise, an error is returned.

fact

Must be 'N' or 'Y'. The default value is 'N'.equed

?ppsv
Computes the solution to the system of linear
equations with a symmetric (Hermitian) positive
definite packed matrix A and multiple right-hand
sides.

Syntax

Fortran 77:

call sppsv(uplo, n, nrhs, ap, b, ldb, info)

call dppsv(uplo, n, nrhs, ap, b, ldb, info)

call cppsv(uplo, n, nrhs, ap, b, ldb, info)

call zppsv(uplo, n, nrhs, ap, b, ldb, info)

Fortran 95:

call ppsv(a, b [,uplo] [,info])

505

LAPACK Routines: Linear Equations 3

Description

This routine solves for X the real or complex system of linear equations A*X = B, where A is
an n-by-n real symmetric/Hermitian positive-definite matrix stored in packed format, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding
solutions.

The Cholesky decomposition is used to factor A as

A = UT*U (real flavors) and A = UH*U (complex flavors), if uplo = 'U'

or A = L*LT (real flavors) and A = L*LH (complex flavors), if uplo = 'L',

where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of
A is then used to solve the system of equations A*X = B.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

REAL for sppsvap, b
DOUBLE PRECISION for dppsv
COMPLEX for cppsv
DOUBLE COMPLEX for zppsv.
Arrays: ap(*), b(ldb,*). The array ap contains the upper or the lower
triangular part of the matrix A (as specified by uplo) in packed
storage (see Matrix Storage Schemes). The dimension of ap must be
at least max(1,n(n+1)/2).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1,nrhs).

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

506

3 Intel® Math Kernel Library Reference Manual

Output Parameters

If info = 0, the upper or lower triangular part of A in packed storage
is overwritten by the Cholesky factor U or L, as specified by uplo.

ap

Overwritten by the solution matrix X.b

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, the leading minor of order i (and therefore the matrix A
itself) is not positive-definite, so the factorization could not be
completed, and the solution has not been computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ppsv interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the matrix B of size (n,nrhs).b

Must be 'U' or 'L'. The default value is 'U'.uplo

507

LAPACK Routines: Linear Equations 3

?ppsvx
Uses the Cholesky factorization to compute the
solution to the system of linear equations with a
symmetric (Hermitian) positive definite packed
matrix A, and provides error bounds on the
solution.

Syntax

Fortran 77:

call sppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond,
ferr, berr, work, iwork, info)

call dppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond,
ferr, berr, work, iwork, info)

call cppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

call zppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

Fortran 95:

call ppsvx(a, b, x [,uplo] [,af] [,fact] [,equed] [,s] [,ferr] [,berr] [,rcond]
[,info])

Description

This routine uses the Cholesky factorization A=UT*U (real flavors) / A=UH*U (complex flavors)
or A=L*LT (real flavors) / A=L*LH (complex flavors) to compute the solution to a real or complex
system of linear equations A*X = B, where A is a n-by-n symmetric or Hermitian positive-definite
matrix stored in packed format, the columns of matrix B are individual right-hand sides, and
the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?ppsvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate the system:

diag(s)*A*diag(s)*inv(diag(s))*X = diag(s)*B.

508

3 Intel® Math Kernel Library Reference Manual

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but
if equilibration is used, A is overwritten by diag(s)*A*diag(s) and B by diag(s)*B.

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the matrix A (after
equilibration if fact = 'E') as

A = UT*U (real), A = UH*U (complex), if uplo = 'U',

or A = L*LT (real), A = L*LH (complex) , if uplo = 'L',

where U is an upper triangular matrix and L is a lower triangular matrix.

3. If the leading i-by-i principal minor is not positive-definite, then the routine returns with
info = i. Otherwise, the factored form of A is used to estimate the condition number of
the matrix A. If the reciprocal of the condition number is less than machine precision, info
= n+1 is returned as a warning, but the routine still goes on to solve for X and compute
error bounds as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the
original system before equilibration.

Input Parameters

CHARACTER*1. Must be 'F', 'N', or 'E'.fact
Specifies whether or not the factored form of the matrix A is supplied
on entry, and if not, whether the matrix A should be equilibrated before
it is factored.
If fact = 'F': on entry, afp contains the factored form of A. If equed
= 'Y', the matrix A has been equilibrated with scaling factors given
by s.

ap and afp will not be modified.
If fact = 'N', the matrix A will be copied to afp and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then
copied to afp and factored.

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.

509

LAPACK Routines: Linear Equations 3

If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; the number of columns in

B; nrhs ≥ 0.

nrhs

REAL for sppsvxap,afp,b,work
DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx
DOUBLE COMPLEX for zppsvx.
Arrays: ap(*), afp(*), b(ldb,*), work(*).
The array ap contains the upper or lower triangle of the original
symmetric/Hermitian matrix A in packed storage (see Matrix Storage
Schemes). In case when fact = 'F' and equed = 'Y', ap must
contain the equilibrated matrix diag(s)*A*diag(s).
The array afp is an input argument if fact = 'F' and contains the
triangular factor U or L from the Cholesky factorization of A in the same
storage format as A. If equed is not 'N', then afp is the factored form
of the equilibrated matrix A.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
work(*) is a workspace array.
The dimension of arrays ap and afp must be at least max(1,
n(n+1)/2); the second dimension of b must be at least max(1,nrhs);
the dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

CHARACTER*1. Must be 'N' or 'Y'.equed
equed is an input argument if fact = 'F'. It specifies the form of
equilibration that was done:
if equed = 'N', no equilibration was done (always true if fact =
'N');
if equed = 'Y', equilibration was done and A has been replaced by
diag(s)A*diag(s).

REAL for single precision flavorss
DOUBLE PRECISION for double precision flavors.

510

3 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (n). The array s contains the scale factors for A. This
array is an input argument if fact = 'F' only; otherwise it is an output
argument.
If equed = 'N', s is not accessed.
If fact = 'F' and equed = 'Y', each element of s must be positive.

INTEGER. The first dimension of the output array x; ldx ≥ max(1,
n).

ldx

INTEGER. Workspace array, DIMENSION at least max(1, n); used in
real flavors only.

iwork

REAL for cppsvx;rwork
DOUBLE PRECISION for zppsvx.
Workspace array, DIMENSION at least max(1, n); used in complex
flavors only.

Output Parameters

REAL for sppsvxx
DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx
DOUBLE COMPLEX for zppsvx.
Array, DIMENSION (ldx,*).
If info = 0 or info = n+1, the array x contains the solution matrix
X to the original system of equations. Note that if equed = 'Y', A and
B are modified on exit, and the solution to the equilibrated system is
inv(diag(s))*X. The second dimension of x must be at least
max(1,nrhs).

Array ap is not modified on exit if fact = 'F' or 'N', or if fact =
'E' and equed = 'N'.

ap

If fact = 'E' and equed = 'Y', A is overwritten by
diag(s)*A*diag(s).

If fact = 'N' or 'E', then afp is an output argument and on exit
returns the triangular factor U or L from the Cholesky factorization
A=UT*U or A=L*LT (real routines), A=UH*U or A=L*LH (complex routines)

afp

of the original matrix A (if fact = 'N'), or of the equilibrated matrix
A (if fact = 'E'). See the description of ap for the form of the
equilibrated matrix.

511

LAPACK Routines: Linear Equations 3

Overwritten by diag(s)*B , if equed = 'Y'; not changed if equed =
'N'.

b

This array is an output argument if fact ≠ 'F'. See the description
of s in Input Arguments section.

s

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision.
This condition is indicated by a return code of info > 0.

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

If fact ≠ 'F' , then equed is an output argument. It specifies the
form of equilibration that was done (see the description of equed in
Input Arguments section).

equed

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

If info = i, and i ≤ n, the leading minor of order i (and therefore
the matrix A itself) is not positive-definite, so the factorization could
not be completed, and the solution and error bounds could not be
computed; rcond = 0 is returned.
If info = i, and i = n + 1, then U is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ppsvx interface are as follows:

512

3 Intel® Math Kernel Library Reference Manual

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Stands for argument afp in Fortan 77 interface. Holds the matrix AF
of size (n*(n+1)/2).

af

Holds the vector of length (n). Default value for each element is s(i)
= 1.0_WP.

s

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F',
then af must be present; otherwise, an error is returned.

fact

Must be 'N' or 'Y'. The default value is 'N'.equed

?pbsv
Computes the solution to the system of linear
equations with a symmetric or Hermitian
positive-definite band matrix A and multiple
right-hand sides.

Syntax

Fortran 77:

call spbsv(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call dpbsv(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call cpbsv(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call zpbsv(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

Fortran 95:

call pbsv(a, b [,uplo] [,info])

513

LAPACK Routines: Linear Equations 3

Description

This routine solves for X the real or complex system of linear equations A*X = B, where A is
an n-by-n symmetric/Hermitian positive definite band matrix, the columns of matrix B are
individual right-hand sides, and the columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as

A = UT*U (real flavors) and A = UH*U (complex flavors), if uplo = 'U'

or A = L*LT (real flavors) and A = L*LH (complex flavors), if uplo = 'L',

where U is an upper triangular band matrix and L is a lower triangular band matrix, with the
same number of superdiagonals or subdiagonals as A. The factored form of A is then used to
solve the system of equations A*X = B.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of superdiagonals of the matrix A if uplo = 'U',

or the number of subdiagonals if uplo = 'L'; kd ≥ 0.

kd

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

REAL for spbsvab, b
DOUBLE PRECISION for dpbsv
COMPLEX for cpbsv
DOUBLE COMPLEX for zpbsv.
Arrays: ab(ldab, *), b(ldb,*). The array ab contains the upper or
the lower triangular part of the matrix A (as specified by uplo) in band
storage (see Matrix Storage Schemes). The second dimension of ab
must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1,nrhs).

INTEGER. The first dimension of the array ab; ldab ≥ kd +1.ldab

514

3 Intel® Math Kernel Library Reference Manual

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

The upper or lower triangular part of A (in band storage) is overwritten
by the Cholesky factor U or L, as specified by uplo, in the same storage
format as A.

ab

Overwritten by the solution matrix X.b

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, the leading minor of order i (and therefore the matrix A
itself) is not positive-definite, so the factorization could not be
completed, and the solution has not been computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pbsv interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the matrix B of size (n,nrhs).b

Must be 'U' or 'L'. The default value is 'U'.uplo

515

LAPACK Routines: Linear Equations 3

?pbsvx
Uses the Cholesky factorization to compute the
solution to the system of linear equations with a
symmetric (Hermitian) positive-definite band
matrix A, and provides error bounds on the
solution.

Syntax

Fortran 77:

call spbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb,
x, ldx, rcond, ferr, berr, work, iwork, info)

call dpbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb,
x, ldx, rcond, ferr, berr, work, iwork, info)

call cpbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb,
x, ldx, rcond, ferr, berr, work, iwork, info)

call zpbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb,
x, ldx, rcond, ferr, berr, work, iwork, info)

Fortran 95:

call pbsvx(a, b, x [,uplo] [,af] [,fact] [,equed] [,s] [,ferr] [,berr] [,rcond]
[,info])

Description

This routine uses the Cholesky factorization A=UT*U (real flavors) / A=UH*U (complex flavors)
or A=L*LT (real flavors) / A=L*LH (complex flavors) to compute the solution to a real or complex
system of linear equations A*X = B, where A is a n-by-n symmetric or Hermitian positive
definite band matrix, the columns of matrix B are individual right-hand sides, and the columns
of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?pbsvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate the system:

diag(s)*A*diag(s)*inv(diag(s))*X = diag(s)*B.

516

3 Intel® Math Kernel Library Reference Manual

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but
if equilibration is used, A is overwritten by diag(s)*A*diag(s) and B by diag(s)*B.

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the matrix A (after
equilibration if fact = 'E') as

A = UT*U (real), A = UH*U (complex), if uplo = 'U',

or A = L*LT (real), A = L*LH (complex) , if uplo = 'L',

where U is an upper triangular band matrix and L is a lower triangular band matrix.

3. If the leading i-by-i principal minor is not positive definite, then the routine returns with
info = i. Otherwise, the factored form of A is used to estimate the condition number of
the matrix A. If the reciprocal of the condition number is less than machine precision, info
= n+1 is returned as a warning, but the routine still goes on to solve for X and compute
error bounds as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the
original system before equilibration.

Input Parameters

CHARACTER*1. Must be 'F', 'N', or 'E'.fact
Specifies whether or not the factored form of the matrix A is supplied
on entry, and if not, whether the matrix A should be equilibrated before
it is factored.
If fact = 'F': on entry, afb contains the factored form of A. If equed
= 'Y', the matrix A has been equilibrated with scaling factors given
by s.

ab and afb will not be modified.
If fact = 'N', the matrix A will be copied to afb and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then
copied to afb and factored.

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.

517

LAPACK Routines: Linear Equations 3

If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of superdiagonals or subdiagonals in the matrix

A; kd ≥ 0.

kd

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

REAL for spbsvxab,afb,b,work
DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx
DOUBLE COMPLEX for zpbsvx.
Arrays: ab(ldab,*), afb(ldab,*), b(ldb,*), work(*).
The array ab contains the upper or lower triangle of the matrix A in
band storage (see Matrix Storage Schemes).
If fact = 'F' and equed = 'Y', then ab must contain the equilibrated
matrix diag(s)*A*diag(s). The second dimension of ab must be at
least max(1, n).
The array afb is an input argument if fact = 'F'. It contains the
triangular factor U or L from the Cholesky factorization of the band
matrix A in the same storage format as A. If equed = 'Y', then afb
is the factored form of the equilibrated matrix A. The second dimension
of afb must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1, nrhs).
work(*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors,
and at least max(1,2*n) for complex flavors.

INTEGER. The first dimension of ab; ldab ≥ kd+1.ldab

INTEGER. The first dimension of afb; ldafb ≥ kd+1.ldafb

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

CHARACTER*1. Must be 'N' or 'Y'.equed
equed is an input argument if fact = 'F'. It specifies the form of
equilibration that was done:
if equed = 'N', no equilibration was done (always true if fact = 'N')

518

3 Intel® Math Kernel Library Reference Manual

if equed = 'Y', equilibration was done and A has been replaced by
diag(s)*A*diag(s).

REAL for single precision flavorss
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n). The array s contains the scale factors for A. This
array is an input argument if fact = 'F' only; otherwise it is an output
argument.
If equed = 'N', s is not accessed.
If fact = 'F' and equed = 'Y', each element of s must be positive.

INTEGER. The first dimension of the output array x; ldx ≥ max(1,
n).

ldx

INTEGER. Workspace array, DIMENSION at least max(1, n); used in
real flavors only.

iwork

REAL for cpbsvxrwork
DOUBLE PRECISION for zpbsvx.
Workspace array, DIMENSION at least max(1, n); used in complex
flavors only.

Output Parameters

REAL for spbsvxx
DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx
DOUBLE COMPLEX for zpbsvx.
Array, DIMENSION (ldx,*).
If info = 0 or info = n+1, the array x contains the solution matrix X
to the original system of equations. Note that if equed = 'Y', A and
B are modified on exit, and the solution to the equilibrated system is
inv(diag(s))*X. The second dimension of x must be at least
max(1,nrhs).

On exit, if fact = 'E' and equed = 'Y', A is overwritten by
diag(s)*A*diag(s).

ab

If fact = 'N' or 'E', then afb is an output argument and on exit
returns the triangular factor U or L from the Cholesky factorization
A=UT*U or A=L*LT (real routines), A=UH*U or A=L*LH (complex routines)

afb

519

LAPACK Routines: Linear Equations 3

of the original matrix A (if fact = 'N'), or of the equilibrated matrix
A (if fact = 'E'). See the description of ab for the form of the
equilibrated matrix.

Overwritten by diag(s)*B , if equed = 'Y'; not changed if equed =
'N'.

b

This array is an output argument if fact ≠ 'F'. See the description
of s in Input Arguments section.

s

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision.
This condition is indicated by a return code of info > 0.

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

If fact ≠ 'F' , then equed is an output argument. It specifies the
form of equilibration that was done (see the description of equed in
Input Arguments section).

equed

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

If info = i, and i ≤ n, the leading minor of order i (and therefore
the matrix A itself) is not positive definite, so the factorization could
not be completed, and the solution and error bounds could not be
computed; rcond =0 is returned. If info = i, and i = n + 1, then U
is nonsingular, but rcond is less than machine precision, meaning that
the matrix is singular to working precision. Nevertheless, the solution
and error bounds are computed because there are a number of
situations where the computed solution can be more accurate than the
value of rcond would suggest.

520

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pbsvx interface are as follows:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Stands for argument afb in Fortan 77 interface. Holds the array AF of
size (kd+1,n).

af

Holds the vector of length (n). Default value for each element is s(i)
= 1.0_WP.

s

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F',
then af must be present; otherwise, an error is returned.

fact

Must be 'N' or 'Y'. The default value is 'N'.equed

?ptsv
Computes the solution to the system of linear
equations with a symmetric or Hermitian positive
definite tridiagonal matrix A and multiple
right-hand sides.

Syntax

Fortran 77:

call sptsv(n, nrhs, d, e, b, ldb, info)

call dptsv(n, nrhs, d, e, b, ldb, info)

call cptsv(n, nrhs, d, e, b, ldb, info)

call zptsv(n, nrhs, d, e, b, ldb, info)

521

LAPACK Routines: Linear Equations 3

Fortran 95:

call ptsv(d, e, b [,info])

Description

This routine solves for X the real or complex system of linear equations A*X = B, where A is
an n-by-n symmetric/Hermitian positive-definite tridiagonal matrix, the columns of matrix B
are individual right-hand sides, and the columns of X are the corresponding solutions.

A is factored as A = L*D*LT (real flavors) or A = L*D*LH (complex flavors), and the factored
form of A is then used to solve the system of equations A*X = B.

Input Parameters

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

REAL for single precision flavorsd
DOUBLE PRECISION for double precision flavors.
Array, dimension at least max(1, n). Contains the diagonal elements
of the tridiagonal matrix A.

REAL for sptsve, b
DOUBLE PRECISION for dptsv
COMPLEX for cptsv
DOUBLE COMPLEX for zptsv.
Arrays: e(n - 1) , b(ldb,*). The array e contains the (n - 1)
subdiagonal elements of A.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1,nrhs).

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the n diagonal elements of the diagonal matrix D from
the L*D*LT (real)/ L*D*LH (complex) factorization of A.

d

Overwritten by the (n - 1) subdiagonal elements of the unit bidiagonal
factor L from the factorization of A.

e

522

3 Intel® Math Kernel Library Reference Manual

Overwritten by the solution matrix X.b

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, the leading minor of order i (and therefore the matrix A
itself) is not positive-definite, and the solution has not been computed.
The factorization has not been completed unless i = n.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ptsv interface are as follows:

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Holds the matrix B of size (n,nrhs).b

?ptsvx
Uses factorization to compute the solution to the
system of linear equations with a symmetric
(Hermitian) positive definite tridiagonal matrix A,
and provides error bounds on the solution.

Syntax

Fortran 77:

call sptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr,
work, info)

call dptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr,
work, info)

call cptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr,
work, rwork, info)

call zptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr,
work, rwork, info)

523

LAPACK Routines: Linear Equations 3

Fortran 95:

call ptsvx(d, e, b, x [,df] [,ef] [,fact] [,ferr] [,berr] [,rcond] [,info])

Description

This routine uses the Cholesky factorization A = L*D*LT (real)/A = L*D*LH (complex) to
compute the solution to a real or complex system of linear equations A*X = B, where A is a
n-by-n symmetric or Hermitian positive definite tridiagonal matrix, the columns of matrix B are
individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?ptsvx performs the following steps:

1. If fact = 'N', the matrix A is factored as A = L*D*LT (real flavors)/A = L*D*LH (complex
flavors), where L is a unit lower bidiagonal matrix and D is diagonal. The factorization can
also be regarded as having the form A = UT*D*U (real flavors)/A = UH*D*U (complex
flavors).

2. If the leading i-by-i principal minor is not positive-definite, then the routine returns with
info = i. Otherwise, the factored form of A is used to estimate the condition number of
the matrix A. If the reciprocal of the condition number is less than machine precision, info
= n+1 is returned as a warning, but the routine still goes on to solve for X and compute
error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

CHARACTER*1. Must be 'F' or 'N'.fact
Specifies whether or not the factored form of the matrix A is supplied
on entry.
If fact = 'F': on entry, df and ef contain the factored form of A.
Arrays d, e, df, and ef will not be modified.
If fact = 'N', the matrix A will be copied to df and ef , and factored.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

524

3 Intel® Math Kernel Library Reference Manual

REAL for single precision flavorsd, df, rwork
DOUBLE PRECISION for double precision flavors.
Arrays: d(n), df(n), rwork(n).
The array d contains the n diagonal elements of the tridiagonal matrix
A.
The array df is an input argument if fact = 'F' and on entry contains
the n diagonal elements of the diagonal matrix D from the L*D*LT (real)/
L*D*LH (complex) factorization of A.
The array rwork is a workspace array used for complex flavors only.

REAL for sptsvxe,ef,b,work
DOUBLE PRECISION for dptsvx
COMPLEX for cptsvx
DOUBLE COMPLEX for zptsvx.
Arrays: e(n -1), ef(n -1), b(ldb*), work(*). The array e contains
the (n - 1) subdiagonal elements of the tridiagonal matrix A.
The array ef is an input argument if fact = 'F' and on entry contains
the (n - 1) subdiagonal elements of the unit bidiagonal factor L from
the L*D*LT (real)/ L*D*LH (complex) factorization of A.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The array work is a workspace array. The dimension of work must be
at least 2*n for real flavors, and at least n for complex flavors.

INTEGER. The leading dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The leading dimension of x; ldx ≥ max(1, n).ldx

Output Parameters

REAL for sptsvxx
DOUBLE PRECISION for dptsvx
COMPLEX for cptsvx
DOUBLE COMPLEX for zptsvx.
Array, DIMENSION (ldx,*).
If info = 0 or info = n+1, the array x contains the solution matrix
X to the system of equations. The second dimension of x must be at
least max(1,nrhs).

These arrays are output arguments if fact = 'N'. See the description
of df, ef in Input Arguments section.

df, ef

525

LAPACK Routines: Linear Equations 3

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision.
This condition is indicated by a return code of info > 0.

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

If info = i, and i ≤ n, the leading minor of order i (and therefore
the matrix A itself) is not positive-definite, so the factorization could
not be completed, and the solution and error bounds could not be
computed; rcond =0 is returned.
If info = i, and i = n + 1, then U is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ptsvx interface are as follows:

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the vector of length (n).df

Holds the vector of length (n-1).ef

Holds the vector of length (nrhs).ferr

526

3 Intel® Math Kernel Library Reference Manual

Holds the vector of length (nrhs).berr

Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then
both arguments af and ipiv must be present; otherwise, an error is
returned.

fact

?sysv
Computes the solution to the system of linear
equations with a real or complex symmetric matrix
A and multiple right-hand sides.

Syntax

Fortran 77:

call ssysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call dsysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call csysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call zsysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

Fortran 95:

call sysv(a, b [,uplo] [,ipiv] [,info])

Description

This routine solves for X the real or complex system of linear equations A*X = B, where A is
an n-by-n symmetric matrix, the columns of matrix B are individual right-hand sides, and the
columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as A = U*D*UT or A = L*D*LT , where U (or
L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric
and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations A*X = B.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.

527

LAPACK Routines: Linear Equations 3

If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; the number of columns in

B; nrhs ≥ 0.

nrhs

REAL for ssysva, b, work
DOUBLE PRECISION for dsysv
COMPLEX for csysv
DOUBLE COMPLEX for zsysv.
Arrays: a(lda,*), b(ldb,*), work(*).
The array a contains the upper or the lower triangular part of the
symmetric matrix A (see uplo). The second dimension of a must be at
least max(1, n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1,nrhs).
work is a workspace array, dimension at least max(1,lwork).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The size of the work array; lwork ≥ 1.lwork

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla. See Application Notes below for details and for the
suggested value of lwork.

Output Parameters

If info = 0, a is overwritten by the block-diagonal matrix D and the
multipliers used to obtain the factor U (or L) from the factorization of
A as computed by ?sytrf.

a

If info = 0, b is overwritten by the solution matrix X.b

INTEGER.ipiv
Array, DIMENSION at least max(1, n). Contains details of the
interchanges and the block structure of D, as determined by ?sytrf.

528

3 Intel® Math Kernel Library Reference Manual

If ipiv(i) = k >0, then dii is a 1-by-1 diagonal block, and the i-th
row and column of A was interchanged with the k-th row and column.
If uplo = 'U' and ipiv(i) = ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)-th row and column of A
was interchanged with the m-th row and column.
If uplo = 'L' and ipiv(i) = ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)-th row and column of A
was interchanged with the m-th row and column.

If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

work(1)

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular, so the solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sysv interface are as follows:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,nrhs).b

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

529

LAPACK Routines: Linear Equations 3

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?sysvx
Uses the diagonal pivoting factorization to compute
the solution to the system of linear equations with
a real or complex symmetric matrix A, and provides
error bounds on the solution.

Syntax

Fortran 77:

call ssysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, iwork, info)

call dsysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, iwork, info)

call csysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

call zsysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

Fortran 95:

call sysvx(a, b, x [,uplo] [,af] [,ipiv] [,fact] [,ferr] [,berr] [,rcond]
[,info])

Description

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex
system of linear equations A*X = B, where A is a n-by-n symmetric matrix, the columns of
matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?sysvx performs the following steps:

530

3 Intel® Math Kernel Library Reference Manual

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorization is A = U*D*UT or A = L*D*LT, where U (or L) is a product of permutation and
unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1
and 2-by-2 diagonal blocks.

2. If some di,i= 0, so that D is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.
If the reciprocal of the condition number is less than machine precision, info = n+1 is
returned as a warning, but the routine still goes on to solve for X and compute error bounds
as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

CHARACTER*1. Must be 'F' or 'N'.fact
Specifies whether or not the factored form of the matrix A has been
supplied on entry.
If fact = 'F': on entry, af and ipiv contain the factored form of A.
Arrays a, af, and ipiv will not be modified.
If fact = 'N', the matrix A will be copied to af and factored.

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

REAL for ssysvxa,af,b,work
DOUBLE PRECISION for dsysvx
COMPLEX for csysvx
DOUBLE COMPLEX for zsysvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).
The array a contains the upper or the lower triangular part of the
symmetric matrix A (see uplo). The second dimension of a must be at
least max(1,n).

531

LAPACK Routines: Linear Equations 3

The array af is an input argument if fact = 'F'. It contains he block
diagonal matrix D and the multipliers used to obtain the factor U or L
from the factorization A = U*D*UT orA = L*D*LT as computed by
?sytrf. The second dimension of af must be at least max(1,n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1, nrhs).
work(*) is a workspace array, dimension at least max(1,lwork).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of af; ldaf ≥ max(1, n).ldaf

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The array ipiv is an input
argument if fact = 'F'. It contains details of the interchanges and
the block structure of D, as determined by ?sytrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the i-th
row and column of A was interchanged with the k-th row and column.
If uplo = 'U' and ipiv(i) = ipiv(i-1) = -m < 0, then D has a
2-by-2 block in rows/columns i and i-1, and (i-1)-th row and column
of A was interchanged with the m-th row and column.
If uplo = 'L' and ipiv(i) = ipiv(i+1) = -m < 0, then D has a
2-by-2 block in rows/columns i and i+1, and (i+1)-th row and column
of A was interchanged with the m-th row and column.

INTEGER. The leading dimension of the output array x; ldx ≥ max(1,
n).

ldx

INTEGER. The size of the work array.lwork
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla. See Application Notes below for details and for the
suggested value of lwork.

INTEGER. Workspace array, DIMENSION at least max(1, n); used in
real flavors only.

iwork

REAL for csysvx;rwork
DOUBLE PRECISION for zsysvx.

532

3 Intel® Math Kernel Library Reference Manual

Workspace array, DIMENSION at least max(1, n); used in complex
flavors only.

Output Parameters

REAL for ssysvxx
DOUBLE PRECISION for dsysvx
COMPLEX for csysvx
DOUBLE COMPLEX for zsysvx.
Array, DIMENSION (ldx,*).
If info = 0 or info = n+1, the array x contains the solution matrix
X to the system of equations. The second dimension of x must be at
least max(1,nrhs).

These arrays are output arguments if fact = 'N'.af, ipiv
See the description of af, ipiv in Input Arguments section.

REAL for single precision flavorsrcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A. If rcond
is less than the machine precision (in particular, if rcond = 0), the
matrix is singular to working precision. This condition is indicated by a
return code of info > 0.

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

If info=0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

work(1)

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

If info = i, and i ≤ n, then dii is exactly zero. The factorization has
been completed, but the block diagonal matrix D is exactly singular, so
the solution and error bounds could not be computed; rcond = 0 is
returned.

533

LAPACK Routines: Linear Equations 3

If info = i, and i = n + 1, then D is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sysvx interface are as follows:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the matrix AF of size (n,n).af

Holds the vector of length (n).ipiv

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then
both arguments af and ipiv must be present; otherwise, an error is
returned.

fact

Application Notes

For real flavors, lwork must be at least 3*n, and for complex flavors at least 2*n. For better
performance, try using lwork = n*blocksize, where blocksize is the optimal block size for
?sytrf.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

534

3 Intel® Math Kernel Library Reference Manual

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?hesv
Computes the solution to the system of linear
equations with a Hermitian matrix A and multiple
right-hand sides.

Syntax

Fortran 77:

call chesv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call zhesv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

Fortran 95:

call hesv(a, b [,uplo] [,ipiv] [,info])

Description

This routine solves for X the complex system of linear equations A*X = B, where A is an n-by-n
symmetric matrix, the columns of matrix B are individual right-hand sides, and the columns of
X are the corresponding solutions.

The diagonal pivoting method is used to factor A as A = U*D*UH or A = L*D*LH , where U (or
L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian
and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations A*X = B.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

535

LAPACK Routines: Linear Equations 3

If uplo = 'U', the array a stores the upper triangular part of the
matrix A, and A is factored as U*D*UH.
If uplo = 'L', the array a stores the lower triangular part of the matrix
A, and A is factored as L*D*LH.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

COMPLEX for chesva, b, work
DOUBLE COMPLEX for zhesv.
Arrays: a(lda,*), b(ldb,*), work(*). The array a contains the upper
or the lower triangular part of the Hermitian matrix A (see uplo). The
second dimension of a must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1,nrhs).
work is a workspace array, dimension at least max(1,lwork).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER. The size of the work array (lwork ≥ 1).lwork

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla. See Application Notes below for details and for the
suggested value of lwork.

Output Parameters

If info = 0, a is overwritten by the block-diagonal matrix D and the
multipliers used to obtain the factor U (or L) from the factorization of
A as computed by ?hetrf.

a

If info = 0, b is overwritten by the solution matrix X.b

INTEGER.ipiv
Array, DIMENSION at least max(1, n). Contains details of the
interchanges and the block structure of D, as determined by ?hetrf.

536

3 Intel® Math Kernel Library Reference Manual

If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the i-th
row and column of A was interchanged with the k-th row and column.
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)-th row and column of A
was interchanged with the m-th row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)-th row and column of A
was interchanged with the m-th row and column.

If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

work(1)

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular, so the solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hesv interface are as follows:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,nrhs).b

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

537

LAPACK Routines: Linear Equations 3

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?hesvx
Uses the diagonal pivoting factorization to compute
the solution to the complex system of linear
equations with a Hermitian matrix A, and provides
error bounds on the solution.

Syntax

Fortran 77:

call chesvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

call zhesvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

Fortran 95:

call hesvx(a, b, x [,uplo] [,af] [,ipiv] [,fact] [,ferr] [,berr] [,rcond]
[,info])

Description

This routine uses the diagonal pivoting factorization to compute the solution to a complex
system of linear equations A*X = B, where A is an n-by-n Hermitian matrix, the columns of
matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?hesvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorization is A = U*D*UH or A = L*D*LH, where U (or L) is a product of permutation and
unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1
and 2-by-2 diagonal blocks.

538

3 Intel® Math Kernel Library Reference Manual

2. If some di,i = 0, so that D is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.
If the reciprocal of the condition number is less than machine precision, info = n+1 is
returned as a warning, but the routine still goes on to solve for X and compute error bounds
as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

CHARACTER*1. Must be 'F' or 'N'.fact
Specifies whether or not the factored form of the matrix A has been
supplied on entry.
If fact = 'F': on entry, af and ipiv contain the factored form of A.
Arrays a, af, and ipiv are not modified.
If fact = 'N', the matrix A is copied to af and factored.

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored and
how A is factored:
If uplo = 'U', the array a stores the upper triangular part of the
Hermitian matrix A, and A is factored as U*D*UH.
If uplo = 'L', the array a stores the lower triangular part of the
Hermitian matrix A; A is factored as L*D*LH.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

COMPLEX for chesvxa,af,b,work
DOUBLE COMPLEX for zhesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).
The array a contains the upper or the lower triangular part of the
Hermitian matrix A (see uplo). The second dimension of a must be at
least max(1,n).

539

LAPACK Routines: Linear Equations 3

The array af is an input argument if fact = 'F'. It contains he block
diagonal matrix D and the multipliers used to obtain the factor U or L
from the factorization A = U*D*UH or A = L*D*LH as computed by
?hetrf. The second dimension of af must be at least max(1,n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1, nrhs).
work(*) is a workspace array of dimension at least max(1, lwork).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of af; ldaf ≥ max(1, n).ldaf

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The array ipiv is an input
argument if fact = 'F'. It contains details of the interchanges and
the block structure of D, as determined by ?hetrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the i-th
row and column of A was interchanged with the k-th row and column.
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)-th row and column of A
was interchanged with the m-th row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)-th row and column of A
was interchanged with the m-th row and column.

INTEGER. The leading dimension of the output array x; ldx ≥ max(1,
n).

ldx

INTEGER. The size of the work array.lwork
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla. See Application Notes below for details and for the
suggested value of lwork.

REAL for chesvxrwork
DOUBLE PRECISION for zhesvx.
Workspace array, DIMENSION at least max(1, n).

540

3 Intel® Math Kernel Library Reference Manual

Output Parameters

COMPLEX for chesvxx
DOUBLE COMPLEX for zhesvx.
Array, DIMENSION (ldx,*).
If info = 0 or info = n+1, the array x contains the solution matrix
X to the system of equations. The second dimension of x must be at
least max(1,nrhs).

These arrays are output arguments if fact = 'N'. See the description
of af, ipiv in Input Arguments section.

af, ipiv

REAL for chesvxrcond
DOUBLE PRECISION for zhesvx.
An estimate of the reciprocal condition number of the matrix A. If rcond
is less than the machine precision (in particular, if rcond = 0), the
matrix is singular to working precision. This condition is indicated by a
return code of info > 0.

REAL for chesvxferr, berr
DOUBLE PRECISION for zhesvx.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

work(1)

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

If info = i, and i ≤ n, then dii is exactly zero. The factorization has
been completed, but the block diagonal matrix D is exactly singular, so
the solution and error bounds could not be computed; rcond = 0 is
returned.
If info = i, and i = n + 1, then D is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

541

LAPACK Routines: Linear Equations 3

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hesvx interface are as follows:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Holds the matrix AF of size (n,n).af

Holds the vector of length (n).ipiv

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then
both arguments af and ipiv must be present; otherwise, an error is
returned.

fact

Application Notes

The value of lwork must be at least 2*n. For better performance, try using lwork =
n*blocksize, where blocksize is the optimal block size for ?hetrf.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

542

3 Intel® Math Kernel Library Reference Manual

?spsv
Computes the solution to the system of linear
equations with a real or complex symmetric matrix
A stored in packed format, and multiple right-hand
sides.

Syntax

Fortran 77:

call sspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call dspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call cspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

Fortran 95:

call spsv(a, b [,uplo] [,ipiv] [,info])

Description

This routine solves for X the real or complex system of linear equations A*X = B, where A is
an n-by-n symmetric matrix stored in packed format, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as A = U*D*UT or A = L*D*LT , where U (or
L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric
and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations A*X = B.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

543

LAPACK Routines: Linear Equations 3

REAL for sspsvap, b
DOUBLE PRECISION for dspsv
COMPLEX for cspsv
DOUBLE COMPLEX for zspsv.
Arrays: ap(*), b(ldb,*).
The dimension of ap must be at least max(1,n(n+1)/2). The array ap
contains the factor U or L, as specified by uplo, in packed storage
(see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1,nrhs).

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

The block-diagonal matrix D and the multipliers used to obtain the factor
U (or L) from the factorization of A as computed by ?sptrf, stored as
a packed triangular matrix in the same storage format as A.

ap

If info = 0, b is overwritten by the solution matrix X.b

INTEGER.ipiv
Array, DIMENSION at least max(1, n). Contains details of the
interchanges and the block structure of D, as determined by ?sptrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the i-th row and
column of A was interchanged with the k-th row and column.
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)-th row and column of A
was interchanged with the m-th row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)-th row and column of A
was interchanged with the m-th row and column.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular, so the solution could not be computed.

544

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine spsv interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the matrix B of size (n,nrhs).b

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

?spsvx
Uses the diagonal pivoting factorization to compute
the solution to the system of linear equations with
a real or complex symmetric matrix A stored in
packed format, and provides error bounds on the
solution.

Syntax

Fortran 77:

call sspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, iwork, info)

call dspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, iwork, info)

call cspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, rwork, info)

call zspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, rwork, info)

Fortran 95:

call spsvx(a, b, x [,uplo] [,af] [,ipiv] [,fact] [,ferr] [,berr] [,rcond]
[,info])

545

LAPACK Routines: Linear Equations 3

Description

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex
system of linear equations A*X = B, where A is a n-by-n symmetric matrix stored in packed
format, the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?spsvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A. The form of
the factorization is A = U*D*UT orA = L*D*LT, where U (or L) is a product of permutation
and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.

2. If some di,i = 0, so that D is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.
If the reciprocal of the condition number is less than machine precision, info = n+1 is
returned as a warning, but the routine still goes on to solve for X and compute error bounds
as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

CHARACTER*1. Must be 'F' or 'N'.fact
Specifies whether or not the factored form of the matrix A has been
supplied on entry.
If fact = 'F': on entry, afp and ipiv contain the factored form of
A. Arrays ap, afp, and ipiv are not modified.
If fact = 'N', the matrix A is copied to afp and factored.

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored and
how A is factored:
If uplo = 'U', the array ap stores the upper triangular part of the
symmetric matrix A, and A is factored as U*D*UT.
If uplo = 'L', the array ap stores the lower triangular part of the
symmetric matrix A; A is factored as L*D*LT.

546

3 Intel® Math Kernel Library Reference Manual

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

REAL for sspsvxap,afp,b,work
DOUBLE PRECISION for dspsvx
COMPLEX for cspsvx
DOUBLE COMPLEX for zspsvx.
Arrays: ap(*), afp(*), b(ldb,*), work(*).
The array ap contains the upper or lower triangle of the symmetric
matrix A in packed storage (see Matrix Storage Schemes).
The array afp is an input argument if fact = 'F'. It contains the block
diagonal matrix D and the multipliers used to obtain the factor U or L
from the factorization A = U*D*UT or A = L*D*LT as computed by
?sptrf, in the same storage format as A.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
work(*) is a workspace array.
The dimension of arrays ap and afp must be at least max(1,
n(n+1)/2); the second dimension of b must be at least max(1,nrhs);
the dimension of work must be at least max(1,3*n) for real flavors
and max(1,2*n) for complex flavors.

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The array ipiv is an input
argument if fact = 'F'. It contains details of the interchanges and
the block structure of D, as determined by ?sptrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the i-th
row and column of A was interchanged with the k-th row and column.
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)-th row and column of A
was interchanged with the m-th row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)-th row and column of A
was interchanged with the m-th row and column.

INTEGER. The leading dimension of the output array x; ldx ≥ max(1,
n).

ldx

547

LAPACK Routines: Linear Equations 3

INTEGER. Workspace array, DIMENSION at least max(1, n); used in
real flavors only.

iwork

REAL for cspsvxrwork
DOUBLE PRECISION for zspsvx.
Workspace array, DIMENSION at least max(1, n); used in complex
flavors only.

Output Parameters

REAL for sspsvxx
DOUBLE PRECISION for dspsvx
COMPLEX for cspsvx
DOUBLE COMPLEX for zspsvx.
Array, DIMENSION (ldx,*).
If info = 0 or info = n+1, the array x contains the solution matrix
X to the system of equations. The second dimension of x must be at
least max(1,nrhs).

These arrays are output arguments if fact = 'N'. See the description
of afp, ipiv in Input Arguments section.

afp, ipiv

REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A. If rcond
is less than the machine precision (in particular, if rcond = 0), the
matrix is singular to working precision. This condition is indicated by a
return code of info > 0.

REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

If info = i, and i ≤ n, then dii is exactly zero. The factorization has
been completed, but the block diagonal matrix D is exactly singular, so
the solution and error bounds could not be computed; rcond = 0 is
returned.

548

3 Intel® Math Kernel Library Reference Manual

If info = i, and i = n + 1, then D is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine spsvx interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Stands for argument afp in Fortan 77 interface. Holds the array AF of
size (n*(n+1)/2).

af

Holds the vector of length (n).ipiv

Holds the vector of length (nrhs).ferr

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then
both arguments af and ipiv must be present; otherwise, an error is
returned.

fact

549

LAPACK Routines: Linear Equations 3

?hpsv
Computes the solution to the system of linear
equations with a Hermitian matrix A stored in
packed format, and multiple right-hand sides.

Syntax

Fortran 77:

call chpsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zhpsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

Fortran 95:

call hpsv(a, b [,uplo] [,ipiv] [,info])

Description

This routine solves for X the system of linear equations A*X = B, where A is an n-by-n Hermitian
matrix stored in packed format, the columns of matrix B are individual right-hand sides, and
the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as A = U*D*UH or A = L*D*LH, where U (or
L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian
and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations A*X = B.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides; the number of columns in

B; nrhs ≥ 0.

nrhs

COMPLEX for chpsvap, b
DOUBLE COMPLEX for zhpsv.
Arrays: ap(*), b(ldb,*).

550

3 Intel® Math Kernel Library Reference Manual

The dimension of ap must be at least max(1,n(n+1)/2). The array ap
contains the factor U or L, as specified by uplo, in packed storage
(see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max(1,nrhs).

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

Output Parameters

The block-diagonal matrix D and the multipliers used to obtain the factor
U (or L) from the factorization of A as computed by ?hptrf, stored as
a packed triangular matrix in the same storage format as A.

ap

If info = 0, b is overwritten by the solution matrix X.b

INTEGER.ipiv
Array, DIMENSION at least max(1, n). Contains details of the
interchanges and the block structure of D, as determined by ?hptrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the i-th row and
column of A was interchanged with the k-th row and column.
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)-th row and column of A
was interchanged with the m-th row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)-th row and column of A
was interchanged with the m-th row and column.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular, so the solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hpsv interface are as follows:

551

LAPACK Routines: Linear Equations 3

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the matrix B of size (n,nrhs).b

Holds the vector of length (n).ipiv

Must be 'U' or 'L'. The default value is 'U'.uplo

?hpsvx
Uses the diagonal pivoting factorization to compute
the solution to the system of linear equations with
a Hermitian matrix A stored in packed format, and
provides error bounds on the solution.

Syntax

Fortran 77:

call chpsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, rwork, info)

call zhpsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, rwork, info)

Fortran 95:

call hpsvx(a, b, x [,uplo] [,af] [,ipiv] [,fact] [,ferr] [,berr] [,rcond]
[,info])

Description

This routine uses the diagonal pivoting factorization to compute the solution to a complex
system of linear equations A*X = B, where A is a n-by-n Hermitian matrix stored in packed
format, the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?hpsvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorization is A = U*D*UH or A = L*D*LH, where U (or L) is a product of permutation and
unit upper (lower) triangular matrices, and D is a Hermitian and block diagonal with 1-by-1
and 2-by-2 diagonal blocks.

552

3 Intel® Math Kernel Library Reference Manual

2. If some di,i = 0, so that D is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.
If the reciprocal of the condition number is less than machine precision, info = n+1 is
returned as a warning, but the routine still goes on to solve for X and compute error bounds
as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

CHARACTER*1. Must be 'F' or 'N'.fact
Specifies whether or not the factored form of the matrix A has been
supplied on entry.
If fact = 'F': on entry, afp and ipiv contain the factored form of
A. Arrays ap, afp, and ipiv are not modified.
If fact = 'N', the matrix A is copied to afp and factored.

CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is stored and
how A is factored:
If uplo = 'U', the array ap stores the upper triangular part of the
Hermitian matrix A, and A is factored as U*D*UH.
If uplo = 'L', the array ap stores the lower triangular part of the
Hermitian matrix A, and A is factored as L*D*LH.

INTEGER. The order of matrix A; n ≥ 0.n

INTEGER. The number of right-hand sides, the number of columns in

B; nrhs ≥ 0.

nrhs

COMPLEX for chpsvxap,afp,b,work
DOUBLE COMPLEX for zhpsvx.
Arrays: ap(*), afp(*), b(ldb,*), work(*).
The array ap contains the upper or lower triangle of the Hermitian
matrix A in packed storage (see Matrix Storage Schemes).
The array afp is an input argument if fact = 'F'. It contains the block
diagonal matrix D and the multipliers used to obtain the factor U or L
from the factorization A = U*D*UH or A = L*D*LH as computed by
?hptrf, in the same storage format as A.

553

LAPACK Routines: Linear Equations 3

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
work(*) is a workspace array.
The dimension of arrays ap and afp must be at least max(1,n(n+1)/2);
the second dimension of b must be at least max(1,nrhs); the dimension
of work must be at least max(1,2*n).

INTEGER. The first dimension of b; ldb ≥ max(1, n).ldb

INTEGER.ipiv
Array, DIMENSION at least max(1, n). The array ipiv is an input
argument if fact = 'F'. It contains details of the interchanges and
the block structure of D, as determined by ?hptrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the i-th
row and column of A was interchanged with the k-th row and column.
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)-th row and column of A
was interchanged with the m-th row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)-th row and column of A
was interchanged with the m-th row and column.

INTEGER. The leading dimension of the output array x; ldx ≥ max(1,
n).

ldx

REAL for chpsvxrwork
DOUBLE PRECISION for zhpsvx.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

COMPLEX for chpsvxx
DOUBLE COMPLEX for zhpsvx.
Array, DIMENSION (ldx,*).
If info = 0 or info = n+1, the array x contains the solution matrix
X to the system of equations. The second dimension of x must be at
least max(1,nrhs).

These arrays are output arguments if fact = 'N'. See the description
of afp, ipiv in Input Arguments section.

afp, ipiv

REAL for chpsvxrcond

554

3 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for zhpsvx.
An estimate of the reciprocal condition number of the matrix A. If rcond
is less than the machine precision (in particular, if rcond = 0), the
matrix is singular to working precision. This condition is indicated by a
return code of info > 0.

REAL for chpsvxferr, berr
DOUBLE PRECISION for zhpsvx.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

INTEGER. If info = 0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

If info = i, and i ≤ n, then dii is exactly zero. The factorization has
been completed, but the block diagonal matrix D is exactly singular, so
the solution and error bounds could not be computed; rcond = 0 is
returned.
If info = i, and i = n + 1, then D is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or reconstructible arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hpsvx interface are as follows:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the matrix B of size (n,nrhs).b

Holds the matrix X of size (n,nrhs).x

Stands for argument ap in Fortan 77 interface. Holds the array AF of
size (n*(n+1)/2).

af

Holds the vector of length (n).ipiv

Holds the vector of length (nrhs).ferr

555

LAPACK Routines: Linear Equations 3

Holds the vector of length (nrhs).berr

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then
both arguments af and ipiv must be present; otherwise, an error is
returned.

fact

556

3 Intel® Math Kernel Library Reference Manual

4LAPACK Routines: Least Squares
and Eigenvalue Problems

This chapter describes the Intel® Math Kernel Library implementation of routines from the LAPACK package
that are used for solving linear least-squares problems, eigenvalue and singular value problems, as well
as performing a number of related computational tasks.

Sections in this chapter include descriptions of LAPACK computational routines and driver routines. For
full reference on LAPACK routines and related information see [LUG].

Least-Squares Problems. A typical least-squares problem is as follows: given a matrix A and a

vector b, find the vector x that minimizes the sum of squares σi((Ax)i - bi)
2 or, equivalently, find the

vector x that minimizes the 2-norm ||Ax - b||2.

In the most usual case, A is an m-by-n matrix with m < n and rank(A) = n. This problem is also referred
to as finding the least-squares solution to an overdetermined system of linear equations (here we
have more equations than unknowns). To solve this problem, you can use the QR factorization of the
matrix A (see QR Factorization).

If m < n and rank(A) = m, there exist an infinite number of solutions x which exactly satisfy Ax = b,
and thus minimize the norm ||Ax - b||2. In this case it is often useful to find the unique solution that
minimizes ||x||2. This problem is referred to as finding the minimum-norm solution to an
underdetermined system of linear equations (here we have more unknowns than equations). To solve
this problem, you can use the LQ factorization of the matrix A (see LQ Factorization).

In the general case you may have a rank-deficient least-squares problem, with rank(A)< min(m,
n): find the minimum-norm least-squares solution that minimizes both ||x||2 and ||Ax - b||2.
In this case (or when the rank of A is in doubt) you can use the QR factorization with pivoting or singular
value decomposition (see Singular Value Decomposition).

Eigenvalue Problems. The eigenvalue problems (from German eigen “own”) are stated as follows:

given a matrix A, find the eigenvalues λ and the corresponding eigenvectors z that satisfy the equation

Az = λz (right eigenvectors z)

or the equation

zHA = λzH (left eigenvectors z).

If A is a real symmetric or complex Hermitian matrix, the above two equations are equivalent, and the
problem is called a symmetric eigenvalue problem. Routines for solving this type of problems are described
in the section Symmetric Eigenvalue Problems .

Routines for solving eigenvalue problems with nonsymmetric or non-Hermitian matrices are described in
the section Nonsymmetric Eigenvalue Problems .

557

The library also includes routines that handle generalized symmetric-definite eigenvalue

problems: find the eigenvalues λ and the corresponding eigenvectors x that satisfy one of the
following equations:

Az = λBz, ABz = λz, or BAz = λz,

where A is symmetric or Hermitian, and B is symmetric positive-definite or Hermitian positive-definite.
Routines for reducing these problems to standard symmetric eigenvalue problems are described in
the section Generalized Symmetric-Definite Eigenvalue Problems .

To solve a particular problem, you usually call several computational routines. Sometimes you need
to combine the routines of this chapter with other LAPACK routines described in Chapter 3 as well
as with BLAS routines described in Chapter 2 .

For example, to solve a set of least-squares problems minimizing ||Ax - b||2 for all columns b of
a given matrix B (where A and B are real matrices), you can call ?geqrf to form the factorization A
= QR, then call ?ormqr to compute C = QHB and finally call the BLAS routine ?trsm to solve for X
the system of equations RX = C.

Another way is to call an appropriate driver routine that performs several tasks in one call. For
example, to solve the least-squares problem the driver routine ?gels can be used.

WARNING. LAPACK routines expect that input matrices do not contain INF or NaN
values. When input data is inappropriate for LAPACK, problems may arise, including
possible hangs.

Starting from release 8.0, Intel MKL along with Fortran-77 interface to LAPACK computational and
driver routines supports also Fortran-95 interface which uses simplified routine calls with shorter
argument lists. The calling sequence for Fortran-95 interface is given in the syntax section of the
routine description immediately after Fortran-77 calls.

Routine Naming Conventions
For each routine in this chapter, when calling it from the Fortran-77 program you can use the
LAPACK name.

LAPACK names have the structure xyyzzz, which is described below.

The initial letter x indicates the data type:

real, single precisions

complex, single precisionc

real, double precisiond

558

4 Intel® Math Kernel Library Reference Manual

complex, double precisionz

The second and third letters yy indicate the matrix type and storage scheme:

bidiagonal matrixbd

general matrixge

general band matrixgb

upper Hessenberg matrixhs

(real) orthogonal matrixor

(real) orthogonal matrix (packed storage)op

(complex) unitary matrixun

(complex) unitary matrix (packed storage)up

symmetric or Hermitian positive-definite tridiagonal matrixpt

symmetric matrixsy

symmetric matrix (packed storage)sp

(real) symmetric band matrixsb

(real) symmetric tridiagonal matrixst

Hermitian matrixhe

Hermitian matrix (packed storage)hp

(complex) Hermitian band matrixhb

triangular or quasi-triangular matrix.tr

The last three letters zzz indicate the computation performed, for example:

form the QR factorizationqrf

form the LQ factorization.lqf

Thus, the routine sgeqrf forms the QR factorization of general real matrices in single precision;
the corresponding routine for complex matrices is cgeqrf.

Names of the LAPACK computational and driver routines for Fortran-95 interface in Intel MKL
are the same as Fortran-77 names but without the first letter that indicates the data type. For
example, the name of the routine that forms the QR factorization of general real matrices in
Fortran-95 interface is geqrf. Handling of different data types is done through defining a specific
internal parameter referring to a module block with named constants for single and double
precision.

559

LAPACK Routines: Least Squares and Eigenvalue Problems 4

For details on the design of Fortran-95 interface for LAPACK computational and driver routines
in Intel MKL and for the general information on how the optional arguments are reconstructed,
see Fortran-95 Interface Conventions in chapter 3 .

Matrix Storage Schemes
LAPACK routines use the following matrix storage schemes:

• Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element
aij stored in the array element a(i,j).

• Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices
more compactly: the upper or lower triangle of the matrix is packed by columns in a
one-dimensional array.

• Band storage: an m-by-n band matrix with kl sub-diagonals and ku super-diagonals is
stored compactly in a two-dimensional array ab with kl+ku+1 rows and n columns. Columns
of the matrix are stored in the corresponding columns of the array, and diagonals of the
matrix are stored in rows of the array.

In Chapters 3 and 4 , arrays that hold matrices in packed storage have names ending in p;
arrays with matrices in band storage have names ending in b. For more information on matrix
storage schemes, see “Matrix Arguments” in Appendix B .

Mathematical Notation
In addition to the mathematical notation used in previous chapters, descriptions of routines in
this chapter use the following notation:

Eigenvalues of the matrix A (for the definition of eigenvalues, see
Eigenvalue Problems).

λi

Singular values of the matrix A. They are equal to square roots of
the eigenvalues of AHA. (For more information, see Singular Value
Decomposition).

σi

The 2-norm of the vector x: ||x||2 = (Σi|xi|2)1/2 = ||x||E .||x||2

The 2-norm (or spectral norm) of the matrix A.||A||2

||A||2 = maxiσi, ||A|| = max|x|=1(Ax·Ax).

560

4 Intel® Math Kernel Library Reference Manual

The Euclidean norm of the matrix A: ||A|| = ΣiΣj|aij|2 (for
vectors, the Euclidean norm and the 2-norm are equal: ||x||E =
||x||2).

||A||E

The acute angle between vectors x and y:q(x, y)
cos q(x, y) = |x·y| / (||x||2||y||2).

Computational Routines
In the sections that follow, the descriptions of LAPACK computational routines are given. These
routines perform distinct computational tasks that can be used for:

Orthogonal Factorizations

Singular Value Decomposition

Symmetric Eigenvalue Problems

Generalized Symmetric-Definite Eigenvalue Problems

Nonsymmetric Eigenvalue Problems

Generalized Nonsymmetric Eigenvalue Problems

Generalized Singular Value Decomposition

See also the respective driver routines.

Orthogonal Factorizations

This section describes the LAPACK routines for the QR (RQ) and LQ (QL) factorization of
matrices. Routines for the RZ factorization as well as for generalized QR and RQ factorizations
are also included.

QR Factorization. Assume that A is an m-by-n matrix to be factored.

If m ≤ n, the QR factorization is given by

561

LAPACK Routines: Least Squares and Eigenvalue Problems 4

where R is an n-by-n upper triangular matrix with real diagonal elements, and Q is an m-by-m
orthogonal (or unitary) matrix.

You can use the QR factorization for solving the following least-squares problem: minimize ||Ax
- b||2 where A is a full-rank m-by-n matrix(m < n). After factoring the matrix, compute the
solution x by solving Rx = (Q1)

Tb.

If m < n, the QR factorization is given by

A = QR = Q(R1R2)

where R is trapezoidal, R1 is upper triangular and R2 is rectangular.

The LAPACK routines do not form the matrix Q explicitly. Instead, Q is represented as a product
of min(m, n) elementary reflectors. Routines are provided to work with Q in this
representation.

LQ Factorization LQ factorization of an m-by-n matrix A is as follows. If m ≤ n,

where L is an m-by-m lower triangular matrix with real diagonal elements, and Q is an n-by-n
orthogonal (or unitary) matrix.

If m > n, the LQ factorization is

where L1 is an n-by-n lower triangular matrix, L2 is rectangular, and Q is an n-by-n orthogonal
(or unitary) matrix.

You can use the LQ factorization to find the minimum-norm solution of an underdetermined
system of linear equations Ax = b where A is an m-by-n matrix of rank m (m < n). After
factoring the matrix, compute the solution vector x as follows: solve Ly = b for y, and then
compute x = (Q1)

Hy.

Table 4-1 lists LAPACK routines (Fortran-77 interface) that perform orthogonal factorization
of matrices. Respective routine names in Fortran-95 interface are without the first symbol (see
Routine Naming Conventions).

562

4 Intel® Math Kernel Library Reference Manual

Table 4-1 Computational Routines for Orthogonal Factorization

Apply
matrix Q

Generate
matrix Q

Factorize
with pivoting

Factorize
without pivoting

Matrix type, factorization

?ormqr
?unmqr

?orgqr
?ungqr

?geqpf
?geqp3

?geqrfgeneral matrices, QR
factorization

?ormrq
?unmrq

?orgrq
?ungrq

?gerqfgeneral matrices, RQ
factorization

?ormlq
?unmlq

?orglq
?unglq

?gelqfgeneral matrices, LQ
factorization

?ormql
?unmql

?orgql
?ungql

?geqlfgeneral matrices, QL
factorization

?ormrz
?unmrz

?tzrzftrapezoidal matrices, RZ
factorization

?ggqrfpair of matrices, generalized QR
factorization

?ggrqfpair of matrices, generalized RQ
factorization

?geqrf
Computes the QR factorization of a general m-by-n
matrix.

Syntax

Fortran 77:

call sgeqrf(m, n, a, lda, tau, work, lwork, info)

call dgeqrf(m, n, a, lda, tau, work, lwork, info)

call cgeqrf(m, n, a, lda, tau, work, lwork, info)

call zgeqrf(m, n, a, lda, tau, work, lwork, info)

563

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95:

call geqrf(a [, tau] [,info])

Description

The routine forms the QR factorization of a general m-by-n matrix A (see Orthogonal
Factorizations). No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgeqrfa, work
DOUBLE PRECISION for dgeqrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Arrays: a(lda,*) contains the matrix A. The second
dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array (lwork ≥ n).lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the factorization data as follows:a

If m ≥ n, the elements below the diagonal are overwritten
by the details of the unitary matrix Q, and the upper triangle
is overwritten by the corresponding elements of the upper
triangular matrix R.

564

4 Intel® Math Kernel Library Reference Manual

If m < n, the strictly lower triangular part is overwritten by
the details of the unitary matrix Q, and the remaining
elements are overwritten by the corresponding elements of
the m-by-n upper trapezoidal matrix R.

REAL for sgeqrftau
DOUBLE PRECISION for dgeqrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Array, DIMENSION at least max (1, min(m, n)). Contains
additional information on the matrix Q.

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine geqrf interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length min(m,n)tau

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

565

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed factorization is the exact factorization of a matrix A + E, where

||E||2 = O(ε)||A||2.

The approximate number of floating-point operations for real flavors is

if m = n,(4/3)n3

if m > n,(2/3)n2(3m-n)

if m < n.(2/3)m2(3n-m)

The number of operations for complex flavors is 4 times greater.

To solve a set of least-squares problems minimizing ||Ax - b||2 for all columns b of a given
matrix B, you can call the following:

to factorize A = QR;?geqrf (this routine)

to compute C = QT*B (for real matrices);?ormqr

to compute C = QH*B (for complex matrices);?unmqr

(a BLAS routine) to solve R*X = C.?trsm

(The columns of the computed X are the least-squares solution vectors x.)

To compute the elements of Q explicitly, call

(for real matrices)?orgqr

(for complex matrices).?ungqr

566

4 Intel® Math Kernel Library Reference Manual

?geqpf
Computes the QR factorization of a general m-by-n
matrix with pivoting.

Syntax

Fortran 77:

call sgeqpf(m, n, a, lda, jpvt, tau, work, info)

call dgeqpf(m, n, a, lda, jpvt, tau, work, info)

call cgeqpf(m, n, a, lda, jpvt, tau, work, rwork, info)

call zgeqpf(m, n, a, lda, jpvt, tau, work, rwork, info)

Fortran 95:

call geqpf(a, jpvt [,tau] [,info])

Description

This routine is deprecated and has been replaced by routine ?geqp3.

The routine ?geqpf forms the QR factorization of a general m-by-n matrix A with column pivoting:
A*P = Q*R (see Orthogonal Factorizations). Here P denotes an n-by-n permutation matrix.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgeqpfa, work
DOUBLE PRECISION for dgeqpf
COMPLEX for cgeqpf
DOUBLE COMPLEX for zgeqpf.
Arrays: a (lda,*) contains the matrix A. The second
dimension of a must be at least max(1, n).

567

LAPACK Routines: Least Squares and Eigenvalue Problems 4

work (lwork) is a workspace array. The size of the work
array must be at least max(1, 3*n) for real flavors and at
least max(1, n) for complex flavors.

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. Array, DIMENSION at least max(1, n).jpvt
On entry, if jpvt(i) > 0, the i-th column of A is moved
to the beginning of A*P before the computation, and fixed
in place during the computation.
If jpvt(i) = 0, the ith column of A is a free column (that
is, it may be interchanged during the computation with any
other free column).

REAL for cgeqpfrwork
DOUBLE PRECISION for zgeqpf.
A workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

Overwritten by the factorization data as follows:a

If m ≥ n, the elements below the diagonal are overwritten
by the details of the unitary (orthogonal) matrix Q, and the
upper triangle is overwritten by the corresponding elements
of the upper triangular matrix R.
If m < n, the strictly lower triangular part is overwritten by
the details of the matrix Q, and the remaining elements are
overwritten by the corresponding elements of the m-by-n
upper trapezoidal matrix R.

REAL for sgeqpftau
DOUBLE PRECISION for dgeqpf
COMPLEX for cgeqpf
DOUBLE COMPLEX for zgeqpf.
Array, DIMENSION at least max (1, min(m, n)). Contains
additional information on the matrix Q.

Overwritten by details of the permutation matrix P in the
factorization A*P = Q*R. More precisely, the columns of
A*P are the columns of A in the following order:

jpvt

jpvt(1), jpvt(2), ..., jpvt(n).

INTEGER.info

568

4 Intel® Math Kernel Library Reference Manual

If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine geqpf interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (n).jpvt

Holds the vector of length min(m,n)tau

Application Notes

The computed factorization is the exact factorization of a matrix A + E, where

||E||2 = O(ε)||A||2.

The approximate number of floating-point operations for real flavors is

if m = n,(4/3)n3

if m > n,(2/3)n2(3m-n)

if m < n.(2/3)m2(3n-m)

The number of operations for complex flavors is 4 times greater.

To solve a set of least-squares problems minimizing ||Ax - b||2 for all columns b of a given
matrix B, you can call the following:

to factorize A*P = Q*R;?geqpf (this routine)

to compute C = QT*B (for real matrices);?ormqr

to compute C = QH*B (for complex matrices);?unmqr

to solve R*X = C.?trsm (a BLAS
routine)

(The columns of the computed X are the permuted least-squares solution vectors x; the output
array jpvt specifies the permutation order.)

To compute the elements of Q explicitly, call

569

LAPACK Routines: Least Squares and Eigenvalue Problems 4

(for real matrices)?orgqr

(for complex matrices).?ungqr

?geqp3
Computes the QR factorization of a general m-by-n
matrix with column pivoting using Level 3 BLAS.

Syntax

Fortran 77:

call sgeqp3(m, n, a, lda, jpvt, tau, work, lwork, info)

call dgeqp3(m, n, a, lda, jpvt, tau, work, lwork, info)

call cgeqp3(m, n, a, lda, jpvt, tau, work, lwork, rwork, info)

call zgeqp3(m, n, a, lda, jpvt, tau, work, lwork, rwork, info)

Fortran 95:

call geqp3(a, jpvt [,tau] [,info])

Description

The routine forms the QR factorization of a general m-by-n matrix A with column pivoting: AP
= Q*R (see Orthogonal Factorizations) using Level 3 BLAS. Here P denotes an n-by-n permutation
matrix. Use this routine instead of ?geqpf for better performance.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgeqp3a, work
DOUBLE PRECISION for dgeqp3
COMPLEX for cgeqp3
DOUBLE COMPLEX for zgeqp3.
Arrays:
a (lda,*) contains the matrix A.

570

4 Intel® Math Kernel Library Reference Manual

The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array; must be at least
max(1, 3*n+1) for real flavors, and at least max(1, n+1)
for complex flavors.

lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla. See
Application Notes below for details.

INTEGER.jpvt
Array, DIMENSION at least max(1, n).

On entry, if jpvt(i) ≠ 0, the ith column of A is moved to
the beginning of AP before the computation, and fixed in
place during the computation.
If jpvt(i) = 0, the i-th column of A is a free column (that
is, it may be interchanged during the computation with any
other free column).

REAL for cgeqp3rwork
DOUBLE PRECISION for zgeqp3.
A workspace array, DIMENSION at least max(1, 2*n). Used
in complex flavors only.

Output Parameters

Overwritten by the factorization data as follows:a

If m ≥ n, the elements below the diagonal are overwritten
by the details of the unitary (orthogonal) matrix Q, and the
upper triangle is overwritten by the corresponding elements
of the upper triangular matrix R.
If m < n, the strictly lower triangular part is overwritten by
the details of the matrix Q, and the remaining elements are
overwritten by the corresponding elements of the m-by-n
upper trapezoidal matrix R.

REAL for sgeqp3tau

571

LAPACK Routines: Least Squares and Eigenvalue Problems 4

DOUBLE PRECISION for dgeqp3
COMPLEX for cgeqp3
DOUBLE COMPLEX for zgeqp3.
Array, DIMENSION at least max (1, min(m, n)). Contains
scalar factors of the elementary reflectors for the matrix Q.

Overwritten by details of the permutation matrix P in the
factorization AP = Q*R. More precisely, the columns of AP
are the columns of A in the following order:

jpvt

jpvt(1), jpvt(2), ..., jpvt(n).

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine geqp3 interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (n).jpvt

Holds the vector of length min(m,n)tau

Application Notes

To solve a set of least-squares problems minimizing ||Ax - b||2 for all columns b of a given
matrix B, you can call the following:

to factorize AP = Q*R;?geqp3 (this routine)

to compute C = QT*B (for real matrices);?ormqr

to compute C = QH*B (for complex matrices);?unmqr

to solve R*X = C.?trsm (a BLAS
routine)

(The columns of the computed X are the permuted least-squares solution vectors x; the output
array jpvt specifies the permutation order.)

To compute the elements of Q explicitly, call

572

4 Intel® Math Kernel Library Reference Manual

(for real matrices)?orgqr

(for complex matrices).?ungqr

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?orgqr
Generates the real orthogonal matrix Q of the QR
factorization formed by ?geqrf.

Syntax

Fortran 77:

call sorgqr(m, n, k, a, lda, tau, work, lwork, info)

call dorgqr(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call orgqr(a, tau [,info])

Description

The routine generates the whole or part of m-by-m orthogonal matrix Q of the QR factorization
formed by the routines sgeqrf/dgeqrf or sgeqpf/dgeqpf. Use this routine after a call to
sgeqrf/dgeqrf or sgeqpf/dgeqpf.

573

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Usually Q is determined from the QR factorization of an m by p matrix A with m ≥ p. To compute
the whole matrix Q, use:

call ?orgqr(m, m, p, a, lda, tau, work, lwork, info)

To compute the leading p columns of Q (which form an orthonormal basis in the space spanned
by the columns of A):

call ?orgqr(m, p, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the QR factorization of A's leading k columns:

call ?orgqr(m, m, k, a, lda, tau, work, lwork, info)

To compute the leading k columns of Qk (which form an orthonormal basis in the space spanned
by A's leading k columns):

call ?orgqr(m, k, k, a, lda, tau, work, lwork, info)

Input Parameters

INTEGER. The order of the orthogonal matrix Q (m ≥ 0).m

INTEGER. The number of columns of Q to be computedn

(0 ≤ n ≤ m).

INTEGER. The number of elementary reflectors whose

product defines the matrix Q (0 ≤ k ≤ n).

k

REAL for sorgqra, tau, work
DOUBLE PRECISION for dorgqr
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgeqrf /
dgeqrf or sgeqpf / dgeqpf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array (lwork ≥ n).lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

574

4 Intel® Math Kernel Library Reference Manual

Output Parameters

Overwritten by n leading columns of the m-by-m orthogonal
matrix Q.

a

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine orgqr interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (k)tau

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

575

LAPACK Routines: Least Squares and Eigenvalue Problems 4

The computed Q differs from an exactly orthogonal matrix by a matrix E such that

||E||2 = O(ε)||A||2 where ε is the machine precision.

The total number of floating-point operations is approximately 4*m*n*k - 2*(m + n)*k2 +
(4/3)*k3.

If n = k, the number is approximately (2/3)*n2*(3m - n).

The complex counterpart of this routine is ?ungqr.

?ormqr
Multiplies a real matrix by the orthogonal matrix
Q of the QR factorization formed by ?geqrf or
?geqpf.

Syntax

Fortran 77:

call sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormqr(a, tau, c [,side] [,trans] [,info])

Description

The routine multiplies a real matrix C by Q or Q T, where Q is the orthogonal matrix Q of the QR

factorization formed by the routines sgeqrf/dgeqrf or sgeqpf/dgeqpf.

Depending on the parameters side and trans, the routine can form one of the matrix products
Q*C, QT*C, C*Q, or C*QT (overwriting the result on C).

Input Parameters

CHARACTER*1. Must be either 'L' or 'R'.side
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'T'.trans
If trans ='N', the routine multiplies C by Q.

576

4 Intel® Math Kernel Library Reference Manual

If trans ='T', the routine multiplies C by QT.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:

k

0 ≤ k ≤ m if side ='L';

0 ≤ k ≤ n if side ='R'.

REAL for sgeqrfa, tau, c, work
DOUBLE PRECISION for dgeqrf.
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgeqrf /
dgeqrf or sgeqpf / dgeqpf. The second dimension of a
must be at least max(1, k). The dimension of tau must be
at least max(1, k).
c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a. Constraints:lda

lda ≥ max(1, m) if side = 'L';

lda ≥ max(1, n) if side = 'R'.

INTEGER. The first dimension of c. Constraint:ldc

ldc ≥ max(1, m).

INTEGER. The size of the work array. Constraints:lwork

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

577

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters

Overwritten by the product Q*C, QT*C, C*Q, or C*QT (as
specified by side and trans).

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ormqr interface are the following:

Holds the matrix A of size (r,k).a
r = m if side = 'L'.
r = n if side = 'R'.

Holds the vector of length (k).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'T'. The default value is 'N'.trans

Application Notes

For better performance, try using lwork = n*blocksize (if side = 'L') or lwork =
m*blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

578

4 Intel® Math Kernel Library Reference Manual

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The complex counterpart of this routine is ?unmqr.

?ungqr
Generates the complex unitary matrix Q of the QR
factorization formed by ?geqrf.

Syntax

Fortran 77:

call cungqr(m, n, k, a, lda, tau, work, lwork, info)

call zungqr(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call ungqr(a, tau [,info])

Description

The routine generates the whole or part of m-by-m unitary matrix Q of the QR factorization formed
by the routines cgeqrf/zgeqrf or cgeqpf/zgeqpf. Use this routine after a call to
cgeqrf/zgeqrf or cgeqpf/zgeqpf.

Usually Q is determined from the QR factorization of an m by p matrix A with m ≥ p. To compute
the whole matrix Q, use:

call ?ungqr(m, m, p, a, lda, tau, work, lwork, info)

To compute the leading p columns of Q (which form an orthonormal basis in the space spanned
by the columns of A):

call ?ungqr(m, p, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the QR factorization of A's leading k columns:

call ?ungqr(m, m, k, a, lda, tau, work, lwork, info)

579

LAPACK Routines: Least Squares and Eigenvalue Problems 4

To compute the leading k columns of Qk (which form an orthonormal basis in the space spanned
by A's leading k columns):

call ?ungqr(m, k, k, a, lda, tau, work, lwork, info)

Input Parameters

INTEGER. The order of the unitary matrix Q (m ≥ 0).m

INTEGER. The number of columns of Q to be computedn

(0 ≤ n ≤ m).

INTEGER. The number of elementary reflectors whose

product defines the matrix Q (0 ≤ k ≤ n).

k

COMPLEX for cungqra, tau, work
DOUBLE COMPLEX for zungqr
Arrays: a(lda,*) and tau(*) are the arrays returned by
cgeqrf/zgeqrf or cgeqpf/zgeqpf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array (lwork ≥ n).lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by n leading columns of the m-by-m unitary
matrix Q.

a

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

580

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ungqr interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (k).tau

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed Q differs from an exactly unitary matrix by a matrix E such that ||E||2 =

O(ε)||A||2, where ε is the machine precision.

The total number of floating-point operations is approximately 16*m*n*k - 8*(m + n)*k2
+ (16/3)*k3.

If n = k, the number is approximately (8/3)*n2*(3m - n).

The real counterpart of this routine is ?orgqr.

581

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?unmqr
Multiplies a complex matrix by the unitary matrix
Q of the QR factorization formed by ?geqrf.

Syntax

Fortran 77:

call cunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call zunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call unmqr(a, tau, c [,side] [,trans] [,info])

Description

The routine multiplies a rectangular complex matrix C by Q or QH, where Q is the unitary matrix
Q of the QR factorization formed by the routines cgeqrf/zgeqrf or cgeqpf/zgeqpf.

Depending on the parameters side and trans, the routine can form one of the matrix products
Q*C, QH*C, C*Q, or C*QH (overwriting the result on C).

Input Parameters

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QH is applied to C from the left.
If side = 'R', Q or QH is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'C'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'C', the routine multiplies C by QH.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:

k

0 ≤ k ≤ m if side = 'L';

0 ≤ k ≤ n if side = 'R'.

COMPLEX for cgeqrfa, c, tau, work

582

4 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX for zgeqrf.
Arrays:
a(lda,*) and tau(*) are the arrays returned by cgeqrf /
zgeqrf or cgeqpf / zgeqpf.
The second dimension of a must be at least max(1, k).
The dimension of tau must be at least max(1, k).
c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a. Constraints:lda

lda ≥ max(1, m) if side = 'L';

lda ≥ max(1, n) if side = 'R'.

INTEGER. The first dimension of c. Constraint:ldc

ldc ≥ max(1, m).

INTEGER. The size of the work array. Constraints:lwork

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application notes for the suggested value of lwork.

Output Parameters

Overwritten by the product Q*C, QH*C, C*Q, or C*QH (as
specified by side and trans).

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

583

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine unmqr interface are the following:

Holds the matrix A of size (r,k).a
r = m if side = 'L'.
r = n if side = 'R'.

Holds the vector of length (k).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'C'. The default value is 'N'.trans

Application Notes

For better performance, try using lwork = n*blocksize (if side = 'L') or lwork =
m*blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The real counterpart of this routine is ?ormqr.

584

4 Intel® Math Kernel Library Reference Manual

?gelqf
Computes the LQ factorization of a general m-by-n
matrix.

Syntax

Fortran 77:

call sgelqf(m, n, a, lda, tau, work, lwork, info)

call dgelqf(m, n, a, lda, tau, work, lwork, info)

call cgelqf(m, n, a, lda, tau, work, lwork, info)

call zgelqf(m, n, a, lda, tau, work, lwork, info)

Fortran 95:

call gelqf(a [, tau] [,info])

Description

The routine forms the LQ factorization of a general m-by-n matrix A (see Orthogonal
Factorizations). No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgelqfa, work
DOUBLE PRECISION for dgelqf
COMPLEX for cgelqf
DOUBLE COMPLEX for zgelqf.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

585

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The size of the work array; at least max(1, m).lwork
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the factorization data as follows:a

If m ≤ n, the elements above the diagonal are overwritten
by the details of the unitary (orthogonal) matrix Q, and the
lower triangle is overwritten by the corresponding elements
of the lower triangular matrix L.
If m > n, the strictly upper triangular part is overwritten by
the details of the matrix Q, and the remaining elements are
overwritten by the corresponding elements of the m-by-n
lower trapezoidal matrix L.

REAL for sgelqftau
DOUBLE PRECISION for dgelqf
COMPLEX for cgelqf
DOUBLE COMPLEX for zgelqf.
Array, DIMENSION at least max(1, min(m, n)).
Contains additional information on the matrix Q.

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gelqf interface are the following:

Holds the matrix A of size (m,n).a

586

4 Intel® Math Kernel Library Reference Manual

Holds the vector of length min(m,n).tau

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed factorization is the exact factorization of a matrix A + E, where

||E||2 = O(ε) ||A||2.

The approximate number of floating-point operations for real flavors is

if m = n,(4/3)n3

if m > n,(2/3)n2(3m-n)

if m < n.(2/3)m2(3n-m)

The number of operations for complex flavors is 4 times greater.

To find the minimum-norm solution of an underdetermined least-squares problem minimizing
||Ax - b||2 for all columns b of a given matrix B, you can call the following:

to factorize A = L*Q;?gelqf (this routine)

to solve L*Y = B for Y;?trsm (a BLAS
routine)

to compute X = (Q1)
T*Y (for real matrices);?ormlq

to compute X = (Q1)
H*Y (for complex matrices).?unmlq

587

LAPACK Routines: Least Squares and Eigenvalue Problems 4

(The columns of the computed X are the minimum-norm solution vectors x. Here A is an m-by-n
matrix with m < n; Q1 denotes the first m columns of Q).

To compute the elements of Q explicitly, call

(for real matrices)?orglq

(for complex matrices).?unglq

?orglq
Generates the real orthogonal matrix Q of the LQ
factorization formed by ?gelqf.

Syntax

Fortran 77:

call sorglq(m, n, k, a, lda, tau, work, lwork, info)

call dorglq(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call orglq(a, tau [,info])

Description

The routine generates the whole or part of n-by-n orthogonal matrix Q of the LQ factorization
formed by the routines sgelqf/gelqf. Use this routine after a call to sgelqf/dgelqf.

Usually Q is determined from the LQ factorization of an p-by-n matrix A with n ≥ p. To compute
the whole matrix Q, use:

call ?orglq(n, n, p, a, lda, tau, work, lwork, info)

To compute the leading p rows of Q, which form an orthonormal basis in the space spanned by
the rows of A, use:

call ?orglq(p, n, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the LQ factorization of A's leading k rows, use:

call ?orglq(n, n, k, a, lda, tau, work, lwork, info)

To compute the leading k rows of Qk, which form an orthonormal basis in the space spanned
by A's leading k rows, use:

call ?orgqr(k, n, k, a, lda, tau, work, lwork, info)

588

4 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. The number of rows of Q to be computedm

(0 ≤ m ≤ n).

INTEGER. The order of the orthogonal matrix Q (n ≥ m).n

INTEGER. The number of elementary reflectors whose

product defines the matrix Q (0 ≤ k ≤ m).

k

REAL for sorglqa, tau, work
DOUBLE PRECISION for dorglq
Arrays: a(lda,*) and tau(*) are the arrays returned by
sgelqf/dgelqf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array; at least max(1, m).lwork
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by m leading rows of the n-by-n orthogonal
matrix Q.

a

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

589

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine orglq interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (k).tau

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2 =

O(ε) ||A||2, where e is the machine precision.

The total number of floating-point operations is approximately 4*m*n*k - 2*(m + n)*k2 +
(4/3)*k3.

If m = k, the number is approximately (2/3)*m2*(3n - m).

The complex counterpart of this routine is ?unglq.

590

4 Intel® Math Kernel Library Reference Manual

?ormlq
Multiplies a real matrix by the orthogonal matrix
Q of the LQ factorization formed by ?gelqf.

Syntax

Fortran 77:

call sormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormlq(a, tau, c [,side] [,trans] [,info])

Description

The routine multiplies a real m-by-n matrix C by Q or Q T, where Q is the orthogonal matrix Q of
the LQ factorization formed by the routine sgelqf/dgelqf.

Depending on the parameters side and trans, the routine can form one of the matrix products
Q*C, QT*C, C*Q, or C*QT (overwriting the result on C).

Input Parameters

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QT is applied to C from the left.
If side = 'R', Q or QT is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'T'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by QT.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:

k

0 ≤ k ≤ m if side = 'L';

0 ≤ k ≤ n if side = 'R'.

REAL for sormlqa, c, tau, work

591

LAPACK Routines: Least Squares and Eigenvalue Problems 4

DOUBLE PRECISION for dormlq.
Arrays:
a(lda,*) and tau(*) are arrays returned by ?gelqf.
The second dimension of a must be:
at least max(1, m) if side = 'L';
at least max(1, n) if side = 'R'.
The dimension of tau must be at least max(1, k).
c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a; lda ≥ max(1, k).lda

INTEGER. The first dimension of c; ldc ≥ max(1, m).ldc

INTEGER. The size of the work array. Constraints:lwork

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the product Q*C, QT*C, C*Q, or C*QT (as
specified by side and trans).

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

592

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ormlq interface are the following:

Holds the matrix A of size (k,m).a

Holds the vector of length (k).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'T'. The default value is 'N'.trans

Application Notes

For better performance, try using lwork = n*blocksize (if side = 'L') or lwork =
m*blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork= -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork= -1, the routine returns immediately and provides the recommended workspace
in the first element of the corresponding array (work). This operation is called a workspace
query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The complex counterpart of this routine is ?unmlq.

593

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?unglq
Generates the complex unitary matrix Q of the LQ
factorization formed by ?gelqf.

Syntax

Fortran 77:

call cunglq(m, n, k, a, lda, tau, work, lwork, info)

call zunglq(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call unglq(a, tau [,info])

Description

The routine generates the whole or part of n-by-n unitary matrix Q of the LQ factorization formed
by the routines cgelqf/zgelqf. Use this routine after a call to cgelqf/zgelqf.

Usually Q is determined from the LQ factorization of an p-by-n matrix A with n < p. To compute
the whole matrix Q, use:

call ?unglq(n, n, p, a, lda, tau, work, lwork, info)

To compute the leading p rows of Q, which form an orthonormal basis in the space spanned by
the rows of A, use:

call ?unglq(p, n, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the LQ factorization of A's leading k rows, use:

call ?unglq(n, n, k, a, lda, tau, work, lwork, info)

To compute the leading k rows of Qk, which form an orthonormal basis in the space spanned
by A's leading k rows, use:

call ?ungqr(k, n, k, a, lda, tau, work, lwork, info)

Input Parameters

INTEGER. The number of rows of Q to be computed (0 ≤ m

≤ n).

m

INTEGER. The order of the unitary matrix Q (n ≥ m).n

594

4 Intel® Math Kernel Library Reference Manual

INTEGER. The number of elementary reflectors whose

product defines the matrix Q (0 ≤ k ≤ m).

k

COMPLEX for cunglqa, tau, work
DOUBLE COMPLEX for zunglq
Arrays: a(lda,*) and tau(*) are the arrays returned by
sgelqf/dgelqf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array; at least max(1, m).lwork
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by m leading rows of the n-by-n unitary matrix
Q.

a

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine unglq interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (k).tau

595

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

For better performance, try using lwork = m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed Q differs from an exactly unitary matrix by a matrix E such that ||E||2 = O(ε)
||A||2, where e is the machine precision.

The total number of floating-point operations is approximately 16*m*n*k - 8*(m + n)*k2 +
(16/3)*k3.

If m = k, the number is approximately (8/3)*m2*(3n - m) .

The real counterpart of this routine is ?orglq.

?unmlq
Multiplies a complex matrix by the unitary matrix
Q of the LQ factorization formed by ?gelqf.

Syntax

Fortran 77:

call cunmlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call zunmlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

596

4 Intel® Math Kernel Library Reference Manual

Fortran 95:

call unmlq(a, tau, c [,side] [,trans] [,info])

Description

The routine multiplies a real m-by-n matrix C by Q or QH, where Q is the unitary matrix Q of the
LQ factorization formed by the routine cgelqf/zgelqf.

Depending on the parameters side and trans, the routine can form one of the matrix products
Q*C, QH*C, C*Q, or C*QH (overwriting the result on C).

Input Parameters

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QH is applied to C from the left.
If side = 'R', Q or QH is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'C'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'C', the routine multiplies C by QH.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:

k

0 ≤ k ≤ m if side = 'L';

0 ≤ k ≤ n if side = 'R'.

COMPLEX for cunmlqa, c, tau, work
DOUBLE COMPLEX for zunmlq.
Arrays:
a(lda,*) and tau(*) are arrays returned by ?gelqf.
The second dimension of a must be:
at least max(1, m) if side = 'L';
at least max(1, n) if side = 'R'.
The dimension of tau must be at least max(1, k).
c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)
work is a workspace array, its dimension max(1, lwork).

597

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The first dimension of a; lda ≥ max(1, k).lda

INTEGER. The first dimension of c; ldc ≥ max(1, m).ldc

INTEGER. The size of the work array. Constraints:lwork

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the product Q*C, QH*C, C*Q, or C*QH (as
specified by side and trans).

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine unmlq interface are the following:

Holds the matrix A of size (k,m).a

Holds the vector of length (k).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'C'. The default value is 'N'.trans

598

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork = n*blocksize (if side = 'L') or lwork =
m*blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The real counterpart of this routine is ?ormlq.

?geqlf
Computes the QL factorization of a general m-by-n
matrix.

Syntax

Fortran 77:

call sgeqlf(m, n, a, lda, tau, work, lwork, info)

call dgeqlf(m, n, a, lda, tau, work, lwork, info)

call cgeqlf(m, n, a, lda, tau, work, lwork, info)

call zgeqlf(m, n, a, lda, tau, work, lwork, info)

Fortran 95:

call geqlf(a [, tau] [,info])

599

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Description

The routine forms the QL factorization of a general m-by-n matrix A. No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgeqlfa, work
DOUBLE PRECISION for dgeqlf
COMPLEX for cgeqlf
DOUBLE COMPLEX for zgeqlf.
Arrays: a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array; at least max(1, n).lwork
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten on exit by the factorization data as follows:a
if m < n, the lower triangle of the subarray a(m-n+1:m, 1:n)

contains the n-by-n lower triangular matrix L; if m ≤ n, the
elements on and below the (n-m)-th superdiagonal contain
the m-by-n lower trapezoidal matrix L; in both cases, the
remaining elements, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors.

REAL for sgeqlftau
DOUBLE PRECISION for dgeqlf

600

4 Intel® Math Kernel Library Reference Manual

COMPLEX for cgeqlf
DOUBLE COMPLEX for zgeqlf.
Array, DIMENSION at least max(1, min(m, n)). Contains
scalar factors of the elementary reflectors for the matrix Q.

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine geqlf interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length min(m,n).tau

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

601

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Related routines include:

to generate matrix Q (for real matrices);?orgql

to generate matrix Q (for complex matrices);?ungql

to apply matrix Q (for real matrices);?ormql

to apply matrix Q (for complex matrices).?unmql

?orgql
Generates the real matrix Q of the QL factorization
formed by ?geqlf.

Syntax

Fortran 77:

call sorgql(m, n, k, a, lda, tau, work, lwork, info)

call dorgql(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call orgql(a, tau [,info])

Description

The routine generates an m-by-n real matrix Q with orthonormal columns, which is defined as
the last n columns of a product of k elementary reflectors H(i) of order m: Q = H(k) *...*
H(2)*H(1) as returned by the routines sgeqlf/dgeqlf. Use this routine after a call to
sgeqlf/dgeqlf.

Input Parameters

INTEGER. The number of rows of the matrix Q (m≥ 0).m

INTEGER. The number of columns of the matrix Q (m≥ n≥
0).

n

INTEGER. The number of elementary reflectors whose

product defines the matrix Q (n≥ k≥ 0).

k

REAL for sorgqla, tau, work
DOUBLE PRECISION for dorgql

602

4 Intel® Math Kernel Library Reference Manual

Arrays: a(lda,*), tau(*).
On entry, the (n - k + i)th column of a must contain the
vector which defines the elementary reflector H(i), for i =
1,2,...,k, as returned by sgeqlf/dgeqlf in the last k
columns of its array argument a; tau(i) must contain the
scalar factor of the elementary reflector H(i), as returned
by sgeqlf/dgeqlf;
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array; at least max(1, n).lwork
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the m-by-n matrix Q.a

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine orgql interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (k).tau

603

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The complex counterpart of this routine is ?ungql.

?ungql
Generates the complex matrix Q of the QL
factorization formed by ?geqlf.

Syntax

Fortran 77:

call cungql(m, n, k, a, lda, tau, work, lwork, info)

call zungql(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call ungql(a, tau [,info])

604

4 Intel® Math Kernel Library Reference Manual

Description

The routine generates an m-by-n complex matrix Q with orthonormal columns, which is defined
as the last n columns of a product of k elementary reflectors H(i) of order m: Q = H(k) *...*
H(2)*H(1) as returned by the routines cgeqlf/zgeqlf . Use this routine after a call to
cgeqlf/zgeqlf.

Input Parameters

INTEGER. The number of rows of the matrix Q (m≥ 0).m

INTEGER. The number of columns of the matrix Q (m≥n≥ 0).n

INTEGER. The number of elementary reflectors whose

product defines the matrix Q (n≥ k≥ 0).

k

COMPLEX for cungqla, tau, work
DOUBLE COMPLEX for zungql
Arrays: a(lda,*), tau(*), work(lwork).
On entry, the (n - k + i)th column of a must contain the
vector which defines the elementary reflector H(i), for i =
1,2,...,k, as returned by cgeqlf/zgeqlf in the last k
columns of its array argument a;
tau(i) must contain the scalar factor of the
elementaryreflector H(i), as returned by cgeqlf/zgeqlf;
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array; at least max(1, n).lwork
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the m-by-n matrix Q.a

605

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ungql interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (k).tau

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The real counterpart of this routine is ?orgql.

606

4 Intel® Math Kernel Library Reference Manual

?ormql
Multiplies a real matrix by the orthogonal matrix
Q of the QL factorization formed by ?geqlf.

Syntax

Fortran 77:

call sormql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call dormql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormql(a, tau, c [,side] [,trans] [,info])

Description

This routine multiplies a real m-by-n matrix C by Q or QT, where Q is the orthogonal matrix Q of
the QL factorization formed by the routine sgeqlf/dgeqlf .

Depending on the parameters side and trans, the routine ?ormql can form one of the matrix
products Q*C, QT*C, C*Q, or C*QT (overwriting the result over C).

Input Parameters

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QT is applied to C from the left.
If side = 'R', Q or QT is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'T'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by QT.

INTEGER. The number of rows in the matrix C (m≥ 0).m

INTEGER. The number of columns in C (n≥ 0).n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:

k

0 ≤k≤m if side = 'L';

0 ≤k≤n if side = 'R'.

REAL for sormqla, tau, c, work

607

LAPACK Routines: Least Squares and Eigenvalue Problems 4

DOUBLE PRECISION for dormql.
Arrays: a(lda,*), tau(*), c(ldc,*).
On entry, the ith column of a must contain the vector which
defines the elementary reflector Hi, for i = 1,2,...,k, as
returned by sgeqlf/dgeqlf in the last k columns of its
array argument a.
The second dimension of a must be at least max(1, k).
tau(i) must contain the scalar factor of the elementary
reflector Hi, as returned by sgeqlf/dgeqlf.
The dimension of tau must be at least max(1, k).
c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a;lda

if side = 'L', lda≥ max(1, m);

if side = 'R', lda≥ max(1, n).

INTEGER. The first dimension of c; ldc≥ max(1, m).ldc

INTEGER. The size of the work array. Constraints:lwork

lwork≥ max(1, n) if side = 'L';

lwork≥ max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the product Q*C, QT*C, C*Q, or C*QT (as
specified by side and trans).

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info

608

4 Intel® Math Kernel Library Reference Manual

If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ormql interface are the following:

Holds the matrix A of size (r,k).a
r = m if side = 'L'.
r = n if side = 'R'.

Holds the vector of length (k).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'T'. The default value is 'N'.trans

Application Notes

For better performance, try using lwork = n*blocksize (if side = 'L') or lwork =
m*blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The complex counterpart of this routine is ?unmql.

609

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?unmql
Multiplies a complex matrix by the unitary matrix
Q of the QL factorization formed by ?geqlf.

Syntax

Fortran 77:

call cunmql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call zunmql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call unmql(a, tau, c [,side] [,trans] [,info])

Description

The routine multiplies a complex m-by-n matrix C by Q or QH, where Q is the unitary matrix Q of
the QL factorization formed by the routine cgeqlf/zgeqlf .

Depending on the parameters side and trans, the routine ?unmql can form one of the matrix
products Q*C, QH*C, C*Q, or C*QH (overwriting the result over C).

Input Parameters

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QH is applied to C from the left.
If side = 'R', Q or QH is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'C'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'C', the routine multiplies C by QH.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:

k

0 ≤ k ≤ m if side = 'L';

0 ≤ k ≤ n if side = 'R'.

COMPLEX for cunmqla, tau, c, work

610

4 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX for zunmql.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).
On entry, the i-th column of a must contain the vector
which defines the elementary reflector H(i), for i = 1,2,...,k,
as returned by cgeqlf/zgeqlf in the last k columns of its
array argument a.
The second dimension of a must be at least max(1, k).
tau(i) must contain the scalar factor of the elementary
reflectorH(i), as returned by cgeqlf/zgeqlf.
The dimension of tau must be at least max(1, k).
c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; lda ≥ max(1, n).lda

INTEGER. The first dimension of c; ldc ≥ max(1, m).ldc

INTEGER. The size of the work array. Constraints:lwork

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the product Q*C, QH*C, C*Q, or C*QH (as
specified by side and trans).

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

611

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine unmql interface are the following:

Holds the matrix A of size (r,k).a
r = m if side = 'L'.
r = n if side = 'R'.

Holds the vector of length (k).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'L'. The default value is 'L'.side

Must be 'N' or 'C'. The default value is 'N'.trans

Application Notes

For better performance, try using lwork = n*blocksize (if side = 'L') or lwork =
m*blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The real counterpart of this routine is ?ormql.

612

4 Intel® Math Kernel Library Reference Manual

?gerqf
Computes the RQ factorization of a general m-by-n
matrix.

Syntax

Fortran 77:

call sgerqf(m, n, a, lda, tau, work, lwork, info)

call dgerqf(m, n, a, lda, tau, work, lwork, info)

call cgerqf(m, n, a, lda, tau, work, lwork, info)

call zgerqf(m, n, a, lda, tau, work, lwork, info)

Fortran 95:

call gerqf(a [, tau] [,info])

Description

The routine forms the RQ factorization of a general m-by-n matrix A. No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgerqfa, work
DOUBLE PRECISION for dgerqf
COMPLEX for cgerqf
DOUBLE COMPLEX for zgerqf.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array;lwork

613

LAPACK Routines: Least Squares and Eigenvalue Problems 4

lwork ≥ max(1, m).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten on exit by the factorization data as follows:a

if m ≤ n, the upper triangle of the subarray
a(1:m, n-m+1:n) contains the m-by-m upper triangular matrix
R;

if m ≥ n, the elements on and above the (m-n)th subdiagonal
contain the m-by-n upper trapezoidal matrix R;
in both cases, the remaining elements, with the array tau,
represent the orthogonal/unitary matrix Q as a product of
min(m,n) elementary reflectors.

REAL for sgerqftau
DOUBLE PRECISION for dgerqf
COMPLEX for cgerqf
DOUBLE COMPLEX for zgerqf.
Array, DIMENSION at least max (1, min(m, n)).
Contains scalar factors of the elementary reflectors for the
matrix Q.

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gerqf interface are the following:

614

4 Intel® Math Kernel Library Reference Manual

Holds the matrix A of size (m,n).a

Holds the vector of length min(m,n).tau

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

Related routines include:

to generate matrix Q (for real matrices);?orgrq

to generate matrix Q (for complex matrices);?ungrq

to apply matrix Q (for real matrices);?ormrq

to apply matrix Q (for complex matrices).?unmrq

615

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?orgrq
Generates the real matrix Q of the RQ factorization
formed by ?gerqf.

Syntax

Fortran 77:

call sorgrq(m, n, k, a, lda, tau, work, lwork, info)

call dorgrq(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call orgrq(a, tau [,info])

Description

The routine generates an m-by-n real matrix Q with orthonormal rows, which is defined as the
last m rows of a product of k elementary reflectors H(i) of order n: Q = H(1)*
H(2)*...*H(k)as returned by the routines sgerqf/dgerqf. Use this routine after a call to
sgerqf/dgerqf.

Input Parameters

INTEGER. The number of rows of the matrix Q (m≥ 0).m

INTEGER. The number of columns of the matrix Q (n≥ m).n

INTEGER. The number of elementary reflectors whose

product defines the matrix Q (m≥ k≥ 0).

k

REAL for sorgrqa, tau, work
DOUBLE PRECISION for dorgrq
Arrays: a(lda,*), tau(*).
On entry, the (m - k + i)th row of a must contain the vector
which defines the elementary reflector H(i), for i = 1,2,...,k,
as returned by sgerqf/dgerqf in the last k rows of its array
argument a;
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by sgerqf/dgerqf;
The second dimension of a must be at least max(1, n).

616

4 Intel® Math Kernel Library Reference Manual

The dimension of tau must be at least max(1, k).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array; at least max(1, m).lwork
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the m-by-n matrix Q.a

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine orgrq interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (k).tau

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

617

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The complex counterpart of this routine is ?ungrq.

?ungrq
Generates the complex matrix Q of the RQ
factorization formed by ?gerqf.

Syntax

Fortran 77:

call cungrq(m, n, k, a, lda, tau, work, lwork, info)

call zungrq(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call ungrq(a, tau [,info])

Description

The routine generates an m-by-n complex matrix Q with orthonormal rows, which is defined as
the last m rows of a product of k elementary reflectors H(i) of order n: Q = H(1)H*
H(2)H*...*H(k)H as returned by the routines sgerqf/dgerqf. Use this routine after a call to
sgerqf/dgerqf.

Input Parameters

INTEGER. The number of rows of the matrix Q (m≥ 0).m

INTEGER. The number of columns of the matrix Q (n≥ m).n

618

4 Intel® Math Kernel Library Reference Manual

INTEGER. The number of elementary reflectors whose

product defines the matrix Q (m≥ k≥ 0).

k

REAL for cungrqa, tau, work
DOUBLE PRECISION for zungrq
Arrays: a(lda,*), tau(*), work(lwork).
On entry, the (m - k + i)th row of a must contain the vector
which defines the elementary reflector H(i), for i = 1,2,...,k,
as returned by sgerqf/dgerqf in the last k rows of its array
argument a;
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by sgerqf/dgerqf;
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array; at least max(1, m).lwork
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the m-by-n matrix Q.a

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

619

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Specific details for the routine ungrq interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (k).tau

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The real counterpart of this routine is ?orgrq.

?ormrq
Multiplies a real matrix by the orthogonal matrix
Q of the RQ factorization formed by ?gerqf.

Syntax

Fortran 77:

call sormrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call dormrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormrq(a, tau, c [,side] [,trans] [,info])

620

4 Intel® Math Kernel Library Reference Manual

Description

The routine multiplies a real m-by-n matrix C by Q or QT, where Q is the real orthogonal matrix
defined as a product of k elementary reflectors Hi : Q = H1 H2 ... Hk as returned by the RQ

factorization routine sgerqf/dgerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QTC, CQ, or CQT (overwriting the result over C).

Input Parameters

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QT is applied to C from the left.
If side = 'R', Q or QT is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'T'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by QT.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:

k

0 ≤ k ≤ m, if side = 'L';

0 ≤ k ≤ n, if side = 'R'.

REAL for sormrqa, tau, c, work
DOUBLE PRECISION for dormrq.
Arrays: a(lda,*), tau(*), c(ldc,*).
On entry, the ith row of a must contain the vector which
defines the elementary reflector Hi, for i = 1,2,...,k, as
returned by sgerqf/dgerqf in the last k rows of its array
argument a.
The second dimension of a must be at least max(1, m) if
side = 'L', and at least max(1, n) if side = 'R'.
tau(i) must contain the scalar factor of the elementary
reflector Hi, as returned by sgerqf/dgerqf.
The dimension of tau must be at least max(1, k).
c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

621

LAPACK Routines: Least Squares and Eigenvalue Problems 4

work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; lda ≥ max(1, k).lda

INTEGER. The first dimension of c; ldc ≥ max(1, m).ldc

INTEGER. The size of the work array. Constraints:lwork

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the product QC, QTC, CQ, or CQT (as specified
by side and trans).

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ormrq interface are the following:

Holds the matrix A of size (k,m).a

Holds the vector of length (k).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'T'. The default value is 'N'.trans

622

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork = n*blocksize (if side = 'L') or lwork =
m*blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The complex counterpart of this routine is ?unmrq.

?unmrq
Multiplies a complex matrix by the unitary matrix
Q of the RQ factorization formed by ?gerqf.

Syntax

Fortran 77:

call cunmrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call zunmrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call unmrq(a, tau, c [,side] [,trans] [,info])

623

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Description

The routine multiplies a complex m-by-n matrix C by Q or QH, where Q is the complex unitary
matrix defined as a product of k elementary reflectors H(i) of order n: Q = H(1)H*
H(2)H*...*H(k)Has returned by the RQ factorization routine cgerqf/zgerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products
Q*C, QH*C, C*Q, or C*QH (overwriting the result over C).

Input Parameters

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QH is applied to C from the left.
If side = 'R', Q or QH is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'C'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'C', the routine multiplies C by QH.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:

k

0 ≤ k ≤ m, if side = 'L';

0 ≤ k ≤ n, if side = 'R'.

COMPLEX for cunmrqa, tau, c, work
DOUBLE COMPLEX for zunmrq.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).
On entry, the ith row of a must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by cgerqf/zgerqf in the last k rows of its array
argument a.
The second dimension of a must be at least max(1, m) if
side = 'L', and at least max(1, n) if side = 'R'.
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by cgerqf/zgerqf.
The dimension of tau must be at least max(1, k).
c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

624

4 Intel® Math Kernel Library Reference Manual

work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a; lda ≥ max(1, k) .lda

INTEGER. The first dimension of c; ldc ≥ max(1, m).ldc

INTEGER. The size of the work array. Constraints:lwork

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the product Q*C, QH*C, C*Q, or C*QH (as
specified by side and trans).

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine unmrq interface are the following:

Holds the matrix A of size (k,m).a

Holds the vector of length (k).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'C'. The default value is 'N'.trans

625

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

For better performance, try using lwork = n*blocksize (if side = 'L') or lwork =
m*blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The real counterpart of this routine is ?ormrq.

?tzrzf
Reduces the upper trapezoidal matrix A to upper
triangular form.

Syntax

Fortran 77:

call stzrzf(m, n, a, lda, tau, work, lwork, info)

call dtzrzf(m, n, a, lda, tau, work, lwork, info)

call ctzrzf(m, n, a, lda, tau, work, lwork, info)

call ztzrzf(m, n, a, lda, tau, work, lwork, info)

Fortran 95:

call tzrzf(a [, tau] [,info])

626

4 Intel® Math Kernel Library Reference Manual

Description

This routine reduces the m-by-n (m ≤ n) real/complex upper trapezoidal matrix A to upper
triangular form by means of orthogonal/unitary transformations. The upper trapezoidal matrix
A is factored as

A = (R 0) * Z,

where Z is an n-by-n orthogonal/unitary matrix and R is an m-by-m upper triangular matrix.

See ?larz that applies an elementary reflector returned by ?tzrzf to a general matrix.

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ m).n

REAL for stzrzfa, work
DOUBLE PRECISION for dtzrzf
COMPLEX for ctzrzf
DOUBLE COMPLEX for ztzrzf.
Arrays: a(lda,*), work(lwork).The leading m-by-n upper
trapezoidal part of the array a contains the matrix A to be
factorized.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The size of the work array;lwork

lwork ≥ max(1, m).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten on exit by the factorization data as follows:a

627

LAPACK Routines: Least Squares and Eigenvalue Problems 4

the leading m-by-m upper triangular part of a contains the
upper triangular matrix R, and elements m +1 to n of the
first m rows of a, with the array tau, represent the
orthogonal matrix Z as a product of m elementary reflectors.

REAL for stzrzftau
DOUBLE PRECISION for dtzrzf
COMPLEX for ctzrzf
DOUBLE COMPLEX for ztzrzf.
Array, DIMENSION at least max (1, m). Contains scalar
factors of the elementary reflectors for the matrix Z.

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tzrzf interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length (m).tau

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

628

4 Intel® Math Kernel Library Reference Manual

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

Related routines include:

to apply matrix Q (for real matrices)?ormrz

to apply matrix Q (for complex matrices).?unmrz

?ormrz
Multiplies a real matrix by the orthogonal matrix
defined from the factorization formed by ?tzrzf.

Syntax

Fortran 77:

call sormrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)

call dormrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormrz(a, tau, c, l [, side] [,trans] [,info])

Description

The routine multiplies a real m-by-n matrix C by Q or QT, where Q is the real orthogonal matrix
defined as a product of k elementary reflectors H(i) of order n: Q = H(1)* H(2)*...*H(k)
as returned by the factorization routine stzrzf/dtzrzf .

Depending on the parameters side and trans, the routine can form one of the matrix products
Q*C, QT*C, C*Q, or C*QT (overwriting the result over C).

The matrix Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QT is applied to C from the left.

629

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If side = 'R', Q or QT is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'T'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by QT.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:

k

0 ≤ k ≤ m, if side = 'L';

0 ≤ k ≤ n, if side = 'R'.

INTEGER.l
The number of columns of the matrix A containing the
meaningful part of the Householder reflectors. Constraints:

0 ≤ l ≤ m, if side = 'L';

0 ≤ l ≤ n, if side = 'R'.

REAL for sormrza, tau, c, work
DOUBLE PRECISION for dormrz.
Arrays: a(lda,*), tau(*), c(ldc,*).
On entry, the ith row of a must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by stzrzf/dtzrzf in the last k rows of its array
argument a.
The second dimension of a must be at least max(1, m) if
side = 'L', and at least max(1, n) if side = 'R'.
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by stzrzf/dtzrzf.
The dimension of tau must be at least max(1, k).
c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; lda ≥ max(1, k) .lda

INTEGER. The first dimension of c; ldc ≥ max(1, m).ldc

INTEGER. The size of the work array. Constraints:lwork

630

4 Intel® Math Kernel Library Reference Manual

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the product Q*C, QT*C, C*Q, or C*QTc
(as specified by side and trans).

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ormrz interface are the following:

Holds the matrix A of size (k,m).a

Holds the vector of length (k).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'T'. The default value is 'N'.trans

Application Notes

For better performance, try using lwork = n*blocksize (if side = 'L') or lwork =
m*blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm.

631

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The complex counterpart of this routine is ?unmrz.

?unmrz
Multiplies a complex matrix by the unitary matrix
defined from the factorization formed by ?tzrzf.

Syntax

Fortran 77:

call cunmrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)

call zunmrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call unmrz(a, tau, c, l [,side] [,trans] [,info])

Description

The routine multiplies a complex m-by-n matrix C by Q or QH, where Q is the unitary matrix
defined as a product of k elementary reflectorsH(i):

Q = H(1)H* H(2)H*...*H(k)H as returned by the factorization routine ctzrzf/ztzrzf .

Depending on the parameters side and trans, the routine can form one of the matrix products
Q*C, QH*C, C*Q, or C*QH (overwriting the result over C).

The matrix Q is of order m if side = 'L' and of order n if side = 'R'.

632

4 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QH is applied to C from the left.
If side = 'R', Q or QH is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'C'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'C', the routine multiplies C by QH.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:

k

0 ≤ k ≤ m, if side = 'L';

0 ≤ k ≤ n, if side = 'R'.

INTEGER.l
The number of columns of the matrix A containing the
meaningful part of the Householder reflectors. Constraints:

0 ≤ l ≤ m, if side = 'L';

0 ≤ l ≤ n, if side = 'R'.

COMPLEX for cunmrza, tau, c, work
DOUBLE COMPLEX for zunmrz.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).
On entry, the ith row of a must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by ctzrzf/ztzrzf in the last k rows of its array
argument a.
The second dimension of a must be at least max(1, m) if
side = 'L', and at least max(1, n) if side = 'R'.
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ctzrzf/ztzrzf.
The dimension of tau must be at least max(1, k).
c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)
work is a workspace array, its dimension max(1,
lwork).

633

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The first dimension of a; lda ≥ max(1, k).lda

INTEGER. The first dimension of c; ldc ≥ max(1, m).ldc

INTEGER. The size of the work array. Constraints:lwork

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the product Q*C, QH*C, C*Q, or C*QH (as
specified by side and trans).

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine unmrz interface are the following:

Holds the matrix A of size (k,m).a

Holds the vector of length (k).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'C'. The default value is 'N'.trans

634

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork = n*blocksize (if side = 'L') or lwork =
m*blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The real counterpart of this routine is ?ormrz.

?ggqrf
Computes the generalized QR factorization of two
matrices.

Syntax

Fortran 77:

call sggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call dggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call cggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call zggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

Fortran 95:

call ggqrf(a, b [,taua] [,taub] [,info])

635

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Description

The routine forms the generalized QR factorization of an n-by-m matrix A and an n-by-p matrix
B as A = Q*R, B = Q*T*Z, where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p
orthogonal/unitary matrix, and R and T assume one of the forms:

or

where R11 is upper triangular, and

where T12 or T21 is a p-by-p upper triangular matrix.

In particular, if B is square and nonsingular, the GQR factorization of A and B implicitly gives the
QR factorization of B-1A as:

B-1*A = ZH*(T-1*R)

636

4 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. The number of rows of the matrices A and B (n

≥ 0).

n

INTEGER. The number of columns in A (m ≥ 0).m

INTEGER. The number of columns in B (p ≥ 0).p

REAL for sggqrfa, b, work
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays: a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, m).
b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, p).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

INTEGER. The size of the work array; must be at least
max(1, n, m, p).

lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the factorization data as follows:a, b
on exit, the elements on and above the diagonal of the array
a contain the min(n,m)-by-m upper trapezoidal matrix R (R

is upper triangular if n ≥ m);the elements below the
diagonal, with the array taua, represent the
orthogonal/unitary matrix Q as a product of min(n,m)
elementary reflectors ;

if n ≤ p, the upper triangle of the subarray b(1:n, p-n+1:p
) contains the n-by-n upper triangular matrix T;

637

LAPACK Routines: Least Squares and Eigenvalue Problems 4

if n > p, the elements on and above the (n-p)th subdiagonal
contain the n-by-p upper trapezoidal matrix T; the remaining
elements, with the array taub, represent the
orthogonal/unitary matrix Z as a product of elementary
reflectors.

REAL for sggqrftaua, taub
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays, DIMENSION at least max (1, min(n, m)) for taua and
at least max (1, min(n, p)) for taub. The array taua contains
the scalar factors of the elementary reflectors which
represent the orthogonal/unitary matrix Q.
The array taub contains the scalar factors of the elementary
reflectors which represent the orthogonal/unitary matrix Z.

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ggqrf interface are the following:

Holds the matrix A of size (n,m).a

Holds the matrix B of size (n,p).b

Holds the vector of length min(n,m).taua

Holds the vector of length min(n,p).taub

638

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork ≥ max(n,m, p)*max(nb1,nb2,nb3), where nb1 is
the optimal blocksize for the QR factorization of an n-by-m matrix, nb2 is the optimal blocksize
for the RQ factorization of an n-by-p matrix, and nb3 is the optimal blocksize for a call of
?ormqr/?unmqr.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?ggrqf
Computes the generalized RQ factorization of two
matrices.

Syntax

Fortran 77:

call sggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

call dggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

call cggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

call zggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

Fortran 95:

call ggrqf(a, b [,taua] [,taub] [,info])

639

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Description

The routine forms the generalized RQ factorization of an m-by-n matrix A and an p-by-n matrix
B as A = R*Q, B = Z*T*Q, where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p
orthogonal/unitary matrix, and R and T assume one of the forms:

or

where R11 or R21 is upper triangular, and

or

where T11 is upper triangular.

640

4 Intel® Math Kernel Library Reference Manual

In particular, if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the
RQ factorization of A*B-1 as:

A*B-1 = (R*T-1)*ZH

Input Parameters

INTEGER. The number of rows of the matrix A (m ≥ 0).m

INTEGER. The number of rows in B (p ≥ 0).p

INTEGER. The number of columns of the matrices A and B

(n ≥ 0).

n

REAL for sggrqfa, b, work
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The first dimension of b; at least max(1, p).ldb

INTEGER. The size of the work array; must be at least
max(1, n, m, p).

lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the factorization data as follows:a, b
on exit, if m ≤ n, the upper triangle of the subarray a(1:m,
n-m+1:n) contains the m-by-m upper triangular matrix R;

641

LAPACK Routines: Least Squares and Eigenvalue Problems 4

if m > n, the elements on and above the (m-n)th subdiagonal
contain the m-by-n upper trapezoidal matrix R;
the remaining elements, with the array taua, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors; the elements on and above the diagonal of the
array b contain the min(p,n)-by-n upper trapezoidal matrix

T (T is upper triangular if p ≥ n); the elements below the
diagonal, with the array taub, represent the
orthogonal/unitary matrix Z as a product of elementary
reflectors.

REAL for sggrqftaua, taub
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.
Arrays, DIMENSION at least max (1, min(m, n)) for taua and
at least max (1, min(p, n)) for taub.
The array taua contains the scalar factors of the elementary
reflectors which represent the orthogonal/unitary matrix Q.
The array taub contains the scalar factors of the elementary
reflectors which represent the orthogonal/unitary matrix Z.

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ggrqf interface are the following:

Holds the matrix A of size (m,n).a

Holds the matrix A of size (p,n).b

Holds the vector of length min(m,n).taua

642

4 Intel® Math Kernel Library Reference Manual

Holds the vector of length min(p,n).taub

Application Notes

For better performance, try using

lwork ≥ max(n,m, p)*max(nb1,nb2,nb3),

where nb1 is the optimal blocksize for the RQ factorization of an m-by-n matrix, nb2 is the optimal
blocksize for the QR factorization of an p-by-n matrix, and nb3 is the optimal blocksize for a call
of ?ormrq/?unmrq.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork= -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork= -1, the routine returns immediately and provides the recommended workspace
in the first element of the corresponding array (work). This operation is called a workspace
query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

Singular Value Decomposition

This section describes LAPACK routines for computing the singular value decomposition
(SVD) of a general m-by-n matrix A:

A = UΣVH.

In this decomposition, U and V are unitary (for complex A) or orthogonal (for real A); Σ is an

m-by-n diagonal matrix with real diagonal elements σi:

σ1 < σ2 < ... < σmin(m, n) < 0.

The diagonal elements σi are singular values of A. The first min(m, n) columns of the
matrices U and V are, respectively, left and right singular vectors of A. The singular
values and singular vectors satisfy

643

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Avi = σiui and AHui = σivi

where ui and vi are the i th columns of U and V, respectively.

To find the SVD of a general matrix A, call the LAPACK routine ?gebrd or ?gbbrd for reducing
A to a bidiagonal matrix B by a unitary (orthogonal) transformation: A = QBPH. Then call ?bdsqr,

which forms the SVD of a bidiagonal matrix: B = U1ΣV1H.

Thus, the sought-for SVD of A is given by A = UΣVH =(QU1)Σ(V1HPH).

Table 4-2 lists LAPACK routines (Fortran-77 interface) that perform singular value decomposition
of matrices. Respective routine names in Fortran-95 interface are without the first symbol (see
Routine Naming Conventions).

Table 4-2 Computational Routines for Singular Value Decomposition (SVD)

Complex matricesReal matricesOperation

?gebrd?gebrdReduce A to a bidiagonal matrix B: A =
QBPH (full storage)

?gbbrd?gbbrdReduce A to a bidiagonal matrix B: A =
QBPH (band storage)

?ungbr?orgbrGenerate the orthogonal (unitary) matrix
Q or P

?unmbr?ormbrApply the orthogonal (unitary) matrix Q or
P

?bdsqr?bdsqr ?bdsdcForm singular value decomposition of the

bidiagonal matrix B: B = UΣVH

644

4 Intel® Math Kernel Library Reference Manual

Figure 4-1 Decision Tree: Singular Value Decomposition

Figure 4-1 “Decision Tree: Singular Value Decomposition” presents a decision tree that helps
you choose the right sequence of routines for SVD, depending on whether you need singular
values only or singular vectors as well, whether A is real or complex, and so on.

645

LAPACK Routines: Least Squares and Eigenvalue Problems 4

You can use the SVD to find a minimum-norm solution to a (possibly) rank-deficient least-squares
problem of minimizing ||Ax - b||2. The effective rank k of the matrix A can be determined
as the number of singular values which exceed a suitable threshold. The minimum-norm solution
is

x = Vk(Σk)-1c,

where Σk is the leading k -by- k submatrix of Σ, the matrix Vk consists of the first k columns of
V = PV1, and the vector c consists of the first k elements of UHb = U1

HQHb.

?gebrd
Reduces a general matrix to bidiagonal form.

Syntax

Fortran 77:

call sgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)

call dgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)

call cgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)

call zgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)

Fortran 95:

call gebrd(a [, d] [,e] [,tauq] [,taup] [,info])

Description

The routine reduces a general m-by-n matrix A to a bidiagonal matrix B by an orthogonal (unitary)
transformation.

If m ≥ n, the reduction is given by

where B1 is an n-by-n upper diagonal matrix, Q and P are orthogonal or, for a complex A, unitary
matrices; Q1 consists of the first n columns of Q.

If m < n, the reduction is given by

A = Q*B*PH = Q*(B10)*P
H = Q1*B1*P1

H,

646

4 Intel® Math Kernel Library Reference Manual

where B1 is an m-by-m lower diagonal matrix, Q and P are orthogonal or, for a complex A, unitary
matrices; P1 consists of the first m rows of P.

The routine does not form the matrices Q and P explicitly, but represents them as products of
elementary reflectors. Routines are provided to work with the matrices Q and P in this
representation:

If the matrix A is real,

• to compute Q and P explicitly, call ?orgbr.

• to multiply a general matrix by Q or P, call ?ormbr.

If the matrix A is complex,

• to compute Q and P explicitly, call ?ungbr.

• to multiply a general matrix by Q or P, call ?unmbr.

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgebrda, work
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER.lwork
The dimension of work; at least max(1, m, n).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

647

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters

If m ≥ n, the diagonal and first super-diagonal of a are
overwritten by the upper bidiagonal matrix B. Elements
below the diagonal are overwritten by details of Q, and the
remaining elements are overwritten by details of P.

a

If m < n, the diagonal and first sub-diagonal of a are
overwritten by the lower bidiagonal matrix B. Elements
above the diagonal are overwritten by details of P, and the
remaining elements are overwritten by details of Q.

REAL for single-precision flavorsd
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, min(m, n)).
Contains the diagonal elements of B.

REAL for single-precision flavorse
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, min(m, n) - 1).
Contains the off-diagonal elements of B.

REAL for sgebrdtauq, taup
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays, DIMENSION at least max (1, min(m, n)). Contain
further details of the matrices Q and P.

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gebrd interface are the following:

648

4 Intel® Math Kernel Library Reference Manual

Holds the matrix A of size (m,n).a

Holds the vector of length min(m,n).d

Holds the vector of length min(m,n)-1.e

Holds the vector of length min(m,n).tauq

Holds the vector of length min(m,n).taup

Application Notes

For better performance, try using lwork = (m + n)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed matrices Q, B, and P satisfy QBPH = A + E, where ||E||2 = c(n)ε ||A||2,

c(n) is a modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations for real flavors is

(4/3)*n2*(3*m - n) for m ≥ n,

(4/3)*m2*(3*n - m) for m < n.

The number of operations for complex flavors is four times greater.

If n is much less than m, it can be more efficient to first form the QR factorization of A by calling
?geqrf and then reduce the factor R to bidiagonal form. This requires approximately 2*n2*(m
+ n) floating-point operations.

649

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If m is much less than n, it can be more efficient to first form the LQ factorization of A by calling
?gelqf and then reduce the factor L to bidiagonal form. This requires approximately 2*m2*(m
+ n) floating-point operations.

?gbbrd
Reduces a general band matrix to bidiagonal form.

Syntax

Fortran 77:

call sgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc,
work, info)

call dgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc,
work, info)

call cgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc,
work, rwork, info)

call zgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc,
work, rwork, info)

Fortran 95:

call gbbrd(a [, c] [,d] [,e] [,q] [,pt] [,kl] [,m] [,info])

Description

This routine reduces an m-by-n band matrix A to upper bidiagonal matrix B: A = Q*B*PH. Here
the matrices Q and P are orthogonal (for real A) or unitary (for complex A). They are determined
as products of Givens rotation matrices, and may be formed explicitly by the routine if required.
The routine can also update a matrix C as follows: C = QH*C.

Input Parameters

CHARACTER*1. Must be 'N' or 'Q' or 'P' or 'B'.vect
If vect = 'N', neither Q nor PH is generated.
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix PH.
If vect = 'B', the routine generates both Q and PH.

INTEGER. The number of rows in the matrix A (m ≥ 0).m

650

4 Intel® Math Kernel Library Reference Manual

INTEGER. The number of columns in A (n ≥ 0).n

INTEGER. The number of columns in C (ncc ≥ 0).ncc

INTEGER. The number of sub-diagonals within the band of

A (kl ≥ 0).

kl

INTEGER. The number of super-diagonals within the band

of A (ku ≥ 0).

ku

REAL for sgbbrdab, c, work
DOUBLE PRECISION for dgbbrd COMPLEX for cgbbrd
DOUBLE COMPLEX for zgbbrd.
Arrays:
ab(ldab,*) contains the matrix A in band storage (see Matrix
Storage Schemes).
The second dimension of a must be at least max(1, n).
c(ldc,*) contains an m-by-ncc matrix C.
If ncc = 0, the array c is not referenced.
The second dimension of c must be at least max(1, ncc).
work(*) is a workspace array.
The dimension of work must be at least 2*max(m, n) for
real flavors, or max(m, n) for complex flavors.

INTEGER. The first dimension of the array ab (ldab ≥ kl
+ ku + 1).

ldab

INTEGER. The first dimension of the output array q.ldq

ldq ≥ max(1, m) if vect = 'Q' or 'B', ldq ≥ 1
otherwise.

INTEGER. The first dimension of the output array pt.ldpt

ldpt ≥ max(1, n) if vect = 'P' or 'B', ldpt ≥ 1
otherwise.

INTEGER. The first dimension of the array c.ldc

ldc ≥ max(1, m) if ncc > 0; ldc ≥ 1 if ncc = 0.

REAL for cgbbrd DOUBLE PRECISION for zgbbrd.rwork
A workspace array, DIMENSION at least max(m, n).

651

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters

Overwritten by values generated during the reduction.ab

REAL for single-precision flavorsd
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, min(m, n)). Contains the
diagonal elements of the matrix B.

REAL for single-precision flavorse
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, min(m, n) - 1).
Contains the off-diagonal elements of B.

REAL for sgebrdq, pt
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays:
q(ldq,*) contains the output m-by-m matrix Q.
The second dimension of q must be at least max(1, m).
p(ldpt,*) contains the output n-by-n matrix PT.
The second dimension of pt must be at least max(1, n).

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gbbrd interface are the following:

Stands for argument ab in Fortan 77 interface . Holds the array A of
size (kl+ku+1,n).

a

Holds the matrix C of size (m,ncc).c

Holds the vector of length min(m,n).d

Holds the vector of length min(m,n)-1.e

Holds the matrix Q of size (m,m).q

652

4 Intel® Math Kernel Library Reference Manual

Holds the matrix PT of size (n,n).pt

If omitted, assumed m = n.m

If omitted, assumed kl = ku.kl

Restored as ku = lda-kl-1.ku

Restored based on the presence of arguments q and pt as follows:vect
vect = 'B', if both q and pt are present,
vect = 'Q', if q is present and pt omitted, vect = 'P',
if q is omitted and pt present, vect = 'N', if both q and pt are
omitted.

Application Notes

The computed matrices Q, B, and P satisfy Q*B*PH = A + E, where ||E||2 = c(n)ε ||A||2,

c(n) is a modestly increasing function of n, and ε is the machine precision.

If m = n, the total number of floating-point operations for real flavors is approximately the
sum of:

6*n2*(kl + ku) if vect = 'N' and ncc = 0,

3*n2*ncc*(kl + ku - 1)/(kl + ku) if C is updated, and

3*n3*(kl + ku - 1)/(kl + ku) if either Q or PH is generated (double this if both).

To estimate the number of operations for complex flavors, use the same formulas with the
coefficients 20 and 10 (instead of 6 and 3).

?orgbr
Generates the real orthogonal matrix Q or PT

determined by ?gebrd.

Syntax

Fortran 77:

call sorgbr(vect, m, n, k, a, lda, tau, work, lwork, info)

call dorgbr(vect, m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call orgbr(a, tau [,vect] [,info])

653

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Description

The routine generates the whole or part of the orthogonal matrices Q and PT formed by the
routines sgebrd/dgebrd. Use this routine after a call to sgebrd/dgebrd. All valid combinations
of arguments are described in Input parameters. In most cases you need the following:

To compute the whole m-by-m matrix Q:

call ?orgbr('Q', m, m, n, a ...)

(note that the array a must have at least m columns).

To form the n leading columns of Q if m > n:

call ?orgbr('Q', m, n, n, a ...)

To compute the whole n-by-n matrix PT:

call ?orgbr('P', n, n, m, a ...)

(note that the array a must have at least n rows).

To form the m leading rows of PT if m < n:

call ?orgbr('P', m, n, m, a ...)

Input Parameters

CHARACTER*1. Must be 'Q' or 'P'.vect
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix PT.

INTEGER. The number of required rows of Q or PT.m

INTEGER. The number of required columns of Q or PT.n

INTEGER. One of the dimensions of A in ?gebrd:k
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints: m ≥ 0, n ≥ 0, k ≥ 0.

For vect = 'Q': k ≤ n ≤ m if m > k, or m = n if m ≤ k.

For vect = 'P': k ≤ m ≤ n if n > k, or m = n if n ≤ k.

REAL for sorgbra, work
DOUBLE PRECISION for dorgbr.
Arrays:
a(lda,*) is the array a as returned by ?gebrd.
The second dimension of a must be at least max(1, n).

654

4 Intel® Math Kernel Library Reference Manual

work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

REAL for sorgbrtau
DOUBLE PRECISION for dorgbr.
For vect = 'Q', the array tauq as returned by ?gebrd.
For vect = 'P', the array taup as returned by ?gebrd.
The dimension of tau must be at least max(1, min(m, k))
for vect = 'Q', or max(1, min(m, k)) for vect = 'P'.

INTEGER. The size of the work array.lwork
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the orthogonal matrix Q or PT (or the leading
rows or columns thereof) as specified by vect, m, and n.

a

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine orgbr interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length min(m,k) wheretau
k = m, if vect = 'P',
k = n, if vect = 'Q'.

Must be 'Q' or 'P'. The default value is 'Q'.vect

655

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

For better performance, try using lwork = min(m,n)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2

= O(ε).

The approximate numbers of floating-point operations for the cases listed in Description are
as follows:

To form the whole of Q:

(4/3)n(3m2 - 3m*n + n2) if m > n;

(4/3)m3 if m ≤ n.

To form the n leading columns of Q when m > n:

(2/3)n2(3m - n2) if m > n.

To form the whole of PT:

(4/3)n3 if m ≥ n;

(4/3)m(3n2 - 3m*n + m2) if m < n.

To form the m leading columns of PT when m < n:

(2/3)n2(3m - n2) if m > n.

656

4 Intel® Math Kernel Library Reference Manual

The complex counterpart of this routine is ?ungbr.

?ormbr
Multiplies an arbitrary real matrix by the real
orthogonal matrix Q or PT determined by ?gebrd.

Syntax

Fortran 77:

call sormbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork,
info)

call dormbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork,
info)

Fortran 95:

call ormbr(a, tau, c [,vect] [,side] [,trans] [,info])

Description

Given an arbitrary real matrix C, this routine forms one of the matrix products Q*C, QT*C, C*Q,
C*QT, P*C, PT*C, C*P, or C*PT, where Q and P are orthogonal matrices computed by a call to
sgebrd/dgebrd. The routine overwrites the product on C.

Input Parameters

In the descriptions below, r denotes the order of Q or PT:

If side = 'L', r = m; if side = 'R', r = n.

CHARACTER*1. Must be 'Q' or 'P'.vect
If vect = 'Q', then Q or QT is applied to C.
If vect = 'P', then P or PT is applied to C.

CHARACTER*1. Must be 'L' or 'R'.side
If side = 'L', multipliers are applied to C from the left.
If side = 'R', they are applied to C from the right.

CHARACTER*1. Must be 'N' or 'T'.trans
If trans = 'N', then Q or P is applied to C.
If trans = 'T', then QT or PT is applied to C.

INTEGER. The number of rows in C.m

657

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The number of columns in C.n

INTEGER. One of the dimensions of A in ?gebrd:k
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints: m ≥ 0, n ≥ 0, k ≥ 0.

REAL for sormbra, c, work
DOUBLE PRECISION for dormbr.
Arrays:
a(lda,*) is the array a as returned by ?gebrd.
Its second dimension must be at least max(1, min(r,k)) for
vect = 'Q', or max(1, r)) for vect = 'P'.
c(ldc,*) holds the matrix C.
Its second dimension must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a. Constraints:lda

lda ≥ max(1, r) if vect = 'Q';

lda ≥ max(1, min(r,k)) if vect = 'P'.

INTEGER. The first dimension of c; ldc ≥ max(1, m).ldc

REAL for sormbrtau
DOUBLE PRECISION for dormbr.
Array, DIMENSION at least max (1, min(r, k)).
For vect = 'Q', the array tauq as returned by ?gebrd.
For vect = 'P', the array taup as returned by ?gebrd.

INTEGER. The size of the work array. Constraints:lwork

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

658

4 Intel® Math Kernel Library Reference Manual

Output Parameters

Overwritten by the product Q*C, QT*C, C*Q, C*QT, P*C, PT*C,
C*P, or C*PT, as specified by vect, side, and trans.

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ormbr interface are the following:

Holds the matrix A of size (r,min(nq,k)) wherea
r = nq, if vect = 'Q',
r = min(nq,k), if vect = 'P',
nq = m, if side = 'L',
nq = n, if side = 'R',
k = m, if vect = 'P',
k = n, if vect = 'Q'.

Holds the vector of length min(nq,k).tau

Holds the matrix C of size (m,n).c

Must be 'Q' or 'P'. The default value is 'Q'.vect

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'T'. The default value is 'N'.trans

Application Notes

For better performance, try using

lwork = n*blocksize for side = 'L', or

lwork = m*blocksize for side = 'R',

659

LAPACK Routines: Least Squares and Eigenvalue Problems 4

where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed product differs from the exact product by a matrix E such that ||E||2 = O(ε)
||C||2.

The total number of floating-point operations is approximately

2*n*k(2*m - k) if side = 'L' and m ≥ k;

2*m*k(2*n - k) if side = 'R' and n ≥ k;

2*m2*n if side = 'L' and m < k;

2*n2*m if side = 'R' and n < k.

The complex counterpart of this routine is ?unmbr.

660

4 Intel® Math Kernel Library Reference Manual

?ungbr
Generates the complex unitary matrix Q or PH
determined by ?gebrd.

Syntax

Fortran 77:

call cungbr(vect, m, n, k, a, lda, tau, work, lwork, info)

call zungbr(vect, m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call ungbr(a, tau [,vect] [,info])

Description

The routine generates the whole or part of the unitary matrices Q and PH formed by the routines
cgebrd/zgebrd. Use this routine after a call to cgebrd/zgebrd. All valid combinations of
arguments are described in Input Parameters;in most cases you need the following:

To compute the whole m-by-m matrix Q, use:

call ?ungbr('Q', m, m, n, a ...)

(note that the array a must have at least m columns).

To form the n leading columns of Q if m > n, use:

call ?ungbr('Q', m, n, n, a ...)

To compute the whole n-by-n matrix PH, use:

call ?ungbr('P', n, n, m, a ...)

(note that the array a must have at least n rows).

To form the m leading rows of PH if m < n, use:

call ?ungbr('P', m, n, m, a ...)

Input Parameters

CHARACTER*1. Must be 'Q' or 'P'.vect
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix PH.

661

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The number of required rows of Q or PH.m

INTEGER. The number of required columns of Q or PH.n

INTEGER. One of the dimensions of A in ?gebrd:k
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints: m ≥ 0, n ≥ 0, k ≥ 0.

For vect = 'Q': k ≤ n ≤ m if m > k, or m = n if m ≤ k.

For vect = 'P': k ≤ m ≤ n if n > k, or m = n if n ≤ k.

COMPLEX for cungbra, work
DOUBLE COMPLEX for zungbr.
Arrays:
a(lda,*) is the array a as returned by ?gebrd.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

COMPLEX for cungbrtau
DOUBLE COMPLEX for zungbr.
For vect = 'Q', the array tauq as returned by ?gebrd.
For vect = 'P', the array taup as returned by ?gebrd.
The dimension of tau must be at least max(1, min(m, k))
for vect = 'Q', or max(1, min(m, k)) for vect = 'P'.

INTEGER. The size of the work array.lwork
Constraint: lwork < max(1, min(m, n)).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the orthogonal matrix Q or PT (or the leading
rows or columns thereof) as specified by vect, m, and n.

a

662

4 Intel® Math Kernel Library Reference Manual

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ungbr interface are the following:

Holds the matrix A of size (m,n).a

Holds the vector of length min(m,k) wheretau
k = m, if vect = 'P',
k = n, if vect = 'Q'.

Must be 'Q' or 'P'. The default value is 'Q'.vect

Application Notes

For better performance, try using lwork = min(m,n)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

663

LAPACK Routines: Least Squares and Eigenvalue Problems 4

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2

= O(ε).

The approximate numbers of floating-point operations for the cases listed in Description are
as follows:

To form the whole of Q:

(16/3)n(3m2 - 3m*n + n2) if m > n;

(16/3)m3 if m ≤ n.

To form the n leading columns of Q when m > n:

(8/3)n2(3m - n2) if m > n.

To form the whole of PT:

(16/3)n3 if m ≥ n;

(16/3)m(3n2 - 3m*n + m2) if m < n.

To form the m leading columns of PT when m < n:

(8/3)n2(3m - n2) if m > n.

The real counterpart of this routine is ?orgbr.

?unmbr
Multiplies an arbitrary complex matrix by the
unitary matrix Q or P determined by ?gebrd.

Syntax

Fortran 77:

call cunmbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork,
info)

call zunmbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork,
info)

Fortran 95:

call unmbr(a, tau, c [,vect] [,side] [,trans] [,info])

664

4 Intel® Math Kernel Library Reference Manual

Description

Given an arbitrary complex matrix C, this routine forms one of the matrix products Q*C, QH*C,
C*Q, C*QH, P*C, PH*C, C*P, or C*PH, where Q and P are orthogonal matrices computed by a call
to cgebrd/zgebrd. The routine overwrites the product on C.

Input Parameters

In the descriptions below, r denotes the order of Q or PH:

If side = 'L', r = m; if side = 'R', r = n.

CHARACTER*1. Must be 'Q' or 'P'.vect
If vect = 'Q', then Q or QH is applied to C.
If vect = 'P', then P or PH is applied to C.

CHARACTER*1. Must be 'L' or 'R'.side
If side = 'L', multipliers are applied to C from the left.
If side = 'R', they are applied to C from the right.

CHARACTER*1. Must be 'N' or 'C'.trans
If trans = 'N', then Q or P is applied to C.
If trans = 'C', then QH or PH is applied to C.

INTEGER. The number of rows in C.m

INTEGER. The number of columns in C.n

INTEGER. One of the dimensions of A in ?gebrd:k
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints: m ≥ 0, n ≥ 0, k ≥ 0.

COMPLEX for cunmbra, c, work
DOUBLE COMPLEX for zunmbr.
Arrays:
a(lda,*) is the array a as returned by ?gebrd.
Its second dimension must be at least max(1, min(r,k)) for
vect = 'Q', or max(1, r)) for vect = 'P'.
c(ldc,*) holds the matrix C.
Its second dimension must be at least max(1, n).
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a. Constraints:lda

665

LAPACK Routines: Least Squares and Eigenvalue Problems 4

lda ≥ max(1, r) if vect = 'Q';

lda ≥ max(1, min(r,k)) if vect = 'P'.

INTEGER. The first dimension of c; ldc ≥ max(1, m).ldc

COMPLEX for cunmbrtau
DOUBLE COMPLEX for zunmbr.
Array, DIMENSION at least max (1, min(r, k)).
For vect = 'Q', the array tauq as returned by ?gebrd.
For vect = 'P', the array taup as returned by ?gebrd.

INTEGER. The size of the work array.lwork

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.

lwork ≥ 1 if n=0 or m=0.

For optimum performance lwork ≥ max(1,n*nb) if side

= 'L', and lwork ≥ max(1,m*nb) if side = 'R', where
nb is the optimal blocksize. (nb = 0 if m = 0 or n =
0.)
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the product Q*C, QH*C, C*Q, C*QH, P*C, PH*C,
C*P, or C*PH, as specified by vect, side, and trans.

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

666

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine unmbr interface are the following:

Holds the matrix A of size (r,min(nq,k)) wherea
r = nq, if vect = 'Q',
r = min(nq,k), if vect = 'P',
nq = m, if side = 'L',
nq = n, if side = 'R',
k = m, if vect = 'P',
k = n, if vect = 'Q'.

Holds the vector of length min(nq,k).tau

Holds the matrix C of size (m,n).c

Must be 'Q' or 'P'. The default value is 'Q'.vect

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'C'. The default value is 'N'.trans

Application Notes

For better performance, try using

lwork = n*blocksize for side = 'L', or

lwork = m*blocksize for side = 'R',

where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

667

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed product differs from the exact product by a matrix E such that ||E||2 = O(ε)
||C||2.

The total number of floating-point operations is approximately

8*n*k(2*m - k) if side = 'L' and m ≥ k;

8*m*k(2*n - k) if side = 'R' and n ≥ k;

8*m2*n if side = 'L' and m < k;

8*n2*m if side = 'R' and n < k.

The real counterpart of this routine is ?ormbr.

?bdsqr
Computes the singular value decomposition of a
general matrix that has been reduced to bidiagonal
form.

Syntax

Fortran 77:

call sbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work,
info)

call dbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work,
info)

call cbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work,
info)

call zbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work,
info)

Fortran 95:

call rbdsqr(d, e [,vt] [,u] [,c] [,uplo] [,info])

call bdsqr(d, e [,vt] [,u] [,c] [,uplo] [,info])

668

4 Intel® Math Kernel Library Reference Manual

Description

This routine computes the singular values and, optionally, the right and/or left singular vectors
from the Singular Value Decomposition (SVD) of a real n-by-n (upper or lower) bidiagonal
matrix B using the implicit zero-shift QR algorithm. The SVD of B has the form B = Q*S*PH

where S is the diagonal matrix of singular values, Q is an orthogonal matrix of left singular
vectors, and P is an orthogonal matrix of right singular vectors. If left singular vectors are
requested, this subroutine actually returns U *Q instead of Q, and, if right singular vectors are
requested, this subroutine returns PH *VT instead of PH, for given real/complex input matrices
U and VT. When U and VT are the orthogonal/unitary matrices that reduce a general matrix A
to bidiagonal form: A = U*B*VT, as computed by ?gebrd, then

A = (U*Q)*S*(PH*VT)

is the SVD of A. Optionally, the subroutine may also compute QH *C for a given real/complex
input matrix C.

See also ?lasq1, ?lasq2, ?lasq3, ?lasq4, ?lasq5, ?lasq6 used by this routine.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', B is an upper bidiagonal matrix.
If uplo = 'L', B is a lower bidiagonal matrix.

INTEGER. The order of the matrix B (n ≥ 0).n

INTEGER. The number of columns of the matrix VT, that is,

the number of right singular vectors (ncvt ≥ 0).

ncvt

Set ncvt = 0 if no right singular vectors are required.

INTEGER. The number of rows in U, that is, the number of

left singular vectors (nru ≥ 0).

nru

Set nru = 0 if no left singular vectors are required.

INTEGER. The number of columns in the matrix C used for

computing the product QH*C (ncc ≥ 0). Set ncc = 0 if no
matrix C is supplied.

ncc

REAL for single-precision flavorsd, e, work
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of B.

669

LAPACK Routines: Least Squares and Eigenvalue Problems 4

The dimension of d must be at least max(1, n).
e(*) contains the (n-1) off-diagonal elements of B.
The dimension of e must be at least max(1, n). e(n) is
used for workspace.
work(*) is a workspace array.
The dimension of work must be at least max(1, 2*n) if
ncvt = nru = ncc = 0;
max(1, 4*(n-1)) otherwise.

REAL for sbdsqrvt, u, c
DOUBLE PRECISION for dbdsqr
COMPLEX for cbdsqr
DOUBLE COMPLEX for zbdsqr.
Arrays:
vt(ldvt,*) contains an n-by-ncvt matrix VT.
The second dimension of vt must be at least max(1, ncvt).
vt is not referenced if ncvt = 0.
u(ldu,*) contains an nru by n unit matrix U.
The second dimension of u must be at least max(1, n).
u is not referenced if nru = 0.
c(ldc,*) contains the matrix C for computing the product
QH*C.
The second dimension of c must be at least max(1, ncc).
The array is not referenced if ncc = 0.

INTEGER. The first dimension of vt. Constraints:ldvt

ldvt ≥ max(1, n) if ncvt > 0;

ldvt ≥ 1 if ncvt = 0.

INTEGER. The first dimension of u. Constraint:ldu

ldu ≥ max(1, nru).

INTEGER. The first dimension of c. Constraints:ldc

ldc ≥ max(1, n) if ncc > 0;ldc ≥ 1 otherwise.

Output Parameters

On exit, if info = 0, overwritten by the singular values in
decreasing order (see info).

d

On exit, if info = 0, e is destroyed. See also info below.e

670

4 Intel® Math Kernel Library Reference Manual

Overwritten by the product QH*C.c

On exit, this array is overwritten by PH *VT.vt

On exit, this array is overwritten by U *Q .u

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the algorithm failed to converge; i specifies
how many off-diagonals did not converge.
In this case, d and e contain on exit the diagonal and
off-diagonal elements, respectively, of a bidiagonal matrix
orthogonally equivalent to B.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine bdsqr interface are the following:

Holds the vector of length (n).d

Holds the vector of length (n).e

Holds the matrix VT of size (n, ncvt).vt

Holds the matrix U of size (nru,n).u

Holds the matrix C of size (n,ncc).c

Must be 'U' or 'L'. The default value is 'U'.uplo

If argument vt is present, then ncvt is equal to the number of columns
in matrix VT; otherwise, ncvt is set to zero.

ncvt

If argument u is present, then nru is equal to the number of rows in
matrix U; otherwise, nru is set to zero.

nru

If argument c is present, then ncc is equal to the number of columns
in matrix C; otherwise, ncc is set to zero.

ncc

Note that two variants of Fortran 95 interface for bdsqr routine are needed because of an
ambiguous choice between real and complex cases appear when vt, u, and c are omitted. Thus,
the name rbdsqr is used in real cases (single or double precision), and the name bdsqr is
used in complex cases (single or double precision).

671

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

Each singular value and singular vector is computed to high relative accuracy. However, the
reduction to bidiagonal form (prior to calling the routine) may decrease the relative accuracy
in the small singular values of the original matrix if its singular values vary widely in magnitude.

If si is an exact singular value of B, and si is the corresponding computed value, then

|si - σi| ≤ p*(m,n)*ε*σi

where p(m, n) is a modestly increasing function of m and n, and ≤ is the machine precision.

If only singular values are computed, they are computed more accurately than when some
singular vectors are also computed (that is, the function p(m, n) is smaller).

If ui is the corresponding exact left singular vector of B, and wi is the corresponding computed

left singular vector, then the angle θ(ui, wi) between them is bounded as follows:

θ(ui, wi) ≤ p(m,n)*ε / min i≠j(|σi - σj|/|σi + σj|).

Here mini≠j(|σi - σj|/|σi + σj|) is the relative gap between σi and the other singular

values. A similar error bound holds for the right singular vectors.

The total number of real floating-point operations is roughly proportional to n2 if only the singular
values are computed. About 6n2*nru additional operations (12n2*nru for complex flavors) are
required to compute the left singular vectors and about 6n2*ncvt operations (12n2*ncvt for
complex flavors) to compute the right singular vectors.

?bdsdc
Computes the singular value decomposition of a
real bidiagonal matrix using a divide and conquer
method.

Syntax

Fortran 77:

call sbdsdc(uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work, iwork, info)

call dbdsdc(uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work, iwork, info)

Fortran 95:

call bdsdc(d, e [,u] [,vt] [,q] [,iq] [,uplo] [,info])

672

4 Intel® Math Kernel Library Reference Manual

Description

This routine computes the Singular Value Decomposition (SVD) of a real n-by-n (upper or lower)

bidiagonal matrix B: B = U*Σ*VT, using a divide and conquer method, where Σ is a diagonal
matrix with non-negative diagonal elements (the singular values of B), and U and V are
orthogonal matrices of left and right singular vectors, respectively. ?bdsdc can be used to
compute all singular values, and optionally, singular vectors or singular vectors in compact
form.

This rotuine uses ?lasd0, ?lasd1, ?lasd2, ?lasd3, ?lasd4, ?lasd5, ?lasd6, ?lasd7, ?lasd8,
?lasd9, ?lasda, ?lasdq, ?lasdt.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', B is an upper bidiagonal matrix.
If uplo = 'L', B is a lower bidiagonal matrix.

CHARACTER*1. Must be 'N', 'P', or 'I'.compq
If compq = 'N', compute singular values only.
If compq = 'P', compute singular values and compute
singular vectors in compact form.
If compq = 'I', compute singular values and singular
vectors.

INTEGER. The order of the matrix B (n ≥ 0).n

REAL for sbdsdcd, e, work
DOUBLE PRECISION for dbdsdc.
Arrays:
d(*) contains the n diagonal elements of the bidiagonal
matrix B.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of the bidiagonal
matrix B.
The dimension of e must be at least max(1, n).
work(*) is a workspace array.
The dimension of work must be at least:
max(1, 4*n), if compq = 'N';
max(1, 6*n), if compq = 'P';
max(1, 3*n2+4*n), if compq = 'I'.

673

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The first dimension of the output array u; ldu ≥
1.

ldu

If singular vectors are desired, then ldu ≥ max(1, n).

INTEGER. The first dimension of the output array vt; ldvt

≥ 1.

ldvt

If singular vectors are desired, then ldvt ≥ max(1, n).

INTEGER. Workspace array, dimension at least max(1, 8*n).iwork

Output Parameters

If info = 0, overwritten by the singular values of B.d

On exit, e is overwritten.e

REAL for sbdsdcu, vt, q
DOUBLE PRECISION for dbdsdc.
Arrays: u(ldu,*), vt(ldvt,*), q(*).
If compq = 'I', then on exit u contains the left singular

vectors of the bidiagonal matrix B, unless info ≠ 0
(seeinfo). For other values of compq, u is not referenced.
The second dimension of u must be at least max(1,n).
if compq = 'I', then on exit vt contains the right singular

vectors of the bidiagonal matrix B, unless info ≠ 0
(seeinfo). For other values of compq, vt is not referenced.
The second dimension of vt must be at least max(1,n).
If compq = 'P', then on exit, if info = 0, q and iq contain
the left and right singular vectors in a compact form.
Specifically, q contains all the REAL (for sbdsdc) or DOUBLE
PRECISION (for dbdsdc) data for singular vectors. For other
values of compq, q is not referenced. See Application notes
for details.

INTEGER.iq
Array: iq(*).
If compq = 'P', then on exit, if info = 0, q and iq contain
the left and right singular vectors in a compact form.
Specifically, iq contains all the INTEGER data for singular
vectors. For other values of compq, iq is not referenced.
See Application notes for details.

674

4 Intel® Math Kernel Library Reference Manual

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the algorithm failed to compute a singular
value. The update process of divide and conquer failed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine bdsdc interface are the following:

Holds the vector of length (n).d

Holds the vector of length (n).e

Holds the matrix U of size (n,n).u

Holds the matrix VT of size (n,n).vt

Holds the vector of length (ldq), whereq

ldq ≥ n*(11 + 2*smlsiz + 8*int(log_2(n/(smlsiz + 1))))
and smlsiz is returned by ilaenv and is equal to the maximum size
of the subproblems at the bottom of the computation tree (usually
about 25).

Restored based on the presence of arguments u, vt, q, and iq as
follows:

compq

compq = 'N', if none of u, vt, q, and iq are present,
compq = 'I', if both u and vt are present. Arguments u and vt must
either be both present or both omitted,
compq = 'P', if both q and iq are present. Arguments q and iq must
either be both present or both omitted.
Note that there will be an error condition if all of u, vt, q, and iq
arguments are present simultaneously.

Symmetric Eigenvalue Problems

Symmetric eigenvalue problems are posed as follows: given an n-by-n real symmetric or

complex Hermitian matrix A, find the eigenvaluesλ and the corresponding eigenvectorsz
that satisfy the equation

675

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Az = λz. (or, equivalently, zHA = λzH).

In such eigenvalue problems, all n eigenvalues are real not only for real symmetric but also for
complex Hermitian matrices A, and there exists an orthonormal system of n eigenvectors. If A
is a symmetric or Hermitian positive-definite matrix, all eigenvalues are positive.

To solve a symmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix
to tridiagonal form and then solve the eigenvalue problem with the tridiagonal matrix obtained.
LAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or
unitary) similarity transformation A = QTQH as well as for solving tridiagonal symmetric
eigenvalue problems. These routines (for Fortran-77 interface) are listed in Table 4-3 . Respective
routine names in Fortran-95 interface are without the first symbol (see Routine Naming
Conventions).

There are different routines for symmetric eigenvalue problems, depending on whether you
need all eigenvectors or only some of them or eigenvalues only, whether the matrix A is
positive-definite or not, and so on.

These routines are based on three primary algorithms for computing eigenvalues and
eigenvectors of symmetric problems: the divide and conquer algorithm, the QR algorithm, and
bisection followed by inverse iteration. The divide and conquer algorithm is generally more
efficient and is recommended for computing all eigenvalues and eigenvectors. Furthermore, to
solve an eigenvalue problem using the divide and conquer algorithm, you need to call only one
routine. In general, more than one routine has to be called if the QR algorithm or bisection
followed by inverse iteration is used.

Decision tree in Figure 4-2 will help you choose the right routine or sequence of routines for
eigenvalue problems with real symmetric matrices. A similar decision tree for complex Hermitian
matrices is presented in Figure 4-3 .

676

4 Intel® Math Kernel Library Reference Manual

Figure 4-2 Decision Tree: Real Symmetric Eigenvalue Problems

677

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Figure 4-3 Decision Tree: Complex Hermitian Eigenvalue Problems

Table 4-3 Computational Routines for Solving Symmetric Eigenvalue Problems

Complex Hermitian
matrices

Real symmetric matricesOperation

?hetrd ?herdb?sytrd ?syrdbReduce to tridiagonal form A = QTQH

(full storage)

?hptrd?sptrdReduce to tridiagonal form A = QTQH

(packed storage)

678

4 Intel® Math Kernel Library Reference Manual

Complex Hermitian
matrices

Real symmetric matricesOperation

?hbtrd?sbtrdReduce to tridiagonal form A = QTQH

(band storage).

?ungtr?orgtrGenerate matrix Q (full storage)

?upgtr?opgtrGenerate matrix Q (packed storage)

?unmtr?ormtrApply matrix Q (full storage)

?upmtr?opmtrApply matrix Q (packed storage)

?sterfFind all eigenvalues of a tridiagonal
matrix T

?steqr ?stedc?steqr ?stedcFind all eigenvalues and eigenvectors
of a tridiagonal matrix T

?pteqr?pteqrFind all eigenvalues and eigenvectors
of a tridiagonal positive-definite matrix
T.

?stegr?stebz ?stegrFind selected eigenvalues of a
tridiagonal matrix T

?stein ?stegr?stein ?stegrFind selected eigenvectors of a
tridiagonal matrix T

?stemr?stemrFind selected eigenvalues and
eigenvectors of f a real symmetric
tridiagonal matrix T

?disna?disnaCompute the reciprocal condition
numbers for the eigenvectors

679

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?sytrd
Reduces a real symmetric matrix to tridiagonal
form.

Syntax

Fortran 77:

call ssytrd(uplo, n, a, lda, d, e, tau, work, lwork, info)

call dsytrd(uplo, n, a, lda, d, e, tau, work, lwork, info)

Fortran 95:

call sytrd(a, tau [,uplo] [,info])

Description

This routine reduces a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal
similarity transformation: A = Q*T*QT. The orthogonal matrix Q is not formed explicitly but is
represented as a product of n-1 elementary reflectors. Routines are provided for working with
Q in this representation. (They are described later in this section .)

This routine calls ?latrd to reduce a real symmetric matrix to tridiagonal form by an orthogonal
similarity transformation.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for ssytrda, work
DOUBLE PRECISION for dsytrd.
a(lda,*) is an array containing either upper or lower
triangular part of the matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The size of the work array (lwork ≥ n).lwork

680

4 Intel® Math Kernel Library Reference Manual

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the tridiagonal matrix T and details of the
orthogonal matrix Q, as specified by uplo.

a

REAL for ssytrdd, e, tau
DOUBLE PRECISION for dsytrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).
tau(*) stores further details of the orthogonal matrix Q.
The dimension of tau must be at least max(1, n-1).

If info=0, on exit work(1) contains the minimum value of
lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sytrd interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n-1).tau

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Must be 'U' or 'L'. The default value is 'U'.uplo

681

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed matrix T is exactly similar to a matrix A + E, where ||E||2 = c(n)ε ||A||2,

c(n) is a modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

After calling this routine, you can call the following:

to form the computed matrix Q explicitly?orgtr

to multiply a real matrix by Q.?ormtr

The complex counterpart of this routine is ?hetrd.

682

4 Intel® Math Kernel Library Reference Manual

?syrdb
Reduces a real symmetric matrix to tridiagonal
form with Successive Bandwidth Reduction
approach.

Syntax

Fortran 77:

call ssyrdb(jobz, uplo, n, kd, a, lda, d, e, tau, z, ldz, work, lwork, info)

call dsyrdb(jobz, uplo, n, kd, a, lda, d, e, tau, z, ldz, work, lwork, info)

Description

This routine reduces a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal
similarity transformation: A = Q*T*QT and optionally multuplies matrix Z by Q, or simply forms
Q.

This routine reduces a full symmetric matrix to the banded symmetric form, and then to the
tridiagonal symmetric form with a Successive Bandwidth Reduction approach after Prof.
C.Bischof's works (see for instance, [Bischof92]). ?syrdb is functionally close to ?sytrd routine
but the tridiagonal form may differ from those obtained by ?sytrd. Unlike ?sytrd, the
orthogonal matrix Q cannot be restored from the details of matrix A on exit.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only A is reduced to T.
If jobz = 'V', then A is reduced to T and Z contains Q on
exit.
If jobz = 'U', then A is reduced to T and Z contains ZQ on
exit.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The bandwidth of the banded matrix B (kd ≥ 1).kd

REAL for ssyrdb.a,z, work

683

LAPACK Routines: Least Squares and Eigenvalue Problems 4

DOUBLE PRECISION for dsyrdb.
a(lda,*) is an array containing either upper or lower
triangular part of the matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).
z(ldz,*), the second dimension of z must be at least max(1,
n).
If jobz = 'U', then the matrix z is multiplied by Q.
If jobz = 'V', then z content on input is discarded.
If jobz = 'N', then z is not referenced.
work(lwork) is a workspace array.

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of z; at least max(1, n). Not
referenced if jobz = 'N'

ldz

INTEGER. The size of the work array (lwork ≥
(2kd+1)n+kd).

lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the banded matrix B and details of the
orthogonal matrix QB to reduce A to B as specified by uplo.

a

On exit,z
if jobz = 'U', then the matrix z is overwritten by zQ.
If jobz = 'V', then z contains Q.
If jobz = 'N', then z is not referenced.

DOUBLE PRECISION.d, e, tau
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).
tau(*) stores further details of the orthogonal matrix Q.
The dimension of tau must be at least max(1, n-kd-1).

684

4 Intel® Math Kernel Library Reference Manual

If info=0, on exit work(1) contains the minimum value of
lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*(3*kd+3).

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

For better performance, try using kd equal to 40 if n ≤ 2000 and 64 otherwise.

Try using ?syrdb instead of ?sytrd on large matrices obtaining only eigenvalues - when no
eigenvectors are needed, especially in multi-threaded environment. ?syrdb becomes faster
beginning approximately with n = 1000, and much faster at larger matrices with a better
scalability than ?sytrd.

Avoid applying ?syrdb for computing eigenvectors due to the two-step reduction, that is, the
number of operations needed to apply orthogonal transformations to Z is doubled compared
to the traditional one-step reduction. In that case it is better to apply ?sytrd and
?ormtr/?orgtr to obtain tridiagonal form along with the orthogonal transformation matrix Q.

685

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?herdb
Reduces a complex Hermitian matrix to tridiagonal
form with Successive Bandwidth Reduction
approach.

Syntax

Fortran 77:

call cherdb(jobz, uplo, n, kd, a, lda, d, e, tau, z, ldz, work, lwork, info)

call zherdb(jobz, uplo, n, kd, a, lda, d, e, tau, z, ldz, work, lwork, info)

Description

This routine reduces a complex Hermitian matrix A to symmetric tridiagonal form T by a unitary
similarity transformation: A = Q*T*QT and optionally multuplies matrix Z by Q, or simply forms
Q.

This routine reduces a full Hermitian matrix to the banded Hermitian form, and then to the
tridiagonal symmetric form with a Successive Bandwidth Reduction approach after Prof.
C.Bischof's works (see for instance, [Bischof92]). ?herdb is functionally close to ?hetrd routine
but the tridiagonal form may differ from those obtained by ?hetrd. Unlike ?hetrd, the
orthogonal matrix Q cannot be restored from the details of matrix A on exit.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only A is reduced to T.
If jobz = 'V', then A is reduced to T and Z contains Q on
exit.
If jobz = 'U', then A is reduced to T and Z contains ZQ on
exit.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The bandwidth of the banded matrix B (kd ≥ 1).kd

COMPLEX for cherdb.a,z, work

686

4 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX for zherdb.
a(lda,*) is an array containing either upper or lower
triangular part of the matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).
z(ldz,*), the second dimension of z must be at least max(1,
n).
If jobz = 'U', then the matrix z is multiplied by Q.
If jobz = 'V', then z content on input is discarded.
If jobz = 'N', then z is not referenced.
work(lwork) is a workspace array.

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of z; at least max(1, n). Not
referenced if jobz = 'N'

ldz

INTEGER. The size of the work array (lwork ≥
(2kd+1)n+kd).

lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the banded matrix B and details of the
unitary matrix QB to reduce A to B as specified by uplo.

a

On exit,z
if jobz = 'U', then the matrix z is overwritten by zQ.
If jobz = 'V', then z contains Q.
If jobz = 'N', then z is not referenced.

COMPLEX for cherdb.d, e
DOUBLE COMPLEX for zherdb.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).
tau(*) stores further details of the orthogonal matrix Q.

687

LAPACK Routines: Least Squares and Eigenvalue Problems 4

The dimension of tau must be at least max(1, n-kd-1).

COMPLEX for cherdb.tau
DOUBLE COMPLEX for zherdb.
Array, DIMENSION at least max(1, n-1)
Stores further details of the unitary matrix QB. The dimension
of tau must be at least max(1, n-kd-1).

If info=0, on exit work(1) contains the minimum value of
lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*(3*kd+3).

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork size, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array (work) on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

For better performance, try using kd equal to 40 if n ≤ 2000 and 64 otherwise.

Try using ?herdb instead of ?hetrd on large matrices obtaining only eigenvalues - when no
eigenvectors are needed, especially in multi-threaded environment. ?herdb becomes faster
beginning approximately with n = 1000, and much faster at larger matrices with a better
scalability than ?hetrd.

688

4 Intel® Math Kernel Library Reference Manual

Avoid applying ?herdb for computing eigenvectors due to the two-step reduction, that is, the
number of operations needed to apply orthogonal transformations to Z is doubled compared
to the traditional one-step reduction. In that case it is better to apply ?hetrd and
?unmtr/?ungtr to obtain tridiagonal form along with the unitary transformation matrix Q.

?orgtr
Generates the real orthogonal matrix Q determined
by ?sytrd.

Syntax

Fortran 77:

call sorgtr(uplo, n, a, lda, tau, work, lwork, info)

call dorgtr(uplo, n, a, lda, tau, work, lwork, info)

Fortran 95:

call orgtr(a, tau [,uplo] [,info])

Description

The routine explicitly generates the n-by-n orthogonal matrix Q formed by ?sytrd when reducing
a real symmetric matrix A to tridiagonal form: A = Q*T*QT. Use this routine after a call to
?sytrd.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Use the same uplo as supplied to ?sytrd.

INTEGER. The order of the matrix Q (n ≥ 0).n

REAL for sorgtra, tau, work
DOUBLE PRECISION for dorgtr.
Arrays:
a(lda,*) is the array a as returned by ?sytrd.
The second dimension of a must be at least max(1, n).
tau(*) is the array tau as returned by ?sytrd.
The dimension of tau must be at least max(1, n-1).
work is a workspace array, its dimension max(1,
lwork).

689

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The size of the work array (lwork ≥ n).lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the orthogonal matrix Q.a

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine orgtr interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n-1).tau

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For better performance, try using lwork = (n-1)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

690

4 Intel® Math Kernel Library Reference Manual

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2

= O(ε), where e is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

The complex counterpart of this routine is ?ungtr.

?ormtr
Multiplies a real matrix by the real orthogonal
matrix Q determined by ?sytrd.

Syntax

Fortran 77:

call sormtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)

call dormtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormtr(a, tau, c [,side] [,uplo] [,trans] [,info])

Description

The routine multiplies a real matrix C by Q or QT, where Q is the orthogonal matrix Q formed by
?sytrd when reducing a real symmetric matrix A to tridiagonal form: A = Q*T*QT. Use this
routine after a call to ?sytrd.

Depending on the parameters side and trans, the routine can form one of the matrix products
Q*C, QT*C, C*Q, or C*QT(overwriting the result on C).

691

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Input Parameters

In the descriptions below, r denotes the order of Q:

If side = 'L', r = m; if side = 'R', r = n.

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QT is applied to C from the left.
If side = 'R', Q or QT is applied to C from the right.

CHARACTER*1. Must be 'U' or 'L'.uplo
Use the same uplo as supplied to ?sytrd.

CHARACTER*1. Must be either 'N' or 'T'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by QT.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

REAL for sormtra, c, tau, work
DOUBLE PRECISION for dormtr
a(lda,*) and tau are the arrays returned by ?sytrd.
The second dimension of a must be at least max(1, r).
The dimension of tau must be at least max(1, r-1).
c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a; lda ≥ max(1, r).lda

INTEGER. The first dimension of c; ldc ≥ max(1, n).ldc

INTEGER. The size of the work array. Constraints:lwork

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

692

4 Intel® Math Kernel Library Reference Manual

Output Parameters

Overwritten by the product Q*C, QT*C, C*Q, or C*QT (as
specified by side and trans).

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ormtr interface are the following:

Holds the matrix A of size (r,r).a
r = m if side = 'L'.
r = n if side = 'R'.

Holds the vector of length (r-1).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'T'. The default value is 'N'.trans

Application Notes

For better performance, try using lwork = n*blocksize for side = 'L', or lwork =
m*blocksize for side = 'R', where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

693

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed product differs from the exact product by a matrix E such that ||E||2 = O(ε)
||C||2.

The total number of floating-point operations is approximately 2*m2*n, if side = 'L', or
2*n2*m, if side = 'R'.

The complex counterpart of this routine is ?unmtr.

?hetrd
Reduces a complex Hermitian matrix to tridiagonal
form.

Syntax

Fortran 77:

call chetrd(uplo, n, a, lda, d, e, tau, work, lwork, info)

call zhetrd(uplo, n, a, lda, d, e, tau, work, lwork, info)

Fortran 95:

call hetrd(a, tau [,uplo] [,info])

Description

This routine reduces a complex Hermitian matrix A to symmetric tridiagonal form T by a unitary
similarity transformation: A = Q*T*QH. The unitary matrix Q is not formed explicitly but is
represented as a product of n-1 elementary reflectors. Routines are provided to work with Q in
this representation. (They are described later in this section .)

This routine calls ?latrd to reduce a complex Hermitian matrix A to Hermitian tridiagonal form
by a unitary similarity transformation.

694

4 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

COMPLEX for chetrda, work
DOUBLE COMPLEX for zhetrd.
a(lda,*) is an array containing either upper or lower
triangular part of the matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The size of the work array (lwork ≥ n).lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the tridiagonal matrix T and details of the
unitary matrix Q, as specified by uplo.

a

REAL for chetrdd, e
DOUBLE PRECISION for zhetrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

COMPLEX for chetrd DOUBLE COMPLEX for zhetrd.tau
Array, DIMENSION at least max(1, n-1). Stores further
details of the unitary matrix Q.

695

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hetrd interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n-1).tau

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

696

4 Intel® Math Kernel Library Reference Manual

The computed matrix T is exactly similar to a matrix A + E, where ||E||2 = c(n)ε ||A||2,

c(n) is a modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

After calling this routine, you can call the following:

to form the computed matrix Q explicitly?ungtr

to multiply a complex matrix by Q.?unmtr

The real counterpart of this routine is ?sytrd.

?ungtr
Generates the complex unitary matrix Q
determined by ?hetrd.

Syntax

Fortran 77:

call cungtr(uplo, n, a, lda, tau, work, lwork, info)

call zungtr(uplo, n, a, lda, tau, work, lwork, info)

Fortran 95:

call ungtr(a, tau [,uplo] [,info])

The routine explicitly generates the n-by-n unitary matrix Q formed by ?hetrd when reducing
a complex Hermitian matrix A to tridiagonal form: A = Q*T*QH. Use this routine after a call to
?hetrd.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Use the same uplo as supplied to ?hetrd.

INTEGER. The order of the matrix Q (n ≥ 0).n

COMPLEX for cungtra, tau, work
DOUBLE COMPLEX for zungtr.
Arrays:
a(lda,*) is the array a as returned by ?hetrd.
The second dimension of a must be at least max(1, n).

697

LAPACK Routines: Least Squares and Eigenvalue Problems 4

tau(*) is the array tau as returned by ?hetrd.
The dimension of tau must be at least max(1, n-1).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The size of the work array (lwork ≥ n).lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the unitary matrix Q.a

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ungtr interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n-1).tau

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For better performance, try using lwork = (n-1)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

698

4 Intel® Math Kernel Library Reference Manual

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that ||E||2

= O(ε), where e is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

The real counterpart of this routine is ?orgtr.

?unmtr
Multiplies a complex matrix by the complex unitary
matrix Q determined by ?hetrd.

Syntax

Fortran 77:

call cunmtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)

call zunmtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call unmtr(a, tau, c [,side] [,uplo] [,trans] [,info])

Description

The routine multiplies a complex matrix C by Q or QH, where Q is the unitary matrix Q formed
by ?hetrd when reducing a complex Hermitian matrix A to tridiagonal form: A = Q*T*QH. Use
this routine after a call to ?hetrd.

699

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Depending on the parameters side and trans, the routine can form one of the matrix products
Q*C, QH*C, C*Q, or C*QH (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q:

If side = 'L', r = m; if side = 'R', r = n.

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QH is applied to C from the left.
If side = 'R', Q or QH is applied to C from the right.

CHARACTER*1. Must be 'U' or 'L'.uplo
Use the same uplo as supplied to ?hetrd.

CHARACTER*1. Must be either 'N' or 'T'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by QH.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

COMPLEX for cunmtra, c, tau, work
DOUBLE COMPLEX for zunmtr.
a(lda,*) and tau are the arrays returned by ?hetrd.
The second dimension of a must be at least max(1, r).
The dimension of tau must be at least max(1, r-1).
c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a; lda ≥ max(1, r).lda

INTEGER. The first dimension of c; ldc ≥ max(1, n).ldc

INTEGER. The size of the work array. Constraints:lwork

lwork ≥ max(1, n) if side = 'L';

lwork ≥ max(1, m) if side = 'R'.

700

4 Intel® Math Kernel Library Reference Manual

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the product Q*C, QH*C, C*Q, or C*QH (as
specified by side and trans).

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine unmtr interface are the following:

Holds the matrix A of size (r,r).a
r = m if side = 'L'.
r = n if side = 'R'.

Holds the vector of length (r-1).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N' or 'C'. The default value is 'N'.trans

Application Notes

For better performance, try using lwork = n*blocksize (for side = 'L') or lwork =
m*blocksize (for side = 'R') where blocksize is a machine-dependent value (typically,
16 to 64) required for optimum performance of the blocked algorithm.

701

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed product differs from the exact product by a matrix E such that ||E||2 = O(ε)

||C||2, where ε is the machine precision.

The total number of floating-point operations is approximately 8*m2*n if side = 'L' or 8*n2*m
if side = 'R'.

The real counterpart of this routine is ?ormtr.

?sptrd
Reduces a real symmetric matrix to tridiagonal
form using packed storage.

Syntax

Fortran 77:

call ssptrd(uplo, n, ap, d, e, tau, info)

call dsptrd(uplo, n, ap, d, e, tau, info)

Fortran 95:

call sptrd(a, tau [,uplo] [,info])

702

4 Intel® Math Kernel Library Reference Manual

Description

This routine reduces a packed real symmetric matrix A to symmetric tridiagonal form T by an
orthogonal similarity transformation: A = Q*T*QT. The orthogonal matrix Q is not formed
explicitly but is represented as a product of n-1 elementary reflectors. Routines are provided
for working with Q in this representation. (They are described later in this section .)

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ap stores the packed upper triangle of A.
If uplo = 'L', ap stores the packed lower triangle of A.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for ssptrdap
DOUBLE PRECISION for dsptrd.
Array, DIMENSION at least max(1, n(n+1)/2). Contains either
upper or lower triangle of A (as specified by uplo) in packed
form.

Output Parameters

Overwritten by the tridiagonal matrix T and details of the
orthogonal matrix Q, as specified by uplo.

ap

REAL for ssptrdd, e, tau
DOUBLE PRECISION for dsptrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).
tau(*) stores further details of the matrix Q.
The dimension of tau must be at least max(1, n-1).

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

703

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sptrd interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n-1).tau

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where ||E||2 = c(n)ε ||A||2,
c(n) is a modestly increasing function of n, and e is the machine precision. The approximate
number of floating-point operations is (4/3)n3.

After calling this routine, you can call the following:

to form the computed matrix Q explicitly?opgtr

to multiply a real matrix by Q.?opmtr

The complex counterpart of this routine is ?hptrd.

?opgtr
Generates the real orthogonal matrix Q determined
by ?sptrd.

Syntax

Fortran 77:

call sopgtr(uplo, n, ap, tau, q, ldq, work, info)

call dopgtr(uplo, n, ap, tau, q, ldq, work, info)

704

4 Intel® Math Kernel Library Reference Manual

Fortran 95:

call opgtr(a, tau, q [,uplo] [,info])

Description

The routine explicitly generates the n-by-n orthogonal matrix Q formed by ?sptrd when reducing
a packed real symmetric matrix A to tridiagonal form: A = Q*T*QT. Use this routine after a call
to ?sptrd.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'. Use the same uplo as
supplied to ?sptrd.

uplo

INTEGER. The order of the matrix Q (n ≥ 0).n

REAL for sopgtrap, tau
DOUBLE PRECISION for dopgtr.
Arrays ap and tau, as returned by ?sptrd.
The dimension of ap must be at least max(1, n(n+1)/2).
The dimension of tau must be at least max(1, n-1).

INTEGER. The first dimension of the output array q; at least
max(1, n).

ldq

REAL for sopgtrwork
DOUBLE PRECISION for dopgtr.
Workspace array, DIMENSION at least max(1, n-1).

Output Parameters

REAL for sopgtrq
DOUBLE PRECISION for dopgtr.
Array, DIMENSION (ldq,*).
Contains the computed matrix Q.
The second dimension of q must be at least max(1, n).

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

705

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine opgtr interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n-1).tau

Holds the matrix Q of size (n,n).q

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2

= O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

The complex counterpart of this routine is ?upgtr.

?opmtr
Multiplies a real matrix by the real orthogonal
matrix Q determined by ?sptrd.

Syntax

Fortran 77:

call sopmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)

call dopmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)

Fortran 95:

call opmtr(a, tau, c [,side] [,uplo] [,trans] [,info])

706

4 Intel® Math Kernel Library Reference Manual

Description

The routine multiplies a real matrix C by Q or QT, where Q is the orthogonal matrix Q formed by
?sptrd when reducing a packed real symmetric matrix A to tridiagonal form: A = QTQT. Use
this routine after a call to ?sptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products
Q

*C, QT*C, C*Q, or C*QT (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q:

If side = 'L', r = m; if side = 'R', r = n.

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QT is applied to C from the left.
If side = 'R', Q or QT is applied to C from the right.

CHARACTER*1. Must be 'U' or 'L'.uplo
Use the same uplo as supplied to ?sptrd.

CHARACTER*1. Must be either 'N' or 'T'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by QT.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

REAL for sopmtrap, tau, c, work
DOUBLE PRECISION for dopmtr.
ap and tau are the arrays returned by ?sptrd.
The dimension of ap must be at least max(1, r(r+1)/2).
The dimension of tau must be at least max(1, r-1).
c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)
work(*) is a workspace array.
The dimension of work must be at least
max(1, n) if side = 'L';
max(1, m) if side = 'R'.

INTEGER. The first dimension of c; ldc ≥ max(1, n).ldc

707

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters

Overwritten by the product Q*C, QT*C, C*Q, or C*QT (as
specified by side and trans).

c

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine opmtr interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(r*(r+1)/2), where

a

r = m if side = 'L'.
r = n if side = 'R'.

Holds the vector of length (r-1).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'U' or 'L'. The default value is 'U'.uplo

Must be 'N', 'C', or 'T'. The default value is 'N'.trans

Application Notes

The computed product differs from the exact product by a matrix E such that ||E||2 = O(ε)

||C||2, where ε is the machine precision.

The total number of floating-point operations is approximately 2*m2*n if side = 'L' or 2*n2*m
if side = 'R'.

The complex counterpart of this routine is ?upmtr.

708

4 Intel® Math Kernel Library Reference Manual

?hptrd
Reduces a complex Hermitian matrix to tridiagonal
form using packed storage.

Syntax

Fortran 77:

call chptrd(uplo, n, ap, d, e, tau, info)

call zhptrd(uplo, n, ap, d, e, tau, info)

Fortran 95:

call hptrd(a, tau [,uplo] [,info])

Description

This routine reduces a packed complex Hermitian matrix A to symmetric tridiagonal form T by
a unitary similarity transformation: A = Q*T*QH. The unitary matrix Q is not formed explicitly
but is represented as a product of n-1 elementary reflectors. Routines are provided for working
with Q in this representation. They are described later in this section .

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ap stores the packed upper triangle of A.
If uplo = 'L', ap stores the packed lower triangle of A.

INTEGER. The order of the matrix A (n ≥ 0).n

COMPLEX for chptrdap
DOUBLE COMPLEX for zhptrd.
Array, DIMENSION at least max(1, n(n+1)/2). Contains either
upper or lower triangle of A (as specified by uplo) in packed
form.

Output Parameters

Overwritten by the tridiagonal matrix T and details of the
orthogonal matrix Q, as specified by uplo.

ap

REAL for chptrdd, e
DOUBLE PRECISION for zhptrd.

709

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

COMPLEX for chptrdtau
DOUBLE COMPLEX for zhptrd.
Arrays, DIMENSION at least max(1, n-1). Contains further
details of the orthogonal matrix Q.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hptrd interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n-1).tau

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where ||E||2 = c(n)ε ||A||2,

c(n) is a modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

After calling this routine, you can call the following:

to form the computed matrix Q explicitly?upgtr

to multiply a complex matrix by Q.?upmtr

The real counterpart of this routine is ?sptrd.

710

4 Intel® Math Kernel Library Reference Manual

?upgtr
Generates the complex unitary matrix Q
determined by ?hptrd.

Syntax

Fortran 77:

call cupgtr(uplo, n, ap, tau, q, ldq, work, info)

call zupgtr(uplo, n, ap, tau, q, ldq, work, info)

Fortran 95:

call upgtr(a, tau, q [,uplo] [,info])

Description

The routine explicitly generates the n-by-n unitary matrix Q formed by ?hptrd when reducing
a packed complex Hermitian matrix A to tridiagonal form: A = Q*T*QH. Use this routine after a
call to ?hptrd.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'. Use the same uplo as
supplied to ?sptrd.

uplo

INTEGER. The order of the matrix Q (n ≥ 0).n

COMPLEX for cupgtrap, tau
DOUBLE COMPLEX for zupgtr.
Arrays ap and tau, as returned by ?hptrd.
The dimension of ap must be at least max(1, n(n+1)/2).
The dimension of tau must be at least max(1, n-1).

INTEGER. The first dimension of the output array q;ldq
at least max(1, n).

COMPLEX for cupgtrwork
DOUBLE COMPLEX for zupgtr.
Workspace array, DIMENSION at least max(1, n-1).

711

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters

COMPLEX for cupgtrq
DOUBLE COMPLEX for zupgtr.
Array, DIMENSION (ldq,*).
Contains the computed matrix Q.
The second dimension of q must be at least max(1, n).

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine upgtr interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n-1).tau

Holds the matrix Q of size (n,n).q

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2

= O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

The real counterpart of this routine is ?opgtr.

712

4 Intel® Math Kernel Library Reference Manual

?upmtr
Multiplies a complex matrix by the unitary matrix
Q determined by ?hptrd.

Syntax

Fortran 77:

call cupmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)

call zupmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)

Fortran 95:

call upmtr(a, tau, c [,side] [,uplo] [,trans] [,info])

Description

The routine multiplies a complex matrix C by Q or QH, where Q is the unitary matrix Q formed
by ?hptrd when reducing a packed complex Hermitian matrix A to tridiagonal form: A = Q*T*QH.
Use this routine after a call to ?hptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products
Q*C, QH*C, C*Q, or C*QH (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q:

If side = 'L', r = m; if side = 'R', r = n.

CHARACTER*1. Must be either 'L' or 'R'.side
If side = 'L', Q or QH is applied to C from the left.
If side = 'R', Q or QH is applied to C from the right.

CHARACTER*1. Must be 'U' or 'L'.uplo
Use the same uplo as supplied to ?hptrd.

CHARACTER*1. Must be either 'N' or 'T'.trans
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by QH.

INTEGER. The number of rows in the matrix C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

713

LAPACK Routines: Least Squares and Eigenvalue Problems 4

COMPLEX for cupmtrap, tau, c,
DOUBLE COMPLEX for zupmtr.
ap and tau are the arrays returned by ?hptrd.
The dimension of ap must be at least max(1, r(r+1)/2).
The dimension of tau must be at least max(1, r-1).
c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)
work(*) is a workspace array.
The dimension of work must be at least
max(1, n) if side = 'L';
max(1, m) if side = 'R'.

INTEGER. The first dimension of c; ldc ≥ max(1, n).ldc

Output Parameters

Overwritten by the product Q*C, QH*C, C*Q, or C*QH (as
specified by side and trans).

c

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine upmtr interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(r*(r+1)/2), where

a

r = m if side = 'L'.
r = n if side = 'R'.

Holds the vector of length (r-1).tau

Holds the matrix C of size (m,n).c

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'U' or 'L'.The default value is 'U'.uplo

Must be 'N' or 'C'. The default value is 'N'.trans

714

4 Intel® Math Kernel Library Reference Manual

Application Notes

The computed product differs from the exact product by a matrix E such that ||E||2 = Oε
||C||2, where e is the machine precision.

The total number of floating-point operations is approximately 8*m2*n if side = 'L' or 8*n2*m
if side = 'R'.

The real counterpart of this routine is ?opmtr.

?sbtrd
Reduces a real symmetric band matrix to
tridiagonal form.

Syntax

Fortran 77:

call ssbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)

call dsbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)

Fortran 95:

call sbtrd(a [, q] [,vect] [,uplo] [,info])

Description

This routine reduces a real symmetric band matrix A to symmetric tridiagonal form T by an
orthogonal similarity transformation: A = Q*T*QT. The orthogonal matrix Q is determined as
a product of Givens rotations.

If required, the routine can also form the matrix Q explicitly.

Input Parameters

CHARACTER*1. Must be 'V' or 'N'.vect
If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

715

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Akd
(kd < 0).

REAL for ssbtrdab, work
DOUBLE PRECISION for dsbtrd.
ab (ldab,*) is an array containing either upper or lower
triangular part of the matrix A (as specified by uplo) in band
storage format.
The second dimension of ab must be at least max(1, n).
work(*) is a workspace array.
The dimension of work must be at least max(1, n).

INTEGER. The first dimension of ab; at least kd+1.ldab

INTEGER. The first dimension of q. Constraints:ldq

ldq ≥ max(1, n) if vect = 'V';

ldq ≥ 1 if vect = 'N'.

Output Parameters

On exit, the array ab is overwritten.ab

REAL for ssbtrdd, e, q
DOUBLE PRECISION for dsbtrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).
q(ldq,*) is not referenced if vect = 'N'.
If vect = 'V', q contains the n-by-n matrix Q.
The second dimension of q must be:
at least max(1, n) if vect = 'V';
at least 1 if vect = 'N'.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

716

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sbtrd interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the matrix Q of size (n,n).q

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Must be 'U' or 'L'. The default value is 'U'.uplo

If omitted, this argument is restored based on the presence of argument
q as follows: vect = 'V', if q is present, vect = 'N', if q is omitted.

vect

If present, vect must be equal to 'V' or 'U' and the argument q must
also be present. Note that there will be an error condition if vect is
present and q omitted.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where ||E||2 = c(n)ε ||A||2,

c(n) is a modestly increasing function of n, and ε is the machine precision. The computed matrix

Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2 = O(ε).

The total number of floating-point operations is approximately 6n2*kd if vect = 'N', with
3n3*(kd-1)/kd additional operations if vect = 'V'.

The complex counterpart of this routine is ?hbtrd.

717

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?hbtrd
Reduces a complex Hermitian band matrix to
tridiagonal form.

Syntax

Fortran 77:

call chbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)

call zhbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)

Fortran 95:

call hbtrd(a [, q] [,vect] [,uplo] [,info])

Description

This routine reduces a complex Hermitian band matrix A to symmetric tridiagonal form T by a
unitary similarity transformation: A = Q*T*QH. The unitary matrix Q is determined as a product
of Givens rotations.

If required, the routine can also form the matrix Q explicitly.

Input Parameters

CHARACTER*1. Must be 'V' or 'N'.vect
If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Akd

(kd ≥ 0).

COMPLEX for chbtrdab, work
DOUBLE COMPLEX for zhbtrd.
ab (ldab,*) is an array containing either upper or lower
triangular part of the matrix A (as specified by uplo) in band
storage format.

718

4 Intel® Math Kernel Library Reference Manual

The second dimension of ab must be at least max(1, n).
work(*) is a workspace array.
The dimension of work must be at least max(1, n).

INTEGER. The first dimension of ab; at least kd+1.ldab

INTEGER. The first dimension of q. Constraints:ldq

ldq ≥ max(1, n) if vect = 'V';

ldq ≥ 1 if vect = 'N'.

Output Parameters

On exit, the array ab is overwritten.ab

REAL for chbtrdd, e
DOUBLE PRECISION for zhbtrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

COMPLEX for chbtrdq
DOUBLE COMPLEX for zhbtrd.
Array, DIMENSION (ldq,*).
If vect = 'N', q is not referenced.
If vect = 'V', q contains the n-by-n matrix Q.
The second dimension of q must be:
at least max(1, n) if vect = 'V';
at least 1 if vect = 'N'.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hbtrd interface are the following:

719

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the matrix Q of size (n,n).q

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Must be 'U' or 'L'. The default value is 'U'.uplo

If omitted, this argument is restored based on the presence of argument
q as follows: vect = 'V', if q is present, vect = 'N', if q is omitted.

vect

If present, vect must be equal to 'V' or 'U' and the argument q must
also be present. Note that there will be an error condition if vect is
present and q omitted.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where ||E||2 = c(n)ε ||A||2,

c(n) is a modestly increasing function of n, and ε is the machine precision. The computed matrix

Q differs from an exactly unitary matrix by a matrix E such that ||E||2 = O(ε).

The total number of floating-point operations is approximately 20n2*kd if vect = 'N', with
10n3*(kd-1)/kd additional operations if vect = 'V'.

The real counterpart of this routine is ?sbtrd.

?sterf
Computes all eigenvalues of a real symmetric
tridiagonal matrix using QR algorithm.

Syntax

Fortran 77:

call ssterf(n, d, e, info)

call dsterf(n, d, e, info)

Fortran 95:

call sterf(d, e [,info])

720

4 Intel® Math Kernel Library Reference Manual

Description

This routine computes all the eigenvalues of a real symmetric tridiagonal matrix T (which can
be obtained by reducing a symmetric or Hermitian matrix to tridiagonal form). The routine uses
a square-root-free variant of the QR algorithm.

If you need not only the eigenvalues but also the eigenvectors, call ?steqr.

Input Parameters

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for ssterfd, e
DOUBLE PRECISION for dsterf.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

Output Parameters

The n eigenvalues in ascending order, unless info > 0.d
See also info.

On exit, the array is overwritten; see info.e

INTEGER.info
If info = 0, the execution is successful.
If info = i, the algorithm failed to find all the eigenvalues
after 30n iterations:
i off-diagonal elements have not converged to zero. On
exit, d and e contain, respectively, the diagonal and
off-diagonal elements of a tridiagonal matrix orthogonally
similar to T.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sterf interface are the following:

721

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 =

O(ε) ||T||2, where ε is the machine precision.

If λi is an exact eigenvalue, and mi is the corresponding computed value, then

|μi - λi| ≤ c(n)ε ||T||2

where c(n) is a modestly increasing function of n.

The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about 14n2.

?steqr
Computes all eigenvalues and eigenvectors of a
symmetric or Hermitian matrix reduced to
tridiagonal form (QR algorithm).

Syntax

Fortran 77:

call ssteqr(compz, n, d, e, z, ldz, work, info)

call dsteqr(compz, n, d, e, z, ldz, work, info)

call csteqr(compz, n, d, e, z, ldz, work, info)

call zsteqr(compz, n, d, e, z, ldz, work, info)

Fortran 95:

call rsteqr(d, e [,z] [,compz] [,info])

call steqr(d, e [,z] [,compz] [,info])

722

4 Intel® Math Kernel Library Reference Manual

Description

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric
tridiagonal matrix T. In other words, the routine can compute the spectral factorization: T =

ZΛZT. Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi; Z is an
orthogonal matrix whose columns are eigenvectors. Thus,

Tzi = λizi for i = 1, 2, ..., n.

The routine normalizes the eigenvectors so that ||zi||2 = 1.

You can also use the routine for computing the eigenvalues and eigenvectors of an arbitrary
real symmetric (or complex Hermitian) matrix A reduced to tridiagonal form T: A = Q*T*QH.

In this case, the spectral factorization is as follows: A = Q*T*QH = (Q*Z)Λ(Q*Z)H. Before
calling ?steqr, you must reduce A to tridiagonal form and generate the explicit matrix Q by
calling the following routines:

for complex matrices:for real matrices:

?hetrd, ?ungtr?sytrd, ?orgtrfull storage

?hptrd, ?upgtr?sptrd, ?opgtrpacked storage

?hbtrd (vect='V')?sbtrd (vect='V')band storage

If you need eigenvalues only, it's more efficient to call ?sterf. If T is positive-definite, ?pteqr
can compute small eigenvalues more accurately than ?steqr.

To solve the problem by a single call, use one of the divide and conquer routines ?stevd,
?syevd, ?spevd, or ?sbevd for real symmetric matrices or ?heevd, ?hpevd, or ?hbevd for
complex Hermitian matrices.

Input Parameters

CHARACTER*1. Must be 'N' or 'I' or 'V'.compz
If compz = 'N', the routine computes eigenvalues only.
If compz = 'I', the routine computes the eigenvalues and
eigenvectors of the tridiagonal matrix T.
If compz = 'V', the routine computes the eigenvalues and
eigenvectors of A (and the array z must contain the matrix
Q on entry).

723

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for single-precision flavorsd, e, work
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).
work(*) is a workspace array.
The dimension of work must be:
at least 1 if compz = 'N';
at least max(1, 2*n-2) if compz = 'V' or 'I'.

REAL for ssteqrz
DOUBLE PRECISION for dsteqr
COMPLEX for csteqr
DOUBLE COMPLEX for zsteqr.
Array, DIMENSION (ldz, *)
If compz = 'N' or 'I', z need not be set.
If vect = 'V', z must contain the n-by-n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N';
at least max(1, n) if compz = 'V' or 'I'.
work (lwork) is a workspace array.

INTEGER. The first dimension of z. Constraints:ldz

ldz ≥ 1 if compz = 'N';

ldz ≥ max(1, n) if compz = 'V' or 'I'.

Output Parameters

The n eigenvalues in ascending order, unless info > 0.d
See also info.

On exit, the array is overwritten; see info.e

If info = 0, contains the n orthonormal eigenvectors,
stored by columns. (The i-th column corresponds to the
ith eigenvalue.)

z

INTEGER.info

724

4 Intel® Math Kernel Library Reference Manual

If info = 0, the execution is successful.
If info = i, the algorithm failed to find all the eigenvalues
after 30n iterations: i off-diagonal elements have not
converged to zero. On exit, d and e contain, respectively,
the diagonal and off-diagonal elements of a tridiagonal
matrix orthogonally similar to T.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine steqr interface are the following:

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Holds the matrix Z of size (n,n).z

If omitted, this argument is restored based on the presence of argument
z as follows:

compz

compz = 'I', if z is present,
compz = 'N', if z is omitted.
If present, compz must be equal to 'I' or 'V' and the argument z
must also be present. Note that there will be an error condition if compz
is present and z omitted.
Note that two variants of Fortran 95 interface for steqr routine are
needed because of an ambiguous choice between real and complex
cases appear when z is omitted. Thus, the name rsteqr is used in real
cases (single or double precision), and the name steqr is used in
complex cases (single or double precision).

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 =

O(ε) ||T||2, where ε is the machine precision.

If λi is an exact eigenvalue, and μi is the corresponding computed value, then

|μi - λi| ≤ c(n)ε ||T||2

725

LAPACK Routines: Least Squares and Eigenvalue Problems 4

where c(n) is a modestly increasing function of n.

If zi is the corresponding exact eigenvector, and wi is the corresponding computed vector, then

the angle θ(zi, wi) between them is bounded as follows:

θ(zi, wi) ≤ c(n)ε ||T||2 / mini≠j|λi - λj|.

The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about

24n2 if compz = 'N';

7n3 (for complex flavors, 14n3) if compz = 'V' or 'I'.

?stemr
Computes selected eigenvalues and eigenvectors
of a real symmetric tridiagonal matrix.

Syntax

Fortran 77:

call sstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz,
tryrac, work, lwork, iwork, liwork, info)

call dstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz,
tryrac, work, lwork, iwork, liwork, info)

call cstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz,
tryrac, work, lwork, iwork, liwork, info)

call zstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz,
tryrac, work, lwork, iwork, liwork, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix T. Any such unreduced matrix has a well defined set of pairwise different
real eigenvalues, the corresponding real eigenvectors are pairwise orthogonal.

The spectrum may be computed either completely or partially by specifying either an interval
(vl,vu] or a range of indices il:iu for the desired eigenvalues.

726

4 Intel® Math Kernel Library Reference Manual

Depending on the number of desired eigenvalues, these are computed either by bisection or
the dqds algorithm. Numerically orthogonal eigenvectors are computed by the use of various
suitable L*D*LT factorizations near clusters of close eigenvalues (referred to as RRRs, Relatively
Robust Representations). An informal sketch of the algorithm follows.

For each unreduced block (submatrix) of T,

a. Compute T - sigma*I = L*D*LT, so that L and D define all the wanted eigenvalues to
high relative accuracy. This means that small relative changes in the entries of L and D cause
only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored)
representation of the tridiagonal matrix T does not have this property in general.

b. Compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm
attains full accuracy of the computed eigenvalues only right before the corresponding vectors
have to be computed, see steps c and d.

c. For each cluster of close eigenvalues, select a new shift close to the cluster, find a new
factorization, and refine the shifted eigenvalues to suitable accuracy.

d. For each eigenvalue with a large enough relative separation compute the corresponding
eigenvector by forming a rank revealing twisted factorization. Go back to step c for any
clusters that remain.

For more details, see: [Dhillon04], [Dhillon04-02], [Dhillon97]

The routine works only on machines which follow IEEE-754 floating-point standard in their
handling of infinities and NaNs (NaN stands for "not a number"). This permits the use of efficient
inner loops avoiding a check for zero divisors.

LAPACK routines can be used to reduce a complex Hermitean matrix to real symmetric tridiagonal
form.

(Any complex Hermitean tridiagonal matrix has real values on its diagonal and potentially
complex numbers on its off-diagonals. By applying a similarity transform with an appropriate
diagonal matrix diag(1,e{i \phy_1}, ... , e{i \phy_{n-1}}), the complex Hermitean matrix
can be transformed into a real symmetric matrix and complex arithmetic can be entirely avoided.)
While the eigenvectors of the real symmetric tridiagonal matrix are real, the eigenvectors of
original complex Hermitean matrix have complex entries in general. Since LAPACK drivers
overwrite the matrix data with the eigenvectors, zstemr accepts complex workspace to facilitate
interoperability with zunmtr or zupmtr.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.

727

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes all eigenvalues in
the half-open interval: (vl, vu].
If range = 'I', the routine computes eigenvalues with
indices il to iu.

INTEGER. The order of the matrix T (n≥0).n

REAL for single precision flavorsd
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
Contains n diagonal elements of the tridiagonal matrix T.

REAL for single precision flavorse
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n-1).
Contains (n-1) off-diagonal elements of the tridiagonal
matrix T in elements 1 to n-1 of e. e(n) need not be set
on input, but is used internally as workspace.

REAL for single precision flavorsvl, vu
DOUBLE PRECISION for double precision flavors.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues. Constraint: vl<vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1≤il≤iu≤n, if n>0.
If range = 'A' or 'V', il and iu are not referenced.

INTEGER. The leading dimension of the output array z.ldz

if jobz = 'V', then ldz ≥ max(1, n);

ldz ≥ 1 otherwise.

INTEGER. The number of eigenvectors to be held in the
array z.

nzc

If range = 'A', then nzc≥max(1, n);

728

4 Intel® Math Kernel Library Reference Manual

If range = 'V', then nzc is greater than or equal to the
number of eigenvalues in the half-open interval: (vl, vu].

If range = 'I', then nzc≥il+iu+1.
This value is returned as the first entry of the array z, and
no error message related to nzc is issued by the routine
xerbla.

LOGICAL.tryrac
If tryrac = .TRUE., it indicates that the code should check
whether the tridiagonal matrix defines its eigenvalues to
high relative accuracy. If so, the code uses relative-accuracy
preserving algorithms that might be (a bit) slower depending
on the matrix. If the matrix does not define its eigenvalues
to high relative accuracy, the code can uses possibly faster
algorithms.
If tryrac = .FALSE., the code is not required to guarantee
relatively accurate eigenvalues and can use the fastest
possible techniques.

REAL for single precision flavorswork
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION (lwork).

INTEGER.lwork
The dimension of the array work,

lwork≥max(1, 18*n).
If lwork=-1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.

INTEGER.iwork
Workspace array, DIMENSION (liwork).

INTEGER.liwork
The dimension of the array iwork.

lwork≥max(1, 10*n) if the eigenvectors are desired, and

lwork≥max(1, 8*n) if only the eigenvalues are to be
computed.

729

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If liwork=-1, then a workspace query is assumed; the
routine only calculates the optimal size of the iwork array,
returns this value as the first entry of the iwork array, and
no error message related to liwork is issued by xerbla.

Output Parameters

On exit, the array e is overwritten.e

INTEGER.m

The total number of eigenvalues found, 0≤m≤n.
If range = 'A', then m=n, and if If range = 'I', then
m=iu-il+1.

REAL for single precision flavorsw
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
The first m elements contain the selected eigenvalues
in ascending order.
REAL for sstemrz
DOUBLE PRECISION for dstemr
COMPLEX for cstemr
DOUBLE COMPLEX for zstemr.
Array z(ldz, *), the second dimension of z must be at least
max(1, m).
If jobz = 'V', and info = 0, then the first m columns of
z contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
If jobz = 'N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z ; if range = 'V', the exact value
of m is not known in advance and an can be computed with
a workspace query by setting nzc=-1, see description of
the parameter nzc.

INTEGER.isuppz
Array, DIMENSION (2*max(1, m)).

730

4 Intel® Math Kernel Library Reference Manual

The support of the eigenvectors in z, that is the indices
indicating the nonzero elements in z. The i-th computed
eigenvector is nonzero only in elements isuppz(2*i-1)
through isuppz(2*i). This is relevant in the case when the
matrix is split. isuppz is only accessed when jobz = 'V'
and n>0.

On exit, TRUE. tryrac is set to .FALSE. if the matrix does
not define its eigenvalues to high relative accuracy.

tryrac

On exit, if info = 0, then work(1) returns the optimal
(and minimal) size of lwork.

work(1)

On exit, if info = 0, then iwork(1) returns the optimal
size of liwork.

iwork(1)

INTEGER.info
If = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = 1, internal error in ?larre occurred,
if info = 2, internal error in ?larrv occurred.

?stedc
Computes all eigenvalues and eigenvectors of a
symmetric tridiagonal matrix using the divide and
conquer method.

Syntax

Fortran 77:

call sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

call dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

call cstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork, iwork, liwork,
info)

call zstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork, iwork, liwork,
info)

731

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95:

call rstedc(d, e [,z] [,compz] [,info])

call stedc(d, e [,z] [,compz] [,info])

Description

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a symmetric
tridiagonal matrix using the divide and conquer method. The eigenvectors of a full or band real
symmetric or complex Hermitian matrix can also be found if ?sytrd/?hetrd or ?sptrd/?hptrd
or ?sbtrd/?hbtrd has been used to reduce this matrix to tridiagonal form.

See also ?laed0, ?laed1, ?laed2, ?laed3, ?laed4, ?laed5, ?laed6, ?laed7, ?laed8,
?laed9, and ?laeda used by this function.

Input Parameters

CHARACTER*1. Must be 'N' or 'I' or 'V'.compz
If compz = 'N', the routine computes eigenvalues only.
If compz = 'I', the routine computes the eigenvalues and
eigenvectors of the tridiagonal matrix.
If compz = 'V', the routine computes the eigenvalues and
eigenvectors of original symmetric/Hermitian matrix. On
entry, the array z must contain the orthogonal/unitary
matrix used to reduce the original matrix to tridiagonal form.

INTEGER. The order of the symmetric tridiagonal matrix (n

≥ 0).

n

REAL for single-precision flavorsd, e, rwork
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of the tridiagonal
matrix.
The dimension of d must be at least max(1, n).
e(*) contains the subdiagonal elements of the tridiagonal
matrix.
The dimension of e must be at least max(1, n-1).
rwork is a workspace array, its dimension max(1,
lrwork).

REAL for sstedcz, work
DOUBLE PRECISION for dstedc

732

4 Intel® Math Kernel Library Reference Manual

COMPLEX for cstedc
DOUBLE COMPLEX for zstedc.
Arrays: z(ldz, *), work(*).
If compz = 'V', then, on entry, z must contain the
orthogonal/unitary matrix used to reduce the original matrix
to tridiagonal form.
The second dimension of z must be at least max(1, n).
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of z. Constraints:ldz

ldz ≥ 1 if compz = 'N';

ldz ≥ max(1, n) if compz = 'V' or 'I'.

INTEGER. The dimension of the array work.lwork

If compz = 'N'or 'I', or n ≤ 1, lwork must be at least
1.
If compz = 'V' and n > 1, lwork must be at least n*n.
Note that for compz = 'V', and if n is less than or equal
to the minimum divide size, usually 25, then lwork need
only be 1.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for the required value of lwork.

INTEGER. The dimension of the array rwork (used for
complex flavors only).

lrwork

If compz = 'N', or n ≤ 1, lrwork must be at least 1.
If compz = 'V' and n > 1, lrwork must be at least
(1+3*n+2*n*lg(n)+3*n*n), where lg(n)is the smallest

integer k such that 2**k≥n.
If compz = 'I' and n > 1, lrwork must be at least
(1+4*n+2*n*n).
Note that for compz = 'V'or 'I', and if n is less than or
equal to the minimum divide size, usually 25, then lrwork
need only be max(1, 2*(n-1)).

733

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If lrwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for the required value of lrwork.

INTEGER. Workspace array, its dimension max(1, liwork).iwork

INTEGER. The dimension of the array iwork.liwork

If compz = 'N', or n ≤ 1, liwork must be at least 1.
If compz = 'V' and n > 1, liwork must be at least
(6+6*n+5*n*lg(n), where lg(n)is the smallest integer k

such that 2**k≥n.
If compz = 'I' and n > 1, liwork must be at least
(3+5*n).
Note that for compz = 'V'or 'I', and if n is less than or
equal to the minimum divide size, usually 25, then liwork
need only be 1.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for the required value of liwork.

Output Parameters

The n eigenvalues in ascending order, unless info ≠ 0.d

See also info.

On exit, the array is overwritten; see info.e

If info = 0, then if compz = 'V', z contains the
orthonormal eigenvectors of the original
symmetric/Hermitian matrix, and if compz = 'I', z contains
the orthonormal eigenvectors of the symmetric tridiagonal
matrix. If compz = 'N', z is not referenced.

z

On exit, if info = 0, then work(1) returns the optimal
lwork.

work(1)

734

4 Intel® Math Kernel Library Reference Manual

On exit, if info = 0, then rwork(1) returns the optimal
lrwork (for complex flavors only).

rwork(1)

On exit, if info = 0, then iwork(1) returns the optimal
liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value. If
info = i, the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and columns
i/(n+1) through mod(i, n+1).

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine stedc interface are the following:

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Holds the matrix Z of size (n,n).z

If omitted, this argument is restored based on the presence of argument
z as follows: compz = 'I', if z is present, compz = 'N', if z is omitted.

compz

If present, compz must be equal to 'I' or 'V' and the argument z
must also be present. Note that there will be an error condition if compz
is present and z omitted.

Note that two variants of Fortran 95 interface for stedc routine are needed because of an
ambiguous choice between real and complex cases appear when z and work are omitted. Thus,
the name rstedc is used in real cases (single or double precision), and the name stedc is
used in complex cases (single or double precision).

Application Notes

The required size of workspace arrays must be as follows.

For sstedc/dstedc:

If compz = 'N' or n ≤ 1 then lwork must be at least 1.

735

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If compz = 'V' and n > 1 then lwork must be at least (1 + 3n + 2n·lgn + 3n2), where

lg(n) = smallest integer k such that 2k≥ n.

If compz = 'I' and n > 1 then lwork must be at least (1 + 4n + n2).

If compz = 'N' or n ≤ 1 then liwork must be at least 1.

If compz = 'V' and n > 1 then liwork must be at least (6 + 6n + 5n·lgn).

If compz = 'I' and n > 1 then liwork must be at least (3 + 5n).

For cstedc/zstedc:

If compz = 'N' or'I', or n ≤ 1, lwork must be at least 1.

If compz = 'V' and n > 1, lwork must be at least n2.

If compz = 'N' or n ≤ 1, lrwork must be at least 1.

If compz = 'V' and n > 1, lrwork must be at least (1 + 3n + 2n·lgn + 3n2), where lg(n) =

smallest integer k such that 2k≥ n.

If compz = 'I' and n > 1, lrwork must be at least(1 + 4n + 2n2).

The required value of liwork for complex flavors is the same as for real flavors.

You may set lwork (or liwork or lrwork, if supplied) to -1. The routine returns immediately
and provides the recommended workspace in the first element of the corresponding array
(work, iwork, rwork). This operation is called a workspace query.

Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not
-1, the routine returns immediately with an error exit and does not provide any information on
the recommended workspace.

736

4 Intel® Math Kernel Library Reference Manual

?stegr
Computes selected eigenvalues and eigenvectors
of a real symmetric tridiagonal matrix.

Syntax

Fortran 77:

call sstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz,
work, lwork, iwork, liwork, info)

call dstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz,
work, lwork, iwork, liwork, info)

call cstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz,
work, lwork, iwork, liwork, info)

call zstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz,
work, lwork, iwork, liwork, info)

Fortran 95:

call rstegr(d, e, w [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol]
[,info])

call stegr(d, e, w [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix T. Any such unreduced matrix has a well defined set of pairwise different
real eigenvalues, the corresponding real eigenvectors are pairwise orthogonal.

The spectrum may be computed either completely or partially by specifying either an interval
(vl,vu] or a range of indices il:iu for the desired eigenvalues.

?sregr is a compatability wrapper around the improved ?stemr routine. See it descriprion for
further details.

Note that the abstol parameter no longer provides any benefit and hence is no longer used.

See also auxiliary ?lasq2 ?lasq5, ?lasq6 , used by this routine.

737

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If job = 'N', then only eigenvalues are computed.
If job = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues
lambda(i) in the half-open interval:

vl< lambda(i) ≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for single precision flavorsd, e, work
DOUBLE PRECISION for double precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).
e(*) contains the subdiagonal elements of T in elements 1
to n-1; e(n) need not be set on input, but it is used as a
workspace.
The dimension of e must be at least max(1, n).
work(lwork) is a workspace array.

REAL for single precision flavorsvl, vu
DOUBLE PRECISION for double precision flavors.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for single precision flavorsabstol

738

4 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for double precision flavors.
Unused. Was the absolute error tolerance for the
eigenvalues/eigenvectors in previous versions.
INTEGER. The leading dimension of the output array z.
Constraints:

ldz

ldz < 1 if jobz = 'N';
ldz < max(1, n) jobz = 'V', an.

INTEGER.lwork
The dimension of the array work,

lwork≥max(1, 18*n) if jobz = 'V', and

lwork≥max(1, 12*n) if jobz = 'N'.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla. See
Application Notes below for details.

INTEGER.iwork
Workspace array, DIMENSION (liwork).

INTEGER.liwork

The dimension of the array iwork, lwork ≥ max(1, 10*n)

if the eigenvectors are desired, and lwork ≥ max(1, 8*n)
if only the eigenvalues are to be computed..
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the iwork array,
returns this value as the first entry of the iwork array, and
no error message related to liwork is issued by xerbla.
See Application Notes below for details.

Output Parameters

On exit, d and e are overwritten.d, e

INTEGER. The total number of eigenvalues found,m

0 ≤ m ≤ n.
If range = 'A', m = n, and if range = 'I', m = iu-il+1.

REAL for single precision flavorsw
DOUBLE PRECISION for double precision flavors.

739

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Array, DIMENSION at least max(1, n).
The selected eigenvalues in ascending order, stored in w(1)
to w(m).

REAL for sstegrz
DOUBLE PRECISION for dstegr
COMPLEX for cstegr
DOUBLE COMPLEX for zstegr.
Array z(ldz, *), the second dimension of z must be at least
max(1, m).
If jobz = 'V', and if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
If jobz = 'N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z ; if range = 'V', the exact value
of m is not known in advance and an upper bound must be
used. Supplying n columns is always safe.

INTEGER.isuppz
Array, DIMENSION at least (2*max(1, m)).
The support of the eigenvectors in z, that is the indices
indicating the nonzero elements in z. The i-th computed
eigenvector is nonzero only in elements isuppz(2*i-1)
through isuppz(2*i). This is relevant in the case when
the matrix is split. isuppz is only accessed when jobz =
'V', and n > 0.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if info = 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = 1x, internal error in ?larre occurred,
If info = 2x, internal error in ?larrv occurred. Here the
digit x = abs(iinfo) < 10, where iinfo is the non-zero
error code returned by ?larre or ?larrv, respectively.

740

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine stegr interface are the following:

Holds the vector of length (n).d

Holds the vector of length (n).e

Holds the vector of length (n).w

Holds the matrix Z of size (n,m).z

Holds the vector of length (2*m).isuppz

Default value for this argument is vl = - HUGE (vl) where HUGE(a)
means the largest machine number of the same precision as argument
a.

vl

Default value for this argument is vu = HUGE (vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this argument is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

Note that two variants of Fortran 95 interface for stegr routine are needed because of an
ambiguous choice between real and complex cases appear when z is omitted. Thus, the name
rstegr is used in real cases (single or double precision), and the name stegr is used in complex
cases (single or double precision).

741

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

Currently ?stegr is only set up to find all the n eigenvalues and eigenvectors of T in O(n2)
time, that is, only range = 'A' is supported.

Currently the routine ?stein is called when an appropriate si cannot be chosen in step (c)
above. ?stein invokes modified Gram-Schmidt when eigenvalues are close.

?stegr works only on machines which follow IEEE-754 floating-point standard in their handling
of infinities and NaNs. Normal execution of ?stegr may create NaNs and infinities and hence
may abort due to a floating point exception in environments which do not conform to the
IEEE-754 standard.

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1 (liwork = -1), the routine returns immediately and provides the
recommended workspace in the first element of the corresponding array (work, iwork). This
operation is called a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

742

4 Intel® Math Kernel Library Reference Manual

?pteqr
Computes all eigenvalues and (optionally) all
eigenvectors of a real symmetric positive-definite
tridiagonal matrix.

Syntax

Fortran 77:

call spteqr(compz, n, d, e, z, ldz, work, info)

call dpteqr(compz, n, d, e, z, ldz, work, info)

call cpteqr(compz, n, d, e, z, ldz, work, info)

call zpteqr(compz, n, d, e, z, ldz, work, info)

Fortran 95:

call rpteqr(d, e [,z] [,compz] [,info])

call pteqr(d, e [,z] [,compz] [,info])

Description

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric
positive-definite tridiagonal matrix T. In other words, the routine can compute the spectral

factorization: T = ZΛZT.

Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi; Z is an orthogonal
matrix whose columns are eigenvectors. Thus,

Tzi = λizi for i = 1, 2, ..., n.

(The routine normalizes the eigenvectors so that ||zi||2 = 1.)

You can also use the routine for computing the eigenvalues and eigenvectors of real symmetric
(or complex Hermitian) positive-definite matrices A reduced to tridiagonal form T: A = Q*T*QH.

In this case, the spectral factorization is as follows: A = Q*T*QH = (QZ)Λ(QZ)H. Before calling
?pteqr, you must reduce A to tridiagonal form and generate the explicit matrix Q by calling
the following routines:

743

LAPACK Routines: Least Squares and Eigenvalue Problems 4

for complex matrices:for real matrices:

?hetrd, ?ungtr?sytrd, ?orgtrfull storage

?hptrd, ?upgtr?sptrd, ?opgtrpacked storage

?hbtrd (vect='V')?sbtrd (vect='V')band storage

The routine first factorizes T as L*D*LH where L is a unit lower bidiagonal matrix, and D is a
diagonal matrix. Then it forms the bidiagonal matrix B = L*D1/2 and calls ?bdsqr to compute
the singular values of B, which are the same as the eigenvalues of T.

Input Parameters

CHARACTER*1. Must be 'N' or 'I' or 'V'.compz
If compz = 'N', the routine computes eigenvalues only.
If compz = 'I', the routine computes the eigenvalues and
eigenvectors of the tridiagonal matrix T.
If compz = 'V', the routine computes the eigenvalues and
eigenvectors of A (and the array z must contain the matrix
Q on entry).

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for single-precision flavorsd, e, work
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).
work(*) is a workspace array.
The dimension of work must be:
at least 1 if compz = 'N';
at least max(1, 4*n-4) if compz = 'V' or 'I'.

REAL for spteqrz
DOUBLE PRECISION for dpteqr
COMPLEX for cpteqr
DOUBLE COMPLEX for zpteqr.
Array, DIMENSION (ldz,*)

744

4 Intel® Math Kernel Library Reference Manual

If compz = 'N' or 'I', z need not be set.
If vect = 'V', z must contains the n-by-n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N';
at least max(1, n) if compz = 'V' or 'I'.

INTEGER. The first dimension of z. Constraints:ldz

ldz ≥ 1 if compz = 'N';

ldz ≥ max(1, n) if compz = 'V' or 'I'.

Output Parameters

The n eigenvalues in descending order, unless info > 0.d
See also info.

On exit, the array is overwritten.e

If info = 0, contains the n orthonormal eigenvectors,
stored by columns. (The ith column corresponds to the ith
eigenvalue.)

z

INTEGER.info
If info = 0, the execution is successful.
If info = i, the leading minor of order i (and hence T
itself) is not positive-definite.
If info = n + i, the algorithm for computing singular
values failed to converge; i off-diagonal elements have not
converged to zero.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pteqr interface are the following:

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Holds the matrix Z of size (n,n).z

745

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If omitted, this argument is restored based on the presence of argument
z as follows:

compz

compz = 'I', if z is present,
compz = 'N', if z is omitted.
If present, compz must be equal to 'I' or 'V' and the argument z
must also be present. Note that there will be an error condition if compz
is present and z omitted.

Note that two variants of Fortran 95 interface for pteqr routine are needed because of an
ambiguous choice between real and complex cases appear when z is omitted. Thus, the name
rpteqr is used in real cases (single or double precision), and the name pteqr is used in complex
cases (single or double precision).

Application Notes

If λi is an exact eigenvalue, and mi is the corresponding computed value, then

|μi - λi| ≤ c(n)εKλi

where c(n) is a modestly increasing function of n, ε is the machine precision, and K = ||DTD||2
||(DTD)-1||2, D is diagonal with dii = tii

-1/2.

If zi is the corresponding exact eigenvector, and wi is the corresponding computed vector, then

the angle θ(zi, wi) between them is bounded as follows: θ(ui, wi) ≤ c(n)εK / mini≠j(|λi
- λj|/|λi + λj|).

Here mini≠j(|λi - λj|/|λi + λj|) is the relative gap between λi and the other eigenvalues.

The total number of floating-point operations depends on how rapidly the algorithm converges.

Typically, it is about

30n2 if compz = 'N';

6n3 (for complex flavors, 12n3) if compz = 'V' or 'I'.

746

4 Intel® Math Kernel Library Reference Manual

?stebz
Computes selected eigenvalues of a real symmetric
tridiagonal matrix by bisection.

Syntax

Fortran 77:

call sstebz (range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w,
iblock, isplit, work, iwork, info)

call dstebz (range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w,
iblock, isplit, work, iwork, info)

Fortran 95:

call stebz(d, e, m, nsplit, w, iblock, isplit [, order] [,vl] [,vu] [,il]
[,iu] [,abstol] [,info])

Description

This routine computes some (or all) of the eigenvalues of a real symmetric tridiagonal matrix
T by bisection. The routine searches for zero or negligible off-diagonal elements to see if T splits
into block-diagonal form T = diag(T1, T2, ...). Then it performs bisection on each of the
blocks Ti and returns the block index of each computed eigenvalue, so that a subsequent call
to ?stein can also take advantage of the block structure.

See also ?laebz.

Input Parameters

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues

lambda(i) in the half-open interval: vl < lambda(i) ≤
vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

CHARACTER*1. Must be 'B' or 'E'.order
If order = 'B', the eigenvalues are to be ordered from
smallest to largest within each split-off block.

747

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If order = 'E', the eigenvalues for the entire matrix are
to be ordered from smallest to largest.

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for sstebzvl, vu
DOUBLE PRECISION for dstebz.
If range = 'V', the routine computes eigenvalues
lambda(i) in the half-open interval:

vl < lambda(i) ≤ vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER. Constraint: 1 ≤ il ≤ iu ≤ n.il, iu

If range = 'I', the routine computes eigenvalues

lambda(i) such that il≤ i ≤ iu (assuming that the
eigenvalues lambda(i) are in ascending order).
If range = 'A' or 'V', il and iu are not referenced.

REAL for sstebzabstol
DOUBLE PRECISION for dstebz.
The absolute tolerance to which each eigenvalue is required.
An eigenvalue (or cluster) is considered to have converged
if it lies in an interval of width abstol.

If abstol ≤ 0.0, then the tolerance is taken as eps*|T|,
where eps is the machine precision, and |T| is the 1-norm
of the matrix T.

REAL for sstebzd, e, work
DOUBLE PRECISION for dstebz.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).
work(*) is a workspace array.
The dimension of work must be at least max(1, 4n).

INTEGER. Workspace.iwork
Array, DIMENSION at least max(1, 3n).

748

4 Intel® Math Kernel Library Reference Manual

Output Parameters

INTEGER. The actual number of eigenvalues found.m

INTEGER. The number of diagonal blocks detected in T.nsplit

REAL for sstebzw
DOUBLE PRECISION for dstebz.
Array, DIMENSION at least max(1, n). The computed
eigenvalues, stored in w(1) to w(m).

INTEGER.iblock, isplit
Arrays, DIMENSION at least max(1, n).
A positive value iblock(i) is the block number of the
eigenvalue stored in w(i) (see also info).
The leading nsplit elements of isplit contain points at
which T splits into blocks Ti as follows: the block T1 contains
rows/columns 1 to isplit(1); the block T2 contains
rows/columns isplit(1)+1 to isplit(2), and so on.

INTEGER.info
If info = 0, the execution is successful.
If info = 1, for range = 'A' or 'V', the algorithm failed
to compute some of the required eigenvalues to the desired
accuracy; iblock(i)<0 indicates that the eigenvalue stored
in w(i) failed to converge.
If info = 2, for range = 'I', the algorithm failed to
compute some of the required eigenvalues. Try calling the
routine again with range = 'A'.
If info = 3:
for range = 'A' or 'V', same as info = 1;
for range = 'I', same as info = 2.
If info = 4, no eigenvalues have been computed. The
floating-point arithmetic on the computer is not behaving
as expected.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

749

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Specific details for the routine stebz interface are the following:

Holds the vector of length (n).d

Holds the vector of length (n-1).e

Holds the vector of length (n).w

Holds the vector of length (n).iblock

Holds the vector of length (n).isplit

Must be 'B' or 'E'. The default value is 'B'.order

Default value for this argument is vl = - HUGE (vl) where HUGE(a)
means the largest machine number of the same precision as argument
a.

vl

Default value for this argument is vu = HUGE (vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this argument is abstol = 0.0_WP.abstol

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il,
iu is present, Note that there will be an error condition if one of or both
vl and vu are present and at the same time one of or both il and iu
are present.

Application Notes

The eigenvalues of T are computed to high relative accuracy which means that if they vary
widely in magnitude, then any small eigenvalues will be computed more accurately than, for
example, with the standard QR method. However, the reduction to tridiagonal form (prior to
calling the routine) may exclude the possibility of obtaining high relative accuracy in the small
eigenvalues of the original matrix if its eigenvalues vary widely in magnitude.

750

4 Intel® Math Kernel Library Reference Manual

?stein
Computes the eigenvectors corresponding to
specified eigenvalues of a real symmetric
tridiagonal matrix.

Syntax

Fortran 77:

call sstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)

call dstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)

call cstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)

call zstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)

Fortran 95:

call stein(d, e, w, iblock, isplit, z [,ifailv] [,info])

Description

This routine computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding
to specified eigenvalues, by inverse iteration. It is designed to be used in particular after the
specified eigenvalues have been computed by ?stebz with order = 'B', but may also be
used when the eigenvalues have been computed by other routines.

If you use this routine after ?stebz, it can take advantage of the block structure by performing
inverse iteration on each block Ti separately, which is more efficient than using the whole
matrix T.

If T has been formed by reduction of a full symmetric or Hermitian matrix A to tridiagonal form,
you can transform eigenvectors of T to eigenvectors of A by calling ?ormtr or ?opmtr (for real
flavors) or by calling ?unmtr or ?upmtr (for complex flavors).

Input Parameters

INTEGER. The order of the matrix T (n ≥ 0).n

INTEGER. The number of eigenvectors to be returned.m

REAL for single-precision flavorsd, e, w
DOUBLE PRECISION for double-precision flavors.
Arrays:

751

LAPACK Routines: Least Squares and Eigenvalue Problems 4

d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).
e(*) contains the sub-diagonal elements of T stored in
elements 1 to n-1
The dimension of e must be at least max(1, n-1).
w(*) contains the eigenvalues of T, stored in w(1) to w(m)
(as returned by ?stebz). Eigenvalues of T1 must be supplied
first, in non-decreasing order; then those of T2, again in
non-decreasing order, and so on. Constraint:

if iblock(i) = iblock(i+1), w(i) ≤ w(i+1).
The dimension of w must be at least max(1, n).

INTEGER.iblock, isplit
Arrays, DIMENSION at least max(1, n). The arrays iblock
and isplit, as returned by ?stebz with order = 'B'.
If you did not call ?stebz with order = 'B', set all
elements of iblock to 1, and isplit(1) to n.)

INTEGER. The first dimension of the output array z; ldz ≥
max(1, n).

ldz

REAL for single-precision flavorswork
DOUBLE PRECISION for double-precision flavors.
Workspace array, DIMENSION at least max(1, 5n).

INTEGER.iwork
Workspace array, DIMENSION at least max(1, n).

Output Parameters

REAL for ssteinz
DOUBLE PRECISION for dstein
COMPLEX for cstein
DOUBLE COMPLEX for zstein.
Array, DIMENSION (ldz, *).
If info = 0, z contains the m orthonormal eigenvectors,
stored by columns. (The ith column corresponds to the i-th
specified eigenvalue.)

INTEGER.ifailv
Array, DIMENSION at least max(1, m).

752

4 Intel® Math Kernel Library Reference Manual

If info = i > 0, the first i elements of ifailv contain the
indices of any eigenvectors that failed to converge.

INTEGER.info
If info = 0, the execution is successful.
If info = i, then i eigenvectors (as indicated by the
parameter ifailv) each failed to converge in 5 iterations.
The current iterates are stored in the corresponding columns
of the array z.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine stein interface are the following:

Holds the vector of length (n).d

Holds the vector of length (n).e

Holds the vector of length (n).w

Holds the vector of length (n).iblock

Holds the vector of length (n).isplit

Holds the matrix Z of size (n,m).z

Holds the vector of length (m).ifailv

Application Notes

Each computed eigenvector zi is an exact eigenvector of a matrix T + Ei, where ||Ei||2 =

O(ε) ||T||2. However, a set of eigenvectors computed by this routine may not be orthogonal
to so high a degree of accuracy as those computed by ?steqr.

753

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?disna
Computes the reciprocal condition numbers for the
eigenvectors of a symmetric/ Hermitian matrix or
for the left or right singular vectors of a general
matrix.

Syntax

Fortran 77:

call sdisna(job, m, n, d, sep, info)

call ddisna(job, m, n, d, sep, info)

Fortran 95:

call disna(d, sep [,job] [,minmn] [,info])

Description

This routine computes the reciprocal condition numbers for the eigenvectors of a real symmetric
or complex Hermitian matrix or for the left or right singular vectors of a general m-by-n matrix.

The reciprocal condition number is the 'gap' between the corresponding eigenvalue or singular
value and the nearest other one.

The bound on the error, measured by angle in radians, in the i-th computed vector is given
by

slamch('E')*(anorm/sep(i))

where anorm = ||A||2 = max(|d(j)|). sep(i) is not allowed to be smaller than
slamch('E')*anorm in order to limit the size of the error bound.

?disna may also be used to compute error bounds for eigenvectors of the generalized symmetric
definite eigenproblem.

Input Parameters

CHARACTER*1. Must be 'E','L', or 'R'. Specifies for which
problem the reciprocal condition numbers should be
computed:

job

job = 'E': for the eigenvectors of a symmetric/Hermitian
matrix;
job = 'L': for the left singular vectors of a general matrix;

754

4 Intel® Math Kernel Library Reference Manual

job = 'R': for the right singular vectors of a general matrix.

INTEGER. The number of rows of the matrix (m ≥ 0).m

INTEGER.n
If job = 'L', or 'R', the number of columns of the matrix

(n ≥ 0). Ignored if job = 'E'.

REAL for sdisnad
DOUBLE PRECISION for ddisna.
Array, dimension at least max(1,m) if job = 'E', and at
least max(1, min(m,n)) if job = 'L' or 'R'.
This array must contain the eigenvalues (if job = 'E') or
singular values (if job = 'L' or 'R') of the matrix, in either
increasing or decreasing order.
If singular values, they must be non-negative.

Output Parameters

REAL for sdisnasep
DOUBLE PRECISION for ddisna.
Array, dimension at least max(1,m) if job = 'E', and at
least max(1, min(m,n)) if job = 'L' or 'R'. The reciprocal
condition numbers of the vectors.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine disna interface are the following:

Holds the vector of length min(m,n).d

Holds the vector of length min(m,n).sep

Must be 'E', 'L', or 'R'. The default value is 'E'.job

Indicates which of the values m or n is smaller. Must be either 'M' or
'N', the default is 'M'.

minmn

755

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If job = 'E', this argument is superfluous, If job = 'L' or 'R', this
argument is used by the routine.

Generalized Symmetric-Definite Eigenvalue Problems

Generalized symmetric-definite eigenvalue problems are as follows: find the

eigenvalues λ and the corresponding eigenvectors z that satisfy one of these equations:

Az = λBz, ABz = λz, or = λz,

where A is an n-by-n symmetric or Hermitian matrix, and B is an n-by-n symmetric
positive-definite or Hermitian positive-definite matrix.

In these problems, there exist n real eigenvectors corresponding to real eigenvalues (even for
complex Hermitian matrices A and B).

Routines described in this section allow you to reduce the above generalized problems to

standard symmetric eigenvalue problem Cy = λy, which you can solve by calling LAPACK
routines described earlier in this chapter (see Symmetric Eigenvalue Problems).

Different routines allow the matrices to be stored either conventionally or in packed storage.
Prior to reduction, the positive-definite matrix B must first be factorized using either ?potrf
or ?pptrf.

The reduction routine for the banded matrices A and B uses a split Cholesky factorization for
which a specific routine ?pbstf is provided. This refinement halves the amount of work required
to form matrix C.

Table 4-4 lists LAPACK routines (Fortran-77 interface) that can be used to solve generalized
symmetric-definite eigenvalue problems. Respective routine names in Fortran-95 interface are
without the first symbol (see Routine Naming Conventions).

Table 4-4 Computational Routines for Reducing Generalized Eigenproblems to Standard
Problems

Factorize
band
matrix

Reduce to standard
problems (band
matrices)

Reduce to standard
problems (packed
storage)

Reduce to standard
problems (full
storage)

Matrix
type

?pbstf?sbgst?spgst?sygstreal
symmetric
matrices

756

4 Intel® Math Kernel Library Reference Manual

Factorize
band
matrix

Reduce to standard
problems (band
matrices)

Reduce to standard
problems (packed
storage)

Reduce to standard
problems (full
storage)

Matrix
type

?pbstf?hbgst?hpgst?hegstcomplex
Hermitian
matrices

?sygst
Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form.

Syntax

Fortran 77:

call ssygst(itype, uplo, n, a, lda, b, ldb, info)

call dsygst(itype, uplo, n, a, lda, b, ldb, info)

Fortran 95:

call sygst(a, b [,itype] [,uplo] [,info])

Description

This routine reduces real symmetric-definite generalized eigenproblems

Az = λBz, ABz = λz, or BAz = λz

to the standard form Cy = λy. Here A is a real symmetric matrix, and B is a real symmetric
positive-definite matrix. Before calling this routine, call ?potrf to compute the Cholesky
factorization: B = UTU or B = LLT.

Input Parameters

INTEGER. Must be 1 or 2 or 3.itype
If itype = 1, the generalized eigenproblem is A*z =
lambda*B*z
for uplo = 'U': C = inv(UT)*A*inv(U), z = inv(U)*y;
for uplo = 'L': C = inv(L)*A*inv(LT), z = inv(LT)*y.

757

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If itype = 2, the generalized eigenproblem is A*B*z =
lambda*z
for uplo = 'U': C = U*A*UT, z = inv(U)*y;
for uplo = 'L': C = LT*A*L, z = inv(LT)*y.
If itype = 3, the generalized eigenproblem is B*A*z =
lambda*z
for uplo = 'U': C = U*A*UT, z = UT*y;
for uplo = 'L': C = LT*A*L, z = L*y.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', the array a stores the upper triangle of A;
you must supply B in the factored form B = UT*U.
If uplo = 'L', the array a stores the lower triangle of A;
you must supply B in the factored form B = L*LT.

INTEGER. The order of the matrices A and B (n ≥ 0).n

REAL for ssygsta, b
DOUBLE PRECISION for dsygst.
Arrays:
a(lda,*) contains the upper or lower triangle of A.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the Cholesky-factored matrix B:
B = UT*U or B = L*LT (as returned by ?potrf).
The second dimension of b must be at least max(1, n).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

Output Parameters

The upper or lower triangle of A is overwritten by the upper
or lower triangle of C, as specified by the arguments itype
and uplo.

a

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

758

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sygst interface are the following:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,n).b

Must be 1, 2, or 3. The default value is 1.itype

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication
by B-1 (if itype = 1) or B (if itype = 2 or 3). When the routine is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

?hegst
Reduces a complex Hermitian-definite generalized
eigenvalue problem to the standard form.

Syntax

Fortran 77:

call chegst(itype, uplo, n, a, lda, b, ldb, info)

call zhegst(itype, uplo, n, a, lda, b, ldb, info)

Fortran 95:

call hegst(a, b [,itype] [,uplo] [,info])

Description

This routine reduces complex Hermitian-definite generalized eigenvalue problems

Az = λBz, ABz = λz, or BAz = λz

759

LAPACK Routines: Least Squares and Eigenvalue Problems 4

to the standard form Cy = λy. Here the matrix A is complex Hermitian, and B is complex
Hermitian positive-definite. Before calling this routine, you must call ?potrf to compute the
Cholesky factorization: B = UH*U or B = L*LH.

Input Parameters

INTEGER. Must be 1 or 2 or 3.itype
If itype = 1, the generalized eigenproblem is A*z =
lambda*B*z
for uplo = 'U': C = inv(UH)*A*inv(U), z = inv(U)*y;
for uplo = 'L': C = inv(L)*A*inv(LH), z = inv(LH)*y.
If itype = 2, the generalized eigenproblem is A*B*z =
lambda*z
for uplo = 'U': C = U*A*UH, z = inv(U)*y;
for uplo = 'L': C = LH*A*L, z = inv(LH)*y.
If itype = 3, the generalized eigenproblem is B*A*z =
lambda*z
for uplo = 'U': C = U*A*UH, z = UH*y;
for uplo = 'L': C = LH*A*L, z = L*y.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', the array a stores the upper triangle of A;
you must supply B in the factored form B = UH*U.
If uplo = 'L', the array a stores the lower triangle of A;
you must supply B in the factored form B = L*LH.

INTEGER. The order of the matrices A and B (n ≥ 0).n

COMPLEX for chegstDOUBLE COMPLEX for zhegst.a, b
Arrays:
a(lda,*) contains the upper or lower triangle of A.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the Cholesky-factored matrix B:
B = UH*U or B = L*LH (as returned by ?potrf).
The second dimension of b must be at least max(1, n).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

760

4 Intel® Math Kernel Library Reference Manual

Output Parameters

The upper or lower triangle of A is overwritten by the upper
or lower triangle of C, as specified by the arguments itype
and uplo.

a

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hegst interface are the following:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,n).b

Must be 1, 2, or 3. The default value is 1.itype

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication
by inv(B) (if itype = 1) or B (if itype = 2 or 3). When the routine is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

761

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?spgst
Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form using
packed storage.

Syntax

Fortran 77:

call sspgst(itype, uplo, n, ap, bp, info)

call dspgst(itype, uplo, n, ap, bp, info)

Fortran 95:

call spgst(a, b [,itype] [,uplo] [,info])

Description

This routine reduces real symmetric-definite generalized eigenproblems

Az = λBz, ABz = λz, or BAz = λz

to the standard form Cy = λy, using packed matrix storage. Here A is a real symmetric matrix,
and B is a real symmetric positive-definite matrix. Before calling this routine, call ?pptrf to
compute the Cholesky factorization: B = UT*U or B = L*LT.

Input Parameters

INTEGER. Must be 1 or 2 or 3.itype
If itype = 1, the generalized eigenproblem is A*z =
lambda*B*z
for uplo = 'U': C = inv(UT)*A*inv(U), z = inv(U)*y;
for uplo = 'L': C = inv(L)*A*inv(LT), z = inv(LT)*y.
If itype = 2, the generalized eigenproblem is A*B*z =
lambda*z
for uplo = 'U': C = U*A*UT, z = inv(U)*y;
for uplo = 'L': C = LT*A*L, z = inv(LT)*y.
If itype = 3, the generalized eigenproblem is B*A*z =
lambda*z
for uplo = 'U': C = U*A*UT, z = UT*y;
for uplo = 'L': C = LT*A*L, z = L*y.

762

4 Intel® Math Kernel Library Reference Manual

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ap stores the packed upper triangle of A;
you must supply B in the factored form B = UT*U.
If uplo = 'L', ap stores the packed lower triangle of A;
you must supply B in the factored form B = L*LT.

INTEGER. The order of the matrices A and B (n ≥ 0).n

REAL for sspgstap, bp
DOUBLE PRECISION for dspgst.
Arrays:
ap(*) contains the packed upper or lower triangle of A.
The dimension of ap must be at least max(1, n*(n+1)/2).

p(*) contains the packed Cholesky factor of B (as returned
by ?pptrf with the same uplo value).

b

The dimension of bp must be at least max(1, n*(n+1)/2).

Output Parameters

The upper or lower triangle of A is overwritten by the upper
or lower triangle of C, as specified by the arguments itype
and uplo.

ap

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine spgst interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Stands for argument bp in Fortan 77 interface. Holds the array B of size
(n*(n+1)/2).

b

Must be 1, 2, or 3. The default value is 1.itype

Must be 'U' or 'L'. The default value is 'U'.uplo

763

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication
by B-1 (if itype = 1) or B (if itype = 2 or 3). When the routine is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

?hpgst
Reduces a complex Hermitian-definite generalized
eigenvalue problem to the standard form using
packed storage.

Syntax

Fortran 77:

call chpgst(itype, uplo, n, ap, bp, info)

call zhpgst(itype, uplo, n, ap, bp, info)

Fortran 95:

call hpgst(a, b [,itype] [,uplo] [,info])

Description

This routine reduces real symmetric-definite generalized eigenproblems

Az = λBz, ABz = λz, or BAz = λz

to the standard form Cy = λyl, using packed matrix storage. Here A is a real symmetric matrix,
and B is a real symmetric positive-definite matrix. Before calling this routine, you must call
?pptrf to compute the Cholesky factorization: B = UH*U or B = L*LH.

Input Parameters

INTEGER. Must be 1 or 2 or 3.itype
If itype = 1, the generalized eigenproblem is A*z =
lambda*B*z
for uplo = 'U': C = inv(UH)*A*inv(U), z = inv(U)*y;
for uplo = 'L': C = inv(L)*A*inv(LH), z = inv(LH)*y.

764

4 Intel® Math Kernel Library Reference Manual

If itype = 2, the generalized eigenproblem is A*B*z =
lambda*z
for uplo = 'U': C = U*A*UH, z = inv(U)*y;
for uplo = 'L': C = LH*A*L, z = inv(LH)*y.
If itype = 3, the generalized eigenproblem is B*A*z =
lambda*z
for uplo = 'U': C = U*A*UH, z = UH*y;
for uplo = 'L': C = LH*A*L, z = L*y.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ap stores the packed upper triangle of A;
you must supply B in the factored form B = UH*U.
If uplo = 'L', ap stores the packed lower triangle of A;
you must supply B in the factored form B = L*LH.

INTEGER. The order of the matrices A and B (n ≥ 0).n

COMPLEX for chpgstDOUBLE COMPLEX for zhpgst.ap, bp
Arrays:
ap(*) contains the packed upper or lower triangle of A.
The dimension of a must be at least max(1, n*(n+1)/2).
bp(*) contains the packed Cholesky factor of B (as returned
by ?pptrf with the same uplo value).
The dimension of b must be at least max(1, n*(n+1)/2).

Output Parameters

The upper or lower triangle of A is overwritten by the upper
or lower triangle of C, as specified by the arguments itype
and uplo.

ap

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hpgst interface are the following:

765

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Stands for argument bp in Fortan 77 interface. Holds the array B of size
(n*(n+1)/2).

b

Must be 1, 2, or 3. The default value is 1.itype

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication
by inv(B) (if itype = 1) or B (if itype = 2 or 3). When the routine is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

?sbgst
Reduces a real symmetric-definite generalized
eigenproblem for banded matrices to the standard
form using the factorization performed by ?pbstf.

Syntax

Fortran 77:

call ssbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)

call dsbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)

Fortran 95:

call sbgst(a, b [,x] [,uplo] [,info])

Description

To reduce the real symmetric-definite generalized eigenproblem Az = λBz to the standard

form Cy = λy, where A, B and C are banded, this routine must be preceded by a call to
spbstf/dpbstf, which computes the split Cholesky factorization of the positive-definite matrix
B: B = ST*S. The split Cholesky factorization, compared with the ordinary Cholesky
factorization, allows the work to be approximately halved.

766

4 Intel® Math Kernel Library Reference Manual

This routine overwrites A with C = XT*A*X, where X = inv(S)*Q and Q is an orthogonal matrix
chosen (implicitly) to preserve the bandwidth of A. The routine also has an option to allow the
accumulation of X, and then, if z is an eigenvector of C, Xz is an eigenvector of the original
system.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.vect
If vect = 'N', then matrix X is not returned;
If vect = 'V', then matrix X is returned.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

INTEGER. The order of the matrices A and B (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Aka

(ka ≥ 0).

INTEGER. The number of super- or sub-diagonals in Bkb

(ka ≥ kb ≥ 0).

REAL for ssbgstab, bb, work
DOUBLE PRECISION for dsbgst
ab (ldab,*) is an array containing either upper or lower
triangular part of the symmetric matrix A (as specified by
uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).
bb (ldbb,*) is an array containing the banded split Cholesky
factor of B as specified by uplo, n and kb and returned by
spbstf/dpbstf.
The second dimension of the array bb must be at least
max(1, n).
work(*) is a workspace array, dimension at least max(1,
2*n)

INTEGER. The first dimension of the array ab; must be at
least ka+1.

ldab

INTEGER. The first dimension of the array bb; must be at
least kb+1.

ldbb

767

LAPACK Routines: Least Squares and Eigenvalue Problems 4

The first dimension of the output array x. Constraints: if

vect = 'N', then ldx ≥ 1;

ldx

if vect = 'V', then ldx ≥ max(1, n).

Output Parameters

On exit, this array is overwritten by the upper or lower
triangle of C as specified by uplo.

ab

REAL for ssbgstx
DOUBLE PRECISION for dsbgst
Array.
If vect = 'V', then x (ldx,*) contains the n-by-n matrix
X = inv(S)*Q.
If vect = 'N', then x is not referenced.
The second dimension of x must be:
at least max(1, n), if vect = 'V';
at least 1, if vect = 'N'.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sbgst interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(ka+1,n).

a

Stands for argument bb in Fortan 77 interface. Holds the array B of size
(kb+1,n).

b

Holds the matrix X of size (n,n).x

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument x as follows:vect
vect = 'V', if x is present,
vect = 'N', if x is omitted.

768

4 Intel® Math Kernel Library Reference Manual

Application Notes

Forming the reduced matrix C involves implicit multiplication by B-1. When the routine is used
as a step in the computation of eigenvalues and eigenvectors of the original problem, there
may be a significant loss of accuracy if B is ill-conditioned with respect to inversion. The total
number of floating-point operations is approximately 6n2*kb, when vect = 'N'. Additional
(3/2)n3*(kb/ka) operations are required when vect = 'V'. All these estimates assume that
both ka and kb are much less than n.

?hbgst
Reduces a complex Hermitian-definite generalized
eigenproblem for banded matrices to the standard
form using the factorization performed by ?pbstf.

Syntax

Fortran 77:

call chbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork,
info)

call zhbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork,
info)

Fortran 95:

call hbgst(a, b [,x] [,uplo] [,info])

Description

To reduce the complex Hermitian-definite generalized eigenproblem Az = λBz to the standard

form Cy = λy, where A, B and C are banded, this routine must be preceded by a call to
cpbstf/zpbstf, which computes the split Cholesky factorization of the positive-definite matrix
B: B = SH*S. The split Cholesky factorization, compared with the ordinary Cholesky
factorization, allows the work to be approximately halved.

This routine overwrites A with C = XH*A*X, where X = inv(S)*Q, and Q is a unitary matrix
chosen (implicitly) to preserve the bandwidth of A. The routine also has an option to allow the
accumulation of X, and then, if z is an eigenvector of C, Xz is an eigenvector of the original
system.

769

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.vect
If vect = 'N', then matrix X is not returned;
If vect = 'V', then matrix X is returned.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

INTEGER. The order of the matrices A and B (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Aka

(ka ≥ 0).

INTEGER. The number of super- or sub-diagonals in Bkb

(ka ≥ kb ≥ 0).

COMPLEX for chbgstDOUBLE COMPLEX for zhbgstab, bb, work
ab (ldab,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A (as specified by
uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).
bb (ldbb,*) is an array containing the banded split Cholesky
factor of B as specified by uplo, n and kb and returned by
cpbstf/zpbstf.
The second dimension of the array bb must be at least
max(1, n).
work(*) is a workspace array, dimension at least max(1,
n)

INTEGER. The first dimension of the array ab; must be at
least ka+1.

ldab

INTEGER. The first dimension of the array bb; must be at
least kb+1.

ldbb

The first dimension of the output array x. Constraints:ldx

if vect = 'N', then ldx ≥ 1;

if vect = 'V', then ldx ≥ max(1, n).

REAL for chbgstrwork
DOUBLE PRECISION for zhbgst

770

4 Intel® Math Kernel Library Reference Manual

Workspace array, dimension at least max(1, n)

Output Parameters

On exit, this array is overwritten by the upper or lower
triangle of C as specified by uplo.

ab

COMPLEX for chbgstx
DOUBLE COMPLEX for zhbgst
Array.
If vect = 'V', then x (ldx,*) contains the n-by-n matrix
X = inv(S)*Q.
If vect = 'N', then x is not referenced.
The second dimension of x must be:
at least max(1, n), if vect = 'V';
at least 1, if vect = 'N'.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hbgst interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(ka+1,n).

a

Stands for argument bb in Fortan 77 interface. Holds the array B of size
(kb+1,n).

b

Holds the matrix X of size (n,n).x

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument x as follows: vect
= 'V', if x is present, vect = 'N', if x is omitted.

vect

771

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

Forming the reduced matrix C involves implicit multiplication by inv(B). When the routine is
used as a step in the computation of eigenvalues and eigenvectors of the original problem,
there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion. The
total number of floating-point operations is approximately 20n2*kb, when vect = 'N'.
Additional 5n3*(kb/ka) operations are required when vect = 'V'. All these estimates assume
that both ka and kb are much less than n.

?pbstf
Computes a split Cholesky factorization of a real
symmetric or complex Hermitian positive-definite
banded matrix used in ?sbgst/?hbgst .

Syntax

Fortran 77:

call spbstf(uplo, n, kb, bb, ldbb, info)

call dpbstf(uplo, n, kb, bb, ldbb, info)

call cpbstf(uplo, n, kb, bb, ldbb, info)

call zpbstf(uplo, n, kb, bb, ldbb, info)

Fortran 95:

call pbstf(b [, uplo] [,info])

Description

This routine computes a split Cholesky factorization of a real symmetric or complex Hermitian
positive-definite band matrix B. It is to be used in conjunction with ?sbgst/?hbgst.

The factorization has the form B = ST*S (or B = SH*S for complex flavors), where S is a band
matrix of the same bandwidth as B and the following structure: S is upper triangular in the first
(n+kb)/2 rows and lower triangular in the remaining rows.

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', bb stores the upper triangular part of B.
If uplo = 'L', bb stores the lower triangular part of B.

772

4 Intel® Math Kernel Library Reference Manual

INTEGER. The order of the matrix B (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Bkb

(kb ≥ 0).

REAL for spbstfbb
DOUBLE PRECISION for dpbstf
COMPLEX for cpbstf
DOUBLE COMPLEX for zpbstf.
bb (ldbb,*) is an array containing either upper or lower
triangular part of the matrix B (as specified by uplo) in band
storage format.
The second dimension of the array bb must be at least
max(1, n).

INTEGER. The first dimension of bb; must be at least kb+1.ldbb

Output Parameters

On exit, this array is overwritten by the elements of the
split Cholesky factor S.

bb

INTEGER.info
If info = 0, the execution is successful.
If info = i, then the factorization could not be completed,
because the updated element bii would be the square root
of a negative number; hence the matrix B is not
positive-definite.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine pbstf interface are the following:

Stands for argument bb in Fortan 77 interface. Holds the array B of size
(kb+1,n).

b

Must be 'U' or 'L'. The default value is 'U'.uplo

773

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

The computed factor S is the exact factor of a perturbed matrix B + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

The total number of floating-point operations for real flavors is approximately n(kb+1)2. The
number of operations for complex flavors is 4 times greater. All these estimates assume that
kb is much less than n.

After calling this routine, you can call ?sbgst/?hbgst to solve the generalized eigenproblem

Az = λBz, where A and B are banded and B is positive-definite.

Nonsymmetric Eigenvalue Problems

This section describes LAPACK routines for solving nonsymmetric eigenvalue problems,
computing the Schur factorization of general matrices, as well as performing a number of related
computational tasks.

A nonsymmetric eigenvalue problem is as follows: given a nonsymmetric (or non-Hermitian)

matrix A, find the eigenvalues λ and the corresponding eigenvectors z that satisfy the
equation

Az = λz (right eigenvectors z)

or the equation

zHA = λzH (left eigenvectors z).

Nonsymmetric eigenvalue problems have the following properties:

• The number of eigenvectors may be less than the matrix order (but is not less than the
number of distinct eigenvalues of A).

• Eigenvalues may be complex even for a real matrix A.

• If a real nonsymmetric matrix has a complex eigenvalue a+bi corresponding to an eigenvector
z, then a-bi is also an eigenvalue. The eigenvalue a-bi corresponds to the eigenvector
whose elements are complex conjugate to the elements of z.

774

4 Intel® Math Kernel Library Reference Manual

To solve a nonsymmetric eigenvalue problem with LAPACK, you usually need to reduce the
matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg
matrix obtained. Table 4-5 lists LAPACK routines (Fortran-77 interface) for reducing the matrix
to the upper Hessenberg form by an orthogonal (or unitary) similarity transformation A = QHQH

as well as routines for solving eigenvalue problems with Hessenberg matrices, forming the
Schur factorization of such matrices and computing the corresponding condition numbers.
Respective routine names in Fortran-95 interface are without the first symbol (see Routine
Naming Conventions).

Decision tree in Figure 4-4 helps you choose the right routine or sequence of routines for an
eigenvalue problem with a real nonsymmetric matrix. If you need to solve an eigenvalue problem
with a complex non-Hermitian matrix, use the decision tree shown in Figure 4-5 .

Table 4-5 Computational Routines for Solving Nonsymmetric Eigenvalue Problems

Routines for complex
matrices

Routines for real matricesOperation performed

?gehrd?gehrd,Reduce to Hessenberg
form A = QHQH

?unghr?orghrGenerate the matrix Q

?unmhr?ormhrApply the matrix Q

?gebal?gebalBalance matrix

?gebak?gebakTransform eigenvectors of
balanced matrix to those
of the original matrix

?hseqr?hseqrFind eigenvalues and
Schur factorization (QR
algorithm)

?hsein?hseinFind eigenvectors from
Hessenberg form (inverse
iteration)

?trevc?trevcFind eigenvectors from
Schur factorization

?trsna?trsnaEstimate sensitivities of
eigenvalues and
eigenvectors

775

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Routines for complex
matrices

Routines for real matricesOperation performed

?trexc?trexcReorder Schur
factorization

?trsen?trsenReorder Schur
factorization, find the
invariant subspace and
estimate sensitivities

?trsyl?trsylSolves Sylvester's
equation.

776

4 Intel® Math Kernel Library Reference Manual

Figure 4-4 Decision Tree: Real Nonsymmetric Eigenvalue Problems

777

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Figure 4-5 Decision Tree: Complex Non-Hermitian Eigenvalue Problems

778

4 Intel® Math Kernel Library Reference Manual

?gehrd
Reduces a general matrix to upper Hessenberg
form.

Syntax

Fortran 77:

call sgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)

call dgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)

call cgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)

call zgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)

Fortran 95:

call gehrd(a [, tau] [,ilo] [,ihi] [,info])

Description

The routine reduces a general matrix A to upper Hessenberg form H by an orthogonal or unitary
similarity transformation A = Q*H*QH. Here H has real subdiagonal elements.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. If A has been output by ?gebal, then ilo and
ihi must contain the values returned by that routine.

Otherwise ilo = 1 and ihi = n. (If n > 0, then 1 ≤ ilo

≤ ihi ≤ n; if n = 0, ilo = 1 and ihi = 0.)

ilo, ihi

REAL for sgehrda, work
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

779

LAPACK Routines: Least Squares and Eigenvalue Problems 4

work (lwork) is a workspace array.

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The size of the work array; at least max(1, n).lwork
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the upper Hessenberg matrix H and details
of the matrix Q. The subdiagonal elements of H are real.

a

REAL for sgehrdtau
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Array, DIMENSION at least max (1, n-1).
Contains additional information on the matrix Q.

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i , the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gehrd interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n-1).tau

Default value for this argument is ilo = 1.ilo

Default value for this argument is ihi = n.ihi

780

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed Hessenberg matrix H is exactly similar to a nearby matrix A + E, where ||E||2

< c(n)ε||A||2, c(n) is a modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations for real flavors is (2/3)(ihi -
ilo)2(2ihi + 2ilo + 3n); for complex flavors it is 4 times greater.

?orghr
Generates the real orthogonal matrix Q determined
by ?gehrd.

Syntax

Fortran 77:

call sorghr(n, ilo, ihi, a, lda, tau, work, lwork, info)

call dorghr(n, ilo, ihi, a, lda, tau, work, lwork, info)

Fortran 95:

call orghr(a, tau [,ilo] [,ihi] [,info])

781

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Description

This routine explicitly generates the orthogonal matrix Q that has been determined by a preceding
call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix A to upper Hessenberg
form H by an orthogonal similarity transformation, A = Q*H*QT, and represents the matrix Q

as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined
by sgebal/dgebal when balancing the matrix;if the matrix has not been balanced, ilo = 1
and ihi = n.)

The matrix Q generated by ?orghr has the structure:

where Q22 occupies rows and columns ilo to ihi.

Input Parameters

INTEGER. The order of the matrix Q (n ≥ 0).n

INTEGER. These must be the same parameters ilo and ihi,

respectively, as supplied to ?gehrd. (If n > 0, then 1 ≤

ilo ≤ ihi ≤ n; if n = 0, ilo = 1 and ihi = 0.)

ilo, ihi

REAL for sorghra, tau, work
DOUBLE PRECISION for dorghr
Arrays: a(lda,*) contains details of the vectors which define
the elementary reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, n).
tau(*) contains further details of the elementary reflectors,
as returned by ?gehrd.
The dimension of tau must be at least max (1, n-1).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The size of the work array;lwork

782

4 Intel® Math Kernel Library Reference Manual

lwork ≥ max(1, ihi-ilo).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the n-by-n orthogonal matrix Q.a

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine orghr interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n-1).tau

Default value for this argument is ilo = 1.ilo

Default value for this argument is ihi = n.ihi

Application Notes

For better performance, try using lwork =(ihi-ilo)*blocksize where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

783

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed matrix Q differs from the exact result by a matrix E such that ||E||2 = O(ε),

where ε is the machine precision.

The approximate number of floating-point operations is (4/3)(ihi-ilo)3.

The complex counterpart of this routine is ?unghr.

?ormhr
Multiplies an arbitrary real matrix C by the real
orthogonal matrix Q determined by ?gehrd.

Syntax

Fortran 77:

call sormhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork,
info)

call dormhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork,
info)

Fortran 95:

call ormhr(a, tau, c [,ilo] [,ihi] [,side] [,trans] [,info])

Description

This routine multiplies a matrix C by the orthogonal matrix Q that has been determined by a
preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix A to upper
Hessenberg form H by an orthogonal similarity transformation, A = Q*H*QT, and represents

784

4 Intel® Math Kernel Library Reference Manual

the matrix Q as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values
determined by sgebal/dgebal when balancing the matrix;if the matrix has not been balanced,
ilo = 1 and ihi = n.)

With ?ormhr, you can form one of the matrix products Q*C, Q T*C, C*Q, or C*Q T, overwriting
the result on C (which may be any real rectangular matrix).

A common application of ?ormhr is to transform a matrix V of eigenvectors of H to the matrix
QV of eigenvectors of A.

Input Parameters

CHARACTER*1. Must be 'L' or 'R'.side
If side = 'L', then the routine forms Q*C or QT*C.
If side = 'R', then the routine forms C*Q or C*QT.

CHARACTER*1. Must be 'N' or 'T'.trans
If trans = 'N' , then Q is applied to C.
If trans = 'T', then QT is applied to C.

INTEGER. The number of rows in C (m ≥ 0).m

INTEGER. The number of columns in C (n ≥ 0).n

INTEGER. These must be the same parameters ilo and ihi,
respectively, as supplied to ?gehrd.

ilo, ihi

If m > 0 and side = 'L', then 1 ≤ ilo ≤ ihi ≤ m.
If m = 0 and side = 'L' , then ilo = 1 and ihi = 0.

If n > 0 and side = 'R', then 1 ≤ ilo ≤ ihi ≤ n.
If n = 0 and side = 'R' , then ilo = 1 and ihi = 0.

REAL for sormhra, tau, c, work
DOUBLE PRECISION for dormhr
Arrays:
a(lda,*) contains details of the vectors which define the
elementary reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, m) if
side = 'L' and at least max(1, n) if side = 'R'.
tau(*) contains further details of the elementary
reflectors, as returned by ?gehrd .
The dimension of tau must be at least max (1, m-1)
if side = 'L' and at least max (1, n-1) if side = 'R'.

785

LAPACK Routines: Least Squares and Eigenvalue Problems 4

c(ldc,*) contains the m by n matrix C. The second dimension
of c must be at least max(1, n).
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a; at least max(1, m) if
side = 'L' and at least max (1, n) if side = 'R'.

lda

INTEGER. The first dimension of c; at least max(1, m).ldc

INTEGER. The size of the work array.lwork

If side = 'L', lwork ≥ max(1, n).

If side = 'R', lwork ≥ max(1, m).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

C is overwritten by Q*C or QT*C or C*QT or C*Q as specified
by side and trans.

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ormhr interface are the following:

Holds the matrix A of size (r,r).a
r = m if side = 'L'.
r = n if side = 'R'.

Holds the vector of length (r-1).tau

786

4 Intel® Math Kernel Library Reference Manual

Holds the matrix C of size (m,n).c

Default value for this argument is ilo = 1.ilo

Default value for this argument is ihi = n.ihi

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'T'. The default value is 'N'.trans

Application Notes

For better performance, lwork should be at least n*blocksize if side = 'L' and at least
m*blocksize if side = 'R', where blocksize is a machine-dependent value (typically, 16 to
64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed matrix Q differs from the exact result by a matrix E such that ||E||2 =

O(ε)||C||2, where ε is the machine precision.

The approximate number of floating-point operations is

2n(ihi-ilo)2 if side = 'L';

2m(ihi-ilo)2 if side = 'R'.

The complex counterpart of this routine is ?unmhr.

787

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?unghr
Generates the complex unitary matrix Q
determined by ?gehrd.

Syntax

Fortran 77:

call cunghr(n, ilo, ihi, a, lda, tau, work, lwork, info)

call zunghr(n, ilo, ihi, a, lda, tau, work, lwork, info)

Fortran 95:

call unghr(a, tau [,ilo] [,ihi] [,info])

Description

This routine is intended to be used following a call to cgehrd/zgehrd, which reduces a complex
matrix A to upper Hessenberg form H by a unitary similarity transformation: A = Q*H*QH.
?gehrd represents the matrix Q as a product of ihi-ilo elementary reflectors. Here ilo
and ihi are values determined by cgebal/zgebal when balancing the matrix; if the matrix
has not been balanced, ilo = 1 and ihi = n.

Use the routine ?unghr to generate Q explicitly as a square matrix. The matrix Q has the
structure:

where Q22 occupies rows and columns ilo to ihi.

Input Parameters

INTEGER. The order of the matrix Q (n ≥ 0).n

788

4 Intel® Math Kernel Library Reference Manual

INTEGER. These must be the same parameters ilo and ihi,

respectively, as supplied to ?gehrd . (If n > 0, then 1 ≤

ilo ≤ ihi ≤ n. If n = 0, then ilo = 1 and ihi = 0.)

ilo, ihi

COMPLEX for cunghra, tau, work
DOUBLE COMPLEX for zunghr.
Arrays:
a(lda,*) contains details of the vectors which define the
elementary reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, n).
tau(*) contains further details of the elementary
reflectors, as returned by ?gehrd .
The dimension of tau must be at least max (1, n-1).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The size of the work array;lwork

lwork ≥ max(1, ihi-ilo).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

Overwritten by the n-by-n unitary matrix Q.a

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

789

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Specific details for the routine unghr interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n-1).tau

Default value for this argument is ilo = 1.ilo

Default value for this argument is ihi = n.ihi

Application Notes

For better performance, try using lwork = (ihi-ilo)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed matrix Q differs from the exact result by a matrix E such that ||E||2 = O(ε),

where ε is the machine precision.

The approximate number of real floating-point operations is (16/3)(ihi-ilo)3.

The real counterpart of this routine is ?orghr.

790

4 Intel® Math Kernel Library Reference Manual

?unmhr
Multiplies an arbitrary complex matrix C by the
complex unitary matrix Q determined by ?gehrd.

Syntax

Fortran 77:

call cunmhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork,
info)

call zunmhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork,
info)

Fortran 95:

call unmhr(a, tau, c [,ilo] [,ihi] [,side] [,trans] [,info])

Description

This routine multiplies a matrix C by the unitary matrix Q that has been determined by a
preceding call to cgehrd/zgehrd. (The routine ?gehrd reduces a real general matrix A to upper
Hessenberg form H by an orthogonal similarity transformation, A = Q*H*QH, and represents
the matrix Q as a product of ihi-iloelementary reflectors. Here ilo and ihi are values
determined by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced,
ilo = 1 and ihi = n.)

With ?unmhr, you can form one of the matrix products Q*C, QH*C, C*Q, or C*QH, overwriting the
result on C (which may be any complex rectangular matrix). A common application of this
routine is to transform a matrix V of eigenvectors of H to the matrix QV of eigenvectors of A.

Input Parameters

CHARACTER*1. Must be 'L' or 'R'.side
If side = 'L', then the routine forms Q*C or QH*C.
If side = 'R', then the routine forms C*Q or C*QH.

CHARACTER*1. Must be 'N' or 'C'.trans
If trans = 'N' , then Q is applied to C.
If trans = 'T', then QH is applied to C.

INTEGER. The number of rows in C (m≥ 0).m

791

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The number of columns in C (n≥ 0).n

INTEGER. These must be the same parameters ilo and ihi,
respectively, as supplied to ?gehrd .

ilo, ihi

If m > 0 and side = 'L', then 1 ≤ilo≤ihi≤m.
If m = 0 and side = 'L' , then ilo = 1 and ihi = 0.

If n > 0 and side = 'R', then 1 ≤ilo≤ihi≤n.
If n = 0 and side = 'R' , then ilo =1 and ihi = 0.

COMPLEX for cunmhra, tau, c, work
DOUBLE COMPLEX for zunmhr.
Arrays:
a (lda,*) contains details of the vectors which define the
elementary reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, m) if
side = 'L' and at least max(1, n) if side = 'R'.
tau(*) contains further details of the elementary reflectors,
as returned by ?gehrd.
The dimension of tau must be at least max (1, m-1)
if side = 'L' and at least max (1, n-1) if side = 'R'.
c (ldc,*) contains the m-by-n matrix C. The second
dimension of c must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m) if
side = 'L' and at least max (1, n) if side = 'R'.

lda

INTEGER. The first dimension of c; at least max(1, m).ldc

INTEGER. The size of the work array.lwork

If side = 'L', lwork≥ max(1,n).

If side = 'R', lwork≥ max(1,m).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

792

4 Intel® Math Kernel Library Reference Manual

Output Parameters

C is overwritten by Q*C, or QH*C, or C*QH, or C*Q as specified
by side and trans.

c

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine unmhr interface are the following:

Holds the matrix A of size (r,r).a
r = m if side = 'L'.
r = n if side = 'R'.

Holds the vector of length (r-1).tau

Holds the matrix C of size (m,n).c

Default value for this argument is ilo = 1.ilo

Default value for this argument is ihi = n.ihi

Must be 'L' or 'R'. The default value is 'L'.side

Must be 'N' or 'C'. The default value is 'N'.trans

Application Notes

For better performance, lwork should be at least n*blocksize if side = 'L' and at least
m*blocksize if side = 'R', where blocksize is a machine-dependent value (typically, 16 to
64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

793

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The computed matrix Q differs from the exact result by a matrix E such that ||E||2 =

O(ε)||C||2, where ε is the machine precision.

The approximate number of floating-point operations is

8n(ihi-ilo)2 if side = 'L';

8m(ihi-ilo)2 if side = 'R'.

The real counterpart of this routine is ?ormhr.

?gebal
Balances a general matrix to improve the accuracy
of computed eigenvalues and eigenvectors.

Syntax

Fortran 77:

call sgebal(job, n, a, lda, ilo, ihi, scale, info)

call dgebal(job, n, a, lda, ilo, ihi, scale, info)

call cgebal(job, n, a, lda, ilo, ihi, scale, info)

call zgebal(job, n, a, lda, ilo, ihi, scale, info)

Fortran 95:

call gebal(a [, scale] [,ilo] [,ihi] [,job] [,info])

794

4 Intel® Math Kernel Library Reference Manual

Description

This routine balances a matrix A by performing either or both of the following two similarity
transformations:

(1) The routine first attempts to permute A to block upper triangular form:

where P is a permutation matrix, and A'11 and A'33 are upper triangular. The diagonal elements
of A'11 and A'33 are eigenvalues of A. The rest of the eigenvalues of A are the eigenvalues of
the central diagonal block A'22, in rows and columns ilo to ihi. Subsequent operations to
compute the eigenvalues of A (or its Schur factorization) need only be applied to these rows
and columns; this can save a significant amount of work if ilo > 1 and ihi < n.

If no suitable permutation exists (as is often the case), the routine sets ilo = 1 and ihi =
n, and A'22 is the whole of A.

(2) The routine applies a diagonal similarity transformation to A', to make the rows and columns
of A'22 as close in norm as possible:

This scaling can reduce the norm of the matrix (that is, ||A'2'2|| < ||A'22||), and hence
reduce the effect of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

Input Parameters

CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'.job

795

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If job = 'N', then A is neither permuted nor scaled (but
ilo, ihi, and scale get their values).
If job = 'P', then A is permuted but not scaled.
If job = 'S', then A is scaled but not permuted.
If job = 'B', then A is both scaled and permuted.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sgebala
DOUBLE PRECISION for dgebal
COMPLEX for cgebal
DOUBLE COMPLEX for zgebal.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n). a is
not referenced if job = 'N'.

INTEGER. The first dimension of a; at least max(1, n).lda

Output Parameters

Overwritten by the balanced matrix (a is not referenced if
job = 'N').

a

INTEGER. The values ilo and ihi such that on exit a(i,j)

is zero if i > j and 1 ≤ j < ilo or ihi < i ≤ n.

ilo, ihi

If job = 'N' or 'S', then ilo = 1 and ihi = n.

REAL for single-precision flavors DOUBLE PRECISION for
double-precision flavors

scale

Array, DIMENSION at least max(1, n).
Contains details of the permutations and scaling factors.
More precisely, if pj is the index of the row and column
interchanged with row and column j, and dj is the scaling
factor used to balance row and column j, then
scale(j) = pj for j = 1, 2,..., ilo-1, ihi+1,...,
n;
scale(j) = dj for j = ilo, ilo + 1,..., ihi.
The order in which the interchanges are made is n to ihi+1,
then 1 to ilo-1.

INTEGER.info

796

4 Intel® Math Kernel Library Reference Manual

If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gebal interface are the following:

Holds the matrix A of size (n,n).a

Holds the vector of length (n).scale

Default value for this argument is ilo = 1.ilo

Default value for this argument is ihi = n.ihi

Must be 'B', 'S', 'P', or 'N'. The default value is 'B'.job

Application Notes

The errors are negligible, compared with those in subsequent computations.

If the matrix A is balanced by this routine, then any eigenvectors computed subsequently are
eigenvectors of the matrix A'' and hence you must call ?gebak to transform them back to
eigenvectors of A.

If the Schur vectors of A are required, do not call this routine with job = 'S' or 'B', because
then the balancing transformation is not orthogonal (not unitary for complex flavors).

If you call this routine with job = 'P', then any Schur vectors computed subsequently are
Schur vectors of the matrix A'', and you need to call ?gebak (with side = 'R') to transform
them back to Schur vectors of A.

The total number of floating-point operations is proportional to n2.

797

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?gebak
Transforms eigenvectors of a balanced matrix to
those of the original nonsymmetric matrix.

Syntax

Fortran 77:

call sgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)

call dgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)

call cgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)

call zgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)

Fortran 95:

call gebak(v, scale [,ilo] [,ihi] [,job] [,side] [,info])

Description

This routine is intended to be used after a matrix A has been balanced by a call to ?gebal, and
eigenvectors of the balanced matrix A''22 have subsequently been computed. For a description
of balancing, see ?gebal. The balanced matrix A'' is obtained as A''= D*P*A*PT*inv(D),
where P is a permutation matrix and D is a diagonal scaling matrix. This routine transforms the
eigenvectors as follows:

if x is a right eigenvector of A'', then PT*inv(D)*x is a right eigenvector of A; if x is a left
eigenvector of A'', then PT*D*y is a left eigenvector of A.

Input Parameters

CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'. The same
parameter job as supplied to ?gebal.

job

CHARACTER*1. Must be 'L' or 'R'.side
If side = 'L' , then left eigenvectors are transformed.
If side = 'R', then right eigenvectors are transformed.

INTEGER. The number of rows of the matrix of eigenvectors

(n ≥ 0).

n

INTEGER. The values ilo and ihi, as returned by ?gebal.

(If n > 0, then 1 ≤ ilo ≤ ihi ≤ n;

ilo, ihi

798

4 Intel® Math Kernel Library Reference Manual

if n = 0, then ilo = 1 and ihi = 0.)

REAL for single-precision flavorsscale
DOUBLE PRECISION for double-precision flavors
Array, DIMENSION at least max(1, n).
Contains details of the permutations and/or the scaling
factors used to balance the original general matrix, as
returned by ?gebal.

INTEGER. The number of columns of the matrix of

eigenvectors (m ≥ 0).

m

REAL for sgebakv
DOUBLE PRECISION for dgebak
COMPLEX for cgebak
DOUBLE COMPLEX for zgebak.
Arrays:
v (ldv,*) contains the matrix of left or right eigenvectors
to be transformed.
The second dimension of v must be at least max(1, m).

INTEGER. The first dimension of v; at least max(1, n).ldv

Output Parameters

Overwritten by the transformed eigenvectors.v

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gebak interface are the following:

Holds the matrix V of size (n,m).v

Holds the vector of length (n).scale

Default value for this argument is ilo = 1.ilo

Default value for this argument is ihi = n.ihi

799

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Must be 'B', 'S', 'P', or 'N'. The default value is 'B'.job

Must be 'L' or 'R'. The default value is 'L'.side

Application Notes

The errors in this routine are negligible.

The approximate number of floating-point operations is approximately proportional to m*n.

?hseqr
Computes all eigenvalues and (optionally) the
Schur factorization of a matrix reduced to
Hessenberg form.

Syntax

Fortran 77:

call shseqr(job, compz, n, ilo, ihi, h, ldh, wr, wi, z, ldz, work, lwork,
info)

call dhseqr(job, compz, n, ilo, ihi, h, ldh, wr, wi, z, ldz, work, lwork,
info)

call chseqr(job, compz, n, ilo, ihi, h, ldh, w, z, ldz, work, lwork, info)

call zhseqr(job, compz, n, ilo, ihi, h, ldh, w, z, ldz, work, lwork, info)

Fortran 95:

call hseqr(h, wr, wi [,ilo] [,ihi] [,z] [,job] [,compz] [,info])

call hseqr(h, w [,ilo] [,ihi] [,z] [,job] [,compz] [,info])

Description

This routine computes all the eigenvalues, and optionally the Schur factorization, of an upper
Hessenberg matrix H: H = ZTZH, where T is an upper triangular (or, for real flavors,
quasi-triangular) matrix (the Schur form of H), and Z is the unitary or orthogonal matrix whose
columns are the Schur vectors zi.

You can also use this routine to compute the Schur factorization of a general matrix A which
has been reduced to upper Hessenberg form H:

A = QHQH, where Q is unitary (orthogonal for real flavors);

800

4 Intel® Math Kernel Library Reference Manual

A = (QZ)H(QZ)H.

In this case, after reducing A to Hessenberg form by ?gehrd, call ?orghr to form Q explicitly
and then pass Q to ?hseqr with compz = 'V'.

You can also call ?gebal to balance the original matrix before reducing it to Hessenberg form
by ?hseqr, so that the Hessenberg matrix H will have the structure:

where H11 and H33 are upper triangular.

If so, only the central diagonal block H22 (in rows and columns ilo to ihi) needs to be further
reduced to Schur form (the blocks H12 and H23 are also affected). Therefore the values of ilo
and ihi can be supplied to ?hseqr directly. Also, after calling this routine you must call ?gebak
to permute the Schur vectors of the balanced matrix to those of the original matrix.

If ?gebal has not been called, however, then ilo must be set to 1 and ihi to n. Note that if
the Schur factorization of A is required, ?gebal must not be called with job = 'S' or 'B',
because the balancing transformation is not unitary (for real flavors, it is not orthogonal).

?hseqr uses a multishift form of the upper Hessenberg QR algorithm. The Schur vectors are
normalized so that ||zi||2 = 1, but are determined only to within a complex factor of absolute
value 1 (for the real flavors, to within a factor ±1).

Input Parameters

CHARACTER*1. Must be 'E' or 'S'.job
If job = 'E', then eigenvalues only are required.
If job = 'S', then the Schur form T is required.

CHARACTER*1. Must be 'N' or 'I' or 'V'.compz
If compz = 'N', then no Schur vectors are computed (and
the array z is not referenced).
If compz = 'I', then the Schur vectors of H are computed
(and the array z is initialized by the routine).

801

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If compz = 'V', then the Schur vectors of A are computed
(and the array z must contain the matrix Q on entry).

INTEGER. The order of the matrix H (n ≥ 0).n

INTEGER. If A has been balanced by ?gebal, then ilo and
ihi must contain the values returned by ?gebal. Otherwise,
ilo must be set to 1 and ihi to n.

ilo, ihi

REAL for shseqrh, z, work
DOUBLE PRECISION for dhseqr
COMPLEX for chseqr
DOUBLE COMPLEX for zhseqr.
Arrays:
h(ldh,*) The n-by-n upper Hessenberg matrix H.
The second dimension of h must be at least max(1, n).
z(ldz,*)
If compz = 'V', then z must contain the matrix Q from the
reduction to Hessenberg form.
If compz = 'I', then z need not be set.
If compz = 'N', then z is not referenced.
The second dimension of z must be
at least max(1, n) if compz = 'V' or 'I';
at least 1 if compz = 'N'.
work(lwork) is a workspace array.
The dimension of work must be at least max (1, n).

INTEGER. The first dimension of h; at least max(1, n).ldh

INTEGER. The first dimension of z;ldz

If compz = 'N', then ldz ≥ 1.

If compz = 'V' or 'I', then ldz ≥ max(1, n).

INTEGER. The dimension of the array work.lwork

lwork ≥ max(1, n)is sufficient, but lwork typically as
large as 6*n may be required for optimal performance. A
workspace query to determine the optimal workspace size
is recommended.

802

4 Intel® Math Kernel Library Reference Manual

If lwork = -1, then a workspace query is assumed; the
routine only estimates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla. See
Application Notes for details.

Output Parameters

COMPLEX for chseqrw
DOUBLE COMPLEX for zhseqr.
Array, DIMENSION at least max (1, n). Contains the
computed eigenvalues, unless info>0. The eigenvalues are
stored in the same order as on the diagonal of the Schur
form T (if computed).

REAL for shseqrwr, wi
DOUBLE PRECISION for dhseqr
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the
computed eigenvalues, unless info > 0. Complex conjugate
pairs of eigenvalues appear consecutively with the
eigenvalue having positive imaginary part first. The
eigenvalues are stored in the same order as on the diagonal
of the Schur form T (if computed).

If info = 0 and job = 'S', h contains the upper triangular
matrix T from the Schur decomposition (the Schur form).

h

If info = 0 and job = 'E', the contents of h are
unspecified on exit. (The output value of h when info >
0 is given under the description of info below.)

If compz = 'V' and info = 0, then z contains Q*Z.z
If compz = 'I' and info = 0, then z contains the unitary
or orthogonal matrix Z of the Schur vectors of H.
If compz = 'N', then z is not referenced.

On exit, if info = 0, then work(1) returns the optimal
lwork.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

803

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If info = i, elements 1,2, ..., ilo-1 and i+1, i+2, ..., n
of wr and wi contain the real and imaginary parts of those
eigenvalues that have been succesively found.
If info > 0, and job = 'E', then on exit, the remaining
unconverged eigenvalues are the eigenvalues of the upper
Hessenberg matrix rows and columns ilo through info of
the final output value of H.
If info > 0, and job = 'S', then on exit (initial value of
H)*U = U*(final value of H), where U is a unitary matrix. The
finalvalue of H is upper Hessenberg and triangular in rows
and columns info+1 through ihi.
If info > 0, and compz = 'V', then on exit (final value
of Z) = (initial value of Z)*U, where U is the unitary matrix
(regardless of the value of job).
If info > 0, and compz = 'I', then on exit (final value
of Z) = U, where U is the unitary matrix (regardless of the
value of job).
If info > 0, and compz = 'N', then Z is not accessed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hseqr interface are the following:

Holds the matrix H of size (n,n).h

Holds the vector of length (n). Used in real flavors only.wr

Holds the vector of length (n). Used in real flavors only.wi

Holds the vector of length (n). Used in complex flavors only.w

Holds the matrix Z of size (n,n).z

Must be 'E' or 'S'. The default value is 'E'.job

If omitted, this argument is restored based on the presence of argument
z as follows: compz = 'I', if z is present, compz = 'N', if z is omitted.

compz

If present, compz must be equal to 'I' or 'V' and the argument z
must also be present. Note that there will be an error condition if compz
is present and z omitted.

804

4 Intel® Math Kernel Library Reference Manual

Application Notes

The computed Schur factorization is the exact factorization of a nearby matrix H + E, where

||E||2 < O(ε) ||H||2/si, and ε is the machine precision.

If λi is an exact eigenvalue, and μ is the corresponding computed value, then |λi - μi|≤

c(n)ε||H||2/si where c(n) is a modestly increasing function of n, and si is the reciprocal

condition number of λi. You can compute the condition numbers si by calling ?trsna.

The total number of floating-point operations depends on how rapidly the algorithm converges;
typical numbers are as follows.

7n3 for real flavorsIf only eigenvalues
are computed: 25n3 for complex flavors.

10n3 for real flavorsIf the Schur form is
computed: 35n3 for complex flavors.

20n3 for real flavorsIf the full Schur
factorization is
computed:

70n3 for complex flavors.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

805

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?hsein
Computes selected eigenvectors of an upper
Hessenberg matrix that correspond to specified
eigenvalues.

Syntax

Fortran 77:

call shsein(job, eigsrc, initv, select, n, h, ldh, wr, wi, vl, ldvl, vr, ldvr,
mm, m, work, ifaill, ifailr, info)

call dhsein(job, eigsrc, initv, select, n, h, ldh, wr, wi, vl, ldvl, vr, ldvr,
mm, m, work, ifaill, ifailr, info)

call chsein(job, eigsrc, initv, select, n, h, ldh, w, vl, ldvl, vr, ldvr, mm,
m, work, rwork, ifaill, ifailr, info)

call zhsein(job, eigsrc, initv, select, n, h, ldh, w, vl, ldvl, vr, ldvr, mm,
m, work, rwork, ifaill, ifailr, info)

Fortran 95:

call hsein(h, wr, wi, select [, vl] [,vr] [,ifaill] [,ifailr] [,initv]
[,eigsrc] [,m] [,info])

call hsein(h, w, select [,vl] [,vr] [,ifaill] [,ifailr] [,initv] [,eigsrc]
[,m] [,info])

Description

This routine computes left and/or right eigenvectors of an upper Hessenberg matrix H,
corresponding to selected eigenvalues.

The right eigenvector x and the left eigenvector y, corresponding to an eigenvalue λ, are defined

by: Hx = λx and yHH = λyH (or HHy = λ*y). Here λ* denotes the conjugate of λ.

The eigenvectors are computed by inverse iteration. They are scaled so that, for a real
eigenvector x, max|xi| = 1, and for a complex eigenvector, max(|Rexi| + |Imxi|) = 1.

If H has been formed by reduction of a general matrix A to upper Hessenberg form, then
eigenvectors of H may be transformed to eigenvectors of A by ?ormhr or ?unmhr.

806

4 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*1. Must be 'R' or 'L' or 'B'.job
If job = 'R', then only right eigenvectors are computed.
If job = 'L', then only left eigenvectors are computed.
If job = 'B', then all eigenvectors are computed.

CHARACTER*1. Must be 'Q' or 'N'.eigsrc
If eigsrc = 'Q', then the eigenvalues of H were found
using ?hseqr; thus if H has any zero sub-diagonal elements
(and so is block triangular), then the j-th eigenvalue can
be assumed to be an eigenvalue of the block containing the
j-th row/column. This property allows the routine to perform
inverse iteration on just one diagonal block. If eigsrc =
'N', then no such assumption is made and the routine
performs inverse iteration using the whole matrix.

CHARACTER*1. Must be 'N' or 'U'.initv
If initv = 'N', then no initial estimates for the selected
eigenvectors are supplied.
If initv = 'U', then initial estimates for the selected
eigenvectors are supplied in vl and/or vr.

LOGICAL.select
Array, DIMENSION at least max (1, n). Specifies which
eigenvectors are to be computed.
For real flavors:
To obtain the real eigenvector corresponding to the real
eigenvalue wr(j), set select(j) to .TRUE.
To select the complex eigenvector corresponding to the
complex eigenvalue (wr(j), wi(j)) with complex conjugate
(wr(j+1), wi(j+1)), set select(j) and/or select(j+1) to
.TRUE.; the eigenvector corresponding to the first
eigenvalue in the pair is computed.
For complex flavors:
To select the eigenvector corresponding to the eigenvalue
w(j), set select(j) to .TRUE.

INTEGER. The order of the matrix H (n ≥ 0).n

REAL for shseinh, vl, vr,
DOUBLE PRECISION for dhsein

807

LAPACK Routines: Least Squares and Eigenvalue Problems 4

COMPLEX for chsein
DOUBLE COMPLEX for zhsein.
Arrays:
h(ldh,*) The n-by-n upper Hessenberg matrix H.
The second dimension of h must be at least max(1, n).
(ldvl,*)
If initv = 'V' and job = 'L' or 'B', then vl must
contain starting vectors for inverse iteration for the left
eigenvectors. Each starting vector must be stored in the
same column or columns as will be used to store the
corresponding eigenvector.
If initv = 'N', then vl need not be set.
The second dimension of vl must be at least max(1, mm) if
job = 'L' or 'B' and at least 1 if job = 'R'.
The array vl is not referenced if job = 'R'.
vr(ldvr,*)
If initv = 'V' and job = 'R' or 'B', then vr must
contain starting vectors for inverse iteration for the right
eigenvectors. Each starting vector must be stored in the
same column or columns as will be used to store the
corresponding eigenvector.
If initv = 'N', then vr need not be set.
The second dimension of vr must be at least max(1, mm) if
job = 'R' or 'B' and at least 1 if job = 'L'.
The array vr is not referenced if job = 'L'.
work(*) is a workspace array.
DIMENSION at least max (1, n*(n+2)) for real flavors and
at least max (1, n*n) for complex flavors.

INTEGER. The first dimension of h; at least max(1, n).ldh

COMPLEX for chseinw
DOUBLE COMPLEX for zhsein.
Array, DIMENSION at least max (1, n).
Contains the eigenvalues of the matrix H.
If eigsrc = 'Q', the array must be exactly as returned by
?hseqr.

REAL for shseinwr, wi
DOUBLE PRECISION for dhsein
Arrays, DIMENSION at least max (1, n) each.

808

4 Intel® Math Kernel Library Reference Manual

Contain the real and imaginary parts, respectively, of the
eigenvalues of the matrix H. Complex conjugate pairs of
values must be stored in consecutive elements of the arrays.
If eigsrc = 'Q', the arrays must be exactly as returned
by ?hseqr.

INTEGER. The first dimension of vl.ldvl

If job = 'L' or 'B', ldvl ≥ max(1,n).

If job = 'R', ldvl ≥ 1.

INTEGER. The first dimension of vr.ldvr

If job = 'R' or 'B', ldvr ≥ max(1,n).

If job = 'L', ldvr ≥1.

INTEGER. The number of columns in vl and/or vr.mm
Must be at least m, the actual number of columns required
(see Output Parameters below).
For real flavors, m is obtained by counting 1 for each selected
real eigenvector and 2 for each selected complex eigenvector
(see select).
For complex flavors, m is the number of selected
eigenvectors (see select).
Constraint:

0 ≤ mm ≤ n.

REAL for chseinrwork
DOUBLE PRECISION for zhsein.
Array, DIMENSION at least max (1, n).

Output Parameters

Overwritten for real flavors only.select
If a complex eigenvector was selected as specified above,
then select(j) is set to .TRUE. and select(j+1) to
.FALSE.

The real parts of some elements of w may be modified, as
close eigenvalues are perturbed slightly in searching for
independent eigenvectors.

w

809

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Some elements of wr may be modified, as close eigenvalues
are perturbed slightly in searching for independent
eigenvectors.

wr

If job = 'L' or 'B', vl contains the computed left
eigenvectors (as specified by select).

vl, vr

If job = 'R' or 'B', vr contains the computed right
eigenvectors (as specified by select).
The eigenvectors are stored consecutively in the columns
of the array, in the same order as their eigenvalues.
For real flavors: a real eigenvector corresponding to a
selected real eigenvalue occupies one column; a complex
eigenvector corresponding to a selected complex eigenvalue
occupies two columns: the first column holds the real part
and the second column holds the imaginary part.

INTEGER. For real flavors: the number of columns of vl
and/or vr required to store the selected eigenvectors.

m

For complex flavors: the number of selected eigenvectors.

INTEGER.ifaill, ifailr
Arrays, DIMENSION at least max(1, mm) each.
ifaill(i) = 0 if the ith column of vl converged;
ifaill(i) = j > 0 if the eigenvector stored in the i-th
column of vl (corresponding to the jth eigenvalue) failed
to converge.
ifailr(i) = 0 if the ith column of vr converged;
ifailr(i) = j > 0 if the eigenvector stored in the i-th
column of vr (corresponding to the jth eigenvalue) failed
to converge.
For real flavors: if the ith and (i+1)th columns of vl contain
a selected complex eigenvector, then ifaill(i) and
ifaill(i+1) are set to the same value. A similar rule holds
for vr and ifailr.
The array ifaill is not referenced if job = 'R'. The array
ifailr is not referenced if job = 'L'.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

810

4 Intel® Math Kernel Library Reference Manual

If info > 0, then i eigenvectors (as indicated by the
parameters ifaill and/or ifailr above) failed to converge.
The corresponding columns of vl and/or vr contain no useful
information.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hsein interface are the following:

Holds the matrix H of size (n,n).h

Holds the vector of length (n). Used in real flavors only.wr

Holds the vector of length (n). Used in real flavors only.wi

Holds the vector of length (n). Used in complex flavors only.w

Holds the vector of length (n).select

Holds the matrix VL of size (n,mm).vl

Holds the matrix VR of size (n,mm).vr

Holds the vector of length (mm). Note that there will be an error condition
if ifaill is present and vl is omitted.

ifaill

Holds the vector of length (mm). Note that there will be an error condition
if ifailr is present and vr is omitted.

ifailr

Must be 'N' or 'U'. The default value is 'N'.initv

Must be 'N' or 'Q'. The default value is 'N'.eigsrc

Restored based on the presence of arguments vl and vr as follows:job
job = 'B', if both vl and vr are present,
job = 'L', if vl is present and vr omitted,
job = 'R', if vl is omitted and vr present,
Note that there will be an error condition if both vl and vr are omitted.

Application Notes

Each computed right eigenvector x i is the exact eigenvector of a nearby matrix A + Ei, such

that ||Ei|| < O(ε)||A||. Hence the residual is small:

||Axi - λixi|| = O(ε)||A||.

811

LAPACK Routines: Least Squares and Eigenvalue Problems 4

However, eigenvectors corresponding to close or coincident eigenvalues may not accurately
span the relevant subspaces.

Similar remarks apply to computed left eigenvectors.

?trevc
Computes selected eigenvectors of an upper
(quasi-) triangular matrix computed by ?hseqr.

Syntax

Fortran 77:

call strevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work,
info)

call dtrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work,
info)

call ctrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work,
rwork, info)

call ztrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work,
rwork, info)

Fortran 95:

call trevc(t [, howmny] [,select] [,vl] [,vr] [,m] [,info])

Description

This routine computes some or all of the right and/or left eigenvectors of an upper triangular
matrix T (or, for real flavors, an upper quasi-triangular matrix T). Matrices of this type are
produced by the Schur factorization of a general matrix: A = Q*T*QH, as computed by ?hseqr.

The right eigenvector x and the left eigenvector y of T corresponding to an eigenvalue w, are
defined by:

T*x = w*x, yH*T = w*yH, where yH denotes the conjugate transpose of y.

The eigenvalues are not input to this routine, but are read directly from the diagonal blocks of
T.

This routine returns the matrices X and/or Y of right and left eigenvectors of T, or the products
Q*X and/or Q*Y, where Q is an input matrix.

812

4 Intel® Math Kernel Library Reference Manual

If Q is the orthogonal/unitary factor that reduces a matrix A to Schur form T, then Q*X and Q*Y
are the matrices of right and left eigenvectors of A.

Input Parameters

CHARACTER*1. Must be 'R' or 'L' or 'B'.side
If side = 'R' , then only right eigenvectors are computed.
If side = 'L' , then only left eigenvectors are computed.
If side = 'B', then all eigenvectors are computed.

CHARACTER*1. Must be 'A' or 'B' or 'S'.howmny
If howmny = 'A' , then all eigenvectors (as specified by
side) are computed.
If howmny = 'B' , then all eigenvectors (as specified by
side) are computed and backtransformed by the matrices
supplied in vl and vr.
If howmny = 'S' , then selected eigenvectors (as specified
by side and select) are computed.

LOGICAL.select
Array, DIMENSION at least max (1, n).
If howmny = 'S', select specifies which eigenvectors are
to be computed.
If howmny = 'A' or 'B', select is not referenced.
For real flavors:
If omega(j) is a real eigenvalue, the corresponding real
eigenvector is computed if select(j) is .TRUE..
If omega(j) and omega(j+1) are the real and imaginary parts
of a complex eigenvalue, the corresponding complex
eigenvector is computed if either select(j) or select(j+1)
is .TRUE., and on exit select(j) is set to .TRUE.and
select(j+1) is set to .FALSE..
For complex flavors:
The eigenvector corresponding to the j-th eigenvalue is
computed if select(j) is .TRUE..

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for strevct, vl, vr,
DOUBLE PRECISION for dtrevc
COMPLEX for ctrevc
DOUBLE COMPLEX for ztrevc.

813

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Arrays:
t(ldt,*) contains the n-by-n matrix T in Schur canonical
form.
The second dimension of t must be at least max(1, n).
vl(ldvl,*)
If howmny = 'B' and side = 'L' or 'B', then vl must
contain an n-by-n matrix Q (usually the matrix of Schur
vectors returned by ?hseqr).
If howmny = 'A' or 'S', then vl need not be set.
The second dimension of vl must be at least max(1, mm) if
side = 'L' or 'B' and at least 1 if side = 'R'.
The array vl is not referenced if side = 'R'.
vr (ldvr,*)
If howmny = 'B' and side = 'R' or 'B', then vr must
contain an n-by-n matrix Q (usually the matrix of Schur
vectors returned by ?hseqr). .
If howmny = 'A' or 'S', then vr need not be set.
The second dimension of vr must be at least max(1, mm) if
side = 'R' or 'B' and at least 1 if side = 'L'.
The array vr is not referenced if side = 'L'.
work(*) is a workspace array.
DIMENSION at least max (1, 3*n) for real flavors and at
least max (1, 2*n) for complex flavors.

INTEGER. The first dimension of t; at least max(1, n).ldt

INTEGER. The first dimension of vl.ldvl

If side = 'L' or 'B', ldvl ≥ n.

If side = 'R', ldvl ≥ 1.

INTEGER. The first dimension of vr.ldvr

If side = 'R' or 'B', ldvr ≥ n.

If side = 'L', ldvr ≥ 1.

INTEGER. The number of columns in the arrays vl and/or
vr. Must be at least m (the precise number of columns
required).

mm

If howmny = 'A' or 'B', m = n.

814

4 Intel® Math Kernel Library Reference Manual

If howmny = 'S': for real flavors, m is obtained by counting
1 for each selected real eigenvector and 2 for each selected
complex eigenvector;
for complex flavors, m is the number of selected eigenvectors
(see select).

Constraint: 0 ≤ m ≤ n.

REAL for ctrevcrwork
DOUBLE PRECISION for ztrevc.
Workspace array, DIMENSION at least max (1, n).

Output Parameters

If a complex eigenvector of a real matrix was selected as
specified above, then select(j) is set to .TRUE. and
select(j+1) to .FALSE.

select

If side = 'L' or 'B', vl contains the computed left
eigenvectors (as specified by howmny and select).

vl, vr

If side = 'R' or 'B', vr contains the computed right
eigenvectors (as specified by howmny and select).
The eigenvectors are stored consecutively in the columns
of the array, in the same order as their eigenvalues.
For real flavors: corresponding to each real eigenvalue is a
real eigenvector, occupying one column;corresponding to
each complex conjugate pair of eigenvalues is a complex
eigenvector, occupying two columns; the first column holds
the real part and the second column holds the imaginary
part.

INTEGER.m
For complex flavors: the number of selected eigenvectors.
If howmny = 'A' or 'B', m is set to n.
For real flavors: the number of columns of vl and/or vr
actually used to store the selected eigenvectors.
If howmny = 'A' or 'B', m is set to n.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

815

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine trevc interface are the following:

Holds the matrix T of size (n,n).t

Holds the vector of length (n).select

Holds the matrix VL of size (n,mm).vl

Holds the matrix VR of size (n,mm).vr

If omitted, this argument is restored based on the presence of
arguments vl and vr as follows:

side

side = 'B', if both vl and vr are present,
side = 'L', if vr is omitted,
side = 'R', if vl is omitted.
Note that there will be an error condition if both vl and vr are omitted.

If omitted, this argument is restored based on the presence of argument
select as follows:

howmny

howmny = 'V', if q is present,
howmny = 'N', if q is omitted.
If present, vect = 'V' or 'U' and the argument q must also be
present.
Note that there will be an error condition if both select and howmny
are present.

Application Notes

If x i is an exact right eigenvector and yi is the corresponding computed eigenvector, then the

angle θ(yi, xi) between them is bounded as follows: θ(yi,xi)≤(c(n)ε||T||2)/sepi where
sepi is the reciprocal condition number of xi. The condition number sepi may be computed by
calling ?trsna.

816

4 Intel® Math Kernel Library Reference Manual

?trsna
Estimates condition numbers for specified
eigenvalues and right eigenvectors of an upper
(quasi-) triangular matrix.

Syntax

Fortran 77:

call strsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm,
m, work, ldwork, iwork, info)

call dtrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm,
m, work, ldwork, iwork, info)

call ctrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm,
m, work, ldwork, rwork, info)

call ztrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm,
m, work, ldwork, rwork, info)

Fortran 95:

call trsna(t [, s] [,sep] [,vl] [,vr] [,select] [,m] [,info])

Description

This routine estimates condition numbers for specified eigenvalues and/or right eigenvectors
of an upper triangular matrix T (or, for real flavors, upper quasi-triangular matrix T in canonical
Schur form). These are the same as the condition numbers of the eigenvalues and right
eigenvectors of an original matrix A = Z*T*ZH (with unitary or, for real flavors, orthogonal Z),
from which T may have been derived.

The routine computes the reciprocal of the condition number of an eigenvalue lambda(i) as si
= |vHu|/(||u||E||v||E), where u and v are the right and left eigenvectors of T, respectively,
corresponding to lambda(i). This reciprocal condition number always lies between zero
(ill-conditioned) and one (well-conditioned).

An approximate error estimate for a computed eigenvalue lambda(i) is then given by ε||T||/si,

where ε is the machine precision.

817

LAPACK Routines: Least Squares and Eigenvalue Problems 4

To estimate the reciprocal of the condition number of the right eigenvector corresponding to
lambda(i), the routine first calls ?trexc to reorder the eigenvalues so that lambda(j) is in the
leading position:

The reciprocal condition number of the eigenvector is then estimated as sepi, the smallest
singular value of the matrix T22 - lambda(i)*I. This number ranges from zero (ill-conditioned)
to very large (well-conditioned).

An approximate error estimate for a computed right eigenvector u corresponding to lambda(i)

is then given by ε||T||/sepi.

Input Parameters

CHARACTER*1. Must be 'E' or 'V' or 'B'.job
If job = 'E', then condition numbers for eigenvalues only
are computed.
If job = 'V', then condition numbers for eigenvectors only
are computed.
If job = 'B', then condition numbers for both eigenvalues
and eigenvectors are computed.

CHARACTER*1. Must be 'A' or 'S'.howmny
If howmny = 'A' , then the condition numbers for all
eigenpairs are computed.
If howmny = 'S' , then condition numbers for selected
eigenpairs (as specified by select) are computed.

LOGICAL.select
Array, DIMENSION at least max (1, n) if howmny = 'S' and
at least 1 otherwise.
Specifies the eigenpairs for which condition numbers are to
be computed if howmny= 'S'.
For real flavors:

818

4 Intel® Math Kernel Library Reference Manual

To select condition numbers for the eigenpair corresponding
to the real eigenvalue lambda(j), select(j) must be set
.TRUE.;
to select condition numbers for the eigenpair corresponding
to a complex conjugate pair of eigenvalues lambda(j) and
lambda(j+1), select(j) and/or select(j+1) must be set
.TRUE.
For complex flavors
To select condition numbers for the eigenpair corresponding
to the eigenvalue lambda(j), select(j) must be set .TRUE.
select is not referenced if howmny = 'A'.

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for strsnat, vl, vr, work
DOUBLE PRECISION for dtrsna
COMPLEX for ctrsna
DOUBLE COMPLEX for ztrsna.
Arrays:
t(ldt,*) contains the n-by-n matrix T.
The second dimension of t must be at least max(1, n).
vl(ldvl,*)
If job = 'E' or 'B', then vl must contain the left
eigenvectors of T (or of any matrix Q*T*QH with Q unitary
or orthogonal) corresponding to the eigenpairs specified by
howmny and select. The eigenvectors must be stored in
consecutive columns of vl, as returned by ?trevc or
?hsein.
The second dimension of vl must be at least max(1, mm) if
job = 'E' or 'B' and at least 1 if job = 'V'.
The array vl is not referenced if job = 'V'.
vr(ldvr,*)
If job = 'E' or 'B', then vr must contain the right
eigenvectors of T (or of any matrix Q*T*QH with Q unitary
or orthogonal) corresponding to the eigenpairs specified by
howmny and select. The eigenvectors must be stored in
consecutive columns of vr, as returned by ?trevc or
?hsein.

819

LAPACK Routines: Least Squares and Eigenvalue Problems 4

The second dimension of vr must be at least max(1, mm) if
job = 'E' or 'B' and at least 1 if job = 'V'.
The array vr is not referenced if job = 'V'.
work is a workspace array, its dimension (ldwork,n+6).
The array work is not referenced if job = 'E'.

INTEGER. The first dimension of t; at least max(1, n).ldt

INTEGER. The first dimension of vl.ldvl

If job = 'E' or 'B', ldvl ≥ max(1,n).

If job = 'V', ldvl ≥ 1.

INTEGER. The first dimension of vr.ldvr

If job = 'E' or 'B', ldvr ≥ max(1,n).

If job = 'R', ldvr ≥ 1.

INTEGER. The number of elements in the arrays s and sep,
and the number of columns in vl and vr (if used). Must be
at least m (the precise number required).

mm

If howmny = 'A', m = n;
if howmny = 'S', for real flavors m is obtained by counting
1 for each selected real eigenvalue and 2 for each selected
complex conjugate pair of eigenvalues.
for complex flavors m is the number of selected eigenpairs
(see select). Constraint:

0 ≤ m ≤ n.

INTEGER. The first dimension of work.ldwork

If job = 'V' or 'B', ldwork ≥ max(1,n).

If job = 'E', ldwork ≥ 1.

REAL for ctrsna, ztrsna.rwork
Array, DIMENSION at least max (1, n).

INTEGER for strsna, dtrsna.iwork
Array, DIMENSION at least max (1, n).

Output Parameters

REAL for single-precision flavorss
DOUBLE PRECISION for double-precision flavors.

820

4 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least max(1, mm) if job = 'E' or 'B'
and at least 1 if job = 'V'.
Contains the reciprocal condition numbers of the selected
eigenvalues if job = 'E' or 'B', stored in consecutive
elements of the array. Thus s(j), sep(j) and the j-th
columns of vl and vr all correspond to the same eigenpair
(but not in general the j th eigenpair unless all eigenpairs
have been selected).
For real flavors: for a complex conjugate pair of eigenvalues,
two consecutive elements of S are set to the same value.
The array s is not referenced if job = 'V'.

REAL for single-precision flavorssep
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, mm) if job = 'V' or 'B'
and at least 1 if job = 'E'. Contains the estimated
reciprocal condition numbers of the selected right
eigenvectors if job = 'V' or 'B', stored in consecutive
elements of the array.
For real flavors: for a complex eigenvector, two consecutive
elements of sep are set to the same value; if the eigenvalues
cannot be reordered to compute sep(j), then sep(j) is set
to zero; this can only occur when the true value would be
very small anyway. The array sep is not referenced if job
= 'E'.

INTEGER.m
For complex flavors: the number of selected eigenpairs.
If howmny = 'A', m is set to n.
For real flavors: the number of elements of s and/or sep
actually used to store the estimated condition numbers.
If howmny = 'A', m is set to n.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

821

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Specific details for the routine trsna interface are the following:

Holds the matrix T of size (n,n).t

Holds the vector of length (mm).s

Holds the vector of length (mm).sep

Holds the matrix VL of size (n,mm).vl

Holds the matrix VR of size (n,mm).vr

Holds the vector of length (n).select

Restored based on the presence of arguments s and sep as follows:job
job = 'B', if both s and sep are present,
job = 'E', if s is present and sep omitted,
job = 'V', if s is omitted and sep present.
Note an error condition if both s and sep are omitted.

Restored based on the presence of the argument select as follows:howmny
howmny = 'S', if select is present,
howmny = 'A', if select is omitted.

Note that the arguments s, vl, and vr must either be all present or all omitted.

Otherwise, an error condition is observed.

Application Notes

The computed values sepi may overestimate the true value, but seldom by a factor of more
than 3.

?trexc
Reorders the Schur factorization of a general
matrix.

Syntax

Fortran 77:

call strexc(compq, n, t, ldt, q, ldq, ifst, ilst, work, info)

call dtrexc(compq, n, t, ldt, q, ldq, ifst, ilst, work, info)

call ctrexc(compq, n, t, ldt, q, ldq, ifst, ilst, info)

call ztrexc(compq, n, t, ldt, q, ldq, ifst, ilst, info)

822

4 Intel® Math Kernel Library Reference Manual

Fortran 95:

call trexc(t, ifst, ilst [,q] [,info])

Description

This routine reorders the Schur factorization of a general matrix A = Q*T*QH, so that the
diagonal element or block of T with row index ifst is moved to row ilst.

The reordered Schur form S is computed by an unitary (or, for real flavors, orthogonal) similarity
transformation: S = ZH*T*Z. Optionally the updated matrix P of Schur vectors is computed as
P = Q*Z, giving A = P*S*PH.

Input Parameters

CHARACTER*1. Must be 'V' or 'N'.compq
If compq = 'V', then the Schur vectors (Q) are updated.
If compq = 'N', then no Schur vectors are updated.

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for strexct, q
DOUBLE PRECISION for dtrexc
COMPLEX for ctrexc
DOUBLE COMPLEX for ztrexc.
Arrays:
t(ldt,*) contains the n-by-n matrix T.
The second dimension of t must be at least max(1, n).
q(ldq,*)
If compq = 'V', then q must contain Q (Schur vectors).
If compq = 'N', then q is not referenced.
The second dimension of q must be at least max(1, n)
if compq = 'V' and at least 1 if compq = 'N'.

INTEGER. The first dimension of t; at least max(1, n).ldt

INTEGER. The first dimension of q;ldq

If compq = 'N', then ldq≥ 1.

If compq = 'V', then ldq≥ max(1, n).

INTEGER. 1 ≤ ifst ≤ n; 1 ≤ ilst ≤ n.ifst, ilst

823

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Must specify the reordering of the diagonal elements (or
blocks, which is possible for real flavors) of the matrix T.
The element (or block) with row index ifst is moved to row
ilst by a sequence of exchanges between adjacent
elements (or blocks).

REAL for strexcwork
DOUBLE PRECISION for dtrexc.
Array, DIMENSION at least max (1, n).

Output Parameters

Overwritten by the updated matrix S.t

If compq = 'V', q contains the updated matrix of Schur
vectors.

q

Overwritten for real flavors only.ifst, ilst
If ifst pointed to the second row of a 2 by 2 block on entry,
it is changed to point to the first row; ilst always points
to the first row of the block in its final position (which may
differ from its input value by ±1).

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine trexc interface are the following:

Holds the matrix T of size (n,n).t

Holds the matrix Q of size (n,n).q

Restored based on the presence of the argument q as follows:compq
compq = 'V', if q is present,
compq = 'N', if q is omitted.

824

4 Intel® Math Kernel Library Reference Manual

Application Notes

The computed matrix S is exactly similar to a matrix T + E, where ||E||2 = O(ε)||T||2, and

ε is the machine precision.

Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are
in general changed; the diagonal elements and the eigenvalues of the block are unchanged
unless the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It
is possible for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex
eigenvalues to become purely real.

The values of eigenvalues however are never changed by the re-ordering.

The approximate number of floating-point operations is

6n(ifst-ilst) if compq = 'N';for real flavors:
12n(ifst-ilst) if compq = 'V';

20n(ifst-ilst) if compq = 'N';for complex flavors:
40n(ifst-ilst) if compq = 'V'.

?trsen
Reorders the Schur factorization of a matrix and
(optionally) computes the reciprocal condition
numbers and invariant subspace for the selected
cluster of eigenvalues.

Syntax

Fortran 77:

call strsen(job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s, sep, work,
lwork, iwork, liwork, info)

call dtrsen(job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s, sep, work,
lwork, iwork, liwork, info)

call ctrsen(job, compq, select, n, t, ldt, q, ldq, w, m, s, sep, work, lwork,
info)

call ztrsen(job, compq, select, n, t, ldt, q, ldq, w, m, s, sep, work, lwork,
info)

825

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95:

call trsen(t, select [,wr] [,wi] [,m] [,s] [,sep] [,q] [,info])

call trsen(t, select [,w] [,m] [,s] [,sep] [,q] [,info])

Description

This routine reorders the Schur factorization of a general matrix A = Q*T*QH so that a selected
cluster of eigenvalues appears in the leading diagonal elements (or, for real flavors, diagonal
blocks) of the Schur form. The reordered Schur form R is computed by an unitary (orthogonal)
similarity transformation: R = ZH*T*Z. Optionally the updated matrix P of Schur vectors is
computed as P = Q*Z, giving A = P*R*PH.

Let

where the selected eigenvalues are precisely the eigenvalues of the leading m-by-m submatrix
T11. Let P be correspondingly partitioned as (Q 1 Q2) where Q1 consists of the first m columns
of Q. Then A*Q 1 = Q1T11, and so the m columns of Q1 form an orthonormal basis for the
invariant subspace corresponding to the selected cluster of eigenvalues.

Optionally the routine also computes estimates of the reciprocal condition numbers of the
average of the cluster of eigenvalues and of the invariant subspace.

Input Parameters

CHARACTER*1. Must be 'N' or 'E' or 'V' or 'B'.job
If job = 'N', then no condition numbers are required.
If job = 'E', then only the condition number for the cluster
of eigenvalues is computed.
If job = 'V', then only the condition number for the
invariant subspace is computed.
If job = 'B', then condition numbers for both the cluster
and the invariant subspace are computed.

CHARACTER*1. Must be 'V' or 'N'.compq
If compq = 'V', then Q of the Schur vectors is updated.

826

4 Intel® Math Kernel Library Reference Manual

If compq = 'N', then no Schur vectors are updated.

LOGICAL.select
Array, DIMENSION at least max (1, n).
Specifies the eigenvalues in the selected cluster. To select
an eigenvalue lambda(j), select(j) must be .TRUE.
For real flavors: to select a complex conjugate pair of
eigenvalues lambda(j) and lambda(j+1) (corresponding 2
by 2 diagonal block), select(j) and/or select(j+1) must
be .TRUE.; the complex conjugate lambda(j)and
lambda(j+1) must be either both included in the cluster or
both excluded.

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for strsent, q, work
DOUBLE PRECISION for dtrsen
COMPLEX for ctrsen
DOUBLE COMPLEX for ztrsen.
Arrays:
t (ldt,*) The n-by-n T.
The second dimension of t must be at least max(1, n).

q (ldq,*)
If compq = 'V', then q must contain Q of Schur vectors.
If compq = 'N', then q is not referenced.
The second dimension of q must be at least max(1, n) if
compq = 'V' and at least 1 if compq = 'N'.
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of t; at least max(1, n).ldt

INTEGER. The first dimension of q;ldq

If compq = 'N', then ldq ≥ 1.

If compq = 'V', then ldq ≥ max(1, n).

INTEGER. The dimension of the array work.lwork

If job = 'V' or 'B', lwork ≥ max(1,2*m*(n-m)).

If job = 'E', then lwork ≥ max(1, m*(n-m))

827

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If job = 'N', then lwork ≥ 1 for complex flavors and

lwork ≥ max(1,n) for real flavors.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla. See
Application Notes for details.

INTEGER.iwork(liwork) is a workspace array. The array
iwork is not referenced if job = 'N' or 'E'.

iwork

The actual amount of workspace required cannot exceed
n2/2 if job = 'V' or 'B'.

INTEGER.liwork
The dimension of the array iwork.

If job = 'V' or 'B', liwork ≥ max(1,2m(n-m)).

If job = 'E' or 'E', liwork ≥ 1.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the iwork array,
returns this value as the first entry of the iwork array, and
no error message related to liwork is issued by xerbla.
See Application Notes for details.

Output Parameters

Overwritten by the updated matrix R.t

If compq = 'V', q contains the updated matrix of Schur
vectors; the first m columns of the Q form an orthogonal
basis for the specified invariant subspace.

q

COMPLEX for ctrsenw
DOUBLE COMPLEX for ztrsen.
Array, DIMENSION at least max(1, n). The recorded
eigenvalues of R. The eigenvalues are stored in the same
order as on the diagonal of R.

REAL for strsenwr, wi
DOUBLE PRECISION for dtrsen

828

4 Intel® Math Kernel Library Reference Manual

Arrays, DIMENSION at least max(1, n). Contain the real and
imaginary parts, respectively, of the reordered eigenvalues
of R. The eigenvalues are stored in the same order as on
the diagonal of R. Note that if a complex eigenvalue is
sufficiently ill-conditioned, then its value may differ
significantly from its value before reordering.

INTEGER.m
For complex flavors: the number of the specified invariant
subspaces, which is the same as the number of selected
eigenvalues (see select).
For real flavors: the dimension of the specified invariant
subspace. The value of m is obtained by counting 1 for each
selected real eigenvalue and 2 for each selected complex
conjugate pair of eigenvalues (see select).

Constraint: 0 ≤ m ≤ n.

REAL for single-precision flavorss
DOUBLE PRECISION for double-precision flavors.
If job = 'E' or 'B', s is a lower bound on the reciprocal
condition number of the average of the selected cluster of
eigenvalues.
If m = 0 or n, then s = 1.
For real flavors: if info = 1, then s is set to zero.s is not
referenced if job = 'N' or 'V'.

REAL for single-precision flavors DOUBLE PRECISION for
double-precision flavors.

sep

If job = 'V' or 'B', sep is the estimated reciprocal
condition number of the specified invariant subspace.
If m = 0 or n, then sep = |T|.
For real flavors: if info = 1, then sep is set to zero.
sep is not referenced if job = 'N' or 'E'.

On exit, if info = 0, then work(1) returns the optimal size
of lwork.

work(1)

On exit, if info = 0, then iwork(1) returns the optimal
size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

829

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine trsen interface are the following:

Holds the matrix T of size (n,n).t

Holds the vector of length (n).select

Holds the vector of length (n). Used in real flavors only.wr

Holds the vector of length (n). Used in real flavors only.wi

Holds the vector of length (n). Used in complex flavors only.w

Holds the matrix Q of size (n,n).q

Restored based on the presence of the argument q as follows: compq
= 'V', if q is present, compq = 'N', if q is omitted.

compq

Restored based on the presence of arguments s and sep as follows:job
job = 'B', if both s and sep are present,
job = 'E', if s is present and sep omitted,
job = 'V', if s is omitted and sep present,
job = 'N', if both s and sep are omitted.

Application Notes

The computed matrix R is exactly similar to a matrix T + E, where ||E||2 = O(ε)||T||2, and

ε is the machine precision. The computed s cannot underestimate the true reciprocal condition
number by more than a factor of (min(m, n-m))1/2; sep may differ from the true value by

(m*n-m2)1/2. The angle between the computed invariant subspace and the true subspace is O(ε)
||A||2/sep. Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal
elements are in general changed; the diagonal elements and the eigenvalues of the block are
unchanged unless the block is sufficiently ill-conditioned, in which case they may be noticeably
altered. It is possible for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of
complex eigenvalues to become purely real. The values of eigenvalues however are never
changed by the re-ordering.

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

830

4 Intel® Math Kernel Library Reference Manual

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work, iwork). This operation is called
a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

?trsyl
Solves Sylvester equation for real quasi-triangular
or complex triangular matrices.

Syntax

Fortran 77:

call strsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)

call dtrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)

call ctrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)

call ztrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)

Fortran 95:

call trsyl(a, b, c, scale [, trana] [,tranb] [,isgn] [,info])

Description

This routine solves the Sylvester matrix equation op(A)X ± X op(B) = αC, where op(A) =
A or AH, and the matrices A and B are upper triangular (or, for real flavors, upper quasi-triangular

in canonical Schur form); α ≤ 1 is a scale factor determined by the routine to avoid overflow
in X; A is m-by-m, B is n-by-n, and C and X are both m-by-n. The matrix X is obtained by a
straightforward process of back substitution.

831

LAPACK Routines: Least Squares and Eigenvalue Problems 4

The equation has a unique solution if and only if αi ± βi ≠ 0, where {αi} and {βi} are the
eigenvalues of A and B, respectively, and the sign (+ or -) is the same as that used in the
equation to be solved.

Input Parameters

CHARACTER*1. Must be 'N' or 'T' or 'C'.trana
If trana = 'N' , then op(A) = A.
If trana = 'T', then op(A) = AT (real flavors only).
If trana = 'C' then op(A) = AH.

CHARACTER*1. Must be 'N' or 'T' or 'C'.tranb
If tranb = 'N' , then op(B) = B.
If tranb = 'T', then op(B) = BT (real flavors only).
If tranb = 'C', then op(B) = BH.

INTEGER. Indicates the form of the Sylvester equation.isgn
If isgn = +1, op(A)*X + X*op(B) = alpha*C.
If isgn = -1, op(A)*X - X*op(B) = alpha*C.

INTEGER. The order of A, and the number of rows in X and

C (m ≥ 0).

m

INTEGER. The order of B, and the number of columns in X

and C (n ≥ 0).

n

REAL for strsyla, b, c
DOUBLE PRECISION for dtrsyl
COMPLEX for ctrsyl
DOUBLE COMPLEX for ztrsyl.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, m).
b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, n).
c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

INTEGER. The first dimension of c; at least max(1, n).ldc

832

4 Intel® Math Kernel Library Reference Manual

Output Parameters

Overwritten by the solution matrix X.c

REAL for single-precision flavorsscale
DOUBLE PRECISION for double-precision flavors.

The value of the scale factor α.

INTEGER.info
If info = 0, the execution is successful.

If info = -i, the i-th parameter had an illegal value.

If info = 1, A and B have common or close eigenvalues
perturbed values were used to solve the equation.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine trsyl interface are the following:

Holds the matrix A of size (m,m).a

Holds the matrix B of size (n,n).b

Holds the matrix C of size (m,n).c

Must be 'N', 'C', or 'T'. The default value is 'N'.trana

Must be 'N', 'C', or 'T'. The default value is 'N'.tranb

Must be +1 or -1. The default value is +1.isgn

Application Notes

Let X be the exact, Y the corresponding computed solution, and R the residual matrix: R = C
- (AY ± YB). Then the residual is always small:

||R||F = O(ε) (||A||F + ||B||F) ||Y||F.

However, Y is not necessarily the exact solution of a slightly perturbed equation; in other words,
the solution is not backwards stable.

For the forward error, the following bound holds:

||Y - X||F ≤||R||F/sep(A, B)

833

LAPACK Routines: Least Squares and Eigenvalue Problems 4

but this may be a considerable overestimate. See [Golub96] for a definition of sep(A, B).

The approximate number of floating-point operations for real flavors is m*n*(m + n). For complex
flavors it is 4 times greater.

Generalized Nonsymmetric Eigenvalue Problems

This section describes LAPACK routines for solving generalized nonsymmetric eigenvalue
problems, reordering the generalized Schur factorization of a pair of matrices, as well as
performing a number of related computational tasks.

A generalized nonsymmetric eigenvalue problem is as follows: given a pair of
nonsymmetric (or non-Hermitian) nby-n matrices A and B, find the generalized eigenvalues

λ and the corresponding generalized eigenvectors x and y that satisfy the equations

Ax = λBx (right generalized eigenvectors x)

and

yHA = λyHB (left generalized eigenvectors y).

Table 4-6 lists LAPACK routines (Fortran-77 interface) used to solve the generalized
nonsymmetric eigenvalue problems and the generalized Sylvester equation. Respective routine
names in Fortran-95 interface are without the first symbol (see Routine Naming Conventions).

Table 4-6 Computational Routines for Solving Generalized Nonsymmetric Eigenvalue
Problems

Operation performedRoutine
name

Reduces a pair of matrices to generalized upper Hessenberg form using
orthogonal/unitary transformations.

?gghrd

Balances a pair of general real or complex matrices.?ggbal

Forms the right or left eigenvectors of a generalized eigenvalue problem.?ggbak

Implements the QZ method for finding the generalized eigenvalues of the matrix
pair (H,T).

?hgeqz

Computes some or all of the right and/or left generalized eigenvectors of a pair
of upper triangular matrices

?tgevc

834

4 Intel® Math Kernel Library Reference Manual

Operation performedRoutine
name

Reorders the generalized Schur decomposition of a pair of matrices (A,B) so
that one diagonal block of (A,B) moves to another row index.

?tgexc

Reorders the generalized Schur decomposition of a pair of matrices (A,B) so
that a selected cluster of eigenvalues appears in the leading diagonal blocks of
(A,B).

?tgsen

Solves the generalized Sylvester equation.?tgsyl

Estimates reciprocal condition numbers for specified eigenvalues and/or
eigenvectors of a pair of matrices in generalized real Schur canonical form.

?tgsna

?gghrd
Reduces a pair of matrices to generalized upper
Hessenberg form using orthogonal/unitary
transformations.

Syntax

Fortran 77:

call sgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)

call dgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)

call cgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)

call zgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)

Fortran 95:

call gghrd(a, b [,ilo] [,ihi] [,q] [,z] [,compq] [,compz] [,info])

Description

This routine reduces a pair of real/complex matrices (A,B) to generalized upper Hessenberg
form using orthogonal/unitary transformations, where A is a general matrix and B is upper

triangular. The form of the generalized eigenvalue problem is A*x = λ*B*x, and B is typically
made upper triangular by computing its QR factorization and moving the orthogonal matrix Q
to the left side of the equation.

835

LAPACK Routines: Least Squares and Eigenvalue Problems 4

This routine simultaneously reduces A to a Hessenberg matrix H:

QH*A*Z = H

and transforms B to another upper triangular matrix T:

QH*B*Z = T

in order to reduce the problem to its standard form H*y = λ*T*y, where y = ZH*x.

The orthogonal/unitary matrices Q and Z are determined as products of Givens rotations. They
may either be formed explicitly, or they may be postmultiplied into input matrices Q1 and 1, so
that

Q1*A*Z*Z1
H = (Q1*Q)*H*(Z1*Z)

H

Q1*B*Z1
H = (Q1*Q)*T*(Z1*Z)

H

If Q1 is the orthogonal/unitary matrix from the QR factorization of B in the original equation Ax

= λBx, then the routine ?gghrd reduces the original problem to generalized Hessenberg form.

Input Parameters

CHARACTER*1. Must be 'N', 'I', or 'V'.compq
If compq = 'N', matrix Q is not computed.
If compq = 'I', Q is initialized to the unit matrix, and the
orthogonal/unitary matrix Q is returned;
If compq = 'V', Q must contain an orthogonal/unitary
matrix Q1 on entry, and the product Q1*Q is returned.

CHARACTER*1. Must be 'N', 'I', or 'V'.compz
If compz = 'N', matrix Z is not computed.
If compz = 'I', Z is initialized to the unit matrix, and the
orthogonal/unitary matrix Z is returned;
If compz = 'V', Z must contain an orthogonal/unitary
matrix Z1 on entry, and the product Z1*Z is returned.

INTEGER. The order of the matrices A and B (n ≥ 0).n

INTEGER. ilo and ihi mark the rows and columns of A
which are to be reduced. It is assumed that A is already
upper triangular in rows and columns 1:ilo-1 and ihi+1:n.

ilo, ihi

Values of ilo and ihi are normally set by a previous call
to ?ggbal; otherwise they should be set to 1 and n
respectively.

836

4 Intel® Math Kernel Library Reference Manual

Constraint:

If n > 0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, then ilo = 1 and ihi = 0.

REAL for sgghrda, b, q, z
DOUBLE PRECISION for dgghrd
COMPLEX for cgghrd
DOUBLE COMPLEX for zgghrd.
Arrays:
a(lda,*) contains the n-by-n general matrix A. The second
dimension of a must be at least max(1, n).
b(ldb,*) contains the n-by-n upper triangular matrix B.
The second dimension of b must be at least max(1, n).
q (ldq,*)
If compq = 'N', then q is not referenced.
If compq = 'V', then q must contain the orthogonal/unitary
matrix Q1, typically from the QR factorization of B.
The second dimension of q must be at least max(1, n).
z (ldz,*)
If compq = 'N', then z is not referenced.
If compq = 'V', then z must contain the orthogonal/unitary
matrix Z1.
The second dimension of z must be at least max(1, n).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

INTEGER. The first dimension of q;ldq

If compq = 'N', then ldq ≥ 1.

If compq = 'I'or 'V', then ldq ≥ max(1, n).

INTEGER. The first dimension of z;ldz

If compq = 'N', then ldz ≥ 1.

If compq = 'I'or 'V', then ldz ≥ max(1, n).

Output Parameters

On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and
the rest is set to zero.

a

837

LAPACK Routines: Least Squares and Eigenvalue Problems 4

On exit, overwritten by the upper triangular matrix T =
QH*B*Z. The elements below the diagonal are set to zero.

b

If compq = 'I', then q contains the orthogonal/unitary
matrix Q, ;

q

If compq = 'V', then q is overwritten by the product Q1*Q.

If compq = 'I', then z contains the orthogonal/unitary
matrix Z;

z

If compq = 'V', then z is overwritten by the product Z1*Z.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gghrd interface are the following:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,n).b

Holds the matrix Q of size (n,n).q

Holds the matrix Z of size (n,n).z

Default value for this argument is ilo = 1.ilo

Default value for this argument is ihi = n.ihi

If omitted, this argument is restored based on the presence of argument
q as follows: compq = 'I', if q is present, compq = 'N', if q is omitted.

compq

If present, compq must be equal to 'I' or 'V' and the argument q
must also be present. Note that there will be an error condition if compq
is present and q omitted.

If omitted, this argument is restored based on the presence of argument
z as follows: compz = 'I', if z is present, compz = 'N', if z is omitted.

compz

If present, compz must be equal to 'I' or 'V' and the argument z
must also be present. Note that there will be an error condition if compz
is present and z omitted.

838

4 Intel® Math Kernel Library Reference Manual

?ggbal
Balances a pair of general real or complex matrices.

Syntax

Fortran 77:

call sggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)

call dggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)

call cggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)

call zggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)

Fortran 95:

call ggbal(a, b [,ilo] [,ihi] [,lscale] [,rscale] [,job] [,info])

Description

This routine balances a pair of general real/complex matrices (A,B). This involves, first, permuting
A and B by similarity transformations to isolate eigenvalues in the first 1 to ilo-1 and last
ihi+1 to n elements on the diagonal;and second, applying a diagonal similarity transformation
to rows and columns ilo to ihi to make the rows and columns as close in norm as possible.
Both steps are optional. Balancing may reduce the 1-norm of the matrices, and improve the
accuracy of the computed eigenvalues and/or eigenvectors in the generalized eigenvalue problem

Ax = λBx.

Input Parameters

CHARACTER*1. Specifies the operations to be performed on
A and B. Must be 'N' or 'P' or 'S' or 'B'.

job

If job = 'N', then no operations are done; simply set ilo
=1, ihi=n, lscale(i) =1.0 and rscale(i)=1.0 for
i = 1,..., n.
If job = 'P', then permute only.
If job = 'S', then scale only.
If job = 'B', then both permute and scale.

INTEGER. The order of the matrices A and B (n ≥ 0).n

REAL for sggbala, b

839

LAPACK Routines: Least Squares and Eigenvalue Problems 4

DOUBLE PRECISION for dggbal
COMPLEX for cggbal
DOUBLE COMPLEX for zggbal.
Arrays:
a(lda,*) contains the matrix A. The second dimension of a
must be at least max(1, n).
b(ldb,*) contains the matrix B. The second dimension of b
must be at least max(1, n).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

REAL for single precision flavorswork
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max(1, 6n) when
job = 'S'or 'B', or at least 1 when job = 'N'or 'P'.

Output Parameters

Overwritten by the balanced matrices A and B, respectively.a, b
If job = 'N', a and b are not referenced.

INTEGER. ilo and ihi are set to integers such that on exit
a(i,j)=0 and b(i,j)=0 if i>j and j=1,...,ilo-1 or
i=ihi+1,..., n.

ilo, ihi

If job = 'N'or 'S', then ilo = 1 and ihi = n.

REAL for single precision flavorslscale, rscale
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, n).
lscale contains details of the permutations and scaling
factors applied to the left side of A and B.
If Pj is the index of the row interchanged with row j, and
Dj is the scaling factor applied to row j, then
lscale(J) = Pj, for j = 1,..., ilo-1
= Dj, for j = ilo,...,ihi
= Pj, for j = ihi+1,..., n.
rscale contains details of the permutations and scaling
factors applied to the right side of A and B.
If Pj is the index of the column interchanged with column
j, and Dj is the scaling factor applied to column j, then

840

4 Intel® Math Kernel Library Reference Manual

rscale(j) = Pj, for j = 1,..., ilo-1
= Dj, for j = ilo,...,ihi
= Pj, for j = ihi+1,..., n
The order in which the interchanges are made is n to ihi+1,
then 1 to ilo-1.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ggbal interface are the following:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,n).b

Holds the vector of length (n).lscale

Holds the vector of length (n).rscale

Default value for this argument is ilo = 1.ilo

Default value for this argument is ihi = n.ihi

Must be 'B', 'S', 'P', or 'N'. The default value is 'B'.job

?ggbak
Forms the right or left eigenvectors of a generalized
eigenvalue problem.

Syntax

Fortran 77:

call sggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call dggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call cggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call zggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

841

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95:

call ggbak(v [, ilo] [,ihi] [,lscale] [,rscale] [,job] [,info])

Description

This routine forms the right or left eigenvectors of a real/complex generalized eigenvalue
problem

Ax = λBx

by backward transformation on the computed eigenvectors of the balanced pair of matrices
output by ?ggbal.

Input Parameters

CHARACTER*1. Specifies the type of backward transformation
required. Must be 'N', 'P', 'S', or 'B'.

job

If job = 'N', then no operations are done; return.
If job = 'P', then do backward transformation for
permutation only.
If job = 'S', then do backward transformation for scaling
only.
If job = 'B', then do backward transformation for both
permutation and scaling. This argument must be the same
as the argument job supplied to ?ggbal.

CHARACTER*1. Must be 'L' or 'R'.side
If side = 'L' , then v contains left eigenvectors.
If side = 'R' , then v contains right eigenvectors.

INTEGER. The number of rows of the matrix V (n ≥ 0).n

INTEGER. The integers ilo and ihi determined by ?gebal.
Constraint:

ilo, ihi

If n > 0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, then ilo = 1 and ihi = 0.

REAL for single precision flavorslscale, rscale
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, n).
The array lscale contains details of the permutations and/or
scaling factors applied to the left side of A and B, as returned
by ?ggbal.

842

4 Intel® Math Kernel Library Reference Manual

The array rscale contains details of the permutations and/or
scaling factors applied to the right side of A and B, as
returned by ?ggbal.

INTEGER. The number of columns of the matrix Vm

(m ≥ 0).

REAL for sggbakv
DOUBLE PRECISION for dggbak
COMPLEX for cggbak
DOUBLE COMPLEX for zggbak.
Array v(ldv,*). Contains the matrix of right or left
eigenvectors to be transformed, as returned by ?tgevc.
The second dimension of v must be at least max(1, m).

INTEGER. The first dimension of v; at least max(1, n).ldv

Output Parameters

Overwritten by the transformed eigenvectorsv

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ggbak interface are the following:

Holds the matrix V of size (n,m).v

Holds the vector of length (n).lscale

Holds the vector of length (n).rscale

Default value for this argument is ilo = 1.ilo

Default value for this argument is ihi = n.ihi

Must be 'B', 'S', 'P', or 'N'. The default value is 'B'.job

If omitted, this argument is restored based on the presence of
arguments lscale and rscale as follows:

side

side = 'L', if lscale is present and rscale omitted,

843

LAPACK Routines: Least Squares and Eigenvalue Problems 4

side = 'R', if lscale is omitted and rscale present.
Note that there will be an error condition if both lscale and rscale
are present or if they both are omitted.

?hgeqz
Implements the QZ method for finding the
generalized eigenvalues of the matrix pair (H,T).

Syntax

Fortran 77:

call shgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar, alphai,
beta, q, ldq, z, ldz, work, lwork, info)

call dhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar, alphai,
beta, q, ldq, z, ldz, work, lwork, info)

call chgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha, beta, q,
ldq, z, ldz, work, lwork, rwork, info)

call zhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha, beta, q,
ldq, z, ldz, work, lwork, rwork, info)

Fortran 95:

call hgeqz(h, t [,ilo] [,ihi] [,alphar] [,alphai] [,beta] [,q] [,z] [,job]
[,compq] [,compz] [,info])

call hgeqz(h, t [,ilo] [,ihi] [,alpha] [,beta] [,q] [,z] [,job] [,compq] [,
compz] [,info])

Description

This routine computes the eigenvalues of a real/complex matrix pair (H,T), where H is an upper
Hessenberg matrix and T is upper triangular, using the double-shift version (for real flavors)
or single-shift version (for complex flavors) of the QZ method. Matrix pairs of this type are
produced by the reduction to generalized upper Hessenberg form of a real/complex matrix pair
(A,B):

A = Q1 *H* Z1
H , B = Q1* T* Z1

H,

as computed by ?gghrd.

844

4 Intel® Math Kernel Library Reference Manual

For real flavors:

If job = 'S', then the Hessenberg-triangular pair (H,T) is also reduced to generalized Schur
form,

H = Q*S*ZT, T = Q *P*ZT,

where Q and Z are orthogonal matrices, P is an upper triangular matrix, and S is a
quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal blocks. The 1-by-1 blocks correspond
to real eigenvalues of the matrix pair (H,T) and the 2-by-2 blocks correspond to complex
conjugate pairs of eigenvalues.

Additionally, the 2-by-2 upper triangular diagonal blocks of P corresponding to 2-by-2 blocks
of S are reduced to positive diagonal form, that is, if S(j+1,j) is non-zero, then P(j+1,j) =
P(j,j+1) = 0, P(j,j) > 0, and P(j+1,j+1) > 0.

For complex flavors:

If job = 'S', then the Hessenberg-triangular pair (H,T) is also reduced to generalized Schur
form,

H = Q* S*ZH, T = Q*P*ZH,

where Q and Z are unitary matrices, and S and P are upper triangular.

For all function flavors:

Optionally, the orthogonal/unitary matrix Q from the generalized Schur factorization may be
postmultiplied into an input matrix Q1, and the orthogonal/unitary matrix Z may be postmultiplied
into an input matrix Z1.

If Q1 and Z1 are the orthogonal/unitary matrices from ?gghrd that reduced the matrix pair (A,B)
to generalized upper Hessenberg form, then the output matrices Q1Q and Z 1Z are the
orthogonal/unitary factors from the generalized Schur factorization of (A,B):

A = (Q1Q)*S *(Z1Z)
H, B = (Q1Q) *P *(Z1Z)

H.

To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, of (A,B)) are computed
as a pair of values (alpha,beta>). For chgeqz/zhgeqz, alpha and beta are complex, and for

shgeqz/dhgeqz, alpha is complex and beta real. If beta is nonzero, λ = alpha / beta is
an eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)

Ax = λBx

and if alpha is nonzero, μ = beta / alpha is an eigenvalue of the alternate form of the GNEP

845

LAPACK Routines: Least Squares and Eigenvalue Problems 4

μAy = By .

Real eigenvalues (for real flavors) or the values of alpha and beta for the i-th eigenvalue (for
complex flavors) can be read directly from the generalized Schur form:

alpha = S(i,i), beta = P(i,i).

Input Parameters

CHARACTER*1. Specifies the operations to be performed.
Must be 'E' or 'S'.

job

If job = 'E', then compute eigenvalues only;
If job = 'S', then compute eigenvalues and the Schur
form.

CHARACTER*1. Must be 'N', 'I', or 'V'.compq
If compq = 'N', left Schur vectors (q) are not computed;
If compq = 'I', q is initialized to the unit matrix and the
matrix of left Schur vectors of (H,T) is returned;
If compq = 'V', q must contain an orthogonal/unitary
matrix Q1 on entry and the product Q1*Q is returned.

CHARACTER*1. Must be 'N', 'I', or 'V'.compz
If compz = 'N', right Schur vectors (z) are not computed;
If compz = 'I', z is initialized to the unit matrix and the
matrix of right Schur vectors of (H,T) is returned;
If compz = 'V', z must contain an orthogonal/unitary
matrix Z1 on entry and the product Z1*Z is returned.

INTEGER. The order of the matrices H, T, Q, and Zn

(n ≥ 0).

INTEGER. ilo and ihi mark the rows and columns of H
which are in Hessenberg form. It is assumed that H is
already upper triangular in rows and columns 1:ilo-1 and
ihi+1:n.

ilo, ihi

Constraint:

If n > 0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, then ilo = 1 and ihi = 0.

REAL for shgeqzh, t, q, z, work
DOUBLE PRECISION for dhgeqz
COMPLEX for chgeqz

846

4 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX for zhgeqz.
Arrays:
On entry, h(ldh,*) contains the n-by-n upper Hessenberg
matrix H.
The second dimension of h must be at least max(1, n).
On entry, t(ldt,*) contains the n-by-n upper triangular
matrix T.
The second dimension of t must be at least max(1, n).
q (ldq,*):
On entry, if compq = 'V', this array contains the
orthogonal/unitary matrix Q1 used in the reduction of (A,B)
to generalized Hessenberg form.
If compq = 'N', then q is not referenced.
The second dimension of q must be at least max(1, n).
z (ldz,*):
On entry, if compz = 'V', this array contains the
orthogonal/unitary matrix Z1 used in the reduction of (A,B)
to generalized Hessenberg form.
If compz = 'N', then z is not referenced.
The second dimension of z must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of h; at least max(1, n).ldh

INTEGER. The first dimension of t; at least max(1, n).ldt

INTEGER. The first dimension of q;ldq

If compq = 'N', then ldq ≥ 1.

If compq = 'I'or 'V', then ldq ≥ max(1, n).

INTEGER. The first dimension of z;ldz

If compq = 'N', then ldz ≥ 1.

If compq = 'I'or 'V', then ldz ≥ max(1, n).

INTEGER. The dimension of the array work.lwork

lwork ≥ max(1, n).

847

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla. See
Application Notes for details.

REAL for chgeqzrwork
DOUBLE PRECISION for zhgeqz.
Workspace array, DIMENSION at least max(1, n). Used in
complex flavors only.

Output Parameters

For real flavors:h
If job = 'S', then, on exit, h contains the upper
quasi-triangular matrix S from the generalized Schur
factorization; 2-by-2 diagonal blocks (corresponding to
complex conjugate pairs of eigenvalues) are returned in
standard form, with h(i,i) = h(i+1, i+1) and h(i+1,
i) * h(i, i+1) < 0.
If job = 'E', then on exit the diagonal blocks of h match
those of S, but the rest of h is unspecified.
For complex flavors:
If job = 'S', then, on exit, h contains the upper triangular
matrix S from the generalized Schur factorization.
If job = 'E', then on exit the diagonal of h matches that
of S, but the rest of h is unspecified.

If job = 'S', then, on exit, t contains the upper triangular
matrix P from the generalized Schur factorization.

t

For real flavors:
2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks
of S are reduced to positive diagonal form, that is, if h(j+1,j)
is non-zero, then t(j+1,j)=t(j,j+1)=0 and t(j,j) and
t(j+1,j+1) will be positive.
If job = 'E', then on exit the diagonal blocks of t match
those of P, but the rest of t is unspecified.
For complex flavors:
if job = 'E', then on exit the diagonal of t matches that
of P, but the rest of t is unspecified.

848

4 Intel® Math Kernel Library Reference Manual

REAL for shgeqz;alphar, alphai
DOUBLE PRECISION for dhgeqz.
Arrays, DIMENSION at least max(1, n). The real and
imaginary parts, respectively, of each scalar alpha defining
an eigenvalue of GNEP.
If alphai(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-th eigenvalues are a
complex conjugate pair, with
alphai(j+1) = -alphai(j).

COMPLEX for chgeqz;alpha
DOUBLE COMPLEX for zhgeqz.
Array, DIMENSION at least max(1, n).
The complex scalars alpha that define the eigenvalues of
GNEP. alphai(i) = S(i,i) in the generalized Schur
factorization.

REAL for shgeqzbeta
DOUBLE PRECISION for dhgeqz
COMPLEX for chgeqz
DOUBLE COMPLEX for zhgeqz.
Array, DIMENSION at least max(1, n).
For real flavors:
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (alphar(j),
alphai(j)) and beta = beta(j) represent the j-th
eigenvalue of the matrix pair (A,B), in one of the forms
lambda = alpha/beta or mu = beta/alpha. Since either
lambda or mu may overflow, they should not, in general, be
computed.
For complex flavors:
The real non-negative scalars beta that define the
eigenvalues of GNEP.
beta(i) = P(i,i) in the generalized Schur factorization.
Together, the quantities alpha = alpha(j) and beta =
beta(j) represent the j-th eigenvalue of the matrix pair
(A,B), in one of the forms lambda = alpha/beta or mu =
beta/alpha. Since either lambda or mu may overflow, they
should not, in general, be computed.

849

LAPACK Routines: Least Squares and Eigenvalue Problems 4

On exit, if compq = 'I', q is overwritten by the
orthogonal/unitary matrix of left Schur vectors of the pair
(H,T), and if compq = 'V', q is overwritten by the
orthogonal/unitary matrix of left Schur vectors of (A,B).

q

On exit, if compz = 'I', z is overwritten by the
orthogonal/unitary matrix of right Schur vectors of the pair
(H,T), and if compz = 'V', z is overwritten by the
orthogonal/unitary matrix of right Schur vectors of (A,B).

z

If info ≥ 0, on exit, work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1,..., n, the QZ iteration did not converge.
(H,T) is not in Schur form, but alphar(i), alphai(i) (for real
flavors), alpha(i) (for complex flavors), and beta(i),
i=info+1,..., n should be correct.
If info = n+1,...,2n, the shift calculation failed.
(H,T) is not in Schur form, but alphar(i), alphai(i) (for real
flavors), alpha(i) (for complex flavors), and beta(i), i
=info-n+1,..., n should be correct.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hgeqz interface are the following:

Holds the matrix H of size (n,n).h

Holds the matrix T of size (n,n).t

Holds the vector of length (n). Used in real flavors only.alphar

Holds the vector of length (n). Used in real flavors only.alphai

Holds the vector of length (n). Used in complex flavors only.alpha

Holds the vector of length (n).beta

850

4 Intel® Math Kernel Library Reference Manual

Holds the matrix Q of size (n,n).q

Holds the matrix Z of size (n,n).z

Default value for this argument is ilo = 1.ilo

Default value for this argument is ihi = n.ihi

Must be 'E' or 'S'. The default value is 'E'.job

If omitted, this argument is restored based on the presence of argument
q as follows:

compq

compq = 'I', if q is present,
compq = 'N', if q is omitted.
If present, compq must be equal to 'I' or 'V' and the argument q
must also be present.
Note that there will be an error condition if compq is present and q
omitted.

If omitted, this argument is restored based on the presence of argument
z as follows:

compz

compz = 'I', if z is present,
compz = 'N', if z is omitted.
If present, compz must be equal to 'I' or 'V' and the argument z
must also be present.
Note an error condition if compz is present and z is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

851

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?tgevc
Computes some or all of the right and/or left
generalized eigenvectors of a pair of upper
triangular matrices.

Syntax

Fortran 77:

call stgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm,
m, work, info)

call dtgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm,
m, work, info)

call ctgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm,
m, work, rwork, info)

call ztgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm,
m, work, rwork, info)

Fortran 95:

call tgevc(s, p [,howmny] [,select] [,vl] [,vr] [,m] [,info])

Description

This routine computes some or all of the right and/or left eigenvectors of a pair of real/complex
matrices (S,P), where S is quasi-triangular (for real flavors) or upper triangular (for complex
flavors) and P is upper triangular.

Matrix pairs of this type are produced by the generalized Schur factorization of a real/complex
matrix pair (A,B):

A = Q*S*ZH, B = Q*P*ZH

as computed by ?gghrd plus ?hgeqz.

The right eigenvector x and the left eigenvector y of (S,P) corresponding to an eigenvalue w
are defined by:

S*x = w*P*x, yH*S = w*yH*P

The eigenvalues are not input to this routine, but are computed directly from the diagonal
blocks or diagonal elements of S and P.

852

4 Intel® Math Kernel Library Reference Manual

This routine returns the matrices X and/or Y of right and left eigenvectors of (S,P), or the
products Z*X and/or Q*Y, where Z and Q are input matrices.

If Q and Z are the orthogonal/unitary factors from the generalized Schur factorization of a matrix
pair (A,B), then Z*X and Q*Y are the matrices of right and left eigenvectors of (A,B).

Input Parameters

CHARACTER*1. Must be 'R', 'L', or 'B'.side
If side = 'R' , compute right eigenvectors only.
If side = 'L' , compute left eigenvectors only.
If side = 'B', compute both right and left eigenvectors.

CHARACTER*1. Must be 'A' , 'B', or 'S'.howmny
If howmny = 'A' , compute all right and/or left
eigenvectors.
If howmny = 'B' , compute all right and/or left
eigenvectors, backtransformed by the matrices in vr and/or
vl.
If howmny = 'S' , compute selected right and/or left
eigenvectors, specified by the logical array select.

LOGICAL.select
Array, DIMENSION at least max (1, n).
If howmny = 'S', select specifies the eigenvectors to be
computed.
If howmny = 'A'or 'B', select is not referenced.
For real flavors:
If omega(j) is a real eigenvalue, the corresponding real
eigenvector is computed if select(j) is .TRUE..
If omega(j) and omega(j+1) are the real and imaginary parts
of a complex eigenvalue, the corresponding complex
eigenvector is computed if either select(j) or select(j+1)
is .TRUE., and on exit select(j) is set to .TRUE.and
select(j+1) is set to .FALSE..
For complex flavors:
The eigenvector corresponding to the j-th eigenvalue is
computed if select(j) is .TRUE..

INTEGER. The order of the matrices S and P (n ≥ 0).n

REAL for stgevcs, p, vl, vr, work

853

LAPACK Routines: Least Squares and Eigenvalue Problems 4

DOUBLE PRECISION for dtgevc
COMPLEX for ctgevc
DOUBLE COMPLEX for ztgevc.
Arrays:
s(lds,*) contains the matrix S from a generalized Schur
factorization as computed by ?hgeqz. This matrix is upper
quasi-triangular for real flavors, and upper triangular for
complex flavors.
The second dimension of s must be at least max(1, n).
p(ldp,*) contains the upper triangular matrix P from a
generalized Schur factorization as computed by ?hgeqz.
For real flavors, 2-by-2 diagonal blocks of P corresponding
to 2-by-2 blocks of S must be in positive diagonal form.
For complex flavors, P must have real diagonal elements.
The second dimension of p must be at least max(1, n).
If side = 'L' or 'B' and howmny = 'B', vl(ldvl,*) must
contain an n-by-n matrix Q (usually the orthogonal/unitary
matrix Q of left Schur vectors returned by ?hgeqz). The
second dimension of vl must be at least max(1, mm).
If side = 'R' , vl is not referenced.
If side = 'R' or 'B' and howmny = 'B', vr(ldvr,*) must
contain an n-by-n matrix Z (usually the orthogonal/unitary
matrix Z of right Schur vectors returned by ?hgeqz). The
second dimension of vr must be at least max(1, mm).
If side = 'L', vr is not referenced.
work(*) is a workspace array.
DIMENSION at least max (1, 6*n) for real flavors and at
least max (1, 2*n) for complex flavors.

INTEGER. The first dimension of s; at least max(1, n).lds

INTEGER. The first dimension of p; at least max(1, n).ldp

INTEGER. The first dimension of vl;ldvl

If side = 'L' or 'B', then ldvl ≥n.

If side = 'R', then ldvl ≥ 1.

INTEGER. The first dimension of vr;ldvr

If side = 'R' or 'B', then ldvr ≥n.

If side = 'L', then ldvr ≥ 1.

854

4 Intel® Math Kernel Library Reference Manual

INTEGER. The number of columns in the arrays vl and/or

vr (mm ≥ m).

mm

REAL for ctgevc DOUBLE PRECISION for ztgevc.
Workspace array, DIMENSION at least max (1, 2*n). Used
in complex flavors only.

rwork

Output Parameters

On exit, if side = 'L' or 'B', vl contains:vl
if howmny = 'A', the matrix Y of left eigenvectors of (S,P);
if howmny = 'B', the matrix Q*Y;
if howmny = 'S', the left eigenvectors of (S,P) specified by
select, stored consecutively in the columns of vl, in the
same order as their eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex
eigenvalue is stored in two consecutive columns, the first
holding the real part, and the second the imaginary part.

On exit, if side = 'R' or 'B', vr contains:vr
if howmny = 'A', the matrix X of right eigenvectors of (S,P);
if howmny = 'B', the matrix Z*X;
if howmny = 'S', the right eigenvectors of (S,P) specified
by select, stored consecutively in the columns of vr, in the
same order as their eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex
eigenvalue is stored in two consecutive columns, the first
holding the real part, and the second the imaginary part.

INTEGER. The number of columns in the arrays vl and/or
vr actually used to store the eigenvectors.

m

If howmny = 'A' or 'B', m is set to n.
For real flavors:
Each selected real eigenvector occupies one column and
each selected complex eigenvector occupies two columns.
For complex flavors:
Each selected eigenvector occupies one column.

INTEGER.info
If info = 0, the execution is successful.

855

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If info = -i, the i-th parameter had an illegal value.
For real flavors:
if info = i>0, the 2-by-2 block (i:i+1) does not have a
complex eigenvalue.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tgevc interface are the following:

Holds the matrix S of size (n,n).s

Holds the matrix P of size (n,n).p

Holds the vector of length (n).select

Holds the matrix VL of size (n,mm).vl

Holds the matrix VR of size (n,mm).vr

Restored based on the presence of arguments vl and vr as follows:side
side = 'B', if both vl and vr are present,
side = 'L', if vl is present and vr omitted,
side = 'R', if vl is omitted and vr present,
Note that there will be an error condition if both vl and vr are omitted.

If omitted, this argument is restored based on the presence of argument
select as follows:

howmny

howmny = 'S', if select is present,
howmny = 'A', if select is omitted.
If present, howmny must be equal to 'A' or 'B' and the argument
select must be omitted.
Note that there will be an error condition if both howmny and select
are present.

856

4 Intel® Math Kernel Library Reference Manual

?tgexc
Reorders the generalized Schur decomposition of
a pair of matrices (A,B) so that one diagonal block
of (A,B) moves to another row index.

Syntax

Fortran 77:

call stgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, work,
lwork, info)

call dtgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, work,
lwork, info)

call ctgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)

call ztgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)

Fortran 95:

call tgexc(a, b [,ifst] [,ilst] [,z] [,q] [,info])

Description

This routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix
pair (A,B) using an orthogonal/unitary equivalence transformation

(A, B) = Q (A, B) ZH,

so that the diagonal block of (A, B) with row index ifst is moved to row ilst. Matrix pair (A,
B) must be in a generalized real-Schur/Schur canonical form (as returned by ?gges), that is,
A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks and B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are updated.

Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'

Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'.

Input Parameters

LOGICAL.wantq, wantz
If wantq = .TRUE., update the left transformation matrix
Q;
If wantq = .FALSE., do not update Q;

857

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If wantz = .TRUE., update the right transformation matrix
Z;
If wantz = .FALSE., do not update Z.

INTEGER. The order of the matrices A and B (n ≥ 0).n

REAL for stgexca, b, q,
DOUBLE PRECISION for dtgexc
COMPLEX for ctgexc
DOUBLE COMPLEX for ztgexc.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the matrix B. The second dimension of b
must be at least max(1, n).
q (ldq,*)
If wantq = .FALSE., then q is not referenced.
If wantq = .TRUE., then q must contain the
orthogonal/unitary matrix Q.
The second dimension of q must be at least max(1, n).
z (ldz,*)
If wantz = .FALSE., then z is not referenced.
If wantz = .TRUE., then z must contain the
orthogonal/unitary matrix Z.
The second dimension of z must be at least max(1, n).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

INTEGER. The first dimension of q;ldq

If wantq = .FALSE., then ldq ≥ 1.

If wantq = .TRUE., then ldq ≥ max(1, n).

INTEGER. The first dimension of z;ldz

If wantz = .FALSE., then ldz ≥ 1.

If wantz = .TRUE., then ldz ≥ max(1, n).

INTEGER. Specify the reordering of the diagonal blocks of
(A, B). The block with row index ifst is moved to row ilst,
by a sequence of swapping between adjacent blocks.

Constraint: 1 ≤ ifst, ilst ≤ n.

ifst, ilst

858

4 Intel® Math Kernel Library Reference Manual

REAL for stgexc;work
DOUBLE PRECISION for dtgexc.
Workspace array, DIMENSION (lwork). Used in real flavors
only.

INTEGER. The dimension of work; must be at least 4n +16.lwork
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla. See
Application Notes for details.

Output Parameters

Overwritten by the updated matrices A and B.a, b

Overwritten for real flavors only.ifst, ilst
If ifst pointed to the second row of a 2 by 2 block on entry,
it is changed to point to the first row; ilst always points
to the first row of the block in its final position (which may
differ from its input value by ±1).

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = 1, the transformed matrix pair (A, B) would be
too far from generalized Schur form; the problem is
ill-conditioned. (A, B) may have been partially reordered,
and ilst points to the first row of the current position of
the block being moved.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tgexc interface are the following:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,n).b

Holds the matrix Z of size (n,n).z

859

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Holds the matrix Q of size (n,n).q

Restored based on the presence of the argument q as follows:wantq
wantq = .TRUE, if q is present,
wantq = .FALSE, if q is omitted.

Restored based on the presence of the argument z as follows:wantz
wantz = .TRUE, if z is present,
wantz = .FALSE, if z is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

860

4 Intel® Math Kernel Library Reference Manual

?tgsen
Reorders the generalized Schur decomposition of
a pair of matrices (A,B) so that a selected cluster
of eigenvalues appears in the leading diagonal
blocks of (A,B).

Syntax

Fortran 77:

call stgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar, alphai,
beta, q, ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)

call dtgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar, alphai,
beta, q, ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)

call ctgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha, beta, q,
ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)

call ztgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha, beta, q,
ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)

Fortran 95:

call tgsen(a, b, select [,alphar] [,alphai] [,beta] [,ijob] [,q] [,z] [,pl]
[,pr] [,dif] [,m] [,info])

call tgsen(a, b, select [,alpha] [,beta] [,ijob] [,q] [,z] [,pl] [,pr] [, dif]
[,m] [,info])

Description

This routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix
pair (A, B) (in terms of an orthogonal/unitary equivalence transformation Q *(A, B) * Z),
so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the pair (A,
B). The leading columns of Q and Z form orthonormal/unitary bases of the corresponding left
and right eigenspaces (deflating subspaces).

(A, B) must be in generalized real-Schur/Schur canonical form (as returned by ?gges), that is,
A and B are both upper triangular.

?tgsen also computes the generalized eigenvalues

ωj = (alphar(j) + alphai(j)*i)/beta(j) (for real flavors)

861

LAPACK Routines: Least Squares and Eigenvalue Problems 4

ωj = alpha(j)/beta(j) (for complex flavors)

of the reordered matrix pair (A, B).

Optionally, the routine computes the estimates of reciprocal condition numbers for eigenvalues
and eigenspaces. These are Difu[(A11, B11), (A22, B22)] and Difl[(A11, B11), (A22, B22)], that is,
the separation(s) between the matrix pairs (A11, B11) and (A22, B22) that correspond to the
selected cluster and the eigenvalues outside the cluster, respectively, and norms of "projections"
onto left and right eigenspaces with respect to the selected cluster in the (1,1)-block.

Input Parameters

INTEGER. Specifies whether condition numbers are required
for the cluster of eigenvalues (pl and pr) or the deflating
subspaces Difu and Difl.

ijob

If ijob =0, only reorder with respect to select;
If ijob =1, reciprocal of norms of "projections" onto left
and right eigenspaces with respect to the selected cluster
(pl and pr);
If ijob =2, compute upper bounds on Difu and Difl, using
F-norm-based estimate (dif (1:2));
If ijob =3, compute estimate of Difu and Difl, sing
1-norm-based estimate (dif (1:2)). This option is about 5
times as expensive as ijob =2;
If ijob =4,>compute pl, pr and dif (i.e., options 0, 1 and
2 above). This is an economic version to get it all;
If ijob =5, compute pl, pr and dif (i.e., options 0, 1 and
3 above).

LOGICAL.wantq, wantz
If wantq = .TRUE., update the left transformation matrix
Q;
If wantq = .FALSE., do not update Q;
If wantz = .TRUE., update the right transformation matrix
Z;
If wantz = .FALSE., do not update Z.

LOGICAL.select
Array, DIMENSION at least max (1, n). Specifies the
eigenvalues in the selected cluster.

862

4 Intel® Math Kernel Library Reference Manual

To select an eigenvalue omega(j), select(j) must be
.TRUE. For real flavors: to select a complex conjugate pair
of eigenvalues omega(j) and omega(j+1) (corresponding 2
by 2 diagonal block), select(j) and/or select(j+1) must
be set to .TRUE.; the complex conjugate omega(j) and
omega(j+1) must be either both included in the cluster or
both excluded.

INTEGER. The order of the matrices A and B (n ≥ 0).n

REAL for stgsena, b, q, z, work
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for ztgsen.
Arrays:
a(lda,*) contains the matrix A.
For real flavors: A is upper quasi-triangular, with (A, B) in
generalized real Schur canonical form.
For complex flavors: A is upper triangular, in generalized
Schur canonical form.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the matrix B.
For real flavors: B is upper triangular, with (A, B) in
generalized real Schur canonical form.
For complex flavors: B is upper triangular, in generalized
Schur canonical form. The second dimension of b must be
at least max(1, n).
q (ldq,*)
If wantq = .TRUE., then q is an n-by-n matrix;
If wantq = .FALSE., then q is not referenced.
The second dimension of q must be at least max(1, n).
z (ldz,*)
If wantz = .TRUE., then z is an n-by-n matrix;
If wantz = .FALSE., then z is not referenced.
The second dimension of z must be at least max(1, n).
work is a workspace array, its dimension max(1,
lwork).
If ijob=0, work is not referenced.

INTEGER. The first dimension of a; at least max(1, n).lda

863

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The first dimension of b; at least max(1, n).ldb

INTEGER. The first dimension of q; ldq ≥ 1.ldq

If wantq = .TRUE., then ldq ≥ max(1, n).

INTEGER. The first dimension of z; ldz ≥ 1.ldz

If wantz = .TRUE., then ldz ≥ max(1, n).

INTEGER. The dimension of the array work.lwork
For real flavors:

If ijob = 1, 2, or 4, lwork ≥ max(4n+16, 2m(n-m)).

If ijob = 3 or 5, lwork ≥ max(4n+16, 4m(n-m)).
For complex flavors:

If ijob = 1, 2, or 4, lwork ≥ max(1, 2m(n-m)).

If ijob = 3 or 5, lwork ≥ max(1, 4m(n-m)).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla. See
Application Notes for details.

INTEGER. Workspace array, its dimension max(1, liwork).iwork
If ijob =0, iwork is not referenced.

INTEGER. The dimension of the array iwork.liwork
For real flavors:

If ijob = 1, 2, or 4, liwork ≥ n+6.

If ijob = 3 or 5, liwork ≥ max(n+6, 2m(n-m)).
For complex flavors:

If ijob = 1, 2, or 4, liwork ≥ n+2.

If ijob = 3 or 5, liwork ≥ max(n+2, 2m(n-m)).
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the iwork array,
returns this value as the first entry of the iwork array, and
no error message related to liwork is issued by xerbla.
See Application Notes for details.

864

4 Intel® Math Kernel Library Reference Manual

Output Parameters

Overwritten by the reordered matrices A and B, respectively.a, b

REAL for stgsen;alphar, alphai
DOUBLE PRECISION for dtgsen.
Arrays, DIMENSION at least max(1, n). Contain values that
form generalized eigenvalues in real flavors.
See beta.

COMPLEX for ctgsen;alpha
DOUBLE COMPLEX for ztgsen.
Array, DIMENSION at least max(1, n). Contain values that
form generalized eigenvalues in complex flavors.
See beta.

REAL for stgsenbeta
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for ztgsen.
Array, DIMENSION at least max(1, n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,..., n, will
be the generalized eigenvalues.
alphar(j) + alphai(j)*i and beta(j), j=1,..., n are the
diagonals of the complex Schur form (S,T) that would result
if the 2-by-2 diagonal blocks of the real generalized Schur
form of (A,B) were further reduced to triangular form using
complex unitary transformations.
If alphai(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
The diagonal elements of A and B, respectively, when the
pair (A,B) has been reduced to generalized Schur form.
alpha(i)/beta(i), i=1,..., n are the generalized eigenvalues.

If wantq =.TRUE., then, on exit, Q has been postmultiplied
by the left orthogonal transformation matrix which reorder
(A, B). The leading m columns of Q form orthonormal bases
for the specified pair of left eigenspaces (deflating
subspaces).

q

865

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If wantz =.TRUE., then, on exit, Z has been postmultiplied
by the left orthogonal transformation matrix which reorder
(A, B). The leading m columns of Z form orthonormal bases
for the specified pair of left eigenspaces (deflating
subspaces).

z

INTEGER.m
The dimension of the specified pair of left and right

eigen-spaces (deflating subspaces); 0 ≤ m ≤ n.

REAL for single precision flavors;pl, pr
DOUBLE PRECISION for double precision flavors.
If ijob = 1, 4, or 5, pl and pr are lower bounds on the
reciprocal of the norm of "projections" onto left and right
eigenspaces with respect to the selected cluster.

0 < pl, pr ≤ 1. If m = 0 or m = n, pl = pr = 1.
If ijob = 0, 2 or 3, pl and pr are not referenced

REAL for single precision flavors;DOUBLE PRECISION for
double precision flavors.

dif

Array, DIMENSION (2).

If ijob ≥ 2, dif(1:2) store the estimates ofDifu and Difl.
If ijob = 2 or 4, dif(1:2) are F-norm-based upper bounds
on Difu and Difl.
If ijob = 3 or 5, dif(1:2) are 1-norm-based estimates of
Difu and Difl.
If m = 0 or n, dif(1:2) = F-norm([A, B]).
If ijob = 0 or 1, dif is not referenced.

If ijob is not 0 and info = 0, on exit, work(1) contains
the minimum value of lwork required for optimum
performance. Use this lwork for subsequent runs.

work(1)

If ijob is not 0 and info = 0, on exit, iwork(1) contains
the minimum value of liwork required for optimum
performance. Use this liwork for subsequent runs.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

866

4 Intel® Math Kernel Library Reference Manual

If info = 1, Reordering of (A, B) failed because the
transformed matrix pair (A, B) would be too far from
generalized Schur form; the problem is very ill-conditioned.
(A, B) may have been partially reordered.
If requested, 0 is returned in dif(*), pl and pr.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tgsen interface are the following:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,n).b

Holds the vector of length (n).select

Holds the vector of length (n). Used in real flavors only.alphar

Holds the vector of length (n). Used in real flavors only.alphai

Holds the vector of length (n). Used in complex flavors only.alpha

Holds the vector of length (n).beta

Holds the matrix Q of size (n,n).q

Holds the matrix Z of size (n,n).z

Holds the vector of length (2).dif

Must be 0, 1, 2, 3, 4, or 5. The default value is 0.ijob

Restored based on the presence of the argument q as follows:wantq
wantq = .TRUE, if q is present,
wantq = .FALSE, if q is omitted.

Restored based on the presence of the argument z as follows:wantz
wantz = .TRUE, if z is present,
wantz = .FALSE, if z is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

867

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work, iwork). This operation is called
a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

?tgsyl
Solves the generalized Sylvester equation.

Syntax

Fortran 77:

call stgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf,
scale, dif, work, lwork, iwork, info)

call dtgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf,
scale, dif, work, lwork, iwork, info)

call ctgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf,
scale, dif, work, lwork, iwork, info)

call ztgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf,
scale, dif, work, lwork, iwork, info)

Fortran 95:

call tgsyl(a, b, c, d, e, f [,ijob] [,trans] [,scale] [,dif] [,info])

Description

This routine solves the generalized Sylvester equation:

A R - L B = scale * C

D R - L E = scale * F

868

4 Intel® Math Kernel Library Reference Manual

where R and L are unknown m-by-n matrices, (A, D), (B, E) and (C, F) are given matrix pairs of
size m-by-m, n-by-n and m-by-n, respectively, with real/complex entries. (A, D) and (B, E) must
be in generalized real-Schur/Schur canonical form, that is, A, B are upper
quasi-triangular/triangular and D, E are upper triangular.

The solution (R, L) overwrites (C, F). The factor scale, 0 ≤ scale ≤ 1, is an output scaling
factor chosen to avoid overflow.

In matrix notation the above equation is equivalent to the following: solve Zx = scale * b,
where Z is defined as

Here Ik is the identity matrix of size k and X' is the transpose/conjugate-transpose of X. kron(X,
Y) is the Kronecker product between the matrices X and Y.

If trans = 'T' (for real flavors), or trans = 'C' (for complex flavors), the routine ?tgsyl
solves the transposed/conjugate-transposed system Z ' y = scale * b, which is equivalent
to solve for R and L in

A' R + D' L = scale * C

R B' + L E' = scale * (-F)

This case (trans = 'T' for stgsyl/dtgsyl or trans = 'C' for ctgsyl/ztgsyl) is used to
compute an one-norm-based estimate of Dif[(A, D), (B, E)], the separation between the matrix
pairs (A,D) and (B,E), using slacon/clacon.

If ijob < 1, ?tgsyl computes a Frobenius norm-based estimate of Dif[(A, D), (B,E)]. That is,
the reciprocal of a lower bound on the reciprocal of the smallest singular value of Z. This is a
level 3 BLAS algorithm.

Input Parameters

CHARACTER*1. Must be 'N', 'T', or 'C'.trans
If trans = 'N', solve the generalized Sylvester equation.
If trans = 'T', solve the 'transposed' system (for real
flavors only).

869

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If trans = 'C', solve the ' conjugate transposed' system
(for complex flavors only).

INTEGER. Specifies what kind of functionality to be
performed:

ijob

If ijob =0 , solve the generalized Sylvester equation only;
If ijob =1, perform the functionality of ijob =0 and ijob
=3;
If ijob =2, perform the functionality of ijob =0 and ijob
=4;
If ijob =3, only an estimate of Dif[(A, D), (B, E)] is
computed (look ahead strategy is used);
If ijob =4, only an estimate of Dif[(A, D), (B,E)] is
computed (?gecon on sub-systems is used). If trans =
'T' or 'C', ijob is not referenced.

INTEGER. The order of the matrices A and D, and the row
dimension of the matrices C, F, R and L.

m

INTEGER. The order of the matrices B and E, and the column
dimension of the matrices C, F, R and L.

n

REAL for stgsyla, b, c, d, e, f, work
DOUBLE PRECISION for dtgsyl
COMPLEX for ctgsyl
DOUBLE COMPLEX for ztgsyl.
Arrays:
a(lda,*) contains the upper quasi-triangular (for real flavors)
or upper triangular (for complex flavors) matrix A.
The second dimension of a must be at least max(1, m).
b(ldb,*) contains the upper quasi-triangular (for real flavors)
or upper triangular (for complex flavors) matrix B. The
second dimension of b must be at least max(1, n).
c (ldc,*) contains the right-hand-side of the first matrix
equation in the generalized Sylvester equation (as defined
by trans)
The second dimension of c must be at least max(1, n).
d (ldd,*) contains the upper triangular matrix D.
The second dimension of d must be at least max(1, m).
e (lde,*) contains the upper triangular matrix E.
The second dimension of e must be at least max(1, n).

870

4 Intel® Math Kernel Library Reference Manual

f (ldf,*) contains the right-hand-side of the second matrix
equation in the generalized Sylvester equation (as defined
by trans)
The second dimension of f must be at least max(1, n).
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

INTEGER. The first dimension of c; at least max(1, m).ldc

INTEGER. The first dimension of d; at least max(1, m).ldd

INTEGER. The first dimension of e; at least max(1, n).lde

INTEGER. The first dimension of f; at least max(1, m).ldf

INTEGER.lwork

The dimension of the array work. lwork ≥ 1.

If ijob = 1 or 2 and trans = 'N', lwork ≥ max(1,
2*m*n).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla. See
Application Notes for details.

INTEGER. Workspace array, DIMENSION at least (m+n+6)
for real flavors, and at least (m+n+2) for complex flavors.

iwork

If ijob=0, iwork is not referenced.

Output Parameters

If ijob=0, 1, or 2, overwritten by the solution R.c
If ijob=3 or 4 and trans = 'N', c holds R, the solution
achieved during the computation of the Dif-estimate.

If ijob=0, 1, or 2, overwritten by the solution L.f
If ijob=3 or 4 and trans = 'N', f holds L, the solution
achieved during the computation of the Dif-estimate.

REAL for single-precision flavorsdif
DOUBLE PRECISION for double-precision flavors.

871

LAPACK Routines: Least Squares and Eigenvalue Problems 4

On exit, dif is the reciprocal of a lower bound of the
reciprocal of the Dif-function, that is, dif is an upper bound
of Dif[(A, D), (B, E)] = sigma_min(Z), where Z as in (2).
If ijob = 0, or trans = 'T' (for real flavors), or trans
= 'C' (for complex flavors), dif is not touched.

REAL for single-precision flavorsscale
DOUBLE PRECISION for double-precision flavors.
On exit, scale is the scaling factor in the generalized
Sylvester equation.
If 0 < scale < 1, c and f hold the solutions R and L,
respectively, to a slightly perturbed system but the input
matrices A, B, D and E have not been changed.
If scale = 0, c and f hold the solutions R and L,
respectively, to the homogeneous system with C = F = 0.
Normally, scale = 1.

If info = 0, work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for
subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info > 0, (A, D) and (B, E) have common or close
eigenvalues.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tgsyl interface are the following:

Holds the matrix A of size (m,m).a

Holds the matrix B of size (n,n).b

Holds the matrix C of size (m,n).c

Holds the matrix D of size (m,m).d

Holds the matrix E of size (n,n).e

Holds the matrix F of size (m,n).f

872

4 Intel® Math Kernel Library Reference Manual

Must be 0, 1, 2, 3, or 4. The default value is 0.ijob

Must be 'N' or 'T'. The default value is 'N'.trans

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?tgsna
Estimates reciprocal condition numbers for specified
eigenvalues and/or eigenvectors of a pair of
matrices in generalized real Schur canonical form.

Syntax

Fortran 77:

call stgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s,
dif, mm, m, work, lwork, iwork, info)

call dtgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s,
dif, mm, m, work, lwork, iwork, info)

call ctgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s,
dif, mm, m, work, lwork, iwork, info)

call ztgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s,
dif, mm, m, work, lwork, iwork, info)

873

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95:

call tgsna(a, b [,s] [,dif] [,vl] [,vr] [,select] [,m] [,info])

Description

The real flavors stgsna/dtgsna of this routine estimate reciprocal condition numbers for
specified eigenvalues and/or eigenvectors of a matrix pair (A, B) in generalized real Schur
canonical form (or of any matrix pair (Q*A*ZT, Q*B*ZT) with orthogonal matrices Q and Z.

(A, B) must be in generalized real Schur form (as returned by sgges/dgges), that is, A is block
upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular.

The complex flavors ctgsna/ztgsna estimate reciprocal condition numbers for specified
eigenvalues and/or eigenvectors of a matrix pair (A, B). (A, B) must be in generalized Schur
canonical form , that is, A and B are both upper triangular.

Input Parameters

CHARACTER*1. Specifies whether condition numbers are
required for eigenvalues or eigenvectors. Must be 'E' or
'V' or 'B'.

job

If job = 'E', for eigenvalues only (compute s).
If job = 'V', for eigenvectors only (compute dif).
If job = 'B', for both eigenvalues and eigenvectors
(compute both s and dif).

CHARACTER*1. Must be 'A' or 'S'.howmny
If howmny = 'A' , compute condition numbers for all
eigenpairs.
If howmny = 'S' , compute condition numbers for selected
eigenpairs specified by the logical array select.

LOGICAL.select
Array, DIMENSION at least max (1, n).
If howmny = 'S', select specifies the eigenpairs for which
condition numbers are required.
If howmny = 'A', select is not referenced.
For real flavors:
To select condition numbers for the eigenpair corresponding
to a real eigenvalue omega(j), select(j) must be set to
.TRUE.; to select condition numbers corresponding to a

874

4 Intel® Math Kernel Library Reference Manual

complex conjugate pair of eigenvalues omega(j) and
omega(j+1), either select(j) or select(j+1) must be set
to .TRUE.
For complex flavors:
To select condition numbers for the corresponding j-th
eigenvalue and/or eigenvector, select(j) must be set to
.TRUE..

INTEGER. The order of the square matrix pair (A, B)n

(n ≥ 0).

REAL for stgsnaa, b, vl, vr, work
DOUBLE PRECISION for dtgsna
COMPLEX for ctgsna
DOUBLE COMPLEX for ztgsna.
Arrays:
a(lda,*) contains the upper quasi-triangular (for real flavors)
or upper triangular (for complex flavors) matrix A in the pair
(A, B).
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the upper triangular matrix B in the pair
(A, B). The second dimension of b must be at least max(1,
n).
If job = 'E' or 'B', vl(ldvl,*) must contain left
eigenvectors of (A, B), corresponding to the eigenpairs
specified by howmny and select. The eigenvectors must be
stored in consecutive columns of vl, as returned by ?tgevc.
If job = 'V', vl is not referenced. The second dimension
of vl must be at least max(1, m).
If job = 'E' or 'B', vr(ldvr,*) must contain right
eigenvectors of (A, B), corresponding to the eigenpairs
specified by howmny and select. The eigenvectors must be
stored in consecutive columns of vr, as returned by ?tgevc.
If job = 'V', vr is not referenced. The second dimension
of vr must be at least max(1, m).
work is a workspace array, its dimension max(1,
lwork).
If job = 'E', work is not referenced.

INTEGER. The first dimension of a; at least max(1, n).lda

875

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The first dimension of b; at least max(1, n).ldb

INTEGER. The first dimension of vl; ldvl ≥ 1.ldvl

If job = 'E' or 'B', then ldvl ≥ max(1, n).

INTEGER. The first dimension of vr; ldvr ≥ 1.ldvr

If job = 'E' or 'B', then ldvr ≥ max(1, n).

INTEGER. The number of elements in the arrays s and dif

(mm ≥ m).

mm

INTEGER. The dimension of the array work.lwork

lwork ≥ max(1, n).

If job = 'V' or 'B', lwork ≥ 2*n*(n+2)+16 for real

flavors, and lwork ≥ max(1, 2*n*n) for complex flavors.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla. See
Application Notes for details.

INTEGER. Workspace array, DIMENSION at least (n+6) for
real flavors, and at least (n+2) for complex flavors.

iwork

If ijob = 'E', iwork is not referenced.

Output Parameters

REAL for single-precision flavorss
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION (mm).
If job = 'E' or 'B', contains the reciprocal condition
numbers of the selected eigenvalues, stored in consecutive
elements of the array.
If job = 'V', s is not referenced.
For real flavors:
For a complex conjugate pair of eigenvalues two consecutive
elements of s are set to the same value. Thus, s(j), dif(j),
and the j-th columns of vl and vr all correspond to the
same eigenpair (but not in general the j-th eigenpair, unless
all eigenpairs are selected).

876

4 Intel® Math Kernel Library Reference Manual

REAL for single-precision flavorsdif
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION (mm).
If job = 'V' or 'B', contains the estimated reciprocal
condition numbers of the selected eigenvectors, stored in
consecutive elements of the array.
If the eigenvalues cannot be reordered to compute dif(j),
dif(j) is set to 0; this can only occur when the true value
would be very small anyway.
If job = 'E', dif is not referenced.
For real flavors:
For a complex eigenvector, two consecutive elements of
dif are set to the same value.
For complex flavors:
For each eigenvalue/vector specified by select, dif stores
a Frobenius norm-based estimate of Difl.

INTEGER. The number of elements in the arrays s and dif
used to store the specified condition numbers; for each
selected eigenvalue one element is used.

m

If howmny = 'A', m is set to n.

work(1)work(1)
If job is not 'E' and info = 0, on exit, work(1) contains
the minimum value of lwork required for optimum
performance. Use this lwork for subsequent runs.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tgsna interface are the following:

Holds the matrix A of size (n,n).a

Holds the matrix B of size (n,n).b

Holds the vector of length (mm).s

877

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Holds the vector of length (mm).dif

Holds the matrix VL of size (n,mm).vl

Holds the matrix VR of size (n,mm).vr

Holds the vector of length (n).select

Restored based on the presence of the argument select as follows:
howmny = 'S', if select is present, howmny = 'A', if select is
omitted.

howmny

Restored based on the presence of arguments s and dif as follows:
job = 'B', if both s and dif are present, job = 'E', if s is present
and dif omitted, job = 'V', if s is omitted and dif present, Note that
there will be an error condition if both s and dif are omitted.

job

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

Generalized Singular Value Decomposition

This section describes LAPACK computational routines used for finding the generalized singular
value decomposition (GSVD) of two matrices A and B as

UHAQ = D1 * (0 R),

VHBQ = D2 * (0 R),

where U, V, and Q are orthogonal/unitary matrices, R is a nonsingular upper triangular matrix,
and D1, D2 are “diagonal” matrices of the structure detailed in the routines description section.

878

4 Intel® Math Kernel Library Reference Manual

Table 4-7 lists LAPACK routines (Fortran-77 interface) that perform generalized singular value
decomposition of matrices. Respective routine names in Fortran-95 interface are without the
first symbol (see Routine Naming Conventions).

Table 4-7 Computational Routines for Generalized Singular Value Decomposition

Operation performedRoutine name

Computes the preprocessing decomposition for the generalized
SVD

?ggsvp

Computes the generalized SVD of two upper triangular or
trapezoidal matrices

?tgsja

You can use routines listed in the above table as well as the driver routine ?ggsvd to find the
GSVD of a pair of general rectangular matrices.

?ggsvp
Computes the preprocessing decomposition for the
generalized SVD.

Syntax

Fortran 77:

call sggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u,
ldu, v, ldv, q, ldq, iwork, tau, work, info)

call dggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u,
ldu, v, ldv, q, ldq, iwork, tau, work, info)

call cggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u,
ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)

call zggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u,
ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)

Fortran 95:

call ggsvp(a, b, tola, tolb [, k] [,l] [,u] [,v] [,q] [,info])

Description

This routine computes orthogonal matrices U, V and Q such that

879

LAPACK Routines: Least Squares and Eigenvalue Problems 4

where the k-by-k matrix A12 and l-by-l matrix B13 are nonsingular upper triangular; A23 is

l-by-l upper triangular if m-k-l ≥0, otherwise A23 is (m-k)-by-l upper trapezoidal. The sum
k+l is equal to the effective numerical rank of the (m+p)-by-n matrix (AH,BH)H.

This decomposition is the preprocessing step for computing the Generalized Singular Value
Decomposition (GSVD), see subroutine ?ggsvd.

Input Parameters

CHARACTER*1. Must be 'U' or 'N'.jobu
If jobu = 'U', orthogonal/unitary matrix U is computed.
If jobu = 'N', U is not computed.

CHARACTER*1. Must be 'V' or 'N'.jobv

880

4 Intel® Math Kernel Library Reference Manual

If jobv = 'V', orthogonal/unitary matrix V is computed.
If jobv = 'N', V is not computed.

CHARACTER*1. Must be 'Q' or 'N'.jobq
If jobq = 'Q', orthogonal/unitary matrix Q is computed.
If jobq = 'N', Q is not computed.

INTEGER. The number of rows of the matrix A (m ≥ 0).m

INTEGER. The number of rows of the matrix B (p ≥ 0).p

INTEGER. The number of columns of the matrices A and B

(n ≥ 0).

n

REAL for sggsvpa, b, tau, work
DOUBLE PRECISION for dggsvp
COMPLEX for cggsvp
DOUBLE COMPLEX for zggsvp.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).
tau(*) is a workspace array.
The dimension of tau must be at least max(1, n).
work(*) is a workspace array.
The dimension of work must be at least max(1, 3n, m, p).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The first dimension of b; at least max(1, p).ldb

REAL for single-precision flavorstola, tolb
DOUBLE PRECISION for double-precision flavors.
tola and tolb are the thresholds to determine the effective
numerical rank of matrix B and a subblock of A. Generally,
they are set to
tola = max(m, n)*||A||*MACHEPS,
tolb = max(p, n)*||B||*MACHEPS.
The size of tola and tolb may affect the size of backward
errors of the decomposition.

INTEGER. The first dimension of the output array u . ldu

≥ max(1, m) if jobu = 'U'; ldu ≥ 1 otherwise.

ldu

881

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The first dimension of the output array v . ldv

≥ max(1, p) if jobv = 'V'; ldv ≥ 1 otherwise.

ldv

INTEGER. The first dimension of the output array q . ldq

≥ max(1, n) if jobq = 'Q'; ldq ≥ 1 otherwise.

ldq

INTEGER. Workspace array, DIMENSION at least max(1, n).iwork

REAL for cggsvprwork
DOUBLE PRECISION for zggsvp.
Workspace array, DIMENSION at least max(1, 2n). Used in
complex flavors only.

Output Parameters

Overwritten by the triangular (or trapezoidal) matrix
described in the Description section.

a

Overwritten by the triangular matrix described in the
Description section.

b

INTEGER. On exit, k and l specify the dimension of
subblocks. The sum k + l is equal to effective numerical
rank of (AH, BH)H.

k, l

REAL for sggsvpu, v, q
DOUBLE PRECISION for dggsvp
COMPLEX for cggsvp
DOUBLE COMPLEX for zggsvp.
Arrays:
If jobu = 'U', u(ldu,*) contains the orthogonal/unitary
matrix U.
The second dimension of u must be at least max(1, m).
If jobu = 'N', u is not referenced.
If jobv = 'V', v(ldv,*) contains the orthogonal/unitary
matrix V.
The second dimension of v must be at least max(1, m).
If jobv = 'N', v is not referenced.
If jobq = 'Q', q(ldq,*) contains the orthogonal/unitary
matrix Q.
The second dimension of q must be at least max(1, n).
If jobq = 'N', q is not referenced.

882

4 Intel® Math Kernel Library Reference Manual

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ggsvp interface are the following:

Holds the matrix A of size (m,n).a

Holds the matrix B of size (p,n).b

Holds the matrix U of size (m,m).u

Holds the matrix V of size (p,m).v

Holds the matrix Q of size (n,n).q

Restored based on the presence of the argument u as follows:jobu
jobu = 'U', if u is present,
jobu = 'N', if u is omitted.

Restored based on the presence of the argument v as follows:jobv
jobz = 'V', if v is present,
jobz = 'N', if v is omitted.

Restored based on the presence of the argument q as follows:jobq
jobz = 'Q', if q is present,
jobz = 'N', if q is omitted.

883

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?tgsja
Computes the generalized SVD of two upper
triangular or trapezoidal matrices.

Syntax

Fortran 77:

call stgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

call dtgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

call ctgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

call ztgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

Fortran 95:

call tgsja(a, b, tola, tolb, k, l [,u] [,v] [,q] [,jobu] [,jobv] [,jobq]
[,alpha] [,beta] [,ncycle] [,info])

Description

This routine computes the generalized singular value decomposition (GSVD) of two real/complex
upper triangular (or trapezoidal) matrices A and B. On entry, it is assumed that matrices A and
B have the following forms, which may be obtained by the preprocessing subroutine ?ggsvp
from a general m-by-n matrix A and p-by-n matrix B:

884

4 Intel® Math Kernel Library Reference Manual

where the k-by-k matrix A12 and l-by-l matrix B13 are nonsingular upper triangular; A23 is

l-by-l upper triangular if m-k-l ≥0, otherwise A23 is (m-k)-by-l upper trapezoidal.

On exit,

UH A Q = D1*(0 R), VH B Q = D2*(0 R),

where U, V and Q are orthogonal/unitary matrices, R is a nonsingular upper triangular matrix,
and D1 and D2 are “diagonal” matrices, which are of the following structures:

If m-k-l ≥0,

885

LAPACK Routines: Least Squares and Eigenvalue Problems 4

where

C = diag (alpha(k+1),...,alpha(k+l))

S = diag (beta(k+1),...,beta(k+l))

C2 + S2 = I

R is stored in a(1:k+l, n-k-l+1:n) on exit.

If m-k-l < 0,

886

4 Intel® Math Kernel Library Reference Manual

where

C = diag (alpha(K+1),...,alpha(m)),

S = diag (beta(K+1),...,beta(m)),

C2 + S2 = I

On exit, is stored in a(1:m, n-k-l+1:n) and R33 is stored

in b(m-k+1:l, n+m-k-l+1:n).

The computation of the orthogonal/unitary transformation matrices U, V or Q is optional. These
matrices may either be formed explicitly, or they may be postmultiplied into input matrices U1,
V1, or Q1.

Input Parameters

CHARACTER*1. Must be 'U', 'I', or 'N'.jobu

887

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If jobu = 'U', u must contain an orthogonal/unitary matrix
U1 on entry.
If jobu = 'I', u is initialized to the unit matrix.
If jobu = 'N', u is not computed.

CHARACTER*1. Must be 'V', 'I', or 'N'.jobv
If jobv = 'V', v must contain an orthogonal/unitary matrix
V1 on entry.
If jobv = 'I', v is initialized to the unit matrix.
If jobv = 'N', v is not computed.

CHARACTER*1. Must be 'Q', 'I', or 'N'.jobq
If jobq = 'Q', q must contain an orthogonal/unitary matrix
Q1 on entry.
If jobq = 'I', q is initialized to the unit matrix.
If jobq = 'N', q is not computed.

INTEGER. The number of rows of the matrix A (m ≥ 0).m

INTEGER. The number of rows of the matrix B (p ≥ 0).p

INTEGER. The number of columns of the matrices A and B

(n ≥ 0).

n

INTEGER. Specify the subblocks in the input matrices A and
B, whose GSVD is going to be computed by ?tgsja.

k, l

REAL for stgsjaa,b,u,v,q,work
DOUBLE PRECISION for dtgsja
COMPLEX for ctgsja
DOUBLE COMPLEX for ztgsja.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).
If jobu = 'U', u(ldu,*) must contain a matrix U1 (usually
the orthogonal/unitary matrix returned by ?ggsvp).
The second dimension of u must be at least max(1, m).
If jobv = 'V', v(ldv,*) must contain a matrix V1 (usually
the orthogonal/unitary matrix returned by ?ggsvp).
The second dimension of v must be at least max(1, p).

888

4 Intel® Math Kernel Library Reference Manual

If jobq = 'Q', q(ldq,*) must contain a matrix Q1 (usually
the orthogonal/unitary matrix returned by ?ggsvp).
The second dimension of q must be at least max(1, n).
work(*) is a workspace array.
The dimension of work must be at least max(1, 2n).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The first dimension of b; at least max(1, p).ldb

INTEGER. The first dimension of the array u .ldu

ldu ≥ max(1, m) if jobu = 'U'; ldu ≥ 1 otherwise.

INTEGER. The first dimension of the array v .ldv

ldv ≥ max(1, p) if jobv = 'V'; ldv ≥ 1 otherwise.

INTEGER. The first dimension of the array q .ldq

ldq ≥ max(1, n) if jobq = 'Q'; ldq ≥ 1 otherwise.

REAL for single-precision flavorstola, tolb
DOUBLE PRECISION for double-precision flavors.
tola and tolb are the convergence criteria for the
Jacobi-Kogbetliantz iteration procedure. Generally, they are
the same as used in ?ggsvp:
tola = max(m, n)*|A|*MACHEPS,
tolb = max(p, n)*|B|*MACHEPS.

Output Parameters

On exit, a(n-k+1:n, 1:min(k+l, m)) contains the triangular
matrix R or part of R.

a

On exit, if necessary, b(m-k+1: l, n+m-k-l+1: n)) contains
a part of R.

b

REAL for single-precision flavorsalpha, beta
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max(1, n). Contain the
generalized singular value pairs of A and B:
alpha(1:k) = 1,
beta(1:k) = 0,

and if m-k-l ≥ 0,
alpha(k+1:k+l) = diag(C),

889

LAPACK Routines: Least Squares and Eigenvalue Problems 4

beta(k+1:k+l) = diag(S),
or if m-k-l < 0,
alpha(k+1:m)= C, alpha(m+1:k+l)=0
beta(K+1:M) = S,
beta(m+1:k+l) = 1.
Furthermore, if k+l < n,
alpha(k+l+1:n)= 0 and
beta(k+l+1:n) = 0.

If jobu = 'I', u contains the orthogonal/unitary matrix U.u
If jobu = 'U', u contains the product U1*U.
If jobu = 'N', u is not referenced.

If jobv = 'I', v contains the orthogonal/unitary matrix U.v
If jobv = 'V', v contains the product V1*V.
If jobv = 'N', v is not referenced.

If jobq = 'I', q contains the orthogonal/unitary matrix U.q
If jobq = 'Q', q contains the product Q1*Q.
If jobq = 'N', q is not referenced.

INTEGER. The number of cycles required for convergence.ncycle

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = 1, the procedure does not converge after MAXIT
cycles.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine tgsja interface are the following:

Holds the matrix A of size (m,n).a

Holds the matrix B of size (p,n).b

Holds the matrix U of size (m,m).u

Holds the matrix V of size (p,p).v

Holds the matrix Q of size (n,n).q

Holds the vector of length (n).alpha

890

4 Intel® Math Kernel Library Reference Manual

Holds the vector of length (n).beta

If omitted, this argument is restored based on the presence of argument
u as follows:

jobu

jobu = 'U', if u is present,
jobu = 'N', if u is omitted.
If present, jobu must be equal to 'I' or 'U' and the argument u must
also be present.
Note that there will be an error condition if jobu is present and u
omitted.

If omitted, this argument is restored based on the presence of argument
v as follows:

jobv

jobv = 'V', if v is present,
jobv = 'N', if v is omitted.
If present, jobv must be equal to 'I' or 'V' and the argument v must
also be present.
Note that there will be an error condition if jobv is present and v
omitted.

If omitted, this argument is restored based on the presence of argument
q as follows:

jobq

jobq = 'Q', if q is present,
jobq = 'N', if q is omitted.
If present, jobq must be equal to 'I' or 'Q' and the argument q must
also be present.
Note that there will be an error condition if jobq is present and q
omitted.

Driver Routines
Each of the LAPACK driver routines solves a complete problem. To arrive at the solution, driver
routines typically call a sequence of appropriate computational routines.

Driver routines are described in the following sections :

Linear Least Squares (LLS) Problems

Generalized LLS Problems

Symmetric Eigenproblems

Nonsymmetric Eigenproblems

891

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Singular Value Decomposition

Generalized Symmetric Definite Eigenproblems

Generalized Nonsymmetric Eigenproblems

Linear Least Squares (LLS) Problems

This section describes LAPACK driver routines used for solving linear least-squares problems.
Table 4-8 lists all such routines for Fortran-77 interface. Respective routine names in Fortran-95
interface are without the first symbol (see Routine Naming Conventions).

Table 4-8 Driver Routines for Solving LLS Problems

Operation performedRoutine Name

Uses QR or LQ factorization to solve a overdetermined or underdetermined
linear system with full rank matrix.

?gels

Computes the minimum-norm solution to a linear least squares problem
using a complete orthogonal factorization of A.

?gelsy

Computes the minimum-norm solution to a linear least squares problem
using the singular value decomposition of A.

?gelss

Computes the minimum-norm solution to a linear least squares problem
using the singular value decomposition of A and a divide and conquer
method.

?gelsd

?gels
Uses QR or LQ factorization to solve a
overdetermined or underdetermined linear system
with full rank matrix.

Syntax

Fortran 77:

call sgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

call dgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

call cgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

call zgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

892

4 Intel® Math Kernel Library Reference Manual

Fortran 95:

call gels(a, b [,trans] [,info])

Description

This routine solves overdetermined or underdetermined real/ complex linear systems involving
an m-by-n matrix A, or its transpose/ conjugate-transpose, using a QR or LQ factorization of A.
It is assumed that A has full rank.

The following options are provided:

1. If trans = 'N' and m ≥ n: find the least squares solution of an overdetermined system,
that is, solve the least squares problem

minimize || b - A x ||2

2. If trans = 'N' and m < n: find the minimum norm solution of an underdetermined system
A*X = B.

3. If trans = 'T' or 'C' and m ≥ n: find the minimum norm solution of an undetermined
system AH*X = B.

4. If trans = 'T' or 'C' and m < n: find the least squares solution of an overdetermined
system, that is, solve the least squares problem

minimize || b - AH x ||2

Several right hand side vectors b and solution vectors x can be handled in a single call; they
are stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrh solution
matrix X.

Input Parameters

CHARACTER*1. Must be 'N', 'T', or 'C'.trans
If trans = 'N', the linear system involves matrix A;
If trans = 'T', the linear system involves the transposed
matrix AT (for real flavors only);
If trans = 'C', the linear system involves the
conjugate-transposed matrix AH (for complex flavors only).

INTEGER. The number of rows of the matrix A (m ≥ 0).m

INTEGER. The number of columns of the matrix An

(n ≥ 0).

893

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The number of right-hand sides; the number of

columns in B (nrhs ≥ 0).

nrhs

REAL for sgelsa, b, work
DOUBLE PRECISION for dgels
COMPLEX for cgels
DOUBLE COMPLEX for zgels.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the matrix B of right hand side vectors,
stored columnwise; B is m-by-nrhs if trans = 'N' , or
n-by-nrhs if trans = 'T' or 'C'.
The second dimension of b must be at least max(1, nrhs).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The first dimension of b; must be at least max(1,
m, n).

ldb

INTEGER. The size of the work array; must be at least min
(m, n)+max(1, m, n, nrhs).

lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

On exit, overwritten by the factorization data as follows:a

if m ≥ n, array a contains the details of the QR factorization
of the matrix A as returned by ?geqrf;

if m ≥ n, array a contains the details of the LQ factorization
of the matrix A as returned by ?gelqf.

If info = 0, b overwritten by the solution vectors, stored
columnwise:

b

894

4 Intel® Math Kernel Library Reference Manual

if trans = 'N' and m ≥ n, rows 1 to n of b contain the
least squares solution vectors; the residual sum of squares
for the solution in each column is given by the sum of
squares of modulus of elements n+1 to m in that column;

if trans = 'N' and m ≥ n, rows 1 to n of b contain the
minimum norm solution vectors;
if trans = 'T' or 'C' and m < n, rows 1 to m of b contain
the minimum norm solution vectors; if trans = 'T' or 'C'
and m < n, rows 1 to m of b contain the least squares
solution vectors; the residual sum of squares for the solution
in each column is given by the sum of squares of modulus
of elements m+1 to n in that column.

If info = 0, on exit work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of the triangular
factor of A is zero, so that A does not have full rank; the
least squares solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gels interface are the following:

Holds the matrix A of size (m,n).a

Holds the matrix of size max(m,n)-by-nrhs.b
If trans = 'N', then, on entry, the size of b is m-by-nrhs,
If trans = 'T', then, on entry, the size of b is n-by-nrhs,

Must be 'N' or 'T'. The default value is 'N'.trans

895

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

For better performance, try using lwork = min (m, n)+max(1, m, n, nrhs)*blocksize,
where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?gelsy
Computes the minimum-norm solution to a linear
least squares problem using a complete orthogonal
factorization of A.

Syntax

Fortran 77:

call sgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, info)

call dgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, info)

call cgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, rwork,
info)

call zgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, rwork,
info)

Fortran 95:

call gelsy(a, b [,rank] [,jpvt] [,rcond] [,info])

896

4 Intel® Math Kernel Library Reference Manual

Description

This routine computes the minimum-norm solution to a real/complex linear least squares
problem:

minimize || b - A x ||2

using a complete orthogonal factorization of A. A is an m-by-n matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be handled in a single call; they
are stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrhs solution
matrix X.

The routine first computes a QR factorization with column pivoting:

with R11 defined as the largest leading submatrix whose estimated condition number is less
than 1/rcond. The order of R11, rank, is the effective rank of A. Then, R22 is considered to be
negligible, and R12 is annihilated by orthogonal/unitary transformations from the right, arriving
at the complete orthogonal factorization:

The minimum-norm solution is then

where Q1 consists of the first rank columns of Q. This routine is basically identical to the
original?gelsx except three differences:

897

LAPACK Routines: Least Squares and Eigenvalue Problems 4

• The call to the subroutine ?geqpf has been substituted by the call to the subroutine ?geqp3.
This subroutine is a BLAS-3 version of the QR factorization with column pivoting.

• Matrix B (the right hand side) is updated with BLAS-3.

• The permutation of matrix B (the right hand side) is faster and more simple.

Input Parameters

INTEGER. The number of rows of the matrix A (m ≥ 0).m

INTEGER. The number of columns of the matrix An

(n ≥ 0).

INTEGER. The number of right-hand sides; the number of

columns in B (nrhs ≥ 0).

nrhs

REAL for sgelsya, b, work
DOUBLE PRECISION for dgelsy
COMPLEX for cgelsy
DOUBLE COMPLEX for zgelsy.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the m-by-nrhs right hand side matrix B.
The second dimension of b must be at least max(1, nrhs).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The first dimension of b; must be at least max(1,
m, n).

ldb

INTEGER.jpvt
Array, DIMENSION at least max(1, n).

On entry, if jpvt(i)≠ 0, the i-th column of A is permuted
to the front of A*P, otherwise the i-th column of A is a free
column.

REAL for single-precision flavorsrcond
DOUBLE PRECISION for double-precision flavors.

898

4 Intel® Math Kernel Library Reference Manual

rcond is used to determine the effective rank of A, which is
defined as the order of the largest leading triangular
submatrix R11 in the QR factorization with pivoting of A,
whose estimated condition number < 1/rcond.

INTEGER. The size of the work array.lwork
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla. See
Application Notes for the suggested value of lwork.

REAL for cgelsy DOUBLE PRECISION for zgelsy.
Workspace array, DIMENSION at least max(1, 2n). Used in
complex flavors only.

rwork

Output Parameters

On exit, overwritten by the details of the complete
orthogonal factorization of A.

a

Overwritten by the n-by-nrhs solution matrix X.b

On exit, if jpvt(i)= k, then the ith column of AP was the
k-th column of A.

jpvt

INTEGER. The effective rank of A, that is, the order of the
submatrix R11. This is the same as the order of the submatrix
T11 in the complete orthogonal factorization of A.

rank

INTEGER.info
If info = 0, the execution is successful.

If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gelsy interface are the following:

Holds the matrix A of size (m,n).a

899

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Holds the matrix of size max(m,n)-by-nrhs. On entry, contains the
m-by-nrhs right hand side matrix B, On exit, overwritten by the
n-by-nrhs solution matrix X.

b

Holds the vector of length (n). Default value for this element is jpvt(i)
= 0.

jpvt

Default value for this element is rcond = 100*EPSILON(1.0_WP).rcond

Application Notes

For real flavors:

The unblocked strategy requires that:

lwork ≥ max(mn+3n+1, 2*mn + nrhs),

where mn = min(m, n).

The block algorithm requires that:

lwork ≥ max(mn+2n+nb*(n+1), 2*mn+nb*nrhs),

where nb is an upper bound on the blocksize returned by ilaenv for the routines
sgeqp3/dgeqp3, stzrzf/dtzrzf, stzrqf/dtzrqf, sormqr/dormqr, and sormrz/dormrz.

For complex flavors:

The unblocked strategy requires that:

lwork ≥ mn + max(2*mn, n+1, mn + nrhs),

where mn = min(m, n).

The block algorithm requires that:

lwork < mn + max(2*mn, nb*(n+1), mn+mn*nb, mn+ nb*nrhs),

where nb is an upper bound on the blocksize returned by ilaenv for the routines
cgeqp3/zgeqp3, ctzrzf/ztzrzf, ctzrqf/ztzrqf, cunmqr/zunmqr, and cunmrz/zunmrz.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

900

4 Intel® Math Kernel Library Reference Manual

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?gelss
Computes the minimum-norm solution to a linear
least squares problem using the singular value
decomposition of A.

Syntax

Fortran 77:

call sgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, info)

call dgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, info)

call cgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork,
info)

call zgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork,
info)

Fortran 95:

call gelss(a, b [,rank] [,s] [,rcond] [,info])

Description

This routine computes the minimum norm solution to a real linear least squares problem:

minimize || b - Ax ||2

using the singular value decomposition (SVD) of A. A is an m-by-n matrix which may be
rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a
single call; they are stored as the columns of the m-by-nrhs right hand side matrix B and the
n-by-nrhs solution matrix X. The effective rank of A is determined by treating as zero those
singular values which are less than rcond times the largest singular value.

901

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Input Parameters

INTEGER. The number of rows of the matrix A (m ≥ 0).m

INTEGER. The number of columns of the matrix An

(n ≥ 0).

INTEGER. The number of right-hand sides; the number of
columns in B

nrhs

(nrhs ≥ 0).

REAL for sgelssa, b, work
DOUBLE PRECISION for dgelss
COMPLEX for cgelss
DOUBLE COMPLEX for zgelss.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the m-by-nrhs right hand side matrix B.
The second dimension of b must be at least max(1, nrhs).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The first dimension of b; must be at least max(1,
m, n).

ldb

REAL for single-precision flavorsrcond
DOUBLE PRECISION for double-precision flavors.
rcond is used to determine the effective rank of A. Singular

values s(i) ≤ rcond *s(1) are treated as zero.
If rcond <0, machine precision is used instead.

INTEGER. The size of the work array; lwork≥ 1.lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

REAL for cgelssrwork
DOUBLE PRECISION for zgelss.

902

4 Intel® Math Kernel Library Reference Manual

Workspace array used in complex flavors only. DIMENSION
at least max(1, 5*min(m, n)).

Output Parameters

On exit, the first min(m, n) rows of A are overwritten with
its right singular vectors, stored row-wise.

a

Overwritten by the n-by-nrhs solution matrix X.b

If m≥n and rank = n, the residual sum-of-squares for the
solution in the i-th column is given by the sum of squares
of modulus of elements n+1:m in that column.

REAL for single precision flavorss
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min(m, n)). The singular
values of A in decreasing order. The condition number of A
in the 2-norm is
k2(A) = s(1)/ s(min(m, n)) .

INTEGER. The effective rank of A, that is, the number of
singular values which are greater than rcond *s(1).

rank

If info = 0, on exit, work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then the algorithm for computing the SVD
failed to converge; i indicates the number of off-diagonal
elements of an intermediate bidiagonal form which did not
converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gelss interface are the following:

Holds the matrix A of size (m,n).a

903

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Holds the matrix of size max(m,n)-by-nrhs. On entry, contains the
m-by-nrhs right hand side matrix B, On exit, overwritten by the
n-by-nrhs solution matrix X.

b

Holds the vector of length min(m,n).s

Default value for this element is rcond = 100*EPSILON(1.0_WP).rcond

Application Notes

For real flavors:

lwork ≥ 3*min(m, n)+ max(2*min(m, n), max(m, n), nrhs)

For complex flavors:

lwork ≥ 2*min(m, n)+ max(m, n, nrhs)

For good performance, lwork should generally be larger.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

904

4 Intel® Math Kernel Library Reference Manual

?gelsd
Computes the minimum-norm solution to a linear
least squares problem using the singular value
decomposition of A and a divide and conquer
method.

Syntax

Fortran 77:

call sgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork,
info)

call dgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork,
info)

call cgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork,
iwork, info)

call zgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork,
iwork, info)

Fortran 95:

call gelsd(a, b [,rank] [,s] [,rcond] [,info])

Description

This routine computes the minimum-norm solution to a real linear least squares problem:

minimize || b - Ax ||2

using the singular value decomposition (SVD) of A. A is an m-by-n matrix which may be
rank-deficient.

Several right hand side vectors b and solution vectors x can be handled in a single call; they
are stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrhs solution
matrix X.

The problem is solved in three steps:

1. Reduce the coefficient matrix A to bidiagonal form with Householder transformations, reducing
the original problem into a "bidiagonal least squares problem" (BLS).

2. Solve the BLS using a divide and conquer approach.

3. Apply back all the Householder transformations to solve the original least squares problem.

905

LAPACK Routines: Least Squares and Eigenvalue Problems 4

The effective rank of A is determined by treating as zero those singular values which are less
than rcond times the largest singular value.

The routine uses auxiliary routines ?lals0 and ?lalsa.

Input Parameters

INTEGER. The number of rows of the matrix A (m ≥ 0).m

INTEGER. The number of columns of the matrix An

(n ≥ 0).

INTEGER. The number of right-hand sides; the number of

columns in B (nrhs ≥ 0).

nrhs

REAL for sgelsda, b, work
DOUBLE PRECISION for dgelsd
COMPLEX for cgelsd
DOUBLE COMPLEX for zgelsd.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the m-by-nrhs right hand side matrix B.
The second dimension of b must be at least max(1, nrhs).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The first dimension of b; must be at least max(1,
m, n).

ldb

REAL for single-precision flavorsrcond
DOUBLE PRECISION for double-precision flavors.
rcond is used to determine the effective rank of A. Singular

values s(i) ≤ rcond *s(1) are treated as zero. If rcond

≤ 0, machine precision is used instead.

INTEGER. The size of the work array; lwork ≥ 1.lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the array work
and the minimum sizes of the arrays rwork and iwork, and

906

4 Intel® Math Kernel Library Reference Manual

returns these values as the first entries of the work, rwork
and iwork arrays, and no error message related to lwork
is issued by xerbla.
See Application Notes for the suggested value of lwork.

INTEGER. Workspace array. See Application Notes for the
suggested dimension of iwork.

iwork

REAL for cgelsdrwork
DOUBLE PRECISION for zgelsd.
Workspace array, used in complex flavors only. See
Application Notes for the suggested dimension of rwork.

Output Parameters

On exit, A has been overwritten.a

Overwritten by the n-by-nrhs solution matrix X.b

If m ≥ n and rank = n, the residual sum-of-squares for
the solution in the i-th column is given by the sum of
squares of modulus of elements n+1:m in that column.

REAL for single precision flavorss
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min(m, n)). The singular
values of A in decreasing order. The condition number of A
in the 2-norm is
k2(A) = s(1)/ s(min(m, n)).

INTEGER. The effective rank of A, that is, the number of
singular values which are greater than rcond *s(1).

rank

If info = 0, on exit, work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

If info = 0, on exit, rwork(1) returns the minimum size
of the workspace array iwork required for optimum
performance.

rwork(1)

If info = 0, on exit, iwork(1) returns the minimum size
of the workspace array iwork required for optimum
performance.

iwork(1)

INTEGER.info

907

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then the algorithm for computing the SVD
failed to converge; i indicates the number of off-diagonal
elements of an intermediate bidiagonal form that did not
converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gelsd interface are the following:

Holds the matrix A of size (m,n).a

Holds the matrix of size max(m,n)-by-nrhs. On entry, contains the
m-by-nrhs right hand side matrix B, On exit, overwritten by the
n-by-nrhs solution matrix X.

b

Holds the vector of length min(m,n).s

Default value for this element is rcond = 100*EPSILON(1.0_WP).rcond

Application Notes

The divide and conquer algorithm makes very mild assumptions about floating point arithmetic.
It will work on machines with a guard digit in add/subtract. It could conceivably fail on
hexadecimal or decimal machines without guard digits, but we know of none.

The exact minimum amount of workspace needed depends on m, n and nrhs. The size lwork
of the workspace array work must be as given below.

For real flavors:

If m ≥ n,

lwork ≥ 12n + 2n*smlsiz + 8n*nlvl + n*nrhs + (smlsiz+1)2;

If m < n,

lwork ≥ 12m + 2m*smlsiz + 8m*nlvl + m*nrhs + (smlsiz+1)2;

For complex flavors:

If m ≥ n,

908

4 Intel® Math Kernel Library Reference Manual

lwork< 2n + n*nrhs;

If m < n,

lwork ≥ 2m + m*nrhs;

where smlsiz is returned by ilaenv and is equal to the maximum size of the subproblems at
the bottom of the computation tree (usually about 25), and

nlvl = INT(log2(min(m, n)/(smlsiz+1))) + 1.

For good performance, lwork should generally be larger.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The dimension of the workspace array iwork must be at least

3*min(m, n)*nlvl + 11*min(m, n).

The dimension of the workspace array iwork (for complex flavors) must be at least max(1,
lrwork).

lrwork ≥ 10n + 2n*smlsiz + 8n*nlvl + 3*smlsiz*nrhs + (smlsiz+1)2 if m ≥ n, and

lrwork ≥ 10m + 2m*smlsiz + 8m*nlvl + 3*smlsiz*nrhs + (smlsiz+1)2 if m ≥ n.

Generalized LLS Problems

This section describes LAPACK driver routines used for solving generalized linear least-squares
problems. Table 4-9 lists all such routines for Fortran-77 interface. Respective routine names
in Fortran-95 interface are without the first symbol (see Routine Naming Conventions).

909

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Table 4-9 Driver Routines for Solving Generalized LLS Problems

Operation performedRoutine Name

Solves the linear equality-constrained least squares problem using a
generalized RQ factorization.

?gglse

Solves a general Gauss-Markov linear model problem using a generalized
QR factorization.

?ggglm

?gglse
Solves the linear equality-constrained least squares
problem using a generalized RQ factorization.

Syntax

Fortran 77:

call sgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

call dgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

call cgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

call zgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

Fortran 95:

call gglse(a, b, c, d, x [,info])

Description

This routine solves the linear equality-constrained least squares (LSE) problem:

minimize || c - A x ||2 subject to B x = d

where A is an m-by-n matrix, B is a p-by-n matrix, c is a given m-vector, and d is a given p-vector.

It is assumed that p ≤ n ≤ m+p, and

910

4 Intel® Math Kernel Library Reference Manual

These conditions ensure that the LSE problem has a unique solution, which is obtained using
a generalized RQ factorization of the matrices (B, A) given by

B=(0 R)*Q, A=Z*T*Q

Input Parameters

INTEGER. The number of rows of the matrix A (m ≥ 0).m

INTEGER. The number of columns of the matrices A and B

(n ≥ 0).

n

INTEGER. The number of rows of the matrix Bp

(0 ≤ p ≤ n ≤ m+p).

REAL for sgglsea, b, c, d, work
DOUBLE PRECISION for dgglse
COMPLEX for cgglse
DOUBLE COMPLEX for zgglse.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).
c(*), dimension at least max(1, m), contains the right hand
side vector for the least squares part of the LSE problem.
d(*), dimension at least max(1, p), contains the right hand
side vector for the constrained equation.
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The first dimension of b; at least max(1, p).ldb

INTEGER. The size of the work array;lwork

lwork ≥ max(1, m+n+p).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

911

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters

REAL for sgglsex
DOUBLE PRECISION for dgglse
COMPLEX for cgglse
DOUBLE COMPLEX for zgglse.
Array, DIMENSION at least max(1, n). On exit, contains the
solution of the LSE problem.

On exit, the elements on and above the diagonal of the
array contain the min(m,n)-by-n upper trapezoidal matrix
T.

a

On exit, the upper triangle of the subarray b(1:p,
n-p+1:n) contains the p-by-p upper triangular matrix R.

b

On exit, d is destroyed.d

On exit, the residual sum-of-squares for the solution is given
by the sum of squares of elements n-p+1 to m of vector c.

c

If info = 0, on exit, work(1) contains the minimum value
of lwork required for optimum performance. Use this lwork
for subsequent runs.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = 1, the upper triangular factor R associated with
B in the generalized RQ factorization of the pair (B, A) is
singular, so that rank(B) < P; the least squares solution
could not be computed.
If info = 2, the (n-p)-by-(n-p) part of the upper
trapezoidal factor T associated with A in the generalized RQ
factorization of the pair (B, A) is singular, so that

; the least squares solution could not be computed.

912

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gglse interface are the following:

Holds the matrix A of size (m,n).a

Holds the matrix B of size (p,n).b

Holds the vector of length (m).c

Holds the vector of length (p).d

Holds the vector of length (n).x

Application Notes

For optimum performance, use

lwork ≥ p + min(m, n) + max(m, n)*nb,

where nb is an upper bound for the optimal blocksizes for ?geqrf, ?gerqf, ?ormqr/?unmqr
and ?ormrq/?unmrq.

You may set lwork to -1. The routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

913

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?ggglm
Solves a general Gauss-Markov linear model
problem using a generalized QR factorization.

Syntax

Fortran 77:

call sggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

call dggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

call cggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

call zggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

Fortran 95:

call ggglm(a, b, d, x, y [,info])

Description

This routine solves a general Gauss-Markov linear model (GLM) problem:

minimizex || y ||2 subject to d = Ax + By

where A is an n-by-m matrix, B is an n-by-p matrix, and d is a given n-vector. It is assumed

that m ≤ n ≤ m+p, and rank(A) = m and rank(A B) = n.

Under these assumptions, the constrained equation is always consistent, and there is a unique
solution x and a minimal 2-norm solution y, which is obtained using a generalized QR factorization
of the matrices (A, B) given by

In particular, if matrix B is square nonsingular, then the problem GLM is equivalent to the
following weighted linear least squares problem

minimizex || B-1(d-Ax)||2.

914

4 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. The number of rows of the matrices A and B (n

≥ 0).

n

INTEGER. The number of columns in A (m ≥ 0).m

INTEGER. The number of columns in B (p ≥ n - m).p

REAL for sggglma, b, d, work
DOUBLE PRECISION for dggglm
COMPLEX for cggglm
DOUBLE COMPLEX for zggglm.
Arrays:
a(lda,*) contains the n-by-m matrix A.
The second dimension of a must be at least max(1, m).
b(ldb,*) contains the n-by-p matrix B.
The second dimension of b must be at least max(1, p).
d(*), dimension at least max(1, n), contains the left hand
side of the GLM equation.
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

INTEGER. The size of the work array; lwork ≥ max(1,
n+m+p).

lwork

If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

REAL for sggglmx, y
DOUBLE PRECISION for dggglm
COMPLEX for cggglm
DOUBLE COMPLEX for zggglm.
Arrays x(*), y(*). DIMENSION at least max(1, m) for x and
at least max(1, p) for y.

915

LAPACK Routines: Least Squares and Eigenvalue Problems 4

On exit, x and y are the solutions of the GLM problem.

On exit, the upper triangular part of the array a contains
the m-by-m upper triangular matrix R.

a

On exit, if n ≤ p, the upper triangle of the subarray
b(1:n,p-n+1:p) contains the n-by-n upper triangular
matrix T; if n > p, the elements on and above the (n-p)-th
subdiagonal contain the n-by-p upper trapezoidal matrix T.

b

On exit, d is destroyedd

If info = 0, on exit, work(1) contains the minimum value
of lwork required for optimum performance.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = 1, the upper triangular factor R associated with
A in the generalized QR factorization of the pair (A, B) is
singular, so that rank(A) < m; the least squares solution
could not be computed.
If info = 2, the bottom (n-m)-by-(n-m) part of the upper
trapezoidal factor T associated with B in the generalized QR
factorization of the pair (A, B) is singular, so that rank(A
B) < n; the least squares solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ggglm interface are the following:

Holds the matrix A of size (n,m).a

Holds the matrix B of size (n,p).b

Holds the vector of length (n).d

Holds the vector of length (m).x

Holds the vector of length (p).y

916

4 Intel® Math Kernel Library Reference Manual

Application Notes

For optimum performance, use

lwork ≥ m + min(n, p) + max(n, p)*nb,

where nb is an upper bound for the optimal blocksizes for ?geqrf, ?gerqf, ?ormqr/?unmqr
and ?ormrq/?unmrq.

You may set lwork to -1. The routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

Symmetric Eigenproblems

This section describes LAPACK driver routines used for solving symmetric eigenvalue problems.
See also computational routines computational routines that can be called to solve these
problems. Table 4-10 lists all such driver routines for Fortran-77 interface. Respective routine
names in Fortran-95 interface are without the first symbol (see Routine Naming Conventions).

Table 4-10 Driver Routines for Solving Symmetric Eigenproblems

Operation performedRoutine Name

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
/ Hermitian matrix.

?syev/?heev

Computes all eigenvalues and (optionally) all eigenvectors of a real
symmetric / Hermitian matrix using divide and conquer algorithm.

?syevd/?heevd

Computes selected eigenvalues and, optionally, eigenvectors of a
symmetric / Hermitian matrix.

?syevx/?heevx

Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric / Hermitian matrix using the Relatively Robust Representations.

?syevr/?heevr

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
/ Hermitian matrix in packed storage.

?spev/?hpev

917

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Operation performedRoutine Name

Uses divide and conquer algorithm to compute all eigenvalues and
(optionally) all eigenvectors of a real symmetric / Hermitian matrix held
in packed storage.

?spevd/?hpevd

Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric / Hermitian matrix in packed storage.

?spevx/?hpevx

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
/ Hermitian band matrix.

?sbev /?hbev

Computes all eigenvalues and (optionally) all eigenvectors of a real
symmetric / Hermitian band matrix using divide and conquer algorithm.

?sbevd/?hbevd

Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric / Hermitian band matrix.

?sbevx/?hbevx

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix.

?stev

Computes all eigenvalues and (optionally) all eigenvectors of a real
symmetric tridiagonal matrix using divide and conquer algorithm.

?stevd

Computes selected eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix.

?stevx

Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix using the Relatively Robust Representations.

?stevr

?syev
Computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix.

Syntax

Fortran 77:

call ssyev(jobz, uplo, n, a, lda, w, work, lwork, info)

call dsyev(jobz, uplo, n, a, lda, w, work, lwork, info)

918

4 Intel® Math Kernel Library Reference Manual

Fortran 95:

call syev(a, w [,jobz] [,uplo] [,info])

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix
A.

Note that for most cases of real symmetric eigenvalue problems the default choice should be
?syevr function as its underlying algorithm is faster and uses less workspace.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for ssyeva, work
DOUBLE PRECISION for dsyev
Arrays:
a(lda,*) is an array containing either upper or lower
triangular part of the symmetric matrix A, as specified by
uplo.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a.lda
Must be at least max(1, n).

INTEGER.lwork
The dimension of the array work.

Constraint: lwork ≥ max(1, 3n-1).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.

919

LAPACK Routines: Least Squares and Eigenvalue Problems 4

See Application Notes for the suggested value of lwork.

Output Parameters

On exit, if jobz = 'V', then if info = 0, array a contains
the orthonormal eigenvectors of the matrix A.

a

If jobz = 'N', then on exit the lower triangle
(if uplo = 'L') or the upper triangle (if uplo = 'U') of
A, including the diagonal, is overwritten.

REAL for ssyevw
DOUBLE PRECISION for dsyev
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in
ascending order.

On exit, if lwork > 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine syev interface are the following:

Holds the matrix A of size (n, n).a

Holds the vector of length (n).w

Must be 'N' or 'V'. The default value is 'N'.job

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For optimum performance use

920

4 Intel® Math Kernel Library Reference Manual

lwork ≥ (nb+2)*n,

where nb is the blocksize for ?sytrd returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?heev
Computes all eigenvalues and, optionally,
eigenvectors of a Hermitian matrix.

Syntax

Fortran 77:

call cheev(jobz, uplo, n, a, lda, w, work, lwork, rwork, info)

call zheev(jobz, uplo, n, a, lda, w, work, lwork, rwork, info)

Fortran 95:

call heev(a, w [,jobz] [,uplo] [,info])

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix A.

Note that for most cases of complex Hermitian eigenvalue problems the default choice should
be ?heevr function as its underlying algorithm is faster and uses less workspace.

921

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

COMPLEX for cheeva, work
DOUBLE COMPLEX for zheev
Arrays:
a(lda,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A, as specified by
uplo.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a. Must be at
least max(1, n).

lda

INTEGER.lwork
The dimension of the array work. C

onstraint: lwork ≥ max(1, 2n-1).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

REAL for cheevrwork
DOUBLE PRECISION for zheev.
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

On exit, if jobz = 'V', then if info = 0, array a contains
the orthonormal eigenvectors of the matrix A.

a

If jobz = 'N', then on exit the lower triangle

922

4 Intel® Math Kernel Library Reference Manual

(if uplo = 'L') or the upper triangle (if uplo = 'U') of
A, including the diagonal, is overwritten.

REAL for cheevw
DOUBLE PRECISION for zheev
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in
ascending order.

On exit, if lwork > 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine heev interface are the following:

Holds the matrix A of size (n, n).a

Holds the vector of length (n).w

Must be 'N' or 'V'. The default value is 'N'.job

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For optimum performance use

lwork ≥ (nb+1)*n,

where nb is the blocksize for ?hetrd returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

923

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?syevd
Computes all eigenvalues and (optionally) all
eigenvectors of a real symmetric matrix using
divide and conquer algorithm.

Syntax

Fortran 77:

call ssyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)

call dsyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)

Fortran 95:

call syevd(a, w [,jobz] [,uplo] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric

matrix A. In other words, it can compute the spectral factorization of A as: A = ZΛZT.

Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
orthogonal matrix whose columns are the eigenvectors zi. Thus,

Azi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to
compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses
the Pal-Walker-Kahan variant of the QL or QR algorithm.

924

4 Intel® Math Kernel Library Reference Manual

Note that for most cases of real symmetric eigenvalue problems the default choice should be
?syevr function as its underlying algorithm is faster and uses less workspace. ?syevd requires
more workspace but is faster in some cases, especially for large matrices.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for ssyevda
DOUBLE PRECISION for dsyevd
Array, DIMENSION (lda, *).
a(lda,*) is an array containing either upper or lower
triangular part of the symmetric matrix A, as specified by
uplo.
The second dimension of a must be at least max(1, n).

INTEGER. The first dimension of the array a.lda
Must be at least max(1, n).

REAL for ssyevdwork
DOUBLE PRECISION for dsyevd.
Workspace array, DIMENSION at least lwork.

INTEGER.lwork
The dimension of the array work.
Constraints:

if n ≤ 1, then lwork ≥ 1;

if jobz = 'N' and n > 1, then lwork ≥ 2*n + 1;

if jobz = 'V' and n > 1, then lwork ≥ 2*n2+ 6*n + 1.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the work and
iwork arrays, returns these values as the first entries of the

925

LAPACK Routines: Least Squares and Eigenvalue Problems 4

work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

INTEGER.iwork
Workspace array, its dimension max(1, liwork).

INTEGER.liwork
The dimension of the array iwork.
Constraints:

if n ≤ 1, then liwork ≥ 1;

if jobz = 'N' and n > 1, then liwork ≥ 1;

if jobz = 'V' and n > 1, then liwork ≥ 5*n + 3.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

Output Parameters

REAL for ssyevdw
DOUBLE PRECISION for dsyevd
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in
ascending order. See also info.

If jobz = 'V', then on exit this array is overwritten by the
orthogonal matrix Z which contains the eigenvectors of A.

a

On exit, if lwork > 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if liwork > 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.

926

4 Intel® Math Kernel Library Reference Manual

If info = i, then the algorithm failed to converge; i
indicates the number of off-diagonal elements of an
intermediate tridiagonal form which did not converge to
zero.
If info = i, and jobz = 'V', then the algorithm failed to
compute an eigenvalue while working on the submatrix lying
in rows and columns info/(n+1) through mod(info,n+1).
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine syevd interface are the following:

Holds the matrix A of size (n, n).a

Holds the vector of length (n).w

Must be 'N' or 'V'. The default value is 'N'.jobz

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 =

O(ε) ||T||2, where ε is the machine precision.

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work, iwork). This operation is called
a workspace query.

927

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

The complex analogue of this routine is ?heevd

?heevd
Computes all eigenvalues and (optionally) all
eigenvectors of a complex Hermitian matrix using
divide and conquer algorithm.

Syntax

Fortran 77:

call cheevd(jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork,
liwork, info)

call zheevd(jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork,
liwork, info)

Fortran 95:

call heevd(a, w [,job] [,uplo] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex

Hermitian matrix A. In other words, it can compute the spectral factorization of A as: A = ZΛZH.

Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
(complex) unitary matrix whose columns are the eigenvectors zi. Thus,

Azi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to
compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses
the Pal-Walker-Kahan variant of the QL or QR algorithm.

Note that for most cases of complex Hermetian eigenvalue problems the default choice should
be ?heevr function as its underlying algorithm is faster and uses less workspace. ?heevd
requires more workspace but is faster in some cases, especially for large matrices.

928

4 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

COMPLEX for cheevda
DOUBLE COMPLEX for zheevd
Array, DIMENSION (lda, *).
a(lda,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A, as specified by
uplo.
The second dimension of a must be at least max(1, n).

INTEGER. The first dimension of the array a. Must be at
least max(1, n).

lda

COMPLEX for cheevdwork
DOUBLE COMPLEX for zheevd.
Workspace array, DIMENSION max(1, lwork).

INTEGER.lwork
The dimension of the array work. Constraints:

if n ≤ 1, then lwork ≥ 1;

if jobz = 'N' and n > 1, then lwork ≥ n+1;

if jobz = 'V' and n > 1, then lwork ≥ n2+2*n.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

REAL for cheevdrwork
DOUBLE PRECISION for zheevd

929

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Workspace array, DIMENSION at least lrwork.

INTEGER.lrwork
The dimension of the array rwork. Constraints:

if n ≤ 1, then lrwork ≥ 1;

if job = 'N' and n > 1, then lrwork ≥ n;

if job = 'V' and n > 1, then lrwork ≥ 2*n2+ 5*n + 1.
If lrwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

INTEGER. Workspace array, its dimension max(1, liwork).iwork

INTEGER.liwork

The dimension of the array iwork. Constraints: if n ≤ 1, then

liwork ≥ 1;

if jobz = 'N' and n > 1, then liwork ≥ 1;

if jobz = 'V' and n > 1, then liwork ≥ 5*n+3.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

Output Parameters

REAL for cheevdw
DOUBLE PRECISION for zheevd
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in
ascending order. See also info.

If jobz = 'V', then on exit this array is overwritten by the
unitary matrix Z which contains the eigenvectors of A.

a

930

4 Intel® Math Kernel Library Reference Manual

On exit, if lwork > 0, then the real part of work(1) returns
the required minimal size of lwork.

work(1)

On exit, if lrwork > 0, then rwork(1) returns the required
minimal size of lrwork.

rwork(1)

On exit, if liwork > 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = i, and jobz = 'N', then the algorithm failed to
converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
if info = i, and jobz = 'V', then the algorithm failed to
compute an eigenvalue while working on the submatrix lying
in rows and columns info/(n+1) through mod(info, n+1).
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine heevd interface are the following:

Holds the matrix A of size (n, n).a

Holds the vector of length (n).w

Must be 'N' or 'V'. The default value is 'N'.jobz

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix A + E such that ||E||2 =

O(ε) ||A||2, where ε is the machine precision.

If you are in doubt how much workspace to supply, use a generous value of lwork (liwork or
lrwork) for the first run or set lwork = -1 (liwork = -1, lrwork = -1).

931

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If you choose the first option and set any of admissible lwork (liwork or lrwork) sizes, which
is no less than the minimal value described, the routine completes the task, though probably
not so fast as with a recommended workspace, and provides the recommended workspace in
the first element of the corresponding array (work, iwork, rwork) on exit. Use this value
(work(1), iwork(1), rwork(1)) for subsequent runs.

If you set lwork = -1 (liwork = -1, lrwork = -1), the routine returns immediately and
provides the recommended workspace in the first element of the corresponding array (work,
iwork, rwork). This operation is called a workspace query.

Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not
-1, the routine returns immediately with an error exit and does not provide any information on
the recommended workspace.

The real analogue of this routine is ?syevd. See also ?hpevd for matrices held in packed storage,
and ?hbevd for banded matrices.

?syevx
Computes selected eigenvalues and, optionally,
eigenvectors of a symmetric matrix.

Syntax

Fortran 77:

call ssyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z,
ldz, work, lwork, iwork, ifail, info)

call dsyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z,
ldz, work, lwork, iwork, ifail, info)

Fortran 95:

call syevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.

932

4 Intel® Math Kernel Library Reference Manual

Note that for most cases of real symmetric eigenvalue problems the default choice should be
?syevr function as its underlying algorithm is faster and uses less workspace. ?syevx is faster
for a few selected eigenvalues.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'A', 'V', or 'I'.range
If range = 'A', all eigenvalues will be found.
If range = 'V', all eigenvalues in the half-open interval
(vl, vu] will be found.
If range = 'I', the eigenvalues with indices il through
iu will be found.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for ssyevxa, work
DOUBLE PRECISION for dsyevx.
Arrays:
a(lda,*) is an array containing either upper or lower
triangular part of the symmetric matrix A, as specified by
uplo.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a. Must be at
least max(1, n).

lda

REAL for ssyevxvl, vu
DOUBLE PRECISION for dsyevx.
If range = 'V', the lower and upper bounds of the interval

to be searched for eigenvalues; vl ≤ vu. Not referenced if
range = 'A'or 'I'.

INTEGER.il, iu

933

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If range = 'I', the indices of the smallest and largest
eigenvalues to be returned.

Constraints: 1 ≤ il ≤ iu ≤ n, if n > 0;
il = 1 and iu = 0 , if n = 0.
Not referenced if range = 'A'or 'V'.

REAL for ssyevxabstol
DOUBLE PRECISION for dsyevx.
The absolute error tolerance for the eigenvalues. See
Application Notes for more information.

INTEGER. The first dimension of the output array z; ldz ≥
1.

ldz

If jobz = 'V', then ldz ≥ max(1, n).

INTEGER.lwork
The dimension of the array work.

If n ≤ 1 then lwork ≥ 1, otherwise lwork=8*n.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

INTEGER. Workspace array, DIMENSION at least max(1, 5n).iwork

Output Parameters

On exit, the lower triangle (if uplo = 'L') or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

a

INTEGER. The total number of eigenvalues found;m

0 ≤ m ≤ n.
If range = 'A', m = n, and if range = 'I', m = iu-il+1.

REAL for ssyevxw
DOUBLE PRECISION for dsyevx
Array, DIMENSION at least max(1, n). The first m elements
contain the selected eigenvalues of the matrix A in ascending
order.

934

4 Intel® Math Kernel Library Reference Manual

REAL for ssyevxz
DOUBLE PRECISION for dsyevx.
Array z(ldz,*) contains eigenvectors.
The second dimension of z must be at least max(1, m).
If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
If jobz = 'N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of
m is not known in advance and an upper bound must be
used.

On exit, if lwork > 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.ifail
Array, DIMENSION at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, then ifail contains the indices
of the eigenvectors that failed to converge.
If jobz = 'V', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their
indices are stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine syevx interface are the following:

Holds the matrix A of size (n, n).a

935

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Holds the vector of length (n).w

Holds the matrix A of size (m, n).a

Holds the vector of length (n).ifail

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows: jobz
= 'V', if z is present, jobz = 'N', if z is omitted Note that there will
be an error condition if ifail is present and z is omitted.

jobz

Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present, range = 'I',
if one of or both il and iu are present, range = 'A', if none of vl,

range

vu, il, iu is present, Note that there will be an error condition if one
of or both vl and vu are present and at the same time one of or both
il and iu are present.

Application Notes

For optimum performance use lwork ≥ (nb+3)*n, where nb is the maximum of the blocksize
for ?sytrd and ?ormtr returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

936

4 Intel® Math Kernel Library Reference Manual

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|), where ε is the machine
precision.

If abstol is less than or equal to zero, then ε*|T| is used in its place, where|T| is the 1-norm
of the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed
most accurately when abstol is set to twice the underflow threshold 2*slamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*slamch('S').

?heevx
Computes selected eigenvalues and, optionally,
eigenvectors of a Hermitian matrix.

Syntax

Fortran 77:

call cheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z,
ldz, work, lwork, rwork, iwork, ifail, info)

call zheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z,
ldz, work, lwork, rwork, iwork, ifail, info)

Fortran 95:

call heevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.

Note that for most cases of complex Hermetian eigenvalue problems the default choice should
be ?heevr function as its underlying algorithm is faster and uses less workspace. ?heevx is
faster for a few selected eigenvalues.

937

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'A', 'V', or 'I'.range
If range = 'A', all eigenvalues will be found.
If range = 'V', all eigenvalues in the half-open interval
(vl, vu] will be found.
If range = 'I', the eigenvalues with indices il through
iu will be found.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

INTEGER. The order of the matrix A (n < 0).n

COMPLEX for cheevxa, work
DOUBLE COMPLEX for zheevx.
Arrays:
a(lda,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A, as specified by
uplo.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a. Must be at
least max(1, n).

lda

REAL for cheevxvl, vu
DOUBLE PRECISION for zheevx.
If range = 'V', the lower and upper bounds of the interval

to be searched for eigenvalues; vl ≤ vu. Not referenced if
range = 'A'or 'I'.

INTEGER.il, iu
If range = 'I', the indices of the smallest and largest
eigenvalues to be returned. Constraints:

1 ≤ il ≤ iu ≤ n, if n > 0;il = 1 and iu = 0, if n = 0. Not
referenced if range = 'A'or 'V'.

938

4 Intel® Math Kernel Library Reference Manual

REAL for cheevxabstol
DOUBLE PRECISION for zheevx. The absolute error tolerance
for the eigenvalues. See Application Notes for more
information.

INTEGER. The first dimension of the output array z; ldz ≥
1.

ldz

If jobz = 'V', then ldz ≥max(1, n).

INTEGER.lwork
The dimension of the array work.

lwork ≥ 1 if n≤1; otherwise at least 2*n.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

REAL for cheevxrwork
DOUBLE PRECISION for zheevx.
Workspace array, DIMENSION at least max(1, 7n).

INTEGER. Workspace array, DIMENSION at least max(1, 5n).iwork

Output Parameters

On exit, the lower triangle (if uplo = 'L') or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

a

INTEGER. The total number of eigenvalues found;0 ≤ m ≤ n.m

If range = 'A', m = n, and if range = 'I', m = iu-il+1.

REAL for cheevxw
DOUBLE PRECISION for zheevx
Array, DIMENSION at least max(1, n). The first m elements
contain the selected eigenvalues of the matrix A in ascending
order.

COMPLEX for cheevxz
DOUBLE COMPLEX for zheevx.
Array z(ldz,*) contains eigenvectors.
The second dimension of z must be at least max(1, m).

939

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
If jobz = 'N', then z is not referenced. Note: you must
ensure that at least max(1,m) columns are supplied in the
array z; if range = 'V', the exact value of m is not known
in advance and an upper bound must be used.

On exit, if lwork > 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.ifail
Array, DIMENSION at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, then ifail contains the indices
of the eigenvectors that failed to converge.
If jobz = 'V', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their
indices are stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine heevx interface are the following:

Holds the matrix A of size (n, n).a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Holds the vector of length (n).ifail

Must be 'U' or 'L'. The default value is 'U'.uplo

940

4 Intel® Math Kernel Library Reference Manual

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows: jobz
= 'V', if z is present, jobz = 'N', if z is omitted Note that there will
be an error condition if ifail is present and z is omitted.

jobz

Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present, range = 'I',
if one of or both il and iu are present, range = 'A', if none of vl,

range

vu, il, iu is present, Note that there will be an error condition if one
of or both vl and vu are present and at the same time one of or both
il and iu are present.

Application Notes

For optimum performance use lwork ≥ (nb+1)*n, where nb is the maximum of the blocksize
for ?hetrd and ?unmtr returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|) , where ε is the machine
precision.

941

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If abstol is less than or equal to zero, then ε*|T| will be used in its place, where |T| is the
1-norm of the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will
be computed most accurately when abstol is set to twice the underflow threshold 2*slamch('S'),
not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*slamch('S').

?syevr
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix using the
Relatively Robust Representations.

Syntax

Fortran 77:

call ssyevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

call dsyevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

Fortran 95:

call syevr(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.

The routine first reduces the matrix A to tridiagonal form T with a call to ?sytrd. Then, whenever
possible, ?syevr calls ?stemr to compute the eigenspectrum using Relatively Robust
Representations. ?stemr computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various “good” L*D*LT representations (also known as Relatively
Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More
specifically, the various steps of the algorithm are as follows. For the each unreduced block of
T,

942

4 Intel® Math Kernel Library Reference Manual

a. Compute T - σ*I = L*D*LT, so that L and D define all the wanted eigenvalues to high
relative accuracy. This means that small relative changes in the entries of D and L cause
only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored)
representation of the tridiagonal matrix T does not have this property in general;

b. Compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm
attains full accuracy of the computed eigenvalues only right before the corresponding vectors
have to be computed, see steps c) and d);

c. For each cluster of close eigenvalues, select a new shift close to the cluster, find a new
factorization, and refine the shifted eigenvalues to suitable accuracy;

d. For each eigenvalue with a large enough relative separation compute the corresponding
eigenvector by forming a rank revealing twisted factorization. Go back to c) for any clusters
that remain.

The desired accuracy of the output can be specified by the input parameter abstol.

The routine ?syevr calls ?stemr when the full spectrum is requested on machines that conform
to the IEEE-754 floating point standard. ?syevr calls ?stebz and ?stein on non-IEEE machines
and when partial spectrum requests are made.

Note that ?syevr is preferable for most cases of real symmetric eigenvalue problems as its
underlying algorithm is fast and uses less workspace.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues
lambda(i) in the half-open interval:

vl< lambda(i) ≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.
For range = 'V'or 'I' and iu-il < n-1, sstebz/dstebz
and sstein/dstein are called.

CHARACTER*1. Must be 'U' or 'L'.uplo

943

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for ssyevra, work
DOUBLE PRECISION for dsyevr.
Arrays:
a(lda,*) is an array containing either upper or lower
triangular part of the symmetric matrix A, as specified by
uplo.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a. Must be at
least max(1, n).

lda

REAL for ssyevrvl, vu
DOUBLE PRECISION for dsyevr.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint:

1 ≤ il ≤ iu ≤ n, if n > 0;
il=1 and iu=0, if n = 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for ssyevrabstol
DOUBLE PRECISION for dsyevr. The absolute error tolerance
to which each eigenvalue/eigenvector is required.
If jobz = 'V', the eigenvalues and eigenvectors output
have residual norms bounded by abstol, and the dot
products between different eigenvectors are bounded by
abstol.

944

4 Intel® Math Kernel Library Reference Manual

If abstol < n *eps*|T|, then n *eps*|T| will be used
in its place, where eps is the machine precision, and
|T| is the 1-norm of the matrix T. The eigenvalues
are computed to an accuracy of eps*|T| irrespective
of abstol.
If high relative accuracy is important, set abstol to
?lamch('S').

INTEGER. The leading dimension of the output array z.ldz
Constraints:

ldz ≥ 1 if jobz = 'N';
ldz < max(1, n) if jobz = 'V'.

INTEGER.lwork
The dimension of the array work.

Constraint: lwork ≥ max(1, 26n).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

INTEGER. Workspace array, its dimension max(1, liwork).iwork

INTEGER.liwork

The dimension of the array iwork, lwork ≥ max(1, 10n).
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the iwork array,
returns this value as the first entry of the iwork array, and
no error message related to liwork is issued by xerbla.

Output Parameters

On exit, the lower triangle (if uplo = 'L') or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

a

INTEGER. The total number of eigenvalues found, 0 ≤ m ≤
n.

m

If range = 'A', m = n, and if range = 'I', m = iu-il+1.

REAL for ssyevrw, z

945

LAPACK Routines: Least Squares and Eigenvalue Problems 4

DOUBLE PRECISION for dsyevr.
Arrays:
w(*), DIMENSION at least max(1, n), contains the selected
eigenvalues in ascending order, stored in w(1) to w(m);
z(ldz, *), the second dimension of z must be at least
max(1, m).
If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
If jobz = 'N', then z is not referenced. Note that you must
ensure that at least max(1, m) columns are supplied in the
array z ; if range = 'V', the exact value of m is not known
in advance and an upper bound must be used.

INTEGER.isuppz
Array, DIMENSION at least 2 *max(1, m).
The support of the eigenvectors in z, i.e., the indices
indicating the nonzero elements in z. The i-th eigenvector
is nonzero only in elements isuppz(2i-1) through isuppz(
2i). Currently is not implemented, nor referenced.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if info = 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, an internal error has occurred.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine syevr interface are the following:

Holds the matrix A of size (n, n).a

Holds the vector of length (n).w

946

4 Intel® Math Kernel Library Reference Manual

Holds the matrix Z of size (n, n), where the values n and m are
significant.

z

Holds the vector of length (2*m), where the values (2*m) are significant.isuppz

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows: jobz
= 'V', if z is present, jobz = 'N', if z is omitted Note that there will
be an error condition if isuppz is present and z is omitted.

jobz

Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present, range = 'I',
if one of or both il and iu are present, range = 'A', if none of vl,

range

vu, il, iu is present, Note that there will be an error condition if one
of or both vl and vu are present and at the same time one of or both
il and iu are present.

Application Notes

For optimum performance use lwork ≥ (nb+6)*n, where nb is the maximum of the blocksize
for ?sytrd and ?ormtr returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work, iwork). This operation is called
a workspace query.

947

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a
floating point exception in environments which do not handle NaNs and infinities in the IEEE
standard default manner.

?heevr
Computes selected eigenvalues and, optionally,
eigenvectors of a Hermitian matrix using the
Relatively Robust Representations.

Syntax

Fortran 77:

call cheevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, rwork, lrwork, iwork, liwork, info)

call zheevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, rwork, lrwork, iwork, liwork, info)

Fortran 95:

call heevr(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.

THe routine first reduces the matrix A to tridiagonal form T with a call to ?HETRD. Then,
whenever possible, ?heevr calls ?stegr to compute the eigenspectrum using Relatively Robust
Representations. ?stegr computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various “good” L*D*LT representations (also known as Relatively
Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More
specifically, the various steps of the algorithm are as follows. For each unreduced block
(submatrix) of T,

948

4 Intel® Math Kernel Library Reference Manual

a. Compute T - σ*I = L*D* LT, so that L and D define all the wanted eigenvalues to high
relative accuracy. This means that small relative changes in the entries of D and L cause
only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored)
representation of the tridiagonal matrix T does not have this property in general;

b. compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm
attains full accuracy of the computed eigenvalues only right before the corresponding vectors
have to be computed, see steps c) and d);

c. for each cluster of close eigenvalues, select a new shift close to the cluster, find a new
factorization, and refine the shifted eigenvalues to suitable accuracy;

d. For each eigenvalue with a large enough relative separation compute the corresponding
eigenvector by forming a rank revealing twisted factorization. Go back to the step c) for any
clusters that remain.

The desired accuracy of the output can be specified by the input parameter abstol.

The routine ?heevr calls ?stemr when the full spectrum is requested on machines which
conform to the IEEE-754 floating point standard, or ?stebz and ?stein on non-IEEE machines
and when partial spectrum requests are made.

Note that the routine ?heevr is preferable for most cases of complex Hermitian eigenvalue
problems as its underlying algorithm is fast and uses less workspace.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If job = 'N', then only eigenvalues are computed.
If job = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues

lambda(i) in the half-open interval: vl< lambda(i) ≤
vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.
For range = 'V'or 'I', sstebz/dstebz and
cstein/zstein are called.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', a stores the upper triangular part of A.

949

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If uplo = 'L', a stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

COMPLEX for cheevra, work
DOUBLE COMPLEX for zheevr.
Arrays:
a(lda,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A, as specified by
uplo.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a.lda
Must be at least max(1, n).

REAL for cheevrvl, vu
DOUBLE PRECISION for zheevr.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0 if
n = 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for cheevrabstol
DOUBLE PRECISION for zheevr.
The absolute error tolerance to which each
eigenvalue/eigenvector is required.
If jobz = 'V', the eigenvalues and eigenvectors output
have residual norms bounded by abstol, and the dot
products between different eigenvectors are bounded by
abstol.
If abstol < n *eps*|T|, then n *eps*|T| will be used
in its place, where eps is the machine precision, and |T| is
the 1-norm of the matrix T. The eigenvalues are computed
to an accuracy of eps*|T| irrespective of abstol.

950

4 Intel® Math Kernel Library Reference Manual

If high relative accuracy is important, set abstol to
?lamch('S').

INTEGER. The leading dimension of the output array z.
Constraints:

ldz

ldz ≥ 1 if jobz = 'N';

ldz ≥ max(1, n) if jobz = 'V'.

INTEGER.lwork
The dimension of the array work.

Constraint: lwork ≥ max(1, 2n).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

REAL for cheevrrwork
DOUBLE PRECISION for zheevr.
Workspace array, DIMENSION max(1, lwork).

INTEGER.lrwork
The dimension of the array rwork;

lwork ≥ max(1, 24n).
If lrwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.

INTEGER. Workspace array, its dimension max(1, liwork).iwork

INTEGER.liwork
The dimension of the array iwork,

lwork ≥ max(1, 10n).
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.

951

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters

On exit, the lower triangle (if uplo = 'L') or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

a

INTEGER. The total number of eigenvalues found,m

0 ≤ m ≤ n.
If range = 'A', m = n, and if range = 'I', m = iu-il+1.

REAL for cheevrw
DOUBLE PRECISION for zheevr.
Array, DIMENSION at least max(1, n), contains the selected
eigenvalues in ascending order, stored in w(1) to w(m).

COMPLEX for cheevrz
DOUBLE COMPLEX for zheevr.
Array z(ldz, *); the second dimension of z must be at least
max(1, m).
If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
If jobz = 'N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of
m is not known in advance and an upper bound must be
used.

INTEGER.isuppz
Array, DIMENSION at least 2 *max(1, m).
The support of the eigenvectors in z, i.e., the indices
indicating the nonzero elements in z. The i-th eigenvector
is nonzero only in elements isuppz(2i-1) through isuppz(
2i).

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if info = 0, then rwork(1) returns the required
minimal size of lrwork.

rwork(1)

952

4 Intel® Math Kernel Library Reference Manual

On exit, if info = 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, an internal error has occurred.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine heevr interface are the following:

Holds the matrix A of size (n, n).a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n), where the values n and m are
significant.

z

Holds the vector of length (2*n), where the values (2*m) are significant.isuppz

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows: jobz
= 'V', if z is present, jobz = 'N', if z is omitted Note that there will
be an error condition if isuppz is present and z is omitted.

jobz

Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present, range = 'I',
if one of or both il and iu are present, range = 'A', if none of vl,

range

vu, il, iu is present, Note that there will be an error condition if one
of or both vl and vu are present and at the same time one of or both
il and iu are present.

953

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

For optimum performance use lwork ≥ (nb+1)*n, where nb is the maximum of the blocksize
for ?hetrd and ?unmtr returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork (or lrwork,
or liwork) for the first run or set lwork = -1 (lrwork = -1, liwork = -1).

If you choose the first option and set any of admissible lwork (or lrwork, liwork) sizes, which
is no less than the minimal value described, the routine completes the task, though probably
not so fast as with a recommended workspace, and provides the recommended workspace in
the first element of the corresponding array (work, rwork, iwork) on exit. Use this value
(work(1), rwork(1), iwork(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work, rwork, iwork). This operation
is called a workspace query.

Note that if you set lwork (lrwork, liwork) to less than the minimal required value and not
-1, the routine returns immediately with an error exit and does not provide any information on
the recommended workspace.

Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a
floating point exception in environments which do not handle NaNs and infinities in the IEEE
standard default manner.

?spev
Computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix in packed
storage.

Syntax

Fortran 77:

call sspev(jobz, uplo, n, ap, w, z, ldz, work, info)

call dspev(jobz, uplo, n, ap, w, z, ldz, work, info)

Fortran 95:

call spev(a, w [,uplo] [,z] [,info])

954

4 Intel® Math Kernel Library Reference Manual

Description

This routine computes all the eigenvalues and, optionally, eigenvectors of a real symmetric
matrix A in packed storage.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If job = 'N', then only eigenvalues are computed.
If job = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ap stores the packed upper triangular part
of A.
If uplo = 'L', ap stores the packed lower triangular part
of A.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sspevap, work
DOUBLE PRECISION for dspev
Arrays:
ap(*) contains the packed upper or lower triangle of
symmetric matrix A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).

(*) is a workspace array, DIMENSION at least max(1, 3n).work

INTEGER. The leading dimension of the output array z.
Constraints:

ldz

if jobz = 'N', then ldz ≥ 1;

if jobz = 'V', then ldz ≥ max(1, n).

Output Parameters

REAL for sspevw, z
DOUBLE PRECISION for dspev
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, w contains the eigenvalues of the matrix A in
ascending order.

955

LAPACK Routines: Least Squares and Eigenvalue Problems 4

z(ldz,*). The second dimension of z must be at least
max(1, n).
If jobz = 'V', then if info = 0, z contains the
orthonormal eigenvectors of the matrix A, with the i-th
column of z holding the eigenvector associated with w(i).
If jobz = 'N', then z is not referenced.

On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements of
the diagonal and the off-diagonal of the tridiagonal matrix
overwrite the corresponding elements of A.

ap

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine spev interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows: jobz
= 'V', if z is present, jobz = 'N', if z is omitted.

jobz

956

4 Intel® Math Kernel Library Reference Manual

?hpev
Computes all eigenvalues and, optionally,
eigenvectors of a Hermitian matrix in packed
storage.

Syntax

Fortran 77:

call chpev(jobz, uplo, n, ap, w, z, ldz, work, rwork, info)

call zhpev(jobz, uplo, n, ap, w, z, ldz, work, rwork, info)

Fortran 95:

call hpev(a, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix A in packed storage.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If job = 'N', then only eigenvalues are computed.
If job = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ap stores the packed upper triangular part
of A.
If uplo = 'L', ap stores the packed lower triangular part
of A.

INTEGER. The order of the matrix A (n ≥ 0).n

COMPLEX for chpevap, work
DOUBLE COMPLEX for zhpev.
Arrays:
ap(*) contains the packed upper or lower triangle of
Hermitian matrix A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).

957

LAPACK Routines: Least Squares and Eigenvalue Problems 4

(*) is a workspace array, DIMENSION at least max(1, 2n-1).work

INTEGER. The leading dimension of the output array z.ldz
Constraints:

if jobz = 'N', then ldz ≥ 1;

if jobz = 'V', then ldz ≥ max(1, n) .

REAL for chpevrwork
DOUBLE PRECISION for zhpev.
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

REAL for chpevw
DOUBLE PRECISION for zhpev.
Array, DIMENSION at least max(1, n).
If info = 0, w contains the eigenvalues of the matrix A in
ascending order.

COMPLEX for chpevz
DOUBLE COMPLEX for zhpev.
Array z(ldz,*).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the
orthonormal eigenvectors of the matrix A, with the i-th
column of z holding the eigenvector associated with w(i).
If jobz = 'N', then z is not referenced.

On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements of
the diagonal and the off-diagonal of the tridiagonal matrix
overwrite the corresponding elements of A.

ap

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

958

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hpev interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

?spevd
Uses divide and conquer algorithm to compute all
eigenvalues and (optionally) all eigenvectors of a
real symmetric matrix held in packed storage.

Syntax

Fortran 77:

call sspevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)

call dspevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)

Fortran 95:

call spevd(a, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
matrix A (held in packed storage). In other words, it can compute the spectral factorization of
A as:

A = ZΛZT.

959

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
orthogonal matrix whose columns are the eigenvectors zi. Thus,

Azi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to
compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses
the Pal-Walker-Kahan variant of the QL or QR algorithm.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ap stores the packed upper triangular part
of A.
If uplo = 'L', ap stores the packed lower triangular part
of A.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sspevdap, work
DOUBLE PRECISION for dspevd
Arrays:
ap(*) contains the packed upper or lower triangle of
symmetric matrix A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2)
work is a workspace array, its dimension max(1, lwork).

INTEGER. The leading dimension of the output array z.ldz
Constraints:

if jobz = 'N', then ldz ≥ 1;

if jobz = 'V', then ldz ≥ max(1, n).

INTEGER.lwork
The dimension of the array work.
Constraints:

if n ≤ 1, then lwork ≥ 1;

if jobz = 'N' and n > 1, then lwork ≥ 2*n;

960

4 Intel® Math Kernel Library Reference Manual

if jobz = 'V' and n > 1, then

lwork ≥ n2+ 6*n + 1.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

INTEGER. Workspace array, its dimension max(1, liwork).iwork

INTEGER.liwork
The dimension of the array iwork.
Constraints:

if n ≤ 1, then liwork ≥ 1;

if jobz = 'N' and n > 1, then liwork ≥ 1;

if jobz = 'V' and n > 1, then liwork ≥ 5*n+3.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

Output Parameters

REAL for sspevdw, z
DOUBLE PRECISION for dspevd
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in
ascending order. See also info.
z(ldz,*).
The second dimension of z must be: at least 1 if jobz =
'N';at least max(1, n) if jobz = 'V'.
If jobz = 'V', then this array is overwritten by the
orthogonal matrix Z which contains the eigenvectors of A.
If jobz = 'N', then z is not referenced.

961

LAPACK Routines: Least Squares and Eigenvalue Problems 4

On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements of
the diagonal and the off-diagonal of the tridiagonal matrix
overwrite the corresponding elements of A.

ap

On exit, if info = 0, then work(1) returns the required
lwork.

work(1)

On exit, if info = 0, then iwork(1) returns the required
liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine spevd interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 =

O(ε)||T||2, where εis the machine precision.

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

962

4 Intel® Math Kernel Library Reference Manual

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1 (liwork = -1), the routine returns immediately and provides the
recommended workspace in the first element of the corresponding array (work, iwork). This
operation is called a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

The complex analogue of this routine is ?hpevd.

See also ?syevd for matrices held in full storage, and ?sbevd for banded matrices.

?hpevd
Uses divide and conquer algorithm to compute all
eigenvalues and (optionally) all eigenvectors of a
complex Hermitian matrix held in packed storage.

Syntax

Fortran 77:

call chpevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork,
liwork, info)

call zhpevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork,
liwork, info)

Fortran 95:

call hpevd(a, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex
Hermitian matrix A (held in packed storage). In other words, it can compute the spectral

factorization of A as: A = ZΛZH.

963

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
(complex) unitary matrix whose columns are the eigenvectors zi. Thus,

Azi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to
compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses
the Pal-Walker-Kahan variant of the QL or QR algorithm.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ap stores the packed upper triangular part
of A.
If uplo = 'L', ap stores the packed lower triangular part
of A.

INTEGER. The order of the matrix A (n ≥ 0).n

COMPLEX for chpevdap, work
DOUBLE COMPLEX for zhpevd
Arrays:
ap(*) contains the packed upper or lower triangle of
Hermitian matrix A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The leading dimension of the output array z.ldz
Constraints:

if jobz = 'N', then ldz ≥ 1;

if jobz = 'V', then ldz ≥ max(1, n).

INTEGER.lwork
The dimension of the array work.
Constraints:

if n ≤ 1, then lwork ≥ 1;

if jobz = 'N' and n > 1, then lwork ≥ n;

964

4 Intel® Math Kernel Library Reference Manual

if jobz = 'V' and n > 1, then lwork ≥ 2*n.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

REAL for chpevdrwork
DOUBLE PRECISION for zhpevd
Workspace array, its dimension max(1, lrwork).

INTEGER.lrwork
The dimension of the array rwork. Constraints:

if n ≤ 1, then lrwork ≥ 1;

if jobz = 'N' and n > 1, then lrwork ≥ n;

if jobz = 'V' and n > 1, then lrwork ≥ 2*n2 + 5*n +
1.
If lrwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

INTEGER. Workspace array, its dimension max(1, liwork).iwork

INTEGER.liwork
The dimension of the array iwork.
Constraints:

if n ≤ 1, then liwork ≥ 1;

if jobz = 'N' and n > 1, then liwork ≥ 1;

if jobz = 'V' and n > 1, then liwork ≥ 5*n+3.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

965

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters

REAL for chpevdw
DOUBLE PRECISION for zhpevd
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in
ascending order. See also info.

COMPLEX for chpevdz
DOUBLE COMPLEX for zhpevd
Array, DIMENSION (ldz,*).
The second dimension of z must be:
at least 1 if jobz = 'N';
at least max(1, n) if jobz = 'V'.
If jobz = 'V', then this array is overwritten by the unitary
matrix Z which contains the eigenvectors of A.
If jobz = 'N', then z is not referenced.

On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements of
the diagonal and the off-diagonal of the tridiagonal matrix
overwrite the corresponding elements of A.

ap

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if info = 0, then rwork(1) returns the required
minimal size of lrwork.

rwork(1)

On exit, if info = 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

966

4 Intel® Math Kernel Library Reference Manual

Specific details for the routine hpevd interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 =

O(ε)||T||2, where ε is the machine precision.

If you are in doubt how much workspace to supply, use a generous value of lwork (liwork or
lrwork) for the first run or set lwork = -1 (liwork = -1, lrwork = -1).

If you choose the first option and set any of admissible lwork (liwork or lrwork) sizes, which
is no less than the minimal value described, the routine completes the task, though probably
not so fast as with a recommended workspace, and provides the recommended workspace in
the first element of the corresponding array (work, iwork, rwork) on exit. Use this value
(work(1), iwork(1), rwork(1)) for subsequent runs.

If you set lwork = -1 (liwork = -1, lrwork = -1), the routine returns immediately and
provides the recommended workspace in the first element of the corresponding array (work,
iwork, rwork). This operation is called a workspace query.

Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not
-1, the routine returns immediately with an error exit and does not provide any information on
the recommended workspace.

The real analogue of this routine is ?spevd.

See also ?heevd for matrices held in full storage, and ?hbevd for banded matrices.

967

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?spevx
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix in packed
storage.

Syntax

Fortran 77:

call sspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz,
work, iwork, ifail, info)

call dspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz,
work, iwork, ifail, info)

Fortran 95:

call spevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
matrix A in packed storage. Eigenvalues and eigenvectors can be selected by specifying either
a range of values or a range of indices for the desired eigenvalues.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If job = 'N', then only eigenvalues are computed.
If job = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues

lambda(i) in the half-open interval: vl< lambda(i)≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ap stores the packed upper triangular part
of A.

968

4 Intel® Math Kernel Library Reference Manual

If uplo = 'L', ap stores the packed lower triangular part
of A.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sspevxap, work
DOUBLE PRECISION for dspevx
Arrays:
ap(*) contains the packed upper or lower triangle of the
symmetric matrix A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
work(*) is a workspace array, DIMENSION at least max(1,
8n).

REAL for sspevxvl, vu
DOUBLE PRECISION for dspevx
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for sspevxabstol
DOUBLE PRECISION for dspevx
The absolute error tolerance to which each eigenvalue is
required. See Application notes for details on error tolerance.

INTEGER. The leading dimension of the output array z.ldz
Constraints:

if jobz = 'N', then ldz ≥ 1;

if jobz = 'V', then ldz ≥ max(1, n).

INTEGER. Workspace array, DIMENSION at least max(1, 5n).iwork

969

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters

On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements of
the diagonal and the off-diagonal of the tridiagonal matrix
overwrite the corresponding elements of A.

ap

INTEGER. The total number of eigenvalues found,m

0 ≤ m ≤ n. If range = 'A', m = n, and if range = 'I',
m = iu-il+1.

REAL for sspevxw, z
DOUBLE PRECISION for dspevx
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the selected eigenvalues of the matrix
A in ascending order.
z(ldz,*).
The second dimension of z must be at least max(1, m).
If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
If jobz = 'N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of
m is not known in advance and an upper bound must be
used.

INTEGER.ifail
Array, DIMENSION at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the indices
the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.

970

4 Intel® Math Kernel Library Reference Manual

If info = -i, the i-th parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their
indices are stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine spevx interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n), where the values n and m are
significant.

z

Holds the vector of length (n).ifail

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if ifail is present and z is
omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

971

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|), where ε is the machine
precision.

If abstol is less than or equal to zero, then ε*||T||1 will be used in its place, where T is the
tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed
most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*?lamch('S').

?hpevx
Computes selected eigenvalues and, optionally,
eigenvectors of a Hermitian matrix in packed
storage.

Syntax

Fortran 77:

call chpevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz,
work, rwork, iwork, ifail, info)

call zhpevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz,
work, rwork, iwork, ifail, info)

Fortran 95:

call hpevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix A in packed storage. Eigenvalues and eigenvectors can be selected by specifying either
a range of values or a range of indices for the desired eigenvalues.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If job = 'N', then only eigenvalues are computed.

972

4 Intel® Math Kernel Library Reference Manual

If job = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues

lambda(i) in the half-open interval: vl<lambda(i) ≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ap stores the packed upper triangular part
of A.
If uplo = 'L', ap stores the packed lower triangular part
of A.

INTEGER. The order of the matrix A (n ≥ 0).n

COMPLEX for chpevxap, work
DOUBLE COMPLEX for zhpevx
Arrays:
ap(*) contains the packed upper or lower triangle of the
Hermitian matrix A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
work(*) is a workspace array, DIMENSION at least max(1,
2n).

REAL for chpevxvl, vu
DOUBLE PRECISION for zhpevx
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0 if
n = 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for chpevxabstol
DOUBLE PRECISION for zhpevx

973

LAPACK Routines: Least Squares and Eigenvalue Problems 4

The absolute error tolerance to which each eigenvalue is
required. See Application notes for details on error tolerance.

INTEGER. The leading dimension of the output array z.ldz
Constraints:

if jobz = 'N', then ldz ≥ 1;

if jobz = 'V', then ldz ≥ max(1, n).

REAL for chpevxrwork
DOUBLE PRECISION for zhpevx
Workspace array, DIMENSION at least max(1, 7n).

INTEGER. Workspace array, DIMENSION at least max(1, 5n).iwork

Output Parameters

On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements of
the diagonal and the off-diagonal of the tridiagonal matrix
overwrite the corresponding elements of A.

ap

INTEGER. The total number of eigenvalues found, 0 ≤ m ≤
n.

m

If range = 'A', m = n, and if range = 'I', m = iu-il+1.

REAL for chpevxw
DOUBLE PRECISION for zhpevx
Array, DIMENSION at least max(1, n).
If info = 0, contains the selected eigenvalues of the matrix
A in ascending order.

COMPLEX for chpevxz
DOUBLE COMPLEX for zhpevx
Array z(ldz,*).
The second dimension of z must be at least max(1, m).
If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.

974

4 Intel® Math Kernel Library Reference Manual

If jobz = 'N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of
m is not known in advance and an upper bound must be
used.

INTEGER.ifail
Array, DIMENSION at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the indices
the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their
indices are stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hpevx interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n), where the values n and m are
significant.

z

Holds the vector of length (n).ifail

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

975

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if ifail is present and z is
omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|), where ε is the machine
precision.

If abstol is less than or equal to zero, then ε*||T||1 will be used in its place, where T is the
tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed
most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*?lamch('S').

?sbev
Computes all eigenvalues and, optionally,
eigenvectors of a real symmetric band matrix.

Syntax

Fortran 77:

call ssbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)

call dsbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)

Fortran 95:

call sbev(a, w [,uplo] [,z] [,info])

976

4 Intel® Math Kernel Library Reference Manual

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric band
matrix A.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Akd

(kd ≥ 0).

REAL for ssbevab, work
DOUBLE PRECISION for dsbev.
Arrays:
ab (ldab,*) is an array containing either upper or lower
triangular part of the symmetric matrix A (as specified by
uplo) in band storage format.
The second dimension of ab must be at least max(1, n).
work (*) is a workspace array.
The dimension of work must be at least max(1, 3n-2).

INTEGER. The leading dimension of ab; must be at least kd
+1.

ldab

INTEGER. The leading dimension of the output array z.ldz
Constraints:

if jobz = 'N', then ldz ≥ 1;

if jobz = 'V', then ldz ≥ max(1, n) .

Output Parameters

REAL for ssbevw, z
DOUBLE PRECISION for dsbev

977

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in
ascending order.
z(ldz,*).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the
orthonormal eigenvectors of the matrix A, with the i-th
column of z holding the eigenvector associated with w(i).
If jobz = 'N', then z is not referenced.

On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form.

ab

If uplo = 'U', the first superdiagonal and the diagonal of
the tridiagonal matrix T are returned in rows kd and kd+1
of ab, and if uplo = 'L', the diagonal and first subdiagonal
of T are returned in the first two rows of ab.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sbev interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

978

4 Intel® Math Kernel Library Reference Manual

?hbev
Computes all eigenvalues and, optionally,
eigenvectors of a Hermitian band matrix.

Syntax

Fortran 77:

call chbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)

call zhbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)

Fortran 95:

call hbev(a, w [,uplo] [,z] [,info])

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian
band matrix A.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Akd

(kd ≥ 0).

COMPLEX for chbevab, work
DOUBLE COMPLEX for zhbev.
Arrays:
ab (ldab,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A (as specified by
uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

979

LAPACK Routines: Least Squares and Eigenvalue Problems 4

work (*) is a workspace array.
The dimension of work must be at least max(1, n).

INTEGER. The leading dimension of ab; must be at least kd
+1.

ldab

INTEGER. The leading dimension of the output array z.ldz
Constraints:

if jobz = 'N', then ldz ≥ 1;

if jobz = 'V', then ldz ≥ max(1, n) .

REAL for chbevrwork
DOUBLE PRECISION for zhbev
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

REAL for chbevw
DOUBLE PRECISION for zhbev
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

COMPLEX for chbevz
DOUBLE COMPLEX for zhbev.
Array z(ldz,*).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the
orthonormal eigenvectors of the matrix A, with the i-th
column of z holding the eigenvector associated with w(i).
If jobz = 'N', then z is not referenced.

On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form.

ab

If uplo = 'U', the first superdiagonal and the diagonal of
the tridiagonal matrix T are returned in rows kd and kd+1
of ab, and if uplo = 'L', the diagonal and first subdiagonal
of T are returned in the first two rows of ab.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge;

980

4 Intel® Math Kernel Library Reference Manual

i indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hbev interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

?sbevd
Computes all eigenvalues and (optionally) all
eigenvectors of a real symmetric band matrix using
divide and conquer algorithm.

Syntax

Fortran 77:

call ssbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork,
info)

call dsbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork,
info)

Fortran 95:

call sbevd(a, w [,uplo] [,z] [,info])

981

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
band matrix A. In other words, it can compute the spectral factorization of A as:

A = ZΛZT

Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
orthogonal matrix whose columns are the eigenvectors zi. Thus,

Azi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to
compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses
the Pal-Walker-Kahan variant of the QL or QR algorithm.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Akd

(kd ≥ 0).

REAL for ssbevdab, work
DOUBLE PRECISION for dsbevd.
Arrays:
ab (ldab,*) is an array containing either upper or lower
triangular part of the symmetric matrix A (as specified by
uplo) in band storage format.
The second dimension of ab must be at least max(1, n).
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The leading dimension of ab; must be at least
kd+1.

ldab

982

4 Intel® Math Kernel Library Reference Manual

INTEGER. The leading dimension of the output array z.ldz
Constraints:

if jobz = 'N', then ldz ≥ 1;

if jobz = 'V', then ldz ≥ max(1, n) .

INTEGER.lwork
The dimension of the array work.
Constraints:

if n ≤ 1, then lwork ≥ 1;

if jobz = 'N' and n > 1, then lwork ≥ 2n;

if jobz = 'V' and n > 1, then lwork ≥ 2*n2 + 5*n +
1.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

INTEGER. Workspace array, its dimension max(1, liwork).iwork

INTEGER.liwork

The dimension of the array iwork. Constraints: if n ≤ 1,
then liwork < 1; if job = 'N' and n > 1, then liwork
< 1; if job = 'V' and n > 1, then liwork < 5*n+3.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

Output Parameters

REAL for ssbevdw, z
DOUBLE PRECISION for dsbevd
Arrays:
w(*), DIMENSION at least max(1, n).

983

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If info = 0, contains the eigenvalues of the matrix A in
ascending order. See also info.
z(ldz,*).
The second dimension of z must be:
at least 1 if job = 'N';
at least max(1, n) if job = 'V'.
If job = 'V', then this array is overwritten by the
orthogonal matrix Z which contains the eigenvectors of A.
The i-th column of Z contains the eigenvector which
corresponds to the eigenvalue w(i).
If job = 'N', then z is not referenced.

On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form.

ab

On exit, if lwork > 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if liwork > 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sbevd interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz

984

4 Intel® Math Kernel Library Reference Manual

jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 =

O(ε)||T||2, where ε is the machine precision.

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1 (liwork = -1), the routine returns immediately and provides the
recommended workspace in the first element of the corresponding array (work, iwork). This
operation is called a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

The complex analogue of this routine is ?hbevd.

See also ?syevd for matrices held in full storage, and ?spevd for matrices held in packed
storage.

985

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?hbevd
Computes all eigenvalues and (optionally) all
eigenvectors of a complex Hermitian band matrix
using divide and conquer algorithm.

Syntax

Fortran 77:

call chbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork, info)

call zhbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork, info)

Fortran 95:

call hbevd(a, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex
Hermitian band matrix A. In other words, it can compute the spectral factorization of A as: A

= ZΛZH.

Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
(complex) unitary matrix whose columns are the eigenvectors zi. Thus,

Azi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to
compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses
the Pal-Walker-Kahan variant of the QL or QR algorithm.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ab stores the upper triangular part of A.

986

4 Intel® Math Kernel Library Reference Manual

If uplo = 'L', ab stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Akd

(kd ≥ 0).

COMPLEX for chbevdab, work
DOUBLE COMPLEX for zhbevd.
Arrays:
ab (ldab,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A (as specified by
uplo) in band storage format.
The second dimension of ab must be at least max(1, n).
work (*) is a workspace array , its dimension max(1,
lwork).

INTEGER. The leading dimension of ab; must be at least
kd+1.

ldab

INTEGER. The leading dimension of the output array z.ldz
Constraints:

if jobz = 'N', then ldz ≥ 1;

if jobz = 'V', then ldz ≥ max(1, n) .

INTEGER.lwork
The dimension of the array work.
Constraints:

if n ≤ 1, then lwork ≥ 1;

if jobz = 'N' and n > 1, then lwork ≥ n;

if jobz = 'V' and n > 1, then lwork ≥ 2*n2.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

REAL for chbevdrwork
DOUBLE PRECISION for zhbevd
Workspace array, DIMENSION at least lrwork.

987

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER.lrwork
The dimension of the array rwork.
Constraints:

if n ≤ 1, then lrwork ≥ 1;

if jobz = 'N' and n > 1, then lrwork ≥ n;

if jobz = 'V' and n > 1, then lrwork ≥ 2*n2 + 5*n +
1.
If lrwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

INTEGER. Workspace array, DIMENSION max(1, liwork).iwork

INTEGER.liwork
The dimension of the array iwork.
Constraints:

if jobz = 'N' or n ≤ 1, then liwork ≥ 1;

if jobz = 'V' and n > 1, then liwork ≥ 5*n+3.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

Output Parameters

REAL for chbevdw
DOUBLE PRECISION for zhbevd
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in
ascending order. See also info.

COMPLEX for chbevdz
DOUBLE COMPLEX for zhbevd
Array, DIMENSION (ldz,*).

988

4 Intel® Math Kernel Library Reference Manual

The second dimension of z must be:
at least 1 if jobz = 'N';
at least max(1, n) if jobz = 'V'.
If jobz = 'V', then this array is overwritten by the unitary
matrix Z which contains the eigenvectors of A. The i-th
column of Z contains the eigenvector which corresponds to
the eigenvalue w(i).
If jobz = 'N', then z is not referenced.

On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form.

ab

On exit, if lwork > 0, then the real part of work(1) returns
the required minimal size of lwork.

work(1)

On exit, if lrwork > 0, then rwork(1) returns the required
minimal size of lrwork.

rwork(1)

On exit, if liwork > 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hbevd interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,

989

LAPACK Routines: Least Squares and Eigenvalue Problems 4

jobz = 'N', if z is omitted.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 =

O(ε)||T||2, where ε is the machine precision.

If you are in doubt how much workspace to supply, use a generous value of lwork (liwork or
lrwork) for the first run or set lwork = -1 (liwork = -1, lrwork = -1).

If you choose the first option and set any of admissible lwork (liwork or lrwork) sizes, which
is no less than the minimal value described, the routine completes the task, though probably
not so fast as with a recommended workspace, and provides the recommended workspace in
the first element of the corresponding array (work, iwork, rwork) on exit. Use this value
(work(1), iwork(1), rwork(1)) for subsequent runs.

If you set lwork = -1 (liwork = -1, lrwork = -1), the routine returns immediately and
provides the recommended workspace in the first element of the corresponding array (work,
iwork, rwork). This operation is called a workspace query.

Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not
-1, the routine returns immediately with an error exit and does not provide any information on
the recommended workspace.

The real analogue of this routine is ?sbevd.

See also ?heevd for matrices held in full storage, and ?hpevd for matrices held in packed
storage.

?sbevx
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric band matrix.

Syntax

Fortran 77:

call ssbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol,
m, w, z, ldz, work, iwork, ifail, info)

call dsbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol,
m, w, z, ldz, work, iwork, ifail, info)

990

4 Intel® Math Kernel Library Reference Manual

Fortran 95:

call sbevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q]
[,abstol] [,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
band matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.

If range = 'V', the routine computes eigenvalues λi in

the half-open interval: vl<λi ≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Akd

(kd ≥ 0).

REAL for ssbevxab, work
DOUBLE PRECISION for dsbevx.
Arrays:
ab (ldab,*) is an array containing either upper or lower
triangular part of the symmetric matrix A (as specified by
uplo) in band storage format.
The second dimension of ab must be at least max(1, n).
work (*) is a workspace array.
The dimension of work must be at least max(1, 7n).

991

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The leading dimension of ab; must be at least kd
+1.

ldab

REAL for ssbevxvl, vu
DOUBLE PRECISION for dsbevx.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for chpevxabstol
DOUBLE PRECISION for zhpevx
The absolute error tolerance to which each eigenvalue is
required. See Application notes for details on error tolerance.

INTEGER. The leading dimensions of the output arrays q
and z, respectively.

ldq, ldz

Constraints:

ldq ≥ 1, ldz ≥ 1;

If jobz = 'V', then ldq ≥ max(1, n) and ldz ≥ max(1,
n).

INTEGER. Workspace array, DIMENSION at least max(1, 5n).iwork

Output Parameters

REAL for ssbevx DOUBLE PRECISION for dsbevx.q
Array, DIMENSION (ldz,n).
If jobz = 'V', the n-by-n orthogonal matrix is used in the
reduction to tridiagonal form.
If jobz = 'N', the array q is not referenced.

INTEGER. The total number of eigenvalues found, 0 ≤ m ≤
n.

m

If range = 'A', m = n, and if range = 'I', m = iu-il+1.

992

4 Intel® Math Kernel Library Reference Manual

REAL for ssbevxw, z
DOUBLE PRECISION for dsbevx
Arrays:
w(*), DIMENSION at least max(1, n). The first m elements
of w contain the selected eigenvalues of the matrix A in
ascending order.
z(ldz,*).
The second dimension of z must be at least max(1, m).
If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
If jobz = 'N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of
m is not known in advance and an upper bound must be
used.

On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form.

ab

If uplo = 'U', the first superdiagonal and the diagonal of
the tridiagonal matrix T are returned in rows kd and kd+1
of ab, and if uplo = 'L', the diagonal and first subdiagonal
of T are returned in the first two rows of ab.

INTEGER.ifail
Array, DIMENSION at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the indices
the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their
indices are stored in the array ifail.

993

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sbevx interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n), where the values n and m are
significant.

z

Holds the vector of length (n).ifail

Holds the matrix Q of size (n, n).q

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if either ifail or q is present
and z is omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

994

4 Intel® Math Kernel Library Reference Manual

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|), where ε is the machine
precision.

If abstol is less than or equal to zero, then ε*||T||1 will be used in its place, where T is the
tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed
most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*?lamch('S').

?hbevx
Computes selected eigenvalues and, optionally,
eigenvectors of a Hermitian band matrix.

Syntax

Fortran 77:

call chbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)

Fortran 95:

call hbevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q]
[,abstol] [,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian
band matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If job = 'N', then only eigenvalues are computed.

995

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If job = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues

lambda(i) in the half-open interval: vl< lambda(i) ≤
vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Akd

(kd ≥ 0).

COMPLEX for chbevxab, work
DOUBLE COMPLEX for zhbevx.
Arrays:
ab (ldab,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A (as specified by
uplo) in band storage format.
The second dimension of ab must be at least max(1, n).
work (*) is a workspace array.
The dimension of work must be at least max(1, n).

INTEGER. The leading dimension of ab; must be at least kd
+1.

ldab

REAL for chbevxvl, vu
DOUBLE PRECISION for zhbevx.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

996

4 Intel® Math Kernel Library Reference Manual

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0 if
n = 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for chbevxabstol
DOUBLE PRECISION for zhbevx.
The absolute error tolerance to which each eigenvalue is
required. See Application notes for details on error tolerance.

INTEGER. The leading dimensions of the output arrays q
and z, respectively.

ldq, ldz

Constraints:

ldq ≥ 1, ldz ≥ 1;

If jobz = 'V', then ldq ≥ max(1, n) and ldz ≥ max(1,
n).

REAL for chbevxrwork
DOUBLE PRECISION for zhbevx
Workspace array, DIMENSION at least max(1, 7n).

INTEGER. Workspace array, DIMENSION at least max(1, 5n).iwork

Output Parameters

COMPLEX for chbevx DOUBLE COMPLEX for zhbevx.q
Array, DIMENSION (ldz,n).
If jobz = 'V', the n-by-n unitary matrix is used in the
reduction to tridiagonal form.
If jobz = 'N', the array q is not referenced.

INTEGER. The total number of eigenvalues found,m

0 ≤ m ≤ n.
If range = 'A', m = n, and if range = 'I', m = iu-il+1.

REAL for chbevxw
DOUBLE PRECISION for zhbevx
Array, DIMENSION at least max(1, n). The first m elements
contain the selected eigenvalues of the matrix A in ascending
order.

COMPLEX for chbevxz
DOUBLE COMPLEX for zhbevx.
Array z(ldz,*).

997

LAPACK Routines: Least Squares and Eigenvalue Problems 4

The second dimension of z must be at least max(1, m).
If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
If jobz = 'N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of
m is not known in advance and an upper bound must be
used.

On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form.

ab

If uplo = 'U', the first superdiagonal and the diagonal of
the tridiagonal matrix T are returned in rows kd and kd+1
of ab, and if uplo = 'L', the diagonal and first subdiagonal
of T are returned in the first two rows of ab.

INTEGER.ifail
Array, DIMENSION at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the indices
of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their
indices are stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hbevx interface are the following:

998

4 Intel® Math Kernel Library Reference Manual

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(kd+1,n).

a

Holds the vector of length (n).w

Holds the matrix Z of size (n, n), where the values n and m are
significant.

z

Holds the vector of length (n).ifail

Holds the matrix Q of size (n, n).q

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if either ifail or q is present
and z is omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|), where ε is the machine
precision.

If abstol is less than or equal to zero, then ε*||T||1 will be used in its place, where T is the
tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed
most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

999

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*?lamch('S').

?stev
Computes all eigenvalues and, optionally,
eigenvectors of a real symmetric tridiagonal matrix.

Syntax

Fortran 77:

call sstev(jobz, n, d, e, z, ldz, work, info)

call dstev(jobz, n, d, e, z, ldz, work, info)

Fortran 95:

call stev(d, e [,z] [,info])

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix A.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sstevd, e, work
DOUBLE PRECISION for dstev.
Arrays:
d(*) contains the n diagonal elements of the tridiagonal
matrix A.
The dimension of d must be at least max(1, n).
e(*) contains the n-1 subdiagonal elements of the tridiagonal
matrix A.
The dimension of e must be at least max(1, n-1). The n-th
element of this array is used as workspace.

1000

4 Intel® Math Kernel Library Reference Manual

work(*) is a workspace array.
The dimension of work must be at least max(1, 2n-2).
If jobz = 'N', work is not referenced.

INTEGER. The leading dimension of the output array z; ldz

≥ 1. If jobz = 'V' then ldz ≥ max(1, n).

ldz

Output Parameters

On exit, if info = 0, contains the eigenvalues of the matrix
A in ascending order.

d

REAL for sstevz
DOUBLE PRECISION for dstev
Array, DIMENSION (ldz, *).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the
orthonormal eigenvectors of the matrix A, with the i-th
column of z holding the eigenvector associated with the
eigenvalue returned in d(i).
If job = 'N', then z is not referenced.

On exit, this array is overwritten with intermediate results.e

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then the algorithm failed to converge;
i elements of e did not converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine stev interface are the following:

Holds the vector of length (n).d

Holds the vector of length (n).e

Holds the matrix Z of size (n, n).z

Restored based on the presence of the argument z as follows:jobz

1001

LAPACK Routines: Least Squares and Eigenvalue Problems 4

jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

?stevd
Computes all eigenvalues and (optionally) all
eigenvectors of a real symmetric tridiagonal matrix
using divide and conquer algorithm.

Syntax

Fortran 77:

call sstevd(jobz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

call dstevd(jobz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

Fortran 95:

call stevd(d, e [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
tridiagonal matrix T. In other words, the routine can compute the spectral factorization of T

as: T = ZΛZT.

Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
orthogonal matrix whose columns are the eigenvectors zi. Thus,

Tzi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to
compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses
the Pal-Walker-Kahan variant of the QL or QR algorithm.

There is no complex analogue of this routine.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

1002

4 Intel® Math Kernel Library Reference Manual

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for sstevdd, e, work
DOUBLE PRECISION for dstevd.
Arrays:
d(*) contains the n diagonal elements of the tridiagonal
matrix T.
The dimension of d must be at least max(1, n).
e(*) contains the n-1 off-diagonal elements of T.
The dimension of e must be at least max(1, n-1). The n-th
element of this array is used as workspace.
work(*) is a workspace array.
The dimension of work must be at least lwork.

INTEGER. The leading dimension of the output array z.
Constraints:

ldz

ldz ≥ 1 if job = 'N';
ldz < max(1, n) if job = 'V'.

INTEGER.lwork
The dimension of the array work.
Constraints:

if jobz = 'N' or n ≤ 1, then lwork ≥ 1;

if jobz = 'V' and n > 1, then lwork ≥ n2 + 4*n + 1.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

INTEGER. Workspace array, its dimension max(1, liwork).iwork

INTEGER.liwork
The dimension of the array iwork.
Constraints:

if jobz = 'N' or n ≤ 1, then liwork ≥ 1;

if jobz = 'V' and n > 1, then liwork ≥ 5*n+3.

1003

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If liwork = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

Output Parameters

On exit, if info = 0, contains the eigenvalues of the matrix
T in ascending order.

d

See also info.

REAL for sstevdz
DOUBLE PRECISION for dstevd
Array, DIMENSION (ldz, *).
The second dimension of z must be:
at least 1 if jobz = 'N';
at least max(1, n) if jobz = 'V'.
If jobz = 'V', then this array is overwritten by the
orthogonal matrix Z which contains the eigenvectors of T.
If jobz = 'N', then z is not referenced.

On exit, this array is overwritten with intermediate results.e

On exit, if lwork > 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if liwork > 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

1004

4 Intel® Math Kernel Library Reference Manual

Specific details for the routine stevd interface are the following:

Holds the vector of length (n).d

Holds the vector of length (n).e

Holds the matrix Z of size (n, n).z

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 =

O(ε)||T||2, where ε is the machine precision.

If λi is an exact eigenvalue, and mi is the corresponding computed value, then

|μi - λi| ≤ c(n)ε ||T||2

where c(n) is a modestly increasing function of n.

If zi is the corresponding exact eigenvector, and wi is the corresponding computed vector, then

the angle θ(zi, wi) between them is bounded as follows:

θ(zi, wi) ≤ c(n)ε ||T||2 / min i≠j|λi - λj|.

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and
all the other eigenvalues.

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1 (liwork = -1), the routine returns immediately and provides the
recommended workspace in the first element of the corresponding array (work, iwork). This
operation is called a workspace query.

1005

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

?stevx
Computes selected eigenvalues and eigenvectors
of a real symmetric tridiagonal matrix.

Syntax

Fortran 77:

call sstevx(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, work,
iwork, ifail, info)

call dstevx(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, work,
iwork, ifail, info)

Fortran 95:

call stevx(d, e, w [, z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range
of values or a range of indices for the desired eigenvalues.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If job = 'N', then only eigenvalues are computed.
If job = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues

lambda(i) in the half-open interval: vl<lambda(i)≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

1006

4 Intel® Math Kernel Library Reference Manual

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sstevxd, e, work
DOUBLE PRECISION for dstevx.
Arrays:
d(*) contains the n diagonal elements of the tridiagonal
matrix A.
The dimension of d must be at least max(1, n).
e(*) contains the n-1 subdiagonal elements of A.
The dimension of e must be at least max(1, n-1). The n-th
element of this array is used as workspace.
work(*) is a workspace array.
The dimension of work must be at least max(1, 5n).

REAL for sstevxvl, vu
DOUBLE PRECISION for dstevx.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0 if
n = 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for sstevxabstol
DOUBLE PRECISION for dstevx. The absolute error tolerance
to which each eigenvalue is required. See Application notes
for details on error tolerance.

INTEGER. The leading dimensions of the output array z;

ldz ≥ 1. If jobz = 'V', then ldz ≥ max(1, n).

ldz

INTEGER. Workspace array, DIMENSION at least max(1, 5n).iwork

Output Parameters

INTEGER. The total number of eigenvalues found,m

0 ≤ m ≤ n.

1007

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If range = 'A', m = n, and if range = 'I', m = iu-il+1.

REAL for sstevxw, z
DOUBLE PRECISION for dstevx.
Arrays:
w(*), DIMENSION at least max(1, n).
The first m elements of w contain the selected eigenvalues
of the matrix A in ascending order.

z(ldz,*).
The second dimension of z must be at least max(1, m).
If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
If jobz = 'N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of
m is not known in advance and an upper bound must be
used.

On exit, these arrays may be multiplied by a constant factor
chosen to avoid overflow or underflow in computing the
eigenvalues.

d, e

INTEGER.ifail
Array, DIMENSION at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the indices
of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their
indices are stored in the array ifail.

1008

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine stevx interface are the following:

Holds the vector of length (n).d

Holds the vector of length (n).e

Holds the vector of length (n).w

Holds the matrix Z of size (n, n), where the values n and m are
significant.

z

Holds the vector of length (n).ifail

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if ifail is present and z is
omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|), where ε is the machine
precision.

1009

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If abstol is less than or equal to zero, then ε*||A||1 will be used in its place. Eigenvalues will
be computed most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'),
not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*?lamch('S').

?stevr
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric tridiagonal matrix
using the Relatively Robust Representations.

Syntax

Fortran 77:

call sstevr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz,
work, lwork, iwork, liwork, info)

call dstevr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz,
work, lwork, iwork, liwork, info)

Fortran 95:

call stevr(d, e, w [, z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix T. Eigenvalues and eigenvectors can be selected by specifying either a range
of values or a range of indices for the desired eigenvalues.

Whenever possible, the routine calls ?stemr to compute the eigenspectrum using Relatively
Robust Representations. ?stegr computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various “good” L*D*LT representations (also known as Relatively
Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More
specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of
T,

a. Compute T - σi = Li*Di*Li
T, such that Li *Di *Li

T is a relatively robust representation;

b. Compute the eigenvalues, λj, of Li*Di*Li
T to high relative accuracy by the dqds algorithm;

1010

4 Intel® Math Kernel Library Reference Manual

c. If there is a cluster of close eigenvalues, “choose” σi close to the cluster, and go to step
(a);

d. Given the approximate eigenvalue λj of Li Di Li
T, compute the corresponding eigenvector

by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.

The routine ?stevr calls ?stemr when the full spectrum is requested on machines which
conform to the IEEE-754 floating point standard. ?stevr calls ?stebz and ?stein on non-IEEE
machines and when partial spectrum requests are made.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are
computed.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues
lambda(i) in the half-open interval:

vl<lambda(i) ≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.
For range = 'V'or 'I' and iu-il < n-1, sstebz/dstebz
and sstein/dstein are called.

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for sstevrd, e, work
DOUBLE PRECISION for dstevr.
Arrays:
d(*) contains the n diagonal elements of the tridiagonal
matrix T.
The dimension of d must be at least max(1, n).
e(*) contains the n-1 subdiagonal elements of A.
The dimension of e must be at least max(1, n-1). The n-th
element of this array is used as workspace.
work is a workspace array, its dimension max(1,
lwork).

1011

LAPACK Routines: Least Squares and Eigenvalue Problems 4

REAL for sstevrvl, vu
DOUBLE PRECISION for dstevr.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu≤ n, if n > 0; il=1 and iu=0 if
n = 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for ssyevrabstol
DOUBLE PRECISION for dsyevr.
The absolute error tolerance to which each
eigenvalue/eigenvector is required.
If jobz = 'V', the eigenvalues and eigenvectors output
have residual norms bounded by abstol, and the dot
products between different eigenvectors are bounded by
abstol. If abstol < n *eps*|T|, then n *eps*|T| will
be used in its place, where eps is the machine precision,
and |T| is the 1-norm of the matrix T. The eigenvalues are
computed to an accuracy of eps*|T| irrespective of abstol.
If high relative accuracy is important, set abstol to
?lamch('S').

INTEGER. The leading dimension of the output array z.ldz
Constraints:

ldz ≥ 1 if jobz = 'N';

ldz ≥ max(1, n) if jobz = 'V'.

INTEGER.lwork
The dimension of the array work. Constraint:

lwork ≥ max(1, 20*n).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the work and
iwork arrays, returns these values as the first entries of the

1012

4 Intel® Math Kernel Library Reference Manual

work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

INTEGER.iwork
Workspace array, its dimension max(1, liwork).

INTEGER.liwork
The dimension of the array iwork,

lwork ≥ max(1, 10*n).
If liwork = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

Output Parameters

INTEGER. The total number of eigenvalues found,m

0 ≤ m ≤ n. If range = 'A', m = n, and if range = 'I',
m = iu-il+1.

REAL for sstevrw, z
DOUBLE PRECISION for dstevr.
Arrays:
w(*), DIMENSION at least max(1, n).
The first m elements of w contain the selected eigenvalues
of the matrix T in ascending order.
z(ldz,*).
The second dimension of z must be at least max(1, m).
If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
If jobz = 'N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of
m is not known in advance and an upper bound must be
used.

1013

LAPACK Routines: Least Squares and Eigenvalue Problems 4

On exit, these arrays may be multiplied by a constant factor
chosen to avoid overflow or underflow in computing the
eigenvalues.

d, e

INTEGER.isuppz
Array, DIMENSION at least 2 *max(1, m).
The support of the eigenvectors in z, i.e., the indices
indicating the nonzero elements in z. The i-th eigenvector
is nonzero only in elements isuppz(2i-1) through isuppz(
2i).
Implemented only for range = 'A' or 'I' and iu-il =
n-1.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if info = 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, an internal error has occurred.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine stevr interface are the following:

Holds the vector of length (n).d

Holds the vector of length (n).e

Holds the vector of length (n).w

Holds the matrix Z of size (n, n), where the values n and m are
significant.

z

Holds the vector of length (2*n), where the values (2*m) are significant.isuppz

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

1014

4 Intel® Math Kernel Library Reference Manual

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if ifail is present and z is
omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

Application Notes

Normal execution of the routine ?stegr may create NaNs and infinities and hence may abort
due to a floating point exception in environments which do not handle NaNs and infinities in
the IEEE standard default manner.

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1 (liwork = -1), the routine returns immediately and provides the
recommended workspace in the first element of the corresponding array (work, iwork). This
operation is called a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

Nonsymmetric Eigenproblems

This section describes LAPACK driver routines used for solving nonsymmetric eigenproblems.
See also computational routines that can be called to solve these problems.

1015

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Table 4-11 lists all such driver routines for Fortran-77 interface. Respective routine names in
Fortran-95 interface are without the first symbol (see Routine Naming Conventions).

Table 4-11 Driver Routines for Solving Nonsymmetric Eigenproblems

Operation performedRoutine Name

Computes the eigenvalues and Schur factorization of a general matrix, and
orders the factorization so that selected eigenvalues are at the top left of
the Schur form.

?gees

Computes the eigenvalues and Schur factorization of a general matrix,
orders the factorization and computes reciprocal condition numbers.

?geesx

Computes the eigenvalues and left and right eigenvectors of a general
matrix.

?geev

Computes the eigenvalues and left and right eigenvectors of a general
matrix, with preliminary matrix balancing, and computes reciprocal condition
numbers for the eigenvalues and right eigenvectors.

?geevx

?gees
Computes the eigenvalues and Schur factorization
of a general matrix, and orders the factorization
so that selected eigenvalues are at the top left of
the Schur form.

Syntax

Fortran 77:

call sgees(jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs, work,
lwork, bwork, info)

call dgees(jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs, work,
lwork, bwork, info)

call cgees(jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs, work, lwork,
rwork, bwork, info)

call zgees(jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs, work, lwork,
rwork, bwork, info)

1016

4 Intel® Math Kernel Library Reference Manual

Fortran 95:

call gees(a, wr, wi [,vs] [,select] [,sdim] [,info])

call gees(a, w [,vs] [,select] [,sdim] [,info])

Description

This routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues, the
real Schur form T, and, optionally, the matrix of Schur vectors Z. This gives the Schur
factorization A = Z*T*ZH.

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that
selected eigenvalues are at the top left. The leading columns of Z then form an orthonormal
basis for the invariant subspace corresponding to the selected eigenvalues.

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks.
2-by-2 blocks will be standardized in the form

where b*c < 0. The eigenvalues of such a block are

A complex matrix is in Schur form if it is upper triangular.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobvs
If jobvs = 'N', then Schur vectors are not computed.
If jobvs = 'V', then Schur vectors are computed.

CHARACTER*1. Must be 'N' or 'S'. Specifies whether or
not to order the eigenvalues on the diagonal of the Schur
form.

sort

If sort = 'N', then eigenvalues are not ordered.
If sort = 'S', eigenvalues are ordered (see select).

LOGICAL FUNCTION of two REAL arguments for real flavors.select

1017

LAPACK Routines: Least Squares and Eigenvalue Problems 4

LOGICAL FUNCTION of one COMPLEX argument for complex
flavors.
select must be declared EXTERNAL in the calling subroutine.
If sort = 'S', select is used to select eigenvalues to sort
to the top left of the Schur form.
If sort = 'N', select is not referenced.
For real flavors:
An eigenvalue wr(j)+sqrt(-1)*wi(j) is selected if
select(wr(j), wi(j)) is true; that is, if either one of a
complex conjugate pair of eigenvalues is selected, then both
complex eigenvalues are selected.
Note that a selected complex eigenvalue may no longer
satisfy select(wr(j), wi(j))= .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this case
info may be set to n+2 (see info below).
For complex flavors:
An eigenvalue w(j) is selected if select(w(j)) is true.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sgeesa, work
DOUBLE PRECISION for dgees
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of the array a. Must be at
least max(1, n).

lda

INTEGER. The leading dimension of the output array vs.
Constraints:

ldvs

ldvs ≥ 1;

ldvs ≥ max(1, n) if jobvs = 'V'.

INTEGER.lwork
The dimension of the array work.

1018

4 Intel® Math Kernel Library Reference Manual

Constraint:

lwork ≥ max(1, 3n) for real flavors;

lwork ≥ max(1, 2n) for complex flavors.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.

REAL for cgeesrwork
DOUBLE PRECISION for zgees
Workspace array, DIMENSION at least max(1, n). Used in
complex flavors only.

LOGICAL. Workspace array, DIMENSION at least max(1, n).
Not referenced if sort = 'N'.

bwork

Output Parameters

On exit, this array is overwritten by the real-Schur/Schur
form T.

a

INTEGER.sdim
If sort = 'N', sdim= 0.
If sort = 'S', sdim is equal to the number of eigenvalues
(after sorting) for which select is true.
Note that for real flavors complex conjugate pairs for which
select is true for either eigenvalue count as 2.

REAL for sgeeswr, wi
DOUBLE PRECISION for dgees
Arrays, DIMENSION at least max (1, n) each. Contain the
real and imaginary parts, respectively, of the computed
eigenvalues, in the same order that they appear on the
diagonal of the output real-Schur form T. Complex conjugate
pairs of eigenvalues appear consecutively with the
eigenvalue having positive imaginary part first.

COMPLEX for cgeesw
DOUBLE COMPLEX for zgees.
Array, DIMENSION at least max(1, n). Contains the computed
eigenvalues. The eigenvalues are stored in the same order
as they appear on the diagonal of the output Schur form T.

1019

LAPACK Routines: Least Squares and Eigenvalue Problems 4

REAL for sgeesvs
DOUBLE PRECISION for dgees
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array vs(ldvs,*);the second dimension of vs must be at
least max(1, n).
If jobvs = 'V', vs contains the orthogonal/unitary matrix
Z of Schur vectors.
If jobvs = 'N', vs is not referenced.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and

i ≤ n:
the QR algorithm failed to compute all the eigenvalues;
elements 1:ilo-1 and i+1:n of wr and wi (for real flavors)
or w (for complex flavors) contain those eigenvalues which
have converged; if jobvs = 'V', vs contains the matrix
which reduces A to its partially converged Schur form;
i = n+1:
the eigenvalues could not be reordered because some
eigenvalues were too close to separate (the problem is very
ill-conditioned);
i = n+2:
after reordering, round-off changed values of some complex
eigenvalues so that leading eigenvalues in the Schur form
no longer satisfy select = .TRUE.. This could also be
caused by underflow due to scaling.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gees interface are the following:

1020

4 Intel® Math Kernel Library Reference Manual

Holds the matrix A of size (n, n).a

Holds the vector of length (n). Used in real flavors only.wr

Holds the vector of length (n). Used in real flavors only.wi

Holds the vector of length (n). Used in complex flavors only.w

Holds the matrix VS of size (n, n).vs

Restored based on the presence of the argument vs as follows:jobvs
jobvs = 'V', if vs is present,
jobvs = 'N', if vs is omitted.

Restored based on the presence of the argument select as follows:sort
sort = 'S', if select is present,
sort = 'N', if select is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

1021

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?geesx
Computes the eigenvalues and Schur factorization
of a general matrix, orders the factorization and
computes reciprocal condition numbers.

Syntax

Fortran 77:

call sgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs, ldvs,
rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call dgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs, ldvs,
rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call cgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs, ldvs, rconde,
rcondv, work, lwork, rwork, bwork, info)

call zgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs, ldvs, rconde,
rcondv, work, lwork, rwork, bwork, info)

Fortran 95:

call geesx(a, wr, wi [,vs] [,select] [,sdim] [,rconde] [,rcondev] [,info])

call geesx(a, w [,vs] [,select] [,sdim] [,rconde] [,rcondev] [,info])

Description

This routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues, the
real-Schur/Schur form T, and, optionally, the matrix of Schur vectors Z. This gives the Schur
factorization A = Z*T*ZH.

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that
selected eigenvalues are at the top left; computes a reciprocal condition number for the average
of the selected eigenvalues (rconde); and computes a reciprocal condition number for the right
invariant subspace corresponding to the selected eigenvalues (rcondv). The leading columns
of Z form an orthonormal basis for this invariant subspace.

For further explanation of the reciprocal condition numbers rconde and rcondv, see [LUG],
Section 4.10 (where these quantities are called s and sep respectively).

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks.
2-by-2 blocks will be standardized in the form

1022

4 Intel® Math Kernel Library Reference Manual

where b*c < 0. The eigenvalues of such a block are

A complex matrix is in Schur form if it is upper triangular.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobvs
If jobvs = 'N', then Schur vectors are not computed.
If jobvs = 'V', then Schur vectors are computed.

CHARACTER*1. Must be 'N' or 'S'. Specifies whether or
not to order the eigenvalues on the diagonal of the Schur
form.

sort

If sort = 'N', then eigenvalues are not ordered.
If sort = 'S', eigenvalues are ordered (see select).

LOGICAL FUNCTION of two REAL arguments for real flavors.select
LOGICAL FUNCTION of one COMPLEX argument for complex
flavors.
select must be declared EXTERNAL in the calling subroutine.
If sort = 'S', select is used to select eigenvalues to sort
to the top left of the Schur form.
If sort = 'N', select is not referenced.
For real flavors:
An eigenvalue wr(j)+sqrt(-1)*wi(j) is selected if
select(wr(j), wi(j)) is true; that is, if either one of a
complex conjugate pair of eigenvalues is selected, then both
complex eigenvalues are selected.
Note that a selected complex eigenvalue may no longer
satisfy select(wr(j), wi(j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this case
info may be set to n+2 (see info below).
For complex flavors:

1023

LAPACK Routines: Least Squares and Eigenvalue Problems 4

An eigenvalue w(j) is selected if select(w(j)) is true.

CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines
which reciprocal condition number are computed.

sense

If sense = 'N', none are computed;
If sense = 'E', computed for average of selected
eigenvalues only;
If sense = 'V', computed for selected right invariant
subspace only;
If sense = 'B', computed for both.
If sense is 'E', 'V', or 'B', then sort must equal 'S'.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sgeesxa, work
DOUBLE PRECISION for dgeesx
COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a. Must be at
least max(1, n).

lda

INTEGER. The leading dimension of the output array vs.
Constraints:

ldvs

ldvs ≥ 1;

ldvs ≥ max(1, n)if jobvs = 'V'.

INTEGER.lwork
The dimension of the array work. Constraint:

lwork ≥ max(1, 3n) for real flavors;

lwork ≥ max(1, 2n) for complex flavors.
Also, if sense = 'E', 'V', or 'B', then

lwork ≥ n+2*sdim*(n-sdim) for real flavors;

lwork ≥ 2*sdim*(n-sdim) for complex flavors;
where sdim is the number of selected eigenvalues computed
by this routine.

1024

4 Intel® Math Kernel Library Reference Manual

Note that 2*sdim*(n-sdim) ≤ n*n/2. Note also that an
error is only returned if lwork<max(1, 2*n), but if sense
= 'E', or 'V', or 'B' this may not be large enough.
For good performance, lwork must generally be larger.
If lwork = -1, then a workspace query is assumed; the
routine only calculates upper bound on the optimal size of
the array work, returns this value as the first entry of the
work array, and no error message related to lwork is issued
by xerbla.

INTEGER.iwork
Workspace array, DIMENSION (liwork). Used in real flavors
only. Not referenced if sense = 'N' or 'E'.

INTEGER.liwork
The dimension of the array iwork. Used in real flavors only.
Constraint:

liwork ≥ 1;

if sense = 'V' or 'B', liwork ≥ sdim*(n-sdim).

REAL for cgeesxrwork
DOUBLE PRECISION for zgeesx
Workspace array, DIMENSION at least max(1, n). Used in
complex flavors only.

LOGICAL. Workspace array, DIMENSION at least max(1, n).
Not referenced if sort = 'N'.

bwork

Output Parameters

On exit, this array is overwritten by the real-Schur/Schur
form T.

a

INTEGER.sdim
If sort = 'N', sdim= 0.
If sort = 'S', sdim is equal to the number of eigenvalues
(after sorting) for which select is true.
Note that for real flavors complex conjugate pairs for which
select is true for either eigenvalue count as 2.

REAL for sgeesxwr, wi
DOUBLE PRECISION for dgeesx

1025

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Arrays, DIMENSION at least max (1, n) each. Contain the
real and imaginary parts, respectively, of the computed
eigenvalues, in the same order that they appear on the
diagonal of the output real-Schur form T. Complex conjugate
pairs of eigenvalues appear consecutively with the
eigenvalue having positive imaginary part first.

COMPLEX for cgeesxw
DOUBLE COMPLEX for zgeesx.
Array, DIMENSION at least max(1, n). Contains the computed
eigenvalues. The eigenvalues are stored in the same order
as they appear on the diagonal of the output Schur form T.

REAL for sgeesxvs
DOUBLE PRECISION for dgeesx
COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Array vs(ldvs,*);the second dimension of vs must be at
least max(1, n).
If jobvs = 'V', vs contains the orthogonal/unitary matrix
Z of Schur vectors.
If jobvs = 'N', vs is not referenced.

REAL for single precision flavors DOUBLE PRECISION for
double precision flavors.

rconde, rcondv

If sense = 'E' or 'B', rconde contains the reciprocal
condition number for the average of the selected
eigenvalues.
If sense = 'N' or 'V', rconde is not referenced.
If sense = 'V' or 'B', rcondv contains the reciprocal
condition number for the selected right invariant subspace.
If sense = 'N' or 'E', rcondv is not referenced.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and

i ≤ n:

1026

4 Intel® Math Kernel Library Reference Manual

the QR algorithm failed to compute all the eigenvalues;
elements 1:ilo-1 and i+1:n of wr and wi (for real flavors)
or w (for complex flavors) contain those eigenvalues which
have converged; if jobvs = 'V', vs contains the
transformation which reduces A to its partially converged
Schur form;
i = n+1:
the eigenvalues could not be reordered because some
eigenvalues were too close to separate (the problem is very
ill-conditioned);
i = n+2:
after reordering, roundoff changed values of some complex
eigenvalues so that leading eigenvalues in the Schur form
no longer satisfy select = .TRUE.. This could also be
caused by underflow due to scaling.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine geesx interface are the following:

Holds the matrix A of size (n, n).a

Holds the vector of length (n). Used in real flavors only.wr

Holds the vector of length (n). Used in real flavors only.wi

Holds the vector of length (n). Used in complex flavors only.w

Holds the matrix VS of size (n, n).vs

Restored based on the presence of the argument vs as follows:jobvs
jobvs = 'V', if vs is present,
jobvs = 'N', if vs is omitted.

Restored based on the presence of the argument select as follows:sort
sort = 'S', if select is present,
sort = 'N', if select is omitted.

Restored based on the presence of arguments rconde and rcondv as
follows:

sense

sense = 'B', if both rconde and rcondv are present,
sense = 'E', if rconde is present and rcondv omitted,

1027

LAPACK Routines: Least Squares and Eigenvalue Problems 4

sense = 'V', if rconde is omitted and rcondv present,
sense = 'N', if both rconde and rcondv are omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work, iwork). This operation is called
a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

?geev
Computes the eigenvalues and left and right
eigenvectors of a general matrix.

Syntax

Fortran 77:

call sgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork,
info)

call dgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork,
info)

call cgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork,
info)

call zgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork,
info)

1028

4 Intel® Math Kernel Library Reference Manual

Fortran 95:

call geev(a, wr, wi [,vl] [,vr] [,info])

call geev(a, w [,vl] [,vr] [,info])

Description

This routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues and,
optionally, the left and/or right eigenvectors. The right eigenvector v(j) of A satisfies

A*v(j)= λ(j)*v(j)

where λ(j) is its eigenvalue.

The left eigenvector u(j) of A satisfies

u(j)H*A = λ(j)*u(j)H

where u(j)H denotes the conjugate transpose of u(j). The computed eigenvectors are normalized
to have Euclidean norm equal to 1 and largest component real.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobvl
If jobvl = 'N', then left eigenvectors of A are not
computed.
If jobvl = 'V', then left eigenvectors of A are computed.

CHARACTER*1. Must be 'N' or 'V'.jobvr
If jobvr = 'N', then right eigenvectors of A are not
computed.
If jobvr = 'V', then right eigenvectors of A are computed.

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sgeeva, work
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

1029

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The first dimension of the array a. Must be at
least max(1, n).

lda

INTEGER. The leading dimensions of the output arrays vl
and vr, respectively.

ldvl, ldvr

Constraints:

ldvl ≥ 1; ldvr ≥ 1.

If jobvl = 'V', ldvl ≥ max(1, n);

If jobvr = 'V', ldvr ≥ max(1, n).

INTEGER.lwork
The dimension of the array work.
Constraint:

lwork ≥ max(1, 3n), and if jobvl = 'V' or jobvr =
'V', lwork < max(1, 4n) (for real flavors);
lwork < max(1, 2n) (for complex flavors).
For good performance, lwork must generally be larger.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.

REAL for cgeevrwork
DOUBLE PRECISION for zgeev
Workspace array, DIMENSION at least max(1, 2n). Used in
complex flavors only.

Output Parameters

On exit, this array is overwritten by intermediate results.a

REAL for sgeevwr, wi
DOUBLE PRECISION for dgeev
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the
computed eigenvalues. Complex conjugate pairs of
eigenvalues appear consecutively with the eigenvalue having
positive imaginary part first.

COMPLEX for cgeevw
DOUBLE COMPLEX for zgeev.

1030

4 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least max(1, n).
Contains the computed eigenvalues.

REAL for sgeevvl, vr
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Arrays:
vl(ldvl,*);the second dimension of vl must be at least
max(1, n).
If jobvl = 'V', the left eigenvectors u(j) are stored one
after another in the columns of vl, in the same order as
their eigenvalues.
If jobvl = 'N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the
j-th column of vl.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = vl(:,j) + i*vl(:,j+1)
and u(j+1) = vl(:,j)- i*vl(:,j+1), where i =
sqrt(-1).
For complex flavors:
u(j) = vl(:,j), the j-th column of vl.
vr(ldvr,*); the second dimension of vr must be at least
max(1, n).
If jobvr = 'V', the right eigenvectors v(j) are stored one
after another in the columns of vr, in the same order as
their eigenvalues.
If jobvr = 'N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the
j-th column of vr.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = vr(:,j) + i*vr(:,j+1)
and v(j+1) = vr(:,j) - i*vr(:,j+1), where i =
sqrt(-1).
For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

1031

LAPACK Routines: Least Squares and Eigenvalue Problems 4

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors have been computed;
elements i+1:n of wr and wi (for real flavors) or w (for
complex flavors) contain those eigenvalues which have
converged.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine geev interface are the following:

Holds the matrix A of size (n, n).a

Holds the vector of length (n). Used in real flavors only.wr

Holds the vector of length (n). Used in real flavors only.wi

Holds the vector of length (n). Used in complex flavors only.w

Holds the matrix VL of size (n, n).vl

Holds the matrix VR of size (n, n).vr

Restored based on the presence of the argument vl as follows:jobvl
jobvl = 'V', if vl is present,
jobvl = 'N', if vl is omitted.

Restored based on the presence of the argument vr as follows:jobvr
jobvr = 'V', if vr is present,
jobvr = 'N', if vr is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

1032

4 Intel® Math Kernel Library Reference Manual

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?geevx
Computes the eigenvalues and left and right
eigenvectors of a general matrix, with preliminary
matrix balancing, and computes reciprocal
condition numbers for the eigenvalues and right
eigenvectors.

Syntax

Fortran 77:

call sgeevx(balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl, ldvl, vr,
ldvr, ilo, ihi, scale, abnrm, rconde, rcondv, work, lwork, iwork, info)

call dgeevx(balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl, ldvl, vr,
ldvr, ilo, ihi, scale, abnrm, rconde, rcondv, work, lwork, iwork, info)

call cgeevx(balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl, vr, ldvr,
ilo, ihi, scale, abnrm, rconde, rcondv, work, lwork, rwork, info)

call zgeevx(balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl, vr, ldvr,
ilo, ihi, scale, abnrm, rconde, rcondv, work, lwork, rwork, info)

Fortran 95:

call geevx(a, wr, wi [,vl] [,vr] [,balanc] [,ilo] [,ihi] [,scale] [,abnrm] [,
rconde] [,rcondv] [,info])

call geevx(a, w [,vl] [,vr] [,balanc] [,ilo] [,ihi] [,scale] [,abnrm] [,rconde]
[, rcondv] [,info])

1033

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Description

This routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues and,
optionally, the left and/or right eigenvectors.

Optionally also, it computes a balancing transformation to improve the conditioning of the
eigenvalues and eigenvectors (ilo, ihi, scale, and abnrm), reciprocal condition numbers for
the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

The right eigenvector v(j) of A satisfies

A*v(j) = λ(j)*v(j)

where λ(j) is its eigenvalue.

The left eigenvector u(j) of A satisfies

u(j)H*A = λ(j)*u(j)H

where u(j)H denotes the conjugate transpose of u(j). The computed eigenvectors are
normalized to have Euclidean norm equal to 1 and largest component real.

Balancing a matrix means permuting the rows and columns to make it more nearly upper
triangular, and applying a diagonal similarity transformation D*A*inv(D), where D is a diagonal
matrix, to make its rows and columns closer in norm and the condition numbers of its eigenvalues
and eigenvectors smaller. The computed reciprocal condition numbers correspond to the balanced
matrix. Permuting rows and columns will not change the condition numbers in exact arithmetic)
but diagonal scaling will. For further explanation of balancing, see [LUG], Section 4.10.

Input Parameters

CHARACTER*1. Must be 'N', 'P', 'S', or 'B'. Indicates
how the input matrix should be diagonally scaled and/or
permuted to improve the conditioning of its eigenvalues.

balanc

If balanc = 'N', do not diagonally scale or permute;
If balanc = 'P', perform permutations to make the matrix
more nearly upper triangular. Do not diagonally scale;
If balanc = 'S', diagonally scale the matrix, i.e. replace
A by D*A*inv(D), where D is a diagonal matrix chosen to
make the rows and columns of A more equal in norm. Do
not permute;
If balanc = 'B', both diagonally scale and permute A.

1034

4 Intel® Math Kernel Library Reference Manual

Computed reciprocal condition numbers will be for the matrix
after balancing and/or permuting. Permuting does not
change condition numbers (in exact arithmetic), but
balancing does.

CHARACTER*1. Must be 'N' or 'V'.jobvl
If jobvl = 'N', left eigenvectors of A are not computed;
If jobvl = 'V', left eigenvectors of A are computed.
If sense = 'E' or 'B', then jobvl must be 'V'.

CHARACTER*1. Must be 'N' or 'V'.jobvr
If jobvr = 'N', right eigenvectors of A are not computed;
If jobvr = 'V', right eigenvectors of A are computed.
If sense = 'E' or 'B', then jobvr must be 'V'.

CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines
which reciprocal condition number are computed.

sense

If sense = 'N', none are computed;
If sense = 'E', computed for eigenvalues only;
If sense = 'V', computed for right eigenvectors only;
If sense = 'B', computed for eigenvalues and right
eigenvectors.
If sense is 'E' or 'B', both left and right eigenvectors must
also be computed (jobvl = 'V' and jobvr = 'V').

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sgeevxa, work
DOUBLE PRECISION for dgeevx
COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a. Must be at
least max(1, n).

lda

INTEGER. The leading dimensions of the output arrays vl
and vr, respectively.

ldvl, ldvr

Constraints:

ldvl ≥ 1; ldvr ≥ 1.

1035

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If jobvl = 'V', ldvl ≥ max(1, n);

If jobvr = 'V', ldvr ≥ max(1, n).

INTEGER.lwork
The dimension of the array work.
For real flavors:

If sense = 'N' or 'E', lwork ≥ max(1, 2n), and if jobvl

= 'V' or jobvr = 'V', lwork ≥ 3n;

If sense = 'V' or 'B', lwork ≥ n*(n+6).
For good performance, lwork must generally be larger.
For complex flavors:

If sense = 'N'or 'E', lwork ≥ max(1, 2n);

If sense = 'V' or 'B', lwork ≥ n2+2n. For good
performance, lwork must generally be larger.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.

REAL for cgeevxrwork
DOUBLE PRECISION for zgeevx
Workspace array, DIMENSION at least max(1, 2n). Used in
complex flavors only.

INTEGER.iwork
Workspace array, DIMENSION at least max(1, 2n-2). Used
in real flavors only. Not referenced if sense = 'N' or 'E'.

Output Parameters

On exit, this array is overwritten.a
If jobvl = 'V' or jobvr = 'V', it contains the
real-Schur/Schur form of the balanced version of the input
matrix A.

REAL for sgeevxwr, wi
DOUBLE PRECISION for dgeevx

1036

4 Intel® Math Kernel Library Reference Manual

Arrays, DIMENSION at least max (1, n) each. Contain the
real and imaginary parts, respectively, of the computed
eigenvalues. Complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having positive imaginary
part first.

COMPLEX for cgeevxw
DOUBLE COMPLEX for zgeevx.
Array, DIMENSION at least max(1, n). Contains the computed
eigenvalues.

REAL for sgeevxvl, vr
DOUBLE PRECISION for dgeevx
COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.
Arrays:
vl(ldvl,*); the second dimension of vl must be at least
max(1, n).
If jobvl = 'V', the left eigenvectors u(j) are stored one
after another in the columns of vl, in the same order as
their eigenvalues.
If jobvl = 'N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the
j-th column of vl.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = vl(:,j) + i*vl(:,j+1)
and (j+1) = vl(:,j) - i*vl(:,j+1), where i =
sqrt(-1).
For complex flavors:
u(j) = vl(:,j), the j-th column of vl.
vr(ldvr,*); the second dimension of vr must be at least
max(1, n).
If jobvr = 'V', the right eigenvectors v(j) are stored one
after another in the columns of vr, in the same order as
their eigenvalues.
If jobvr = 'N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the
j-th column of vr.

1037

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = vr(:,j) + i*vr(:,j+1)
and v(j+1) = vr(:,j) - i*vr(:,j+1), where i =
sqrt(-1) .
For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

INTEGER. ilo and ihi are integer values determined when
A was balanced.

ilo, ihi

The balanced A(i,j) = 0 if i > j and j = 1,..., ilo-1
or i = ihi+1,..., n.
If balanc = 'N' or 'S', ilo = 1 and ihi = n.

REAL for single-precision flavorsscale
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, n). Details of the
permutations and scaling factors applied when balancing A.
If P(j) is the index of the row and column interchanged with
row and column j, and D(j) is the scaling factor applied to
row and column j, then
scale(j) = P(j), for j = 1,...,ilo-1
= D(j), for j = ilo,...,ihi
= P(j) for j = ihi+1,..., n.
The order in which the interchanges are made is n to ihi+1,
then 1 to ilo-1.

REAL for single-precision flavorsabnrm
DOUBLE PRECISION for double-precision flavors.
The one-norm of the balanced matrix (the maximum of the
sum of absolute values of elements of any column).

REAL for single precision flavors DOUBLE PRECISION for
double precision flavors.

rconde, rcondv

Arrays, DIMENSION at least max(1, n) each.
rconde(j) is the reciprocal condition number of the j-th
eigenvalue.
rcondv(j) is the reciprocal condition number of the j-th right
eigenvector.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.info

1038

4 Intel® Math Kernel Library Reference Manual

If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors or condition numbers have
been computed; elements 1:ilo-1 and i+1:n of wr and wi
(for real flavors) or w (for complex flavors) contain
eigenvalues which have converged.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine geevx interface are the following:

Holds the matrix A of size (n, n).a

Holds the vector of length (n). Used in real flavors only.wr

Holds the vector of length (n). Used in real flavors only.wi

Holds the vector of length (n). Used in complex flavors only.w

Holds the matrix VL of size (n, n).vl

Holds the matrix VR of size (n, n).vr

Holds the vector of length (n).scale

Holds the vector of length (n).rconde

Holds the vector of length (n).rcondv

Must be 'N', 'B', 'P' or 'S'. The default value is 'N'.balanc

Restored based on the presence of the argument vl as follows:jobvl
jobvl = 'V', if vl is present,
jobvl = 'N', if vl is omitted.

Restored based on the presence of the argument vr as follows:jobvr
jobvr = 'V', if vr is present,
jobvr = 'N', if vr is omitted.

Restored based on the presence of arguments rconde and rcondv as
follows:

sense

sense = 'B', if both rconde and rcondv are present,
sense = 'E', if rconde is present and rcondv omitted,
sense = 'V', if rconde is omitted and rcondv present,

1039

LAPACK Routines: Least Squares and Eigenvalue Problems 4

sense = 'N', if both rconde and rcondv are omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

Singular Value Decomposition

This section describes LAPACK driver routines used for solving singular value problems. See
also computational routines computational routines that can be called to solve these problems.
Table 4-12 lists all such driver routines for Fortran-77 interface. Respective routine names in
Fortran-95 interface are without the first symbol (see Routine Naming Conventions).

Table 4-12 Driver Routines for Singular Value Decomposition

Operation performedRoutine Name

Computes the singular value decomposition of a general rectangular matrix.?gesvd

Computes the singular value decomposition of a general rectangular matrix
using a divide and conquer method.

?gesdd

Computes the generalized singular value decomposition of a pair of general
rectangular matrices.

?ggsvd

1040

4 Intel® Math Kernel Library Reference Manual

?gesvd
Computes the singular value decomposition of a
general rectangular matrix.

Syntax

Fortran 77:

call sgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, info)

call dgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, info)

call cgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork,
info)

call zgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork,
info)

Fortran 95:

call gesvd(a, s [,u] [,vt] [,ww] [,job] [,info])

Description

This routine computes the singular value decomposition (SVD) of a real/complex m-by-n matrix
A, optionally computing the left and/or right singular vectors. The SVD is written

A = U*ΣVH

where Σ is an m-by-n matrix which is zero except for its min(m,n) diagonal elements, U is an
m-by-m orthogonal/unitary matrix, and V is an n-by-n orthogonal/unitary matrix. The diagonal

elements of Σ are the singular values of A; they are real and non-negative, and are returned
in descending order. The first min(m, n) columns of U and V are the left and right singular vectors
of A.

Note that the routine returns VH, not V.

Input Parameters

CHARACTER*1. Must be 'A', 'S', 'O', or 'N'. Specifies
options for computing all or part of the matrix U.

jobu

If jobu = 'A', all m columns of U are returned in the array
u;

1041

LAPACK Routines: Least Squares and Eigenvalue Problems 4

if jobu = 'S', the first min(m, n) columns of U (the left
singular vectors) are returned in the array u;
if jobu = 'O', the first min(m, n) columns of U (the left
singular vectors) are overwritten on the array a;
if jobu = 'N', no columns of U (no left singular vectors)
are computed.

CHARACTER*1. Must be 'A', 'S', 'O', or 'N'. Specifies
options for computing all or part of the matrix VH.

jobvt

If jobvt = 'A', all n rows of VH are returned in the array
vt;
if jobvt = 'S', the first min(m,n) rows of VH (the right
singular vectors) are returned in the array vt;
if jobvt = 'O', the first min(m,n) rows of VH (the right
singular vectors) are overwritten on the array a;
if jobvt = 'N', no rows of VH (no right singular vectors)
are computed.
jobvt and jobu cannot both be 'O'.

INTEGER. The number of rows of the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgesvda, work
DOUBLE PRECISION for dgesvd
COMPLEX for cgesvd
DOUBLE COMPLEX for zgesvd.
Arrays:
a(lda,*) is an array containing the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a.lda
Must be at least max(1, m).

INTEGER. The leading dimensions of the output arrays u
and vt, respectively.

ldu, ldvt

Constraints:

ldu ≥ 1; ldvt < 1.

If jobu = 'S' or 'A', ldu ≥ m;

If jobvt = 'A', ldvt≥ n;

1042

4 Intel® Math Kernel Library Reference Manual

If jobvt = 'S', ldvt ≥ min(m, n).

INTEGER.lwork

The dimension of the array work; lwork ≥ 1.
Constraints:

lwork ≥ max(3*min(m, n)+max(m, n), 5*min(m,n))
(for real flavors);

lwork ≥ 2*min(m, n)+max(m, n) (for complex flavors).
For good performance, lwork must generally be larger.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla. See
Application Notes for details.

REAL for cgesvdrwork
DOUBLE PRECISION for zgesvd
Workspace array, DIMENSION at least max(1, 5*min(m, n)).
Used in complex flavors only.

Output Parameters

On exit,a
If jobu = 'O', a is overwritten with the first min(m,n)
columns of U (the left singular vectors, stored columnwise);
If jobvt = 'O', a is overwritten with the first min(m, n)
rows of VH (the right singular vectors, stored rowwise);

If jobu≠'O' and jobvt≠'O', the contents of a are
destroyed.

REAL for single precision flavors DOUBLE PRECISION for
double precision flavors.

s

Array, DIMENSION at least max(1, min(m,n)). Contains the
singular values of A sorted so that s(i) < s(i+1).

REAL for sgesvdu, vt
DOUBLE PRECISION for dgesvd
COMPLEX for cgesvd
DOUBLE COMPLEX for zgesvd.
Arrays:

1043

LAPACK Routines: Least Squares and Eigenvalue Problems 4

u(ldu,*); the second dimension of u must be at least max(1,
m) if jobu = 'A', and at least max(1, min(m, n)) if jobu
= 'S'.
If jobu = 'A', u contains the m-by-m orthogonal/unitary
matrix U.
If jobu = 'S', u contains the first min(m, n) columns of U
(the left singular vectors, stored columnwise).
If jobu = 'N' or 'O', u is not referenced.
vt(ldvt,*); the second dimension of vt must be at least
max(1, n).
If jobvt = 'A', vt contains the n-by-n orthogonal/unitary
matrix VH.
If jobvt = 'S', vt contains the first min(m, n) rows of VH

(the right singular vectors, stored rowwise).
If jobvt = 'N'or 'O', vt is not referenced.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work

For real flavors:
If info > 0, work(2:min(m,n)) contains the unconverged
superdiagonal elements of an upper bidiagonal matrix B
whose diagonal is in s (not necessarily sorted). B satisfies
A = u * B * vt, so it has the same singular values as A,
and singular vectors related by u and vt.

On exit (for complex flavors), if info > 0,
rwork(1:min(m,n)-1) contains the unconverged
superdiagonal elements of an upper bidiagonal matrix B

rwork

whose diagonal is in s (not necessarily sorted). B satisfies
A = u * B * vt, so it has the same singular values as A,
and singular vectors related by u and vt.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then if ?bdsqr did not converge, i specifies
how many superdiagonals of the intermediate bidiagonal
form B did not converge to zero.

1044

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gesvd interface are the following:

Holds the matrix A of size (m, n).a

Holds the vector of length min(m, n).s

Holds the matrix U of size (m,min(m, n)).u

Holds the matrix VT of size (min(m, n),n).vt

Holds the vector of length (min(m, n)-1).ww

Holds the vector of length min(m, n)-1. ww contains the unconverged
superdiagonal elements of an upper bidiagonal matrix B whose diagonal
is in s (not necessarily sorted). B satisfies A = U * B * VT, so it has
the same singular values as A, and singular vectors related by U and
VT.

ww

Must be either 'N', or 'U', or 'V'. The default value is 'N'.job
If job = 'U', and u is not present, then u is returned in the array a.
If job = 'V', and vt is not present, then vt is returned in the array
a.

Restored based on the presence of the argument u, value of job and
sizes of arrays u and a as follows:

jobu

jobu = 'A', if u is present and the number of columns in u is equal
to the number of rows in a,
jobu = 'S', if u is present and the number of columns in u is not equal
to the number of rows in a,
jobu = 'O', if u is not present and job is equal to 'U',
jobu = 'N', if u is not present and job is not equal to 'U'.

Restored based on the presence of the argument vt, value of job and
sizes of arrays vt and a as follows:

jobvt

jobvt = 'A', if vt is present and the number of columns in vt is equal
to the number of rows in a,
jobvt = 'S', if vt is present and the number of columns in vt is not
equal to the number of rows in a,
jobvt = 'O', if vt is not present and job is equal to 'V',
jobvt = 'N', if vt is not present and job is not equal to 'V',

1045

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?gesdd
Computes the singular value decomposition of a
general rectangular matrix using a divide and
conquer method.

Syntax

Fortran 77:

call sgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork, info)

call dgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork, info)

call cgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork,
info)

call zgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork,
info)

Fortran 95:

call gesdd(a, s [,u] [,vt] [,jobz] [,info])

Description

This routine computes the singular value decomposition (SVD) of a real/complex m-by-n matrix
A, optionally computing the left and/or right singular vectors.

1046

4 Intel® Math Kernel Library Reference Manual

If singular vectors are desired, it uses a divide and conquer algorithm. The SVD is written

A = U*ΣVH,

where Σ is an m-by-n matrix which is zero except for its min(m,n) diagonal elements, U is an
m-by-m orthogonal/unitary matrix, and V is an n-by-n orthogonal/unitary matrix. The diagonal

elements of Σ are the singular values of A; they are real and non-negative, and are returned
in descending order. The first min(m, n) columns of U and V are the left and right singular vectors
of A.

Note that the routine returns VH, not V.

Input Parameters

CHARACTER*1. Must be 'A', 'S', 'O', or 'N'.jobz
Specifies options for computing all or part of the matrix U.
If jobz = 'A', all m columns of U and all n rows of VT are
returned in the arrays u and vt;
if jobz = 'S', the first min(m, n) columns of U and the first
min(m, n) rows of VT are returned in the arrays u and vt;
if jobz = 'O', then

if m ≥ n, the first n columns of U are overwritten in the array
a and all rows of VT are returned in the array vt;

if m ≥ n, all columns of U are returned in the array u and the
first m rows of VT are overwritten in the array a;
if jobz = 'N', no columns of U or rows of VT are computed.

INTEGER. The number of rows of the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgesdda, work
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for zgesdd.
Arrays: a(lda,*) is an array containing the m-by-n matrix
A.
The second dimension of a must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a. Must be at
least max(1, m).

lda

1047

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The leading dimensions of the output arrays u
and vt, respectively.

ldu, ldvt

Constraints:

ldu ≥ 1; ldvt ≥ 1.
If jobz = 'S' or 'A', or jobz = 'O' and m < n,

then ldu ≥ m;
If jobz = 'A' or jobz = 'O' and m < n,

then ldvt ≥ n;

If jobz = 'S', ldvt ≥ min(m, n).

INTEGER.lwork

The dimension of the array work; lwork ≥ 1.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the work(1), and no error message
related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

REAL for cgesddrwork
DOUBLE PRECISION for zgesdd
Workspace array, DIMENSION at least max(1, 5*min(m,n))
if jobz = 'N'.
Otherwise, the dimension of rwork must be at least max(1,
5*(min(m,n))2 + 7*min(m,n)). This array is used in
complex flavors only.

INTEGER. Workspace array, DIMENSION at least max(1, 8
*min(m, n)).

iwork

Output Parameters

On exit:a

If jobz = 'O', then if m≥ n, a is overwritten with the first
n columns of U (the left singular vectors, stored columnwise).
If m < n, a is overwritten with the first m rows of VT (the right
singular vectors, stored rowwise);

If jobz≠'O', the contents of a are destroyed.

REAL for single precision flavors DOUBLE PRECISION for
double precision flavors.

s

1048

4 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least max(1, min(m,n)). Contains the

singular values of A sorted so that s(i) ≥ s(i+1).

REAL for sgesddu, vt
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for zgesdd.
Arrays:
u(ldu,*); the second dimension of u must be at least max(1,
m) if jobz = 'A' or jobz = 'O' and m < n.
If jobz = 'S', the second dimension of u must be at least
max(1, min(m, n)).
If jobz = 'A'or jobz = 'O' and m < n, u contains the
m-by-m orthogonal/unitary matrix U.
If jobz = 'S', u contains the first min(m, n) columns of U
(the left singular vectors, stored columnwise).
If jobz = 'O' and m < n, or jobz = 'N', u is not
referenced.
vt(ldvt,*); the second dimension of vt must be at least
max(1, n).

If jobz = 'A'or jobz = 'O' and m≥n, vt contains the
n-by-n orthogonal/unitary matrix VT.
If jobz = 'S', vt contains the first min(m, n) rows of VT

(the right singular vectors, stored rowwise).
If jobz = 'O' and m < n, or jobz = 'N', vt is not
referenced.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then ?bdsdc did not converge, updating
process failed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

1049

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Specific details for the routine gesdd interface are the following:

Holds the matrix A of size (m, n).a

Holds the vector of length min(m, n).s

Holds the matrix U of size (m,min(m, n)).u

Holds the matrix VT of size (min(m, n),n).vt

Must be 'N', 'A', 'S', or 'O'. The default value is 'N'.job

Application Notes

For real flavors:

If jobz = 'N', lwork ≥ 3*min(m, n) + max (max(m,n), 6*min(m, n));

If jobz = 'O', lwork ≥ 3*(min(m, n))2 +

max (max(m, n), 5*(min(m, n))2 + 4*min(m, n));

If jobz = 'S' or 'A', lwork < 3*(min(m, n))2 +

max (max(m, n), 4*(min(m, n))2 + 4*min(m, n)).

For complex flavors:

If jobz = 'N', lwork ≥ 2*min(m, n) + max(m, n);

If jobz = 'O', lwork ≥ 2*(min(m, n))2 + max(m, n) + 2*min(m, n);

If jobz = 'S' or 'A', lwork ≥ (min(m, n))2 + max(m, n) + 2*min(m, n);

For good performance, lwork should generally be larger.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

1050

4 Intel® Math Kernel Library Reference Manual

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?ggsvd
Computes the generalized singular value
decomposition of a pair of general rectangular
matrices.

Syntax

Fortran 77:

call sggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u,
ldu, v, ldv, q, ldq, work, iwork, info)

call dggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u,
ldu, v, ldv, q, ldq, work, iwork, info)

call cggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u,
ldu, v, ldv, q, ldq, work, rwork, iwork, info)

call zggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u,
ldu, v, ldv, q, ldq, work, rwork, iwork, info)

Fortran 95:

call ggsvd(a, b, alpha, beta [, k] [,l] [,u] [,v] [,q] [,iwork] [,info])

Description

This routine computes the generalized singular value decomposition (GSVD) of an m-by-n
real/complex matrix A and p-by-n real/complex matrix B:

UH*A*Q = D1*(0 R), VH*B*Q = D2*(0 R),

where U, V and Q are orthogonal/unitary matrices.

Let k+l = the effective numerical rank of the matrix (AH, BH)H, then R is a (k+l)-by-(k+l)
nonsingular upper triangular matrix, D1 and D2 are m-by-(k+l) and p-by-(k+l) “diagonal”
matrices and of the following structures, respectively:

If m-k-l ≥0,

1051

LAPACK Routines: Least Squares and Eigenvalue Problems 4

where

C = diag(alpha(K+1),..., alpha(K+l))

S = diag(beta(K+1),...,beta(K+l))

C2 + S2 = I

R is stored in a(1:k+l, n-k-l+1:n) on exit.

If m-k-l < 0,

1052

4 Intel® Math Kernel Library Reference Manual

where

C = diag(alpha(K+1),..., alpha(m)),

S = diag(beta(K+1),...,beta(m)),

C2 + S2 = I

On exit, is stored in a(1:m, n-k-l+1:n) and R33 is stored in b(m-k+1:l,
n+m-k-l+1:n).

The routine computes C, S, R, and optionally the orthogonal/unitary transformation matrices
U, V and Q.

1053

LAPACK Routines: Least Squares and Eigenvalue Problems 4

In particular, if B is an n-by-n nonsingular matrix, then the GSVD of A and B implicitly gives
the SVD of AB-1:

A*B-1 = U(*D1 D2
-1)*VH.

If (AH, BH)H has orthonormal columns, then the GSVD of A and B is also equal to the CS
decomposition of A and B. Furthermore, the GSVD can be used to derive the solution of the
eigenvalue problem:

AH*A λx = λ BH*B x.

Input Parameters

CHARACTER*1. Must be 'U' or 'N'.jobu
If jobu = 'U', orthogonal/unitary matrix U is computed.
If jobu = 'N', U is not computed.

CHARACTER*1. Must be 'V' or 'N'.jobv
If jobv = 'V', orthogonal/unitary matrix V is computed.
If jobv = 'N', V is not computed.

CHARACTER*1. Must be 'Q' or 'N'.jobq
If jobq = 'Q', orthogonal/unitary matrix Q is computed.
If jobq = 'N', Q is not computed.

INTEGER. The number of rows of the matrix A (m ≥ 0).m

INTEGER. The number of columns of the matrices A and B

(n ≥ 0).

n

INTEGER. The number of rows of the matrix B (p ≥ 0).p

REAL for sggsvda, b, work
DOUBLE PRECISION for dggsvd
COMPLEX for cggsvd
DOUBLE COMPLEX for zggsvd.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).
work(*) is a workspace array.
The dimension of work must be at least max(3n, m, p)+n.

1054

4 Intel® Math Kernel Library Reference Manual

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The first dimension of b; at least max(1, p).ldb

INTEGER. The first dimension of the array u .ldu

ldu ≥ max(1, m) if jobu = 'U'; ldu ≥ 1 otherwise.

INTEGER. The first dimension of the array v .ldv

ldv ≥ max(1, p) if jobv = 'V'; ldv ≥ 1 otherwise.

INTEGER. The first dimension of the array q .ldq

ldq ≥ max(1, n) if jobq = 'Q'; ldq ≥ 1 otherwise.

INTEGER.iwork
Workspace array, DIMENSION at least max(1, n).

REAL for cggsvd DOUBLE PRECISION for zggsvd.rwork
Workspace array, DIMENSION at least max(1, 2n). Used in
complex flavors only.

Output Parameters

INTEGER. On exit, k and l specify the dimension of the
subblocks. The sum k+l is equal to the effective numerical
rank of (AH, BH)H.

k, l

On exit, a contains the triangular matrix R or part of R.a

On exit, b contains part of the triangular matrix R if m-k-l
< 0.

b

REAL for single-precision flavorsalpha, beta
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max(1, n) each.
Contain the generalized singular value pairs of A and B:
alpha(1:k) = 1,
beta(1:k) = 0,

and if m-k-l ≥ 0,
alpha(k+1:k+l) = C,
beta(k+1:k+l) = S,
or if m-k-l < 0,
alpha(k+1:m)= C, alpha(m+1:k+l)=0
beta(k+1:m) = S, beta(m+1:k+l) = 1
and

1055

LAPACK Routines: Least Squares and Eigenvalue Problems 4

alpha(k+l+1:n) = 0
beta(k+l+1:n) = 0.

REAL for sggsvdu, v, q
DOUBLE PRECISION for dggsvd
COMPLEX for cggsvd
DOUBLE COMPLEX for zggsvd.
Arrays:
u(ldu,*); the second dimension of u must be at least max(1,
m).
If jobu = 'U', u contains the m-by-m orthogonal/unitary
matrix U.
If jobu = 'N', u is not referenced.
v(ldv,*); the second dimension of v must be at least max(1,
p).
If jobv = 'V', v contains the p-by-p orthogonal/unitary
matrix V.
If jobv = 'N', v is not referenced.
q(ldq,*); the second dimension of q must be at least max(1,
n).
If jobq = 'Q', q contains the n-by-n orthogonal/unitary
matrix Q.
If jobq = 'N', q is not referenced.

On exit, iwork stores the sorting information.iwork

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = 1, the Jacobi-type procedure failed to converge.
For further details, see subroutine ?tgsja.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ggsvd interface are the following:

Holds the matrix A of size (m, n).a

Holds the matrix B of size (p, n).b

1056

4 Intel® Math Kernel Library Reference Manual

Holds the vector of length (n).alpha

Holds the vector of length (n).beta

Holds the matrix U of size (m, m).u

Holds the matrix V of size (p, p).v

Holds the matrix Q of size (n, n).q

Holds the vector of length (n).iwork

Restored based on the presence of the argument u as follows:jobu
jobu = 'U', if u is present, jobu = 'N', if u is omitted.

Restored based on the presence of the argument v as follows:jobv
jobz = 'V', if v is present,
jobz = 'N', if v is omitted.

Restored based on the presence of the argument q as follows:jobq
jobz = 'Q', if q is present,
jobz = 'N', if q is omitted.

Generalized Symmetric Definite Eigenproblems

This section describes LAPACK driver routines used for solving generalized symmetric definite
eigenproblems. See also computational routines that can be called to solve these problems.
Table 4-13 lists all such driver routines for Fortran-77 interface. Respective routine names in
Fortran-95 interface are without the first symbol (see Routine Naming Conventions).

Table 4-13 Driver Routines for Solving Generalized Symmetric Definite Eigenproblems

Operation performedRoutine Name

Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem.

?sygv/?hegv

Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem. If eigenvectors
are desired, it uses a divide and conquer method.

?sygvd/?hegvd

Computes selected eigenvalues and, optionally, eigenvectors of a real /
complex generalized symmetric /Hermitian definite eigenproblem.

?sygvx/?hegvx

Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with matrices
in packed storage.

?spgv/?hpgv

1057

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Operation performedRoutine Name

Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with matrices
in packed storage. If eigenvectors are desired, it uses a divide and
conquer method.

?spgvd/?hpgvd

Computes selected eigenvalues and, optionally, eigenvectors of a real /
complex generalized symmetric /Hermitian definite eigenproblem with
matrices in packed storage.

?spgvx/?hpgvx

Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with banded
matrices.

?sbgv/?hbgv

Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with banded
matrices. If eigenvectors are desired, it uses a divide and conquer
method.

?sbgvd/?hbgvd

Computes selected eigenvalues and, optionally, eigenvectors of a real /
complex generalized symmetric /Hermitian definite eigenproblem with
banded matrices.

?sbgvx/?hbgvx

?sygv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem.

Syntax

Fortran 77:

call ssygv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)

call dsygv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)

Fortran 95:

call sygv(a, b, w [,itype] [,jobz] [,uplo] [,info])

1058

4 Intel® Math Kernel Library Reference Manual

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form

Ax = λBx, ABx = λx, or B Ax = λx .

Here A and B are assumed to be symmetric and B is also positive definite.

Input Parameters

INTEGER. Must be 1 or 2 or 3.itype
Specifies the problem type to be solved:
if itype = 1, the problem type is A*x = lambda*B*x;
if itype = 2, the problem type is A*B*x = lambda*x;
if itype = 3, the problem type is B*A*x = lambda*x.

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays a and b store the upper triangles of
A and B;
If uplo = 'L', arrays a and b store the lower triangles of
A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

REAL for ssygva, b, work
DOUBLE PRECISION for dsygv.
Arrays:
a(lda,*) contains the upper or lower triangle of the
symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the upper or lower triangle of the
symmetric positive definite matrix B, as specified by uplo.
The second dimension of b must be at least max(1, n).
work is a workspace array, its dimension max(1,
lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

1059

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER.lwork
The dimension of the array work;

lwork ≥ max(1, 3n-1).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

On exit, if jobz = 'V', then if info = 0, a contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:

a

if itype = 1 or 2, ZT*B*Z = I;
if itype = 3, ZT*inv(B)*Z = I;
If jobz = 'N', then on exit the upper triangle (if uplo =
'U') or the lower triangle (if uplo = 'L') of A, including
the diagonal, is destroyed.

On exit, if info ≤ n, the part of b containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = UT*U or B = L*LT.

b

REAL for ssygvw
DOUBLE PRECISION for dsygv.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyev/dsyev returned
an error code:

If info = i ≤ n, ssyev/dsyev failed to converge, and i

off-diagonal elements of an intermediate tridiagonal did not
converge to zero;

1060

4 Intel® Math Kernel Library Reference Manual

If info = n + i, for 1 ≤ i ≤ n, then the leading minor
of order i of B is not positive-definite. The factorization of
B could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sygv interface are the following:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, n).b

Holds the vector of length (n).w

Must be 1, 2, or 3. The default value is 1.itype

Must be 'N' or 'V'. The default value is 'N'.jobz

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

For optimum performance use lwork ≥ (nb+2)*n, where nb is the blocksize for ssytrd/dsytrd
returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

1061

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?hegv
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
definite eigenproblem.

Syntax

Fortran 77:

call chegv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, info)

call zhegv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, info)

Fortran 95:

call hegv(a, b, w [,itype] [,jobz] [,uplo] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λx .

Here A and B are assumed to be Hermitian and B is also positive definite.

Input Parameters

INTEGER. Must be 1 or 2 or 3. Specifies the problem type
to be solved:

itype

if itype = 1, the problem type is A*x = lambda*B*x;
if itype = 2, the problem type is A*B*x = lambda*x;
if itype = 3, the problem type is B*A*x = lambda*x.

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays a and b store the upper triangles of
A and B;
If uplo = 'L', arrays a and b store the lower triangles of
A and B.

1062

4 Intel® Math Kernel Library Reference Manual

INTEGER. The order of the matrices A and B (n ≥ 0).n

COMPLEX for chegva, b, work
DOUBLE COMPLEX for zhegv.
Arrays:
a(lda,*) contains the upper or lower triangle of the
Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the upper or lower triangle of the
Hermitian positive definite matrix B, as specified by uplo.
The second dimension of b must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

INTEGER.lwork

The dimension of the array work; lwork ≥ max(1, 2n-1).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

REAL for chegvrwork
DOUBLE PRECISION for zhegv.
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

On exit, if jobz = 'V', then if info = 0, a contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:

a

if itype = 1 or 2, ZH*B*Z = I;
if itype = 3, ZH*inv(B)*Z = I;
If jobz = 'N', then on exit the upper triangle (if uplo =
'U') or the lower triangle (if uplo = 'L') of A, including
the diagonal, is destroyed.

1063

LAPACK Routines: Least Squares and Eigenvalue Problems 4

On exit, if info ≤ n, the part of b containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = UH*U or B = L*LH.

b

REAL for chegvw
DOUBLE PRECISION for zhegv.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheev/zheev returned
an error code:

If info = i ≤ n, cheev/zheev failed to converge, and i

off-diagonal elements of an intermediate tridiagonal did not
converge to zero;

If info = n + i, for 1 ≤ i ≤ n, then the leading minor
of order i of B is not positive-definite. The factorization of
B could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hegv interface are the following:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, n).b

Holds the vector of length (n).w

Must be 1, 2, or 3. The default value is 1.itype

Must be 'N' or 'V'. The default value is 'N'.jobz

Must be 'U' or 'L'. The default value is 'U'.uplo

1064

4 Intel® Math Kernel Library Reference Manual

Application Notes

For optimum performance use lwork ≥ (nb+1)*n, where nb is the blocksize for chetrd/zhetrd
returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

?sygvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem. If eigenvectors are desired,
it uses a divide and conquer method.

Syntax

Fortran 77:

call ssygvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, iwork,
liwork, info)

call dsygvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, iwork,
liwork, info)

Fortran 95:

call sygvd(a, b, w [,itype] [,jobz] [,uplo] [,info])

1065

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λx .

Here A and B are assumed to be symmetric and B is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

INTEGER. Must be 1 or 2 or 3. Specifies the problem type
to be solved:

itype

if itype = 1, the problem type is A*x = lambda*B*x;
if itype = 2, the problem type is A*B*x = lambda*x;
if itype = 3, the problem type is B*A*x = lambda*x.

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays a and b store the upper triangles of
A and B;
If uplo = 'L', arrays a and b store the lower triangles of
A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

REAL for ssygvda, b, work
DOUBLE PRECISION for dsygvd.
Arrays:
a(lda,*) contains the upper or lower triangle of the
symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the upper or lower triangle of the
symmetric positive definite matrix B, as specified by uplo.
The second dimension of b must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

1066

4 Intel® Math Kernel Library Reference Manual

INTEGER.lwork
The dimension of the array work.
Constraints:

If n ≤ 1, lwork ≥ 1;
If jobz = 'N' and n>1, lwork < 2n+1;
If jobz = 'V' and n>1, lwork < 2n2+6n+1.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

INTEGER.iwork
Workspace array, its dimension max(1, lwork).

INTEGER.liwork
The dimension of the array iwork.
Constraints:

If n ≤ 1, liwork ≥ 1;

If jobz = 'N' and n>1, liwork ≥ 1;

If jobz = 'V' and n>1, liwork ≥ 5n+3.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

Output Parameters

On exit, if jobz = 'V', then if info = 0, a contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:

a

if itype = 1 or 2, ZT*B*Z = I;
if itype = 3, ZT*inv(B)*Z = I;
If jobz = 'N', then on exit the upper triangle (if uplo =
'U') or the lower triangle (if uplo = 'L') of A, including
the diagonal, is destroyed.

1067

LAPACK Routines: Least Squares and Eigenvalue Problems 4

On exit, if info ≤ n, the part of b containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = UT*U or B = L*LT.

b

REAL for ssygvdw
DOUBLE PRECISION for dsygvd.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if info = 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.

If info > 0= i ≤ n, and jobz = 'N', then the algorithm
failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero; if
jobz = 'V', then the algorithm failed to compute an
eigenvalue while working on the submatrix lying in rows
and columns info/(n+1) through mod(info,n+1);

If info > 0= n + i, for 1 ≤ i ≤ n, then the leading minor
of order i of B is not positive-definite. The factorization of
B could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sygvd interface are the following:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, n).b

Holds the vector of length (n).w

Must be 1, 2, or 3. The default value is 1.itype

1068

4 Intel® Math Kernel Library Reference Manual

Must be 'N' or 'V'. The default value is 'N'.jobz

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1 (liwork = -1), the routine returns immediately and provides the
recommended workspace in the first element of the corresponding array (work, iwork). This
operation is called a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

?hegvd
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
definite eigenproblem. If eigenvectors are desired,
it uses a divide and conquer method.

Syntax

Fortran 77:

call chegvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork,
lrwork, iwork, liwork, info)

call zhegvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork,
lrwork, iwork, liwork, info)

Fortran 95:

call hegvd(a, b, w [,itype] [,jobz] [,uplo] [,info])

1069

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λx .

Here A and B are assumed to be Hermitian and B is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

INTEGER. Must be 1 or 2 or 3. Specifies the problem type
to be solved:

itype

if itype = 1, the problem type is A*x = lambda*B*x;
if itype = 2, the problem type is A*B*x = lambda*x;
if itype = 3, the problem type is B*A*x = lambda*x.

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays a and b store the upper triangles of
A and B;
If uplo = 'L', arrays a and b store the lower triangles of
A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

COMPLEX for chegvda, b, work
DOUBLE COMPLEX for zhegvd.
Arrays:
a(lda,*) contains the upper or lower triangle of the
Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the upper or lower triangle of the
Hermitian positive definite matrix B, as specified by uplo.
The second dimension of b must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

1070

4 Intel® Math Kernel Library Reference Manual

INTEGER.lwork
The dimension of the array work.
Constraints:

If n ≤ 1, lwork ≥ 1;

If jobz = 'N' and n>1, lwork ≥ n+1;

If jobz = 'V' and n>1, lwork ≥ n2+2n.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

REAL for chegvdrwork
DOUBLE PRECISION for zhegvd.
Workspace array, DIMENSION max(1, lrwork).

INTEGER.lrwork
The dimension of the array rwork.
Constraints:

If n ≤ 1, lrwork ≥ 1;

If jobz = 'N' and n>1, lrwork ≥ n;
If jobz = 'V' and n>1, lrwork < 2n2+5n+1.
If lrwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

INTEGER.iwork
Workspace array, DIMENSION max(1, liwork).

INTEGER.liwork
The dimension of the array iwork.
Constraints:

If n ≤ 1, liwork ≥ 1;

If jobz = 'N' and n>1, liwork ≥ 1;

If jobz = 'V' and n>1, liwork ≥ 5n+3.

1071

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

Output Parameters

On exit, if jobz = 'V', then if info = 0, a contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:

a

if itype = 1 or 2, ZH* B*Z = I;
if itype = 3, ZH*inv(B)*Z = I;
If jobz = 'N', then on exit the upper triangle (if uplo =
'U') or the lower triangle (if uplo = 'L') of A, including
the diagonal, is destroyed.

On exit, if info ≤ n, the part of b containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = UH*U or B = L*LH.

b

REAL for chegvdw
DOUBLE PRECISION for zhegvd.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if info = 0, then rwork(1) returns the required
minimal size of lrwork.

rwork(1)

On exit, if info = 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info = i, and jobz = 'N', then the algorithm failed to
converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;

1072

4 Intel® Math Kernel Library Reference Manual

if info = i, and jobz = 'V', then the algorithm failed to
compute an eigenvalue while working on the submatrix lying
in rows and columns info/(n+1) through mod(info, n+1).

If info = n + i, for 1 ≤ i ≤ n, then the leading minor
of order i of B is not positive-definite. The factorization of
B could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hegvd interface are the following:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, n).b

Holds the vector of length (n).w

Must be 1, 2, or 3. The default value is 1.itype

Must be 'N' or 'V'. The default value is 'N'.jobz

Must be 'U' or 'L'. The default value is 'U'.uplo

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (liwork or
lrwork) for the first run or set lwork = -1 (liwork = -1, lrwork = -1).

If you choose the first option and set any of admissible lwork (liwork or lrwork) sizes, which
is no less than the minimal value described, the routine completes the task, though probably
not so fast as with a recommended workspace, and provides the recommended workspace in
the first element of the corresponding array (work, iwork, rwork) on exit. Use this value
(work(1), iwork(1), rwork(1)) for subsequent runs.

If you set lwork = -1 (liwork = -1, lrwork = -1), the routine returns immediately and
provides the recommended workspace in the first element of the corresponding array (work,
iwork, rwork). This operation is called a workspace query.

Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not
-1, the routine returns immediately with an error exit and does not provide any information on
the recommended workspace.

1073

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?sygvx
Computes selected eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem.

Syntax

Fortran 77:

call ssygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu,
abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)

call dsygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu,
abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)

Fortran 95:

call sygvx(a, b, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
[,abstol] [,info])

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λx .

Here A and B are assumed to be symmetric and B is also positive definite. Eigenvalues and
eigenvectors can be selected by specifying either a range of values or a range of indices for
the desired eigenvalues.

Input Parameters

INTEGER. Must be 1 or 2 or 3. Specifies the problem type
to be solved:

itype

if itype = 1, the problem type is A*x = lambda*B*x;
if itype = 2, the problem type is A*B*x = lambda*x;
if itype = 3, the problem type is B*A*x = lambda*x.

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range

1074

4 Intel® Math Kernel Library Reference Manual

If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues
lambda(i) in the half-open interval:

vl<lambda(i)≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays a and b store the upper triangles of
A and B;
If uplo = 'L', arrays a and b store the lower triangles of
A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

REAL for ssygvxa, b, work
DOUBLE PRECISION for dsygvx.
Arrays:
a(lda,*) contains the upper or lower triangle of the
symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the upper or lower triangle of the
symmetric positive definite matrix B, as specified by uplo.
The second dimension of b must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

REAL for ssygvxvl, vu
DOUBLE PRECISION for dsygvx.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

1075

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If range = 'A' or 'V', il and iu are not referenced.

REAL for ssygvxabstol
DOUBLE PRECISION for dsygvx. The absolute error tolerance
for the eigenvalues. See Application Notes for more
information.

INTEGER. The leading dimension of the output array z.
Constraints:

ldz

ldz ≥ 1; if jobz = 'V', ldz ≥ max(1, n).

INTEGER.lwork
The dimension of the array work;
lwork < max(1, 8n).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

INTEGER.iwork
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

On exit, the upper triangle (if uplo = 'U') or the lower
triangle (if uplo = 'L') of A, including the diagonal, is
overwritten.

a

On exit, if info ≤ n, the part of b containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = UT*U or B = L*LT.

b

INTEGER. The total number of eigenvalues found,m

0 ≤ m ≤ n. If range = 'A', m = n, and if range = 'I',
m = iu-il+1.

REAL for ssygvxw, z
DOUBLE PRECISION for dsygvx.
Arrays:
w(*), DIMENSION at least max(1, n).
The first m elements of w contain the selected eigenvalues
in ascending order.

1076

4 Intel® Math Kernel Library Reference Manual

z(ldz,*).
The second dimension of z must be at least max(1, m).
If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
The eigenvectors are normalized as follows:
if itype = 1 or 2, ZT*B*Z = I;
if itype = 3, ZT*inv(B)*Z = I;
If jobz = 'N', then z is not referenced.
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of
m is not known in advance and an upper bound must be
used.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.ifail
Array, DIMENSION at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the indices
of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyevx/dsyevx returned
an error code:

If info = i ≤ n, ssyevx/dsyevx failed to converge, and
i eigenvectors failed to converge. Their indices are stored
in the array ifail;

If info = n + i, for 1 ≤ i ≤ n, then the leading minor
of order i of B is not positive-definite. The factorization of
B could not be completed and no eigenvalues or eigenvectors
were computed.

1077

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sygvx interface are the following:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, n).b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n), where the values n and m are
significant.

z

Holds the vector of length (n).ifail

Must be 1, 2, or 3. The default value is 1.itype

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail is present and z is
omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

1078

4 Intel® Math Kernel Library Reference Manual

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|), where ε is the machine
precision.

If abstol is less than or equal to zero, then ε*||T||1 is be used in its place, where T is the
tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed
most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*?lamch('S').

For optimum performance use lwork ≥ (nb+3)*n, where nb is the blocksize for ssytrd/dsytrd
returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

1079

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?hegvx
Computes selected eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
definite eigenproblem.

Syntax

Fortran 77:

call chegvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu,
abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

call zhegvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu,
abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

Fortran 95:

call hegvx(a, b, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
[,abstol] [,info])

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λx .

Here A and B are assumed to be Hermitian and B is also positive definite. Eigenvalues and
eigenvectors can be selected by specifying either a range of values or a range of indices for
the desired eigenvalues.

Input Parameters

INTEGER. Must be 1 or 2 or 3. Specifies the problem type
to be solved:

itype

if itype = 1, the problem type is A*x = lambda*B*x;
if itype = 2, the problem type is A*B*x = lambda*x;
if itype = 3, the problem type is B*A*x = lambda*x.

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range

1080

4 Intel® Math Kernel Library Reference Manual

If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues
lambda(i) in the half-open interval:

vl<lambda(i)≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays a and b store the upper triangles of
A and B;
If uplo = 'L', arrays a and b store the lower triangles of
A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

COMPLEX for chegvxa, b, work
DOUBLE COMPLEX for zhegvx.
Arrays:
a(lda,*) contains the upper or lower triangle of the
Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).
b(ldb,*) contains the upper or lower triangle of the
Hermitian positive definite matrix B, as specified by uplo.
The second dimension of b must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of b; at least max(1, n).ldb

REAL for chegvxvl, vu
DOUBLE PRECISION for zhegvx.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

1081

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If range = 'A' or 'V', il and iu are not referenced.

REAL for chegvxabstol
DOUBLE PRECISION for zhegvx.
The absolute error tolerance for the eigenvalues. See
Application Notes for more information.

INTEGER. The leading dimension of the output array z.
Constraints:

ldz

ldz ≥ 1; if jobz = 'V', ldz ≥ max(1, n).

INTEGER.lwork

The dimension of the array work; lwork ≥ max(1, 2n).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

REAL for chegvxrwork
DOUBLE PRECISION for zhegvx.
Workspace array, DIMENSION at least max(1, 7n).

INTEGER.iwork
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

On exit, the upper triangle (if uplo = 'U') or the lower
triangle (if uplo = 'L') of A, including the diagonal, is
overwritten.

a

On exit, if info ≤ n, the part of b containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = UH*U or B = L*LH.

b

INTEGER. The total number of eigenvalues found,m

0 ≤ m ≤ n. If range = 'A', m = n, and if range = 'I',
m = iu-il+1.

REAL for chegvxw
DOUBLE PRECISION for zhegvx.
Array, DIMENSION at least max(1, n).

1082

4 Intel® Math Kernel Library Reference Manual

The first m elements of w contain the selected eigenvalues
in ascending order.

COMPLEX for chegvxz
DOUBLE COMPLEX for zhegvx.
Array z(ldz,*). The second dimension of z must be at least
max(1, m).
If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
The eigenvectors are normalized as follows:
if itype = 1 or 2, ZH*B*Z = I;
if itype = 3, ZH*inv(B)*Z = I;
If jobz = 'N', then z is not referenced.
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of
m is not known in advance and an upper bound must be
used.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.ifail
Array, DIMENSION at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the indices
of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheevx/zheevx returned
an error code:

If info = i ≤ n, cheevx/zheevx failed to converge, and
i eigenvectors failed to converge. Their indices are stored
in the array ifail;

1083

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If info = n + i, for 1 ≤ i ≤ n, then the leading minor
of order i of B is not positive-definite. The factorization of
B could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hegvx interface are the following:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, n).b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n), where the values n and m are
significant.

z

Holds the vector of length (n).ifail

Must be 1, 2, or 3. The default value is 1.itype

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail is present and z is
omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,

1084

4 Intel® Math Kernel Library Reference Manual

Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|), where ε is the machine
precision.

If abstol is less than or equal to zero, then ε*||T||1 will be used in its place, where T is the
tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed
most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*?lamch('S').

For optimum performance use lwork ≥ (nb+1)*n, where nb is the blocksize for chetrd/zhetrd
returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

1085

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?spgv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem with matrices in packed
storage.

Syntax

Fortran 77:

call sspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)

call dspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)

Fortran 95:

call spgv(a, b, w [,itype] [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λx .

Here A and B are assumed to be symmetric, stored in packed format, and B is also positive
definite.

Input Parameters

INTEGER. Must be 1 or 2 or 3. Specifies the problem type
to be solved:

itype

if itype = 1, the problem type is A*x = lambda*B*x;
if itype = 2, the problem type is A*B*x = lambda*x;
if itype = 3, the problem type is B*A*x = lambda*x.

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays ap and bp store the upper triangles
of A and B;

1086

4 Intel® Math Kernel Library Reference Manual

If uplo = 'L', arrays ap and bp store the lower triangles
of A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

REAL for sspgvap, bp, work
DOUBLE PRECISION for dspgv.
Arrays:
ap(*) contains the packed upper or lower triangle of the
symmetric matrix A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
bp(*) contains the packed upper or lower triangle of the
symmetric matrix B, as specified by uplo.
The dimension of bp must be at least max(1, n*(n+1)/2).
work(*) is a workspace array, DIMENSION at least max(1,
3n).

INTEGER. The leading dimension of the output array z; ldz

≥ 1. If jobz = 'V', ldz ≥ max(1, n).

ldz

Output Parameters

On exit, the contents of ap are overwritten.ap

On exit, contains the triangular factor U or L from the
Cholesky factorization B = UT*U or B = L*LT, in the same
storage format as B.

bp

REAL for sspgvw, z
DOUBLE PRECISION for dspgv.
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.
z(ldz,*).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the matrix Z
of eigenvectors. The eigenvectors are normalized as follows:
if itype = 1 or 2, ZT*B*Z = I;
if itype = 3, ZT*inv(B)*Z = I;
If jobz = 'N', then z is not referenced.

INTEGER.info

1087

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info > 0, spptrf/dpptrf and sspev/dspev returned
an error code:

If info = i ≤ n, sspev/dspev failed to converge, and i

off-diagonal elements of an intermediate tridiagonal did not
converge to zero;

If info = n + i, for 1 ≤ i ≤ n, then the leading minor
of order i of B is not positive-definite. The factorization of
B could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine spgv interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Stands for argument bp in Fortan 77 interface. Holds the array B of size
(n*(n+1)/2).

b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 1, 2, or 3. The default value is 1.itype

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

1088

4 Intel® Math Kernel Library Reference Manual

?hpgv
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
definite eigenproblem with matrices in packed
storage.

Syntax

Fortran 77:

call chpgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork, info)

call zhpgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork, info)

Fortran 95:

call hpgv(a, b, w [,itype] [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λx .

Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive
definite.

Input Parameters

INTEGER. Must be 1 or 2 or 3. Specifies the problem type
to be solved:

itype

if itype = 1, the problem type is A*x = lambda*B*x;
if itype = 2, the problem type is A*B*x = lambda*x;
if itype = 3, the problem type is B*A*x = lambda*x.

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays ap and bp store the upper triangles
of A and B;

1089

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If uplo = 'L', arrays ap and bp store the lower triangles
of A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

COMPLEX for chpgvap, bp, work
DOUBLE COMPLEX for zhpgv.
Arrays:
ap(*) contains the packed upper or lower triangle of the
Hermitian matrix A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
bp(*) contains the packed upper or lower triangle of the
Hermitian matrix B, as specified by uplo.
The dimension of bp must be at least max(1, n*(n+1)/2).
work(*) is a workspace array, DIMENSION at least max(1,
2n-1).

INTEGER. The leading dimension of the output array z; ldz

≥ 1. If jobz = 'V', ldz ≥ max(1, n).

ldz

REAL for chpgvrwork
DOUBLE PRECISION for zhpgv.
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

On exit, the contents of ap are overwritten.ap

On exit, contains the triangular factor U or L from the
Cholesky factorization B = UH*U or B = L*LH, in the same
storage format as B.

bp

REAL for chpgvw
DOUBLE PRECISION for zhpgv.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

COMPLEX for chpgvz
DOUBLE COMPLEX for zhpgv.
Array z(ldz,*).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the matrix Z
of eigenvectors. The eigenvectors are normalized as follows:

1090

4 Intel® Math Kernel Library Reference Manual

if itype = 1 or 2, ZH*B*Z = I;
if itype = 3, ZH*inv(B)*Z = I;
If jobz = 'N', then z is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpev/zhpev returned
an error code:

If info = i ≤ n, chpev/zhpev failed to converge, and i

off-diagonal elements of an intermediate tridiagonal did not
converge to zero;

If info = n + i, for 1 ≤ i ≤ n, then the leading minor
of order i of B is not positive-definite. The factorization of
B could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hpgv interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Stands for argument bp in Fortan 77 interface. Holds the array B of size
(n*(n+1)/2).

b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 1, 2, or 3. The default value is 1.itype

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

1091

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?spgvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem with matrices in packed
storage. If eigenvectors are desired, it uses a divide
and conquer method.

Syntax

Fortran 77:

call sspgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, iwork,
liwork, info)

call dspgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, iwork,
liwork, info)

Fortran 95:

call spgvd(a, b, w [,itype] [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λx .

Here A and B are assumed to be symmetric, stored in packed format, and B is also positive
definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

INTEGER. Must be 1 or 2 or 3. Specifies the problem type
to be solved:

itype

if itype = 1, the problem type is A*x = lambda*B*x;
if itype = 2, the problem type is A*B*x = lambda*x;
if itype = 3, the problem type is B*A*x = lambda*x.

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

1092

4 Intel® Math Kernel Library Reference Manual

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays ap and bp store the upper triangles
of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles
of A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

REAL for sspgvdap, bp, work
DOUBLE PRECISION for dspgvd.
Arrays:
ap(*) contains the packed upper or lower triangle of the
symmetric matrix A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
bp(*) contains the packed upper or lower triangle of the
symmetric matrix B, as specified by uplo.
The dimension of bp must be at least max(1, n*(n+1)/2).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The leading dimension of the output array z; ldz

≥ 1. If jobz = 'V', ldz ≥ max(1, n).

ldz

INTEGER.lwork
The dimension of the array work.
Constraints:

If n ≤ 1, lwork ≥ 1;

If jobz = 'N' and n>1, lwork ≥ 2n;

If jobz = 'V' and n>1, lwork ≥ 2n2+6n+1.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

INTEGER.iwork
Workspace array, its dimension max(1, lwork).

INTEGER.liwork
The dimension of the array iwork.
Constraints:

1093

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If n ≤ 1, liwork ≥ 1;

If jobz = 'N' and n>1, liwork ≥ 1;

If jobz = 'V' and n>1, liwork ≥ 5n+3.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

Output Parameters

On exit, the contents of ap are overwritten.ap

On exit, contains the triangular factor U or L from the
Cholesky factorization B = UT*U or B = L*LT, in the same
storage format as B.

bp

REAL for sspgvw, z
DOUBLE PRECISION for dspgv.
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.
z(ldz,*).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the matrix Z
of eigenvectors. The eigenvectors are normalized as follows:
if itype = 1 or 2, ZT*B*Z = I;
if itype = 3, ZT*inv(B)*Z = I;
If jobz = 'N', then z is not referenced.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if info = 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.

1094

4 Intel® Math Kernel Library Reference Manual

If info > 0, spptrf/dpptrf and sspevd/dspevd returned
an error code:

If info = i ≤ n, sspevd/dspevd failed to converge, and
i off-diagonal elements of an intermediate tridiagonal did
not converge to zero;

If info = n + i, for 1 ≤ i ≤ n, then the leading minor
of order i of B is not positive-definite. The factorization of
B could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine spgvd interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Stands for argument bp in Fortan 77 interface. Holds the array B of size
(n*(n+1)/2).

b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 1, 2, or 3. The default value is 1.itype

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

1095

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1 (liwork = -1), the routine returns immediately and provides the
recommended workspace in the first element of the corresponding array (work, iwork). This
operation is called a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

Application Notes

?hpgvd
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
definite eigenproblem with matrices in packed
storage. If eigenvectors are desired, it uses a divide
and conquer method.

Syntax

Fortran 77:

call chpgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)

call zhpgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)

Fortran 95:

call hpgvd(a, b, w [,itype] [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λx .

1096

4 Intel® Math Kernel Library Reference Manual

Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive
definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

INTEGER. Must be 1 or 2 or 3. Specifies the problem type
to be solved:

itype

if itype = 1, the problem type is A*x = lambda*B*x;
if itype = 2, the problem type is A*B*x = lambda*x;
if itype = 3, the problem type is B*A*x = lambda*x.

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays ap and bp store the upper triangles
of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles
of A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

COMPLEX for chpgvdap, bp, work
DOUBLE COMPLEX for zhpgvd.
Arrays:
ap(*) contains the packed upper or lower triangle of the
Hermitian matrix A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
bp(*) contains the packed upper or lower triangle of the
Hermitian matrix B, as specified by uplo.
The dimension of bp must be at least max(1, n*(n+1)/2).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The leading dimension of the output array z; ldz

≥ 1. If jobz = 'V', ldz ≥ max(1, n).

ldz

INTEGER.lwork
The dimension of the array work.
Constraints:

If n ≤ 1, lwork ≥ 1;

1097

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If jobz = 'N' and n>1, lwork ≥ n;

If jobz = 'V' and n>1, lwork ≥ 2n.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

REAL for chpgvdrwork
DOUBLE PRECISION for zhpgvd.
Workspace array, its dimension max(1, lrwork).

INTEGER.lrwork
The dimension of the array rwork.
Constraints:

If n ≤ 1, lrwork ≥ 1;

If jobz = 'N' and n>1, lrwork ≥ n;

If jobz = 'V' and n>1, lrwork ≥ 2n2+5n+1.
If lrwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

INTEGER.iwork
Workspace array, its dimension max(1, liwork).

INTEGER.liwork
The dimension of the array iwork.
Constraints:

If n ≤ 1, liwork ≥ 1;

If jobz = 'N' and n>1, liwork ≥ 1;

If jobz = 'V' and n>1, liwork ≥ 5n+3.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries

1098

4 Intel® Math Kernel Library Reference Manual

of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

Output Parameters

On exit, the contents of ap are overwritten.ap

On exit, contains the triangular factor U or L from the
Cholesky factorization B = UH*U or B = L*LH, in the same
storage format as B.

bp

REAL for chpgvdw
DOUBLE PRECISION for zhpgvd.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

COMPLEX for chpgvdz
DOUBLE COMPLEX for zhpgvd.
Array z(ldz,*).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the matrix Z
of eigenvectors. The eigenvectors are normalized as follows:
if itype = 1 or 2, ZH*B*Z = I;
if itype = 3, ZH*inv(B)*Z = I;
If jobz = 'N', then z is not referenced.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if info = 0, then rwork(1) returns the required
minimal size of lrwork.

rwork(1)

On exit, if info = 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevd/zhpevd returned
an error code:

1099

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If info = i ≤ n, chpevd/zhpevd failed to converge, and
i off-diagonal elements of an intermediate tridiagonal did
not converge to zero;

If info = n + i, for 1 ≤ i ≤ n, then the leading minor
of order i of B is not positive-definite. The factorization of
B could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hpgvd interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Stands for argument bp in Fortan 77 interface. Holds the array B of size
(n*(n+1)/2).

b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 1, 2, or 3. The default value is 1.itype

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (liwork or
lrwork) for the first run or set lwork = -1 (liwork = -1, lrwork = -1).

If you choose the first option and set any of admissible lwork (liwork or lrwork) sizes, which
is no less than the minimal value described, the routine completes the task, though probably
not so fast as with a recommended workspace, and provides the recommended workspace in
the first element of the corresponding array (work, iwork, rwork) on exit. Use this value
(work(1), iwork(1), rwork(1)) for subsequent runs.

1100

4 Intel® Math Kernel Library Reference Manual

If you set lwork = -1 (liwork = -1, lrwork = -1), the routine returns immediately and
provides the recommended workspace in the first element of the corresponding array (work,
iwork, rwork). This operation is called a workspace query.

Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not
-1, the routine returns immediately with an error exit and does not provide any information on
the recommended workspace.

?spgvx
Computes selected eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem with matrices in packed
storage.

Syntax

Fortran 77:

call sspgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m,
w, z, ldz, work, iwork, ifail, info)

call dspgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m,
w, z, ldz, work, iwork, ifail, info)

Fortran 95:

call spgvx(a, b, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
[,abstol] [,info])

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form

Ax = λBx, ABx = λx, or B Ax = λx.

Here A and B are assumed to be symmetric, stored in packed format, and B is also positive
definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.

1101

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Input Parameters

INTEGER. Must be 1 or 2 or 3. Specifies the problem type
to be solved:

itype

if itype = 1, the problem type is A*x = lambda*B*x;
if itype = 2, the problem type is A*B*x = lambda*x;
if itype = 3, the problem type is B*A*x = lambda*x.

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues
lambda(i) in the half-open interval:

vl<lambda(i)≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays ap and bp store the upper triangles
of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles
of A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

REAL for sspgvxap, bp, work
DOUBLE PRECISION for dspgvx.
Arrays:
ap(*) contains the packed upper or lower triangle of the
symmetric matrix A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
bp(*) contains the packed upper or lower triangle of the
symmetric matrix B, as specified by uplo.
The dimension of bp must be at least max(1, n*(n+1)/2).
work(*) is a workspace array, DIMENSION at least max(1,
8n).

REAL for sspgvxvl, vu
DOUBLE PRECISION for dspgvx.

1102

4 Intel® Math Kernel Library Reference Manual

If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for sspgvxabstol
DOUBLE PRECISION for dspgvx.
The absolute error tolerance for the eigenvalues. See
Application Notes for more information.

INTEGER. The leading dimension of the output array z.
Constraints:

ldz

ldz ≥ 1; if jobz = 'V', ldz ≥ max(1, n).

INTEGER.iwork
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

On exit, the contents of ap are overwritten.ap

On exit, contains the triangular factor U or L from the
Cholesky factorization B = UT*U or B = L*LT, in the same
storage format as B.

bp

INTEGER. The total number of eigenvalues found,m

0 ≤ m ≤ n. If range = 'A', m = n, and if range = 'I',
m = iu-il+1.

REAL for sspgvxw, z
DOUBLE PRECISION for dspgvx.
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.
z(ldz,*).
The second dimension of z must be at least max(1, n).

1103

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
The eigenvectors are normalized as follows:
if itype = 1 or 2, ZT*B*Z = I;
if itype = 3, ZT*inv(B)*Z = I;
If jobz = 'N', then z is not referenced.
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of
m is not known in advance and an upper bound must be
used.

INTEGER.ifail
Array, DIMENSION at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the indices
of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info > 0, spptrf/dpptrf and sspevx/dspevx returned
an error code:

If info = i ≤ n, sspevx/dspevx failed to converge, and
i eigenvectors failed to converge. Their indices are stored
in the array ifail;

If info = n + i, for 1 ≤ i ≤ n, then the leading minor
of order i of B is not positive-definite. The factorization of
B could not be completed and no eigenvalues or eigenvectors
were computed.

1104

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine spgvx interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Stands for argument bp in Fortan 77 interface. Holds the array B of size
(n*(n+1)/2).

b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n), where the values n and m are
significant.

z

Holds the vector of length (n).ifail

Must be 1, 2, or 3. The default value is 1.itype

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail is present and z is
omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

1105

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|), where ε is the machine
precision.

If abstol is less than or equal to zero, then ε*||T||1 will be used in its place, where T is the
tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed
most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*?lamch('S').

?hpgvx
Computes selected eigenvalues and, optionally,
eigenvectors of a generalized Hermitian definite
eigenproblem with matrices in packed storage.

Syntax

Fortran 77:

call chpgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m,
w, z, ldz, work, rwork, iwork, ifail, info)

call zhpgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m,
w, z, ldz, work, rwork, iwork, ifail, info)

Fortran 95:

call hpgvx(a, b, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
[,abstol] [,info])

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

Ax = λBx, ABx = λx, or B Ax = λx.

Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive
definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.

1106

4 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. Must be 1 or 2 or 3. Specifies the problem type
to be solved:

itype

if itype = 1, the problem type is A*x = lambda*B*x;
if itype = 2, the problem type is A*B*x = lambda*x;
if itype = 3, the problem type is B*A*x = lambda*x.

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues
lambda(i) in the half-open interval:

vl< lambda(i) ≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays ap and bp store the upper triangles
of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles
of A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

COMPLEX for chpgvxap, bp, work
DOUBLE COMPLEX for zhpgvx.
Arrays:
ap(*) contains the packed upper or lower triangle of the
Hermitian matrix A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
bp(*) contains the packed upper or lower triangle of the
Hermitian matrix B, as specified by uplo.
The dimension of bp must be at least max(1, n*(n+1)/2).
work(*) is a workspace array, DIMENSION at least max(1,
2n).

REAL for chpgvxvl, vu
DOUBLE PRECISION for zhpgvx.

1107

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for chpgvxabstol
DOUBLE PRECISION for zhpgvx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

INTEGER. The leading dimension of the output array z; ldz

≥ 1. If jobz = 'V', ldz ≥ max(1, n).

ldz

REAL for chpgvxrwork
DOUBLE PRECISION for zhpgvx.
Workspace array, DIMENSION at least max(1, 7n).

INTEGER.iwork
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

On exit, the contents of ap are overwritten.ap

On exit, contains the triangular factor U or L from the
Cholesky factorization B = UH*U or B = L*LH, in the same
storage format as B.

bp

INTEGER. The total number of eigenvalues found,m

0 ≤ m ≤ n. If range = 'A', m = n, and if range = 'I',
m = iu-il+1.

REAL for chpgvxw
DOUBLE PRECISION for zhpgvx.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

1108

4 Intel® Math Kernel Library Reference Manual

COMPLEX for chpgvxz
DOUBLE COMPLEX for zhpgvx.
Array z(ldz,*).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with w(i).
The eigenvectors are normalized as follows:
if itype = 1 or 2, ZH*B*Z = I;
if itype = 3, ZH*inv(B)*Z = I;
If jobz = 'N', then z is not referenced.
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
Note: you must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of
m is not known in advance and an upper bound must be
used.

INTEGER.ifail
Array, DIMENSION at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the indices
of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevx/zhpevx returned
an error code:

If info = i ≤ n, chpevx/zhpevx failed to converge, and
i eigenvectors failed to converge. Their indices are stored
in the array ifail;

If info = n + i, for 1 ≤ i ≤ n, then the leading minor
of order i of B is not positive-definite. The factorization of
B could not be completed and no eigenvalues or eigenvectors
were computed.

1109

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hpgvx interface are the following:

Stands for argument ap in Fortan 77 interface. Holds the array A of size
(n*(n+1)/2).

a

Stands for argument bp in Fortan 77 interface. Holds the array B of size
(n*(n+1)/2).

b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n), where the values n and m are
significant.

z

Holds the vector of length (n).ifail

Must be 1, 2, or 3. The default value is 1.itype

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail is present and z is
omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

1110

4 Intel® Math Kernel Library Reference Manual

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|), where ε is the machine
precision.

If abstol is less than or equal to zero, then ε*||T||1 will be used in its place, where T is the
tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed
most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*?lamch('S').

?sbgv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem with banded matrices.

Syntax

Fortran 77:

call ssbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, info)

call dsbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, info)

Fortran 95:

call sbgv(a, b, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized

symmetric-definite banded eigenproblem, of the form Ax = λBx. Here A and B are assumed
to be symmetric and banded, and B is also positive definite.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'U' or 'L'.uplo

1111

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If uplo = 'U', arrays ab and bb store the upper triangles
of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles
of A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Aka

(ka ≥ 0).

INTEGER. The number of super- or sub-diagonals in B (kb

≥ 0).

kb

REAL for ssbgvab, bb, work
DOUBLE PRECISION for dsbgv
Arrays:
ab (ldab,*) is an array containing either upper or lower
triangular part of the symmetric matrix A (as specified by
uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).
bb(ldbb,*) is an array containing either upper or lower
triangular part of the symmetric matrix B (as specified by
uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).
work(*) is a workspace array, dimension at least max(1,
3n)

INTEGER. The first dimension of the array ab; must be at
least ka+1.

ldab

INTEGER. The first dimension of the array bb; must be at
least kb+1.

ldbb

INTEGER. The leading dimension of the output array z; ldz

≥ 1. If jobz = 'V', ldz ≥ max(1, n).

ldz

Output Parameters

On exit, the contents of ab are overwritten.ab

1112

4 Intel® Math Kernel Library Reference Manual

On exit, contains the factor S from the split Cholesky
factorization B = ST*S, as returned by spbstf/dpbstf.

bb

REAL for ssbgvw, z
DOUBLE PRECISION for dsbgv
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.
z(ldz,*).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the matrix Z
of eigenvectors, with the i-th column of z holding the
eigenvector associated with w(i). The eigenvectors are
normalized so that ZT*B*Z = I.
If jobz = 'N', then z is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i off-diagonal
elements of an intermediate tridiagonal did not converge to
zero;

if info = n + i, for 1 ≤ i ≤ n, then spbstf/dpbstf
returned info = i and B is not positive-definite. The
factorization of B could not be completed and no eigenvalues
or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sbgv interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(ka+1,n).

a

Stands for argument bb in Fortan 77 interface. Holds the array B of size
(kb+1,n).

b

1113

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

?hbgv
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
definite eigenproblem with banded matrices.

Syntax

Fortran 77:

call chbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, rwork,
info)

call zhbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, rwork,
info)

Fortran 95:

call hbgv(a, b, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex

generalized Hermitian-definite banded eigenproblem, of the form Ax = λBx. Here A and B are
assumed to be Hermitian and banded, and B is also positive definite.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays ab and bb store the upper triangles
of A and B;

1114

4 Intel® Math Kernel Library Reference Manual

If uplo = 'L', arrays ab and bb store the lower triangles
of A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Aka

(ka ≥ 0).

INTEGER. The number of super- or sub-diagonals in B (kb

≥ 0).

kb

COMPLEX for chbgvab, bb, work
DOUBLE COMPLEX for zhbgv
Arrays:
ab (ldab,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A (as specified by
uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).
bb(ldbb,*) is an array containing either upper or lower
triangular part of the Hermitian matrix B (as specified by
uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).
work(*) is a workspace array, dimension at least max(1,
n).

INTEGER. The first dimension of the array ab; must be at
least ka+1.

ldab

INTEGER. The first dimension of the array bb; must be at
least kb+1.

ldbb

INTEGER. The leading dimension of the output array z; ldz

≥ 1. If jobz = 'V', ldz ≥ max(1, n).

ldz

REAL for chbgvrwork
DOUBLE PRECISION for zhbgv.
Workspace array, DIMENSION at least max(1, 3n).

Output Parameters

On exit, the contents of ab are overwritten.ab

1115

LAPACK Routines: Least Squares and Eigenvalue Problems 4

On exit, contains the factor S from the split Cholesky
factorization B = SH*S, as returned by cpbstf/zpbstf.

bb

REAL for chbgvw
DOUBLE PRECISION for zhbgv.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

COMPLEX for chbgvz
DOUBLE COMPLEX for zhbgv
Array z(ldz,*).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the matrix Z
of eigenvectors, with the i-th column of z holding the
eigenvector associated with w(i). The eigenvectors are
normalized so that ZH*B*Z = I.
If jobz = 'N', then z is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i off-diagonal
elements of an intermediate tridiagonal did not converge to
zero;

if info = n + i, for 1 ≤ i ≤ n, then cpbstf/zpbstf
returned info = i and B is not positive-definite. The
factorization of B could not be completed and no eigenvalues
or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hbgv interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(ka+1,n).

a

1116

4 Intel® Math Kernel Library Reference Manual

Stands for argument bb in Fortan 77 interface. Holds the array B of size
(kb+1,n).

b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

?sbgvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem with banded matrices. If
eigenvectors are desired, it uses a divide and
conquer method.

Syntax

Fortran 77:

call ssbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork,
iwork, liwork, info)

call dsbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork,
iwork, liwork, info)

Fortran 95:

call sbgvd(a, b, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized

symmetric-definite banded eigenproblem, of the form Ax = λBx. Here A and B are assumed
to be symmetric and banded, and B is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz

1117

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays ab and bb store the upper triangles
of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles
of A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Aka

(ka ≥ 0).

INTEGER. The number of super- or sub-diagonals in B (kb

≥ 0).

kb

REAL for ssbgvdab, bb, work
DOUBLE PRECISION for dsbgvd
Arrays:
ab (ldab,*) is an array containing either upper or lower
triangular part of the symmetric matrix A (as specified by
uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).
bb(ldbb,*) is an array containing either upper or lower
triangular part of the symmetric matrix B (as specified by
uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array ab; must be at
least ka+1.

ldab

INTEGER. The first dimension of the array bb; must be at
least kb+1.

ldbb

INTEGER. The leading dimension of the output array z; ldz

≥ 1. If jobz = 'V', ldz ≥ max(1, n).

ldz

INTEGER.lwork
The dimension of the array work.
Constraints:

1118

4 Intel® Math Kernel Library Reference Manual

If n ≤ 1, lwork ≥ 1;

If jobz = 'N' and n>1, lwork ≥ 3n;

If jobz = 'V' and n>1, lwork ≥ 2n2+5n+1.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

INTEGER.iwork
Workspace array, its dimension max(1, liwork).

INTEGER.liwork
The dimension of the array iwork.
Constraints:

If n ≤ 1, liwork ≥ 1;

If jobz = 'N' and n>1, liwork ≥ 1;

If jobz = 'V' and n>1, liwork ≥ 5n+3.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work and
iwork arrays, returns these values as the first entries of the
work and iwork arrays, and no error message related to
lwork or liwork is issued by xerbla. See Application Notes
for details.

Output Parameters

On exit, the contents of ab are overwritten.ab

On exit, contains the factor S from the split Cholesky
factorization B = ST*S, as returned by spbstf/dpbstf.

bb

REAL for ssbgvdw, z
DOUBLE PRECISION for dsbgvd
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.
z(ldz,*).
The second dimension of z must be at least max(1, n).

1119

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If jobz = 'V', then if info = 0, z contains the matrix Z
of eigenvectors, with the i-th column of z holding the
eigenvector associated with w(i). The eigenvectors are
normalized so that ZT*B*Z = I.
If jobz = 'N', then z is not referenced.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if info = 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i off-diagonal
elements of an intermediate tridiagonal did not converge to
zero;

if info = n + i, for 1 ≤ i ≤ n, then spbstf/dpbstf
returned info = i and B is not positive-definite. The
factorization of B could not be completed and no eigenvalues
or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sbgvd interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(ka+1,n).

a

Stands for argument bb in Fortan 77 interface. Holds the array B of size
(kb+1,n).

b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz

1120

4 Intel® Math Kernel Library Reference Manual

jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1 (liwork = -1), the routine returns immediately and provides the
recommended workspace in the first element of the corresponding array (work, iwork). This
operation is called a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

?hbgvd
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
definite eigenproblem with banded matrices. If
eigenvectors are desired, it uses a divide and
conquer method.

Syntax

Fortran 77:

call chbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

call zhbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

Fortran 95:

call hbgvd(a, b, w [,uplo] [,z] [,info])

1121

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex

generalized Hermitian-definite banded eigenproblem, of the form Ax = λBx. Here A and B are
assumed to be Hermitian and banded, and B is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays ab and bb store the upper triangles
of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles
of A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Aka

(ka ≥ 0).

INTEGER. The number of super- or sub-diagonals in B (kb

≥ 0).

kb

COMPLEX for chbgvdab, bb, work
DOUBLE COMPLEX for zhbgvd
Arrays:
ab (ldab,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A (as specified by
uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).
bb(ldbb,*) is an array containing either upper or lower
triangular part of the Hermitian matrix B (as specified by
uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).
work is a workspace array, its dimension max(1, lwork).

1122

4 Intel® Math Kernel Library Reference Manual

INTEGER. The first dimension of the array ab; must be at
least ka+1.

ldab

INTEGER. The first dimension of the array bb; must be at
least kb+1.

ldbb

INTEGER. The leading dimension of the output array z; ldz

≥ 1. If jobz = 'V', ldz ≥ max(1, n).

ldz

INTEGER.lwork
The dimension of the array work.
Constraints:

If n ≤ 1, lwork ≥ 1;

If jobz = 'N' and n>1, lwork ≥ n;
If jobz = 'V' and n>1, lwork < 2n2.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

REAL for chbgvdrwork
DOUBLE PRECISION for zhbgvd.
Workspace array, DIMENSION max(1, lrwork).

INTEGER.lrwork
The dimension of the array rwork.
Constraints:

If n ≤ 1, lrwork ≥ 1;

If jobz = 'N' and n>1, lrwork ≥ n;

If jobz = 'V' and n>1, lrwork ≥ 2n2+5n +1.
If lrwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

INTEGER.iwork
Workspace array, DIMENSION max(1, liwork).

1123

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER.liwork
The dimension of the array iwork.
Constraints:

If n ≤ 1, liwork < 1;

If jobz = 'N' and n>1, liwork ≥ 1;

If jobz = 'V' and n>1, liwork ≥ 5n+3.
If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work, rwork
and iwork arrays, returns these values as the first entries
of the work, rwork and iwork arrays, and no error message
related to lwork or lrwork or liwork is issued by xerbla.
See Application Notes for details.

Output Parameters

On exit, the contents of ab are overwritten.ab

On exit, contains the factor S from the split Cholesky
factorization B = SH*S, as returned by cpbstf/zpbstf.

bb

REAL for chbgvdw
DOUBLE PRECISION for zhbgvd.
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

COMPLEX for chbgvdz
DOUBLE COMPLEX for zhbgvd
Array z(ldz,*) .
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the matrix Z
of eigenvectors , with the i-th column of z holding the
eigenvector associated with w(i). The eigenvectors are
normalized so that ZH*B*Z = I.
If jobz = 'N', then z is not referenced.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if info = 0, then rwork(1) returns the required
minimal size of lrwork.

rwork(1)

1124

4 Intel® Math Kernel Library Reference Manual

On exit, if info = 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i off-diagonal
elements of an intermediate tridiagonal did not converge to
zero;

if info = n + i, for 1 ≤ i ≤ n, then cpbstf/zpbstf
returned info = i and B is not positive-definite. The
factorization of B could not be completed and no eigenvalues
or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hbgvd interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(ka+1,n).

a

Stands for argument bb in Fortan 77 interface. Holds the array B of size
(kb+1,n).

b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Must be 'U' or 'L'. The default value is 'U'.uplo

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (liwork or
lrwork) for the first run or set lwork = -1 (liwork = -1, lrwork = -1).

1125

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If you choose the first option and set any of admissible lwork (liwork or lrwork) sizes, which
is no less than the minimal value described, the routine completes the task, though probably
not so fast as with a recommended workspace, and provides the recommended workspace in
the first element of the corresponding array (work, iwork, rwork) on exit. Use this value
(work(1), iwork(1), rwork(1)) for subsequent runs.

If you set lwork = -1 (liwork = -1, lrwork = -1), the routine returns immediately and
provides the recommended workspace in the first element of the corresponding array (work,
iwork, rwork). This operation is called a workspace query.

Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not
-1, the routine returns immediately with an error exit and does not provide any information on
the recommended workspace.

?sbgvx
Computes selected eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem with banded matrices.

Syntax

Fortran 77:

call ssbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu,
il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

call dsbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu,
il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

Fortran 95:

call sbgvx(a, b, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q]
[,abstol] [,info])

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized

symmetric-definite banded eigenproblem, of the form Ax = λBx. Here A and B are assumed
to be symmetric and banded, and B is also positive definite. Eigenvalues and eigenvectors can
be selected by specifying either all eigenvalues, a range of values or a range of indices for the
desired eigenvalues.

1126

4 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues
lambda(i) in the half-open interval:

vl<lambda(i)≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays ab and bb store the upper triangles
of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles
of A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Aka

(ka ≥ 0).

INTEGER. The number of super- or sub-diagonals in B (kb

≥ 0).

kb

REAL for ssbgvxab, bb, work
DOUBLE PRECISION for dsbgvx
Arrays:
ab (ldab,*) is an array containing either upper or lower
triangular part of the symmetric matrix A (as specified by
uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).
bb(ldbb,*) is an array containing either upper or lower
triangular part of the symmetric matrix B (as specified by
uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).
work(*) is a workspace array, DIMENSION (7*n).

1127

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The first dimension of the array ab; must be at
least ka+1.

ldab

INTEGER. The first dimension of the array bb; must be at
least kb+1.

ldbb

REAL for ssbgvxvl, vu
DOUBLE PRECISION for dsbgvx.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for ssbgvxabstol
DOUBLE PRECISION for dsbgvx.
The absolute error tolerance for the eigenvalues. See
Application Notes for more information.

INTEGER. The leading dimension of the output array z; ldz

≥ 1. If jobz = 'V', ldz ≥ max(1, n).

ldz

INTEGER. The leading dimension of the output array q; ldq
< 1.

ldq

If jobz = 'V', ldq < max(1, n).

INTEGER.iwork
Workspace array, DIMENSION (5*n).

Output Parameters

On exit, the contents of ab are overwritten.ab

On exit, contains the factor S from the split Cholesky
factorization B = ST*S, as returned by spbstf/dpbstf.

bb

INTEGER. The total number of eigenvalues found,m

0 ≤ m ≤ n. If range = 'A', m = n, and if range = 'I',

1128

4 Intel® Math Kernel Library Reference Manual

m = iu-il+1.

REAL for ssbgvxw, z, q
DOUBLE PRECISION for dsbgvx
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.
z(ldz,*) .
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the matrix Z
of eigenvectors , with the i-th column of z holding the
eigenvector associated with w(i). The eigenvectors are
normalized so that ZT*B*Z = I.
If jobz = 'N', then z is not referenced.
q(ldq,*) .
The second dimension of q must be at least max(1, n).
If jobz = 'V', then q contains the n-by-n matrix used in
the reduction of Ax = lambda*Bx to standard form, that
is, Cx = lambda*x and consequently C to tridiagonal form.
If jobz = 'N', then q is not referenced.

INTEGER.ifail
Array, DIMENSION (m).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the indices
of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i off-diagonal
elements of an intermediate tridiagonal did not converge to
zero;

if info = n + i, for 1 ≤ i ≤ n, then spbstf/dpbstf
returned info = i and B is not positive-definite. The
factorization of B could not be completed and no eigenvalues
or eigenvectors were computed.

1129

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine sbgvx interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(ka+1,n).

a

Stands for argument bb in Fortan 77 interface. Holds the array B of size
(kb+1,n).

b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Holds the vector of length (n).ifail

Holds the matrix Q of size (n, n).q

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail or q is present and
z is omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

1130

4 Intel® Math Kernel Library Reference Manual

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|), where ε is the machine
precision.

If abstol is less than or equal to zero, then ε*||T||1 will be used in its place, where T is the
tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed
most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*?lamch('S').

?hbgvx
Computes selected eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
definite eigenproblem with banded matrices.

Syntax

Fortran 77:

call chbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu,
il, iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu,
il, iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

Fortran 95:

call hbgvx(a, b, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q]
[,abstol] [,info])

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex

generalized Hermitian-definite banded eigenproblem, of the form Ax = λBx. Here A and B are
assumed to be Hermitian and banded, and B is also positive definite. Eigenvalues and
eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range
of indices for the desired eigenvalues.

1131

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues
lambda(i) in the half-open interval:

vl< lambda(i) ≤ vu.
If range = 'I', the routine computes eigenvalues with
indices il to iu.

CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays ab and bb store the upper triangles
of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles
of A and B.

INTEGER. The order of the matrices A and B (n ≥ 0).n

INTEGER. The number of super- or sub-diagonals in Aka

(ka ≥ 0).

INTEGER. The number of super- or sub-diagonals in B (kb

≥ 0).

kb

COMPLEX for chbgvxab, bb, work
DOUBLE COMPLEX for zhbgvx
Arrays:
ab (ldab,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A (as specified by
uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).
bb(ldbb,*) is an array containing either upper or lower
triangular part of the Hermitian matrix B (as specified by
uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).

1132

4 Intel® Math Kernel Library Reference Manual

work(*) is a workspace array, DIMENSION at least max(1,
n).

INTEGER. The first dimension of the array ab; must be at
least ka+1.

ldab

INTEGER. The first dimension of the array bb; must be at
least kb+1.

ldbb

REAL for chbgvxvl, vu
DOUBLE PRECISION for zhbgvx.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.

INTEGER.il, iu
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.

Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range = 'A' or 'V', il and iu are not referenced.

REAL for chbgvxabstol
DOUBLE PRECISION for zhbgvx.
The absolute error tolerance for the eigenvalues. See
Application Notes for more information.

INTEGER. The leading dimension of the output array z; ldz

≥ 1. If jobz = 'V', ldz ≥ max(1, n).

ldz

INTEGER. The leading dimension of the output array q; ldq

≥ 1. If jobz = 'V', ldq ≥ max(1, n).

ldq

REAL for chbgvxrwork
DOUBLE PRECISION for zhbgvx.
Workspace array, DIMENSION at least max(1, 7n).

INTEGER.iwork
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

On exit, the contents of ab are overwritten.ab

1133

LAPACK Routines: Least Squares and Eigenvalue Problems 4

On exit, contains the factor S from the split Cholesky
factorization B = SH*S, as returned by cpbstf/zpbstf.

bb

INTEGER. The total number of eigenvalues found,m

0 ≤ m ≤ n. If range = 'A', m = n, and if range = 'I',
m = iu-il+1.

REAL for chbgvxw
DOUBLE PRECISION for zhbgvx.
Array w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

COMPLEX for chbgvxz, q
DOUBLE COMPLEX for zhbgvx
Arrays:
z(ldz,*).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the matrix Z
of eigenvectors, with the i-th column of z holding the
eigenvector associated with w(i). The eigenvectors are
normalized so that ZH*B*Z = I.
If jobz = 'N', then z is not referenced.
q(ldq,*).
The second dimension of q must be at least max(1, n).
If jobz = 'V', then q contains the n-by-n matrix used in

the reduction of Ax = λBx to standard form, that is, Cx =

λ x and consequently C to tridiagonal form.
If jobz = 'N', then q is not referenced.

INTEGER.ifail
Array, DIMENSION at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the indices
of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info > 0, and

1134

4 Intel® Math Kernel Library Reference Manual

if i ≤ n, the algorithm failed to converge, and i off-diagonal
elements of an intermediate tridiagonal did not converge to
zero;

if info = n + i, for 1 ≤ i ≤ n, then cpbstf/zpbstf
returned info = i and B is not positive-definite. The
factorization of B could not be completed and no eigenvalues
or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine hbgvx interface are the following:

Stands for argument ab in Fortan 77 interface. Holds the array A of size
(ka+1,n).

a

Stands for argument bb in Fortan 77 interface. Holds the array B of size
(kb+1,n).

b

Holds the vector of length (n).w

Holds the matrix Z of size (n, n).z

Holds the vector of length (n).ifail

Holds the matrix Q of size (n, n).q

Must be 'U' or 'L'. The default value is 'U'.uplo

Default value for this element is vl = -HUGE(vl).vl

Default value for this element is vu = HUGE(vl).vu

Default value for this argument is il = 1.il

Default value for this argument is iu = n.iu

Default value for this element is abstol = 0.0_WP.abstol

Restored based on the presence of the argument z as follows:jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail or q is present and
z is omitted.

Restored based on the presence of arguments vl, vu, il, iu as follows:range

1135

LAPACK Routines: Least Squares and Eigenvalue Problems 4

range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu
are present and at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval

[a,b] of width less than or equal to abstol + ε * max(|a|,|b|), where ε is the machine
precision.

If abstol is less than or equal to zero, then ε*||T||1 will be used in its place, where T is the
tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed
most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try
setting abstol to 2*?lamch('S').

Generalized Nonsymmetric Eigenproblems

This section describes LAPACK driver routines used for solving generalized nonsymmetric
eigenproblems. See also computational routines computational routines that can be called to
solve these problems. Table 4-14 lists all such driver routines for Fortran-77 interface.
Respective routine names in Fortran-95 interface are without the first symbol (see Routine
Naming Conventions).

Table 4-14 Driver Routines for Solving Generalized Nonsymmetric Eigenproblems

Operation performedRoutine Name

Computes the generalized eigenvalues, Schur form, and the left and/or
right Schur vectors for a pair of nonsymmetric matrices.

?gges

Computes the generalized eigenvalues, Schur form, and, optionally, the
left and/or right matrices of Schur vectors.

?ggesx

Computes the generalized eigenvalues, and the left and/or right generalized
eigenvectors for a pair of nonsymmetric matrices.

?ggev

Computes the generalized eigenvalues, and, optionally, the left and/or
right generalized eigenvectors.

?ggevx

1136

4 Intel® Math Kernel Library Reference Manual

?gges
Computes the generalized eigenvalues, Schur form,
and the left and/or right Schur vectors for a pair
of nonsymmetric matrices.

Syntax

Fortran 77:

call sgges(jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar,
alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info)

call dgges(jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar,
alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info)

call cgges(jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta,
vsl, ldvsl, vsr, ldvsr, work, lwork, rwork, bwork, info)

call zgges(jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta,
vsl, ldvsl, vsr, ldvsr, work, lwork, rwork, bwork, info)

Fortran 95:

call gges(a, b, alphar, alphai, beta [,vsl] [,vsr] [,select] [,sdim] [,info])

call gges(a, b, alpha, beta [, vsl] [,vsr] [,select] [,sdim] [,info])

Description

This routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A,B), the
generalized eigenvalues, the generalized real/complex Schur form (S,T), optionally, the left
and/or right matrices of Schur vectors (vsl and vsr). This gives the generalized Schur
factorization

(A,B) = (vsl*S *vsrH, vsl*T*vsrH)

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in
the leading diagonal blocks of the upper quasi-triangular matrix S and the upper triangular
matrix T. The leading columns of vsl and vsr then form an orthonormal/unitary basis for the
corresponding left and right eigenspaces (deflating subspaces).

(If only the generalized eigenvalues are needed, use the driver ?ggev instead, which is faster.)

1137

LAPACK Routines: Least Squares and Eigenvalue Problems 4

A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha / beta = w,
such that A - w*B is singular. It is usually represented as the pair (alpha, beta), as there
is a reasonable interpretation for beta=0 or for both being zero. A pair of matrices (S,T) is in
generalized real Schur form if T is upper triangular with non-negative diagonal and S is block
upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized
eigenvalues, while 2-by-2 blocks of S will be “standardized" by making the corresponding
elements of T have the form:

and the pair of corresponding 2-by-2 blocks in S and T will have a complex conjugate pair of
generalized eigenvalues. A pair of matrices (S,T) is in generalized complex Schur form if S and
T are upper triangular and, in addition, the diagonal of T are non-negative real numbers.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobvsl
If jobvsl = 'N', then the left Schur vectors are not
computed.
If jobvsl = 'V', then the left Schur vectors are computed.

CHARACTER*1. Must be 'N' or 'V'.jobvsr
If jobvsr = 'N', then the right Schur vectors are not
computed.
If jobvsr = 'V', then the right Schur vectors are
computed.

CHARACTER*1. Must be 'N' or 'S'. Specifies whether or
not to order the eigenvalues on the diagonal of the
generalized Schur form.

sort

If sort = 'N', then eigenvalues are not ordered.
If sort = 'S', eigenvalues are ordered (see selctg).

LOGICAL FUNCTION of three REAL arguments for real
flavors.

selctg

LOGICAL FUNCTION of two COMPLEX arguments for complex
flavors.
selctg must be declared EXTERNAL in the calling subroutine.

1138

4 Intel® Math Kernel Library Reference Manual

If sort = 'S', selctg is used to select eigenvalues to sort
to the top left of the Schur form.
If sort = 'N', selctg is not referenced.
For real flavors:
An eigenvalue (alphar(j) + alphai(j))/beta(j) is selected
if selctg(alphar(j), alphai(j), beta(j)) is true; that is, if
either one of a complex conjugate pair of eigenvalues is
selected, then both complex eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex
eigenvalue may no longer satisfy selctg(alphar(j),
alphai(j), beta(j)) = .TRUE. after ordering. In this
case info is set to n+2 .
For complex flavors:
An eigenvalue alpha(j) / beta(j) is selected if
selctg(alpha(j), beta(j)) is true.
Note that a selected complex eigenvalue may no longer
satisfy selctg(alpha(j), beta(j)) = .TRUE. after ordering,
since ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this case
info is set to n+2 (see info below).

INTEGER. The order of the matrices A, B, vsl, and vsr (n

≥ 0).

n

REAL for sggesa, b, work
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A (first of
the pair of matrices).
The second dimension of a must be at least max(1, n).
b(ldb,*) is an array containing the n-by-n matrix B (second
of the pair of matrices).
The second dimension of b must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a. Must be at
least max(1, n).

lda

1139

LAPACK Routines: Least Squares and Eigenvalue Problems 4

INTEGER. The first dimension of the array b. Must be at
least max(1, n).

ldb

INTEGER. The first dimensions of the output matrices vsl
and vsr, respectively. Constraints:

ldvsl, ldvsr

ldvsl ≥ 1. If jobvsl = 'V', ldvsl ≥ max(1, n).

ldvsr ≥ 1. If jobvsr = 'V', ldvsr ≥ max(1, n).

INTEGER.lwork
The dimension of the array work.

lwork ≥ max(1, 8n+16) for real flavors;

lwork ≥ max(1, 2n) for complex flavors.
For good performance, lwork must generally be larger.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.

REAL for cggesrwork
DOUBLE PRECISION for zgges
Workspace array, DIMENSION at least max(1, 8n).
This array is used in complex flavors only.

LOGICAL.bwork
Workspace array, DIMENSION at least max(1, n).
Not referenced if sort = 'N'.

Output Parameters

On exit, this array has been overwritten by its generalized
Schur form S.

a

On exit, this array has been overwritten by its generalized
Schur form T.

b

INTEGER.sdim
If sort = 'N', sdim= 0.
If sort = 'S', sdim is equal to the number of eigenvalues
(after sorting) for which selctg is true.
Note that for real flavors complex conjugate pairs for which
selctg is true for either eigenvalue count as 2.

REAL for sgges;alphar, alphai

1140

4 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dgges.
Arrays, DIMENSION at least max(1, n) each. Contain values
that form generalized eigenvalues in real flavors.
See beta.

COMPLEX for cgges;alpha
DOUBLE COMPLEX for zgges.
Array, DIMENSION at least max(1, n). Contain values that
form generalized eigenvalues in complex flavors. See beta.

REAL for sggesbeta
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.
Array, DIMENSION at least max(1, n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,..., n, will
be the generalized eigenvalues.
alphar(j) + alphai(j)*i and beta(j), j=1,..., n are the
diagonals of the complex Schur form (S,T) that would result
if the 2-by-2 diagonal blocks of the real generalized Schur
form of (A,B) were further reduced to triangular form using
complex unitary transformations. If alphai(j) is zero, then
the j-th eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
alphai(j+1) negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,..., n, will be the generalized
eigenvalues. alpha(j), j=1,...,n, and beta(j), j=1,..., n are
the diagonals of the complex Schur form (S,T) output by
cgges/zgges. The beta(j) will be non-negative real.
See also Application Notes below.

REAL for sggesvsl, vsr
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.
Arrays:
vsl(ldvsl,*), the second dimension of vsl must be at least
max(1, n).

1141

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If jobvsl = 'V', this array will contain the left Schur
vectors.
If jobvsl = 'N', vsl is not referenced.
vsr(ldvsr,*), the second dimension of vsr must be at least
max(1, n).
If jobvsr = 'V', this array will contain the right Schur
vectors.
If jobvsr = 'N', vsr is not referenced.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and

i ≤ n:
the QZ iteration failed. (A, B) is not in Schur form, but
alphar(j), alphai(j) (for real flavors), or alpha(j) (for
complex flavors), and beta(j), j=info+1,..., n should
be correct.
i > n: errors that usually indicate LAPACK problems:
i = n+1: other than QZ iteration failed in ?hgeqz;
i = n+2: after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in the
generalized Schur form no longer satisfy selctg = .TRUE..
This could also be caused due to scaling;
i = n+3: reordering failed in ?tgsen.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine gges interface are the following:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, n).b

Holds the vector of length (n). Used in real flavors only.alphar

Holds the vector of length (n). Used in real flavors only.alphai

1142

4 Intel® Math Kernel Library Reference Manual

Holds the vector of length (n). Used in complex flavors only.alpha

Holds the vector of length (n).beta

Holds the matrix VSL of size (n, n).vsl

Holds the matrix VSR of size (n, n).vsr

Restored based on the presence of the argument vsl as follows:jobvsl
jobvsl = 'V', if vsl is present,
jobvsl = 'N', if vsl is omitted.

Restored based on the presence of the argument vsr as follows:jobvsr
jobvsr = 'V', if vsr is present,
jobvsr = 'N', if vsr is omitted.

Restored based on the presence of the argument select as follows:sort
sort = 'S', if select is present,
sort = 'N', if select is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and
beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar
and alphai will be always less than and usually comparable with norm(A) in magnitude, and
beta always less than and usually comparable with norm(B).

1143

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?ggesx
Computes the generalized eigenvalues, Schur form,
and, optionally, the left and/or right matrices of
Schur vectors.

Syntax

Fortran 77:

call sggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb, sdim,
alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork,
iwork, liwork, bwork, info)

call dggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb, sdim,
alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork,
iwork, liwork, bwork, info)

call cggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb, sdim,
alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, rwork,
iwork, liwork, bwork, info)

call zggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb, sdim,
alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, rwork,
iwork, liwork, bwork, info)

Fortran 95:

call ggesx(a, b, alphar, alphai, beta [,vsl] [,vsr] [,select] [,sdim] [,rconde]
[, rcondv] [,info])

call ggesx(a, b, alpha, beta [, vsl] [,vsr] [,select] [,sdim] [,rconde]
[,rcondv] [, info])

Description

This routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A,B), the
generalized eigenvalues, the generalized real/complex Schur form (S,T), optionally, the left
and/or right matrices of Schur vectors (vsl and vsr). This gives the generalized Schur
factorization

(A,B) = (vsl*S *vsrH, vsl*T*vsrH)

1144

4 Intel® Math Kernel Library Reference Manual

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in
the leading diagonal blocks of the upper quasi-triangular matrix S and the upper triangular
matrix T; computes a reciprocal condition number for the average of the selected eigenvalues
(rconde); and computes a reciprocal condition number for the right and left deflating subspaces
corresponding to the selected eigenvalues (rcondv). The leading columns of vsl and vsr then
form an orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating
subspaces).

A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha / beta =
w, such that A - w*B is singular. It is usually represented as the pair (alpha, beta), as there
is a reasonable interpretation for beta=0 or for both being zero. A pair of matrices (S,T) is in
generalized real Schur form if T is upper triangular with non-negative diagonal and S is block
upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized
eigenvalues, while 2-by-2 blocks of S will be “standardized" by making the corresponding
elements of T have the form:

and the pair of corresponding 2-by-2 blocks in S and T will have a complex conjugate pair of
generalized eigenvalues. A pair of matrices (S,T) is in generalized complex Schur form if S and
T are upper triangular and, in addition, the diagonal of T are non-negative real numbers.

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobvsl
If jobvsl = 'N', then the left Schur vectors are not
computed.
If jobvsl = 'V', then the left Schur vectors are computed.

CHARACTER*1. Must be 'N' or 'V'.jobvsr
If jobvsr = 'N', then the right Schur vectors are not
computed.
If jobvsr = 'V', then the right Schur vectors are
computed.

1145

LAPACK Routines: Least Squares and Eigenvalue Problems 4

CHARACTER*1. Must be 'N' or 'S'. Specifies whether or
not to order the eigenvalues on the diagonal of the
generalized Schur form.

sort

If sort = 'N', then eigenvalues are not ordered.
If sort = 'S', eigenvalues are ordered (see selctg).

LOGICAL FUNCTION of three REAL arguments for real
flavors.

selctg

LOGICAL FUNCTION of two COMPLEX arguments for complex
flavors.
selctg must be declared EXTERNAL in the calling subroutine.
If sort = 'S', selctg is used to select eigenvalues to sort
to the top left of the Schur form.
If sort = 'N', selctg is not referenced.
For real flavors:
An eigenvalue (alphar(j) + alphai(j))/beta(j) is selected
if selctg(alphar(j), alphai(j), beta(j)) is true; that is, if
either one of a complex conjugate pair of eigenvalues is
selected, then both complex eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex
eigenvalue may no longer satisfy selctg(alphar(j),
alphai(j), beta(j)) = .TRUE. after ordering. In this
case info is set to n+2.
For complex flavors:
An eigenvalue alpha(j) / beta(j) is selected if
selctg(alpha(j), beta(j)) is true.
Note that a selected complex eigenvalue may no longer
satisfy selctg(alpha(j), beta(j)) = .TRUE. after
ordering, since ordering may change the value of complex
eigenvalues (especially if the eigenvalue is ill-conditioned);
in this case info is set to n+2 (see info below).

CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines
which reciprocal condition number are computed.

sense

If sense = 'N', none are computed;
If sense = 'E', computed for average of selected
eigenvalues only;
If sense = 'V', computed for selected deflating subspaces
only;
If sense = 'B', computed for both.

1146

4 Intel® Math Kernel Library Reference Manual

If sense is 'E', 'V', or 'B', then sort must equal 'S'.

INTEGER. The order of the matrices A, B, vsl, and vsr (n

≥ 0).

n

REAL for sggesxa, b, work
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A (first of
the pair of matrices).
The second dimension of a must be at least max(1, n).
b(ldb,*) is an array containing the n-by-n matrix B (second
of the pair of matrices).
The second dimension of b must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a.lda
Must be at least max(1, n).

INTEGER. The first dimension of the array b.ldb
Must be at least max(1, n).

INTEGER. The first dimensions of the output matrices vsl
and vsr, respectively. Constraints:

ldvsl, ldvsr

ldvsl ≥ 1. If jobvsl = 'V', ldvsl ≥ max(1, n).

ldvsr ≥ 1. If jobvsr = 'V', ldvsr ≥ max(1, n).

INTEGER.lwork
The dimension of the array work.
For real flavors:

If n=0 then lwork≥1.

If n>0 and sense = 'N', then lwork ≥ max(8*n,
6*n+16).

If n>0 and sense = 'E', 'V', or 'B', then lwork ≥
max(8*n, 6*n+16, 2*sdim*(n-sdim));
For complex flavors:

If n=0 then lwork≥1.

If n>0 and sense = 'N', then lwork ≥ max(1, 2*n);

1147

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If n>0 and sense = 'E', 'V', or 'B', then lwork ≥
max(1, 2*n, 2*sdim*(n-sdim)).

Note that 2*sdim*(n-sdim) ≤ n*n/2.
An error is only returned if lwork < max(8*n, 6*n+16)for
real flavors, and lwork < max(1, 2*n) for complex flavors,
but if sense = 'E', 'V', or 'B', this may not be large
enough.
If lwork=-1, then a workspace query is assumed; the
routine only calculates the bound on the optimal size of the
work array and the minimum size of the iwork array,
returns these values as the first entries of the work and
iwork arrays, and no error message related to lwork or
liwork is issued by xerbla.

REAL for cggesxrwork
DOUBLE PRECISION for zggesx
Workspace array, DIMENSION at least max(1, 8n).
This array is used in complex flavors only.

INTEGER.iwork
Workspace array, DIMENSION max(1, liwork).

INTEGER.liwork
The dimension of the array iwork.

If sense = 'N', or n=0, then liwork≥1,

otherwise liwork ≥ (n+6) for real flavors, and liwork ≥
(n+2) for complex flavors.
If liwork=-1, then a workspace query is assumed; the
routine only calculates the bound on the optimal size of the
work array and the minimum size of the iwork array,
returns these values as the first entries of the work and
iwork arrays, and no error message related to lwork or
liwork is issued by xerbla.

LOGICAL.bwork
Workspace array, DIMENSION at least max(1, n).
Not referenced if sort = 'N'.

1148

4 Intel® Math Kernel Library Reference Manual

Output Parameters

On exit, this array has been overwritten by its generalized
Schur form S.

a

On exit, this array has been overwritten by its generalized
Schur form T.

b

INTEGER.sdim
If sort = 'N', sdim= 0.
If sort = 'S', sdim is equal to the number of eigenvalues
(after sorting) for which selctg is true.
Note that for real flavors complex conjugate pairs for which
selctg is true for either eigenvalue count as 2.

REAL for sggesx;alphar, alphai
DOUBLE PRECISION for dggesx.
Arrays, DIMENSION at least max(1, n) each. Contain values
that form generalized eigenvalues in real flavors.
See beta.

COMPLEX for cggesx;alpha
DOUBLE COMPLEX for zggesx.
Array, DIMENSION at least max(1, n). Contain values that
form generalized eigenvalues in complex flavors. See beta.

REAL for sggesxbeta
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.
Array, DIMENSION at least max(1, n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,..., n will
be the generalized eigenvalues.
alphar(j) + alphai(j)*i and beta(j), j=1,..., n are the
diagonals of the complex Schur form (S,T) that would result
if the 2-by-2 diagonal blocks of the real generalized Schur
form of (A,B) were further reduced to triangular form using
complex unitary transformations. If alphai(j) is zero, then
the j-th eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
alphai(j+1) negative.
For complex flavors:

1149

LAPACK Routines: Least Squares and Eigenvalue Problems 4

On exit, alpha(j)/beta(j), j=1,..., n will be the generalized
eigenvalues. alpha(j), j=1,..., n, and beta(j), j=1,...,n are
the diagonals of the complex Schur form (S,T) output by
cggesx/zggesx. The beta(j) will be non-negative real.
See also Application Notes below.

REAL for sggesxvsl, vsr
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.
Arrays:
vsl(ldvsl,*), the second dimension of vsl must be at least
max(1, n).
If jobvsl = 'V', this array will contain the left Schur
vectors.
If jobvsl = 'N', vsl is not referenced.
vsr(ldvsr,*), the second dimension of vsr must be at least
max(1, n).
If jobvsr = 'V', this array will contain the right Schur
vectors.
If jobvsr = 'N', vsr is not referenced.

REAL for single precision flavorsrconde, rcondv
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION (2) each
If sense = 'E' or 'B', rconde(1) and rconde(2) contain
the reciprocal condition numbers for the average of the
selected eigenvalues.
Not referenced if sense = 'N' or 'V'.
If sense = 'V' or 'B', rcondv(1) and rcondv(2) contain
the reciprocal condition numbers for the selected deflating
subspaces.
Not referenced if sense = 'N' or 'E'.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

On exit, if info = 0, then iwork(1) returns the required
minimal size of liwork.

iwork(1)

INTEGER.info
If info = 0, the execution is successful.

1150

4 Intel® Math Kernel Library Reference Manual

If info = -i, the ith parameter had an illegal value.
If info = i, and

i ≤ n:
the QZ iteration failed. (A, B) is not in Schur form, but
alphar(j), alphai(j) (for real flavors), or alpha(j) (for
complex flavors), and beta(j), j=info+1,..., n should
be correct.
i > n: errors that usually indicate LAPACK problems:
i = n+1: other than QZ iteration failed in ?hgeqz;
i = n+2: after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in the
generalized Schur form no longer satisfy selctg = .TRUE..
This could also be caused due to scaling;
i = n+3: reordering failed in ?tgsen.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ggesx interface are the following:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, n).b

Holds the vector of length (n). Used in real flavors only.alphar

Holds the vector of length (n). Used in real flavors only.alphai

Holds the vector of length (n). Used in complex flavors only.alpha

Holds the vector of length (n).beta

Holds the matrix VSL of size (n, n).vsl

Holds the matrix VSR of size (n, n).vsr

Holds the vector of length (2).rconde

Holds the vector of length (2).rcondv

Restored based on the presence of the argument vsl as follows:jobvsl
jobvsl = 'V', if vsl is present,
jobvsl = 'N', if vsl is omitted.

Restored based on the presence of the argument vsr as follows:jobvsr

1151

LAPACK Routines: Least Squares and Eigenvalue Problems 4

jobvsr = 'V', if vsr is present,
jobvsr = 'N', if vsr is omitted.

Restored based on the presence of the argument select as follows:sort
sort = 'S', if select is present,
sort = 'N', if select is omitted.

Restored based on the presence of arguments rconde and rcondv as
follows:

sense

sense = 'B', if both rconde and rcondv are present,
sense = 'E', if rconde is present and rcondv omitted,
sense = 'V', if rconde is omitted and rcondv present,
sense = 'N', if both rconde and rcondv are omitted.

Note that there will be an error condition if rconde or rcondv are present and select is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork)
for the first run or set lwork = -1 (liwork = -1).

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no
less than the minimal value described, the routine completes the task, though probably not so
fast as with a recommended workspace, and provides the recommended workspace in the first
element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1))
for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work, iwork). This operation is called
a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1, the
routine returns immediately with an error exit and does not provide any information on the
recommended workspace.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and
beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar
and alphai will be always less than and usually comparable with norm(A) in magnitude, and
beta always less than and usually comparable with norm(B).

1152

4 Intel® Math Kernel Library Reference Manual

?ggev
Computes the generalized eigenvalues, and the
left and/or right generalized eigenvectors for a pair
of nonsymmetric matrices.

Syntax

Fortran 77:

call sggev(jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl,
vr, ldvr, work, lwork, info)

call dggev(jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl,
vr, ldvr, work, lwork, info)

call cggev(jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr,
work, lwork, rwork, info)

call zggev(jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr,
work, lwork, rwork, info)

Fortran 95:

call ggev(a, b, alphar, alphai, beta [,vl] [,vr] [,info])

call ggev(a, b, alpha, beta [, vl] [,vr] [,info])

Description

This routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A,B), the
generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.

A generalized eigenvalue for a pair of matrices (A,B) is a scalar λ or a ratio alpha / beta = λ,

such that A - λ*B is singular. It is usually represented as the pair (alpha, beta), as there is
a reasonable interpretation for beta =0 and even for both being zero. The right generalized
eigenvector v(j) corresponding to the generalized eigenvalue l(j) of (A,B) satisfies

A*v*(j) = λ(j)*B*v*(j).

The left generalized eigenvector u(j) corresponding to the generalized eigenvalue λ(j) of (A,B)
satisfies

u(j)H*A = λ(j)*u*(j)H*B

1153

LAPACK Routines: Least Squares and Eigenvalue Problems 4

where u(j)H denotes the conjugate transpose of u(j).

Input Parameters

CHARACTER*1. Must be 'N' or 'V'.jobvl
If jobvl = 'N', the left generalized eigenvectors are not
computed;
If jobvl = 'V', the left generalized eigenvectors are
computed.

CHARACTER*1. Must be 'N' or 'V'.jobvr
If jobvr = 'N', the right generalized eigenvectors are not
computed;
If jobvr = 'V', the right generalized eigenvectors are
computed.

INTEGER. The order of the matrices A, B, vl, and vr (n ≥
0).

n

REAL for sggeva, b, work
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for zggev.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A (first of
the pair of matrices).
The second dimension of a must be at least max(1, n).
b(ldb,*) is an array containing the n-by-n matrix B (second
of the pair of matrices).
The second dimension of b must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a. Must be at
least max(1, n).

lda

INTEGER. The first dimension of the array b. Must be at
least max(1, n).

ldb

INTEGER. The first dimensions of the output matrices vl
and vr, respectively.

ldvl, ldvr

Constraints:

ldvl ≥ 1. If jobvl = 'V', ldvl ≥ max(1, n).

ldvr ≥ 1. If jobvr = 'V', ldvr ≥ max(1, n).

1154

4 Intel® Math Kernel Library Reference Manual

INTEGER.lwork
The dimension of the array work.

lwork ≥ max(1, 8n+16) for real flavors;

lwork ≥ max(1, 2n) for complex flavors.
For good performance, lwork must generally be larger.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.

REAL for cggevrwork
DOUBLE PRECISION for zggev
Workspace array, DIMENSION at least max(1, 8n).
This array is used in complex flavors only.

Output Parameters

On exit, these arrays have been overwritten.a, b

REAL for sggev;alphar, alphai
DOUBLE PRECISION for dggev.
Arrays, DIMENSION at least max(1, n) each. Contain values
that form generalized eigenvalues in real flavors.
See beta.

COMPLEX for cggev;alpha
DOUBLE COMPLEX for zggev.
Array, DIMENSION at least max(1, n). Contain values that
form generalized eigenvalues in complex flavors. See beta.

REAL for sggevbeta
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for zggev.
Array, DIMENSION at least max(1, n).
For real flavors:
On exit, (alphar(j)+ alphai(j)*i)/beta(j), j=1,..., n, are
the generalized eigenvalues.
If alphai(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with alphai(j+1) negative.

1155

LAPACK Routines: Least Squares and Eigenvalue Problems 4

For complex flavors:
On exit, alpha(j)/beta(j), j=1,..., n, are the generalized
eigenvalues.
See also Application Notes below.

REAL for sggevvl, vr
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for zggev.
Arrays:
vl(ldvl,*); the second dimension of vl must be at least
max(1, n).
If jobvl = 'V', the left generalized eigenvectors u(j) are
stored one after another in the columns of vl, in the same
order as their eigenvalues. Each eigenvector is scaled so
the largest component has abs(Re) + abs(Im) = 1.
If jobvl = 'N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the
j-th column of vl.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = vl(:,j) + i*vl(:,j+1)
and u(j+1) = vl(:,j) - i*vl(:,j+1), where i =
sqrt(-1).
For complex flavors:
u(j) = vl(:,j), the j-th column of vl.
vr(ldvr,*); the second dimension of vr must be at least
max(1, n).
If jobvr = 'V', the right generalized eigenvectors v(j) are
stored one after another in the columns of vr, in the same
order as their eigenvalues. Each eigenvector is scaled so
the largest component has abs(Re) + abs(Im) = 1.
If jobvr = 'N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the
j-th column of vr.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = vr(:,j) + i*vr(:,j+1)
and v(j+1) = vr(:,j) - i*vr(:,j+1).

1156

4 Intel® Math Kernel Library Reference Manual

For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, and

i ≤ n:
the QZ iteration failed. No eigenvectors have been calculated,
but alphar(j), alphai(j) (for real flavors), or alpha(j) (for
complex flavors), and beta(j), j=info+1,..., n should
be correct.
i > n: errors that usually indicate LAPACK problems:
i = n+1: other than QZ iteration failed in ?hgeqz;
i = n+2: error return from ?tgevc.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ggev interface are the following:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, n).b

Holds the vector of length (n). Used in real flavors only.alphar

Holds the vector of length (n). Used in real flavors only.alphai

Holds the vector of length (n). Used in complex flavors only.alpha

Holds the vector of length (n).beta

Holds the matrix VL of size (n, n).vl

Holds the matrix VR of size (n, n).vr

Restored based on the presence of the argument vl as follows:jobvl
jobvl = 'V', if vl is present,
jobvl = 'N', if vl is omitted.

Restored based on the presence of the argument vr as follows:jobvr

1157

LAPACK Routines: Least Squares and Eigenvalue Problems 4

jobvr = 'V', if vr is present,
jobvr = 'N', if vr is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and
beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar
and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually
comparable with norm(A) in magnitude, and beta always less than and usually comparable
with norm(B).

1158

4 Intel® Math Kernel Library Reference Manual

?ggevx
Computes the generalized eigenvalues, and,
optionally, the left and/or right generalized
eigenvectors.

Syntax

Fortran 77:

call sggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alphar, alphai,
beta, vl, ldvl, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde,
rcondv, work, lwork, iwork, bwork, info)

call dggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alphar, alphai,
beta, vl, ldvl, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde,
rcondv, work, lwork, iwork, bwork, info)

call cggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alpha, beta, vl,
ldvl, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, rwork, iwork, bwork, info)

call zggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alpha, beta, vl,
ldvl, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, rwork, iwork, bwork, info)

Fortran 95:

call ggevx(a, b, alphar, alphai, beta [,vl] [,vr] [,balanc] [,ilo] [,ihi] [,
lscale] [,rscale] [,abnrm] [,bbnrm] [,rconde] [,rcondv] [,info])

call ggevx(a, b, alpha, beta [, vl] [,vr] [,balanc] [,ilo] [,ihi] [,lscale]
[, rscale] [,abnrm] [,bbnrm] [,rconde] [,rcondv] [,info])

Description

This routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A,B), the
generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.

Optionally also, it computes a balancing transformation to improve the conditioning of the
eigenvalues and eigenvectors (ilo, ihi, lscale, rscale, abnrm, and bbnrm), reciprocal condition
numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right
eigenvectors (rcondv).

1159

LAPACK Routines: Least Squares and Eigenvalue Problems 4

A generalized eigenvalue for a pair of matrices (A,B) is a scalar λ or a ratio alpha / beta = λ,

such that A - λ*B is singular. It is usually represented as the pair (alpha, beta), as there is
a reasonable interpretation for beta=0 and even for both being zero. The right generalized

eigenvector v(j) corresponding to the generalized eigenvalue λ(j) of (A,B) satisfies

A*v*(j) = λ(j)*B*v*(j).

The left generalized eigenvector u(j) corresponding to the generalized eigenvalue λ(j) of (A,B)
satisfies

u(j)H*A = l(j)*u*(j)H*B

where u(j)H denotes the conjugate transpose of u(j).

Input Parameters

CHARACTER*1. Must be 'N', 'P', 'S', or 'B'. Specifies the
balance option to be performed.

balanc

If balanc = 'N', do not diagonally scale or permute;
If balanc = 'P', permute only;
If balanc = 'S', scale only;
If balanc = 'B', both permute and scale.
Computed reciprocal condition numbers will be for the
matrices after balancing and/or permuting. Permuting does
not change condition numbers (in exact arithmetic), but
balancing does.

CHARACTER*1. Must be 'N' or 'V'.jobvl
If jobvl = 'N', the left generalized eigenvectors are not
computed;
If jobvl = 'V', the left generalized eigenvectors are
computed.

CHARACTER*1. Must be 'N' or 'V'.jobvr
If jobvr = 'N', the right generalized eigenvectors are not
computed;
If jobvr = 'V', the right generalized eigenvectors are
computed.

CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines
which reciprocal condition number are computed.

sense

If sense = 'N', none are computed;

1160

4 Intel® Math Kernel Library Reference Manual

If sense = 'E', computed for eigenvalues only;
If sense = 'V', computed for eigenvectors only;
If sense = 'B', computed for eigenvalues and
eigenvectors.

INTEGER. The order of the matrices A, B, vl, and vr (n ≥
0).

n

REAL for sggevxa, b, work
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A (first of
the pair of matrices).
The second dimension of a must be at least max(1, n).
b(ldb,*) is an array containing the n-by-n matrix B (second
of the pair of matrices).
The second dimension of b must be at least max(1, n).
work is a workspace array, its dimension max(1, lwork).

INTEGER. The first dimension of the array a.lda
Must be at least max(1, n).

INTEGER. The first dimension of the array b.ldb
Must be at least max(1, n).

INTEGER. The first dimensions of the output matrices vl
and vr, respectively.

ldvl, ldvr

Constraints:

ldvl ≥ 1. If jobvl = 'V', ldvl ≥ max(1, n).

ldvr ≥ 1. If jobvr = 'V', ldvr ≥ max(1, n).

INTEGER.lwork

The dimension of the array work. lwork ≥ max(1, 2*n);
For real flavors:
If balanc = 'S', or 'B', or jobvl = 'V', or jobvr =

'V', then lwork ≥ max(1, 6*n);

if sense = 'E', or 'B', then lwork ≥ max(1, 10*n);

if sense = 'V', or 'B', lwork ≥ (2n2+ 8*n+16).
For complex flavors:

1161

LAPACK Routines: Least Squares and Eigenvalue Problems 4

if sense = 'E', lwork ≥ max(1, 4*n);

if sense = 'V', or 'B', lwork ≥max(1, 2*n2+ 2*n).
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work array,
returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.

REAL for cggevxrwork
DOUBLE PRECISION for zggevx
Workspace array, DIMENSION at least max(1, 6*n) if
balanc = 'S', or 'B', and at least max(1, 2*n)
otherwise.
This array is used in complex flavors only.

INTEGER.iwork
Workspace array, DIMENSION at least (n+6) for real flavors
and at least (n+2) for complex flavors.
Not referenced if sense = 'E'.

LOGICAL. Workspace array, DIMENSION at least max(1, n).bwork
Not referenced if sense = 'N'.

Output Parameters

On exit, these arrays have been overwritten.a, b
If jobvl = 'V' or jobvr = 'V' or both, then a contains
the first part of the real Schur form of the “balanced”
versions of the input A and B, and b contains its second part.

REAL for sggevx;alphar, alphai
DOUBLE PRECISION for dggevx.
Arrays, DIMENSION at least max(1, n) each. Contain values
that form generalized eigenvalues in real flavors.
See beta.

COMPLEX for cggevx;alpha
DOUBLE COMPLEX for zggevx.
Array, DIMENSION at least max(1, n). Contain values that
form generalized eigenvalues in complex flavors. See beta.

REAL for sggevxbeta
DOUBLE PRECISION for dggevx
COMPLEX for cggevx

1162

4 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX for zggevx.
Array, DIMENSION at least max(1, n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,..., n, will
be the generalized eigenvalues.
If alphai(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,..., n, will be the generalized
eigenvalues.
See also Application Notes below.

REAL for sggevxvl, vr
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.
Arrays:
vl(ldvl,*); the second dimension of vl must be at least
max(1, n).
If jobvl = 'V', the left generalized eigenvectors u(j) are
stored one after another in the columns of vl, in the same
order as their eigenvalues. Each eigenvector will be scaled
so the largest component have abs(Re) + abs(Im) = 1.
If jobvl = 'N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the
j-th column of vl.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = vl(:,j) + i*vl(:,j+1)
and u(j+1) = vl(:,j) - i*vl(:,j+1), where i =
sqrt(-1).
For complex flavors:
u(j) = vl(:,j), the j-th column of vl.
vr(ldvr,*); the second dimension of vr must be at least
max(1, n).

1163

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If jobvr = 'V', the right generalized eigenvectors v(j) are
stored one after another in the columns of vr, in the same
order as their eigenvalues. Each eigenvector will be scaled
so the largest component have abs(Re) + abs(Im) = 1.
If jobvr = 'N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the
j-th column of vr.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = vr(:,j) + i*vr(:,j+1)
and v(j+1) = vr(:,j) - i*vr(:,j+1).
For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

INTEGER. ilo and ihi are integer values such that on exit
A(i,j) = 0 and B(i,j) = 0 if i > j and j = 1,...,
ilo-1 or i = ihi+1,..., n.

ilo, ihi

If balanc = 'N' or 'S', ilo = 1 and ihi = n.

REAL for single-precision flavorslscale, rscale
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max(1, n) each.
lscale contains details of the permutations and scaling
factors applied to the left side of A and B.
If PL(j) is the index of the row interchanged with row j, and
DL(j) is the scaling factor applied to row j, then
lscale(j) = PL(j), for j = 1,..., ilo-1
= DL(j), for j = ilo,...,ihi
= PL(j) for j = ihi+1,..., n.
The order in which the interchanges are made is n to ihi+1,
then 1 to ilo-1.
rscale contains details of the permutations and scaling
factors applied to the right side of A and B.
If PR(j) is the index of the column interchanged with column
j, and DR(j) is the scaling factor applied to column j, then
rscale(j) = PR(j), for j = 1,..., ilo-1
= DR(j), for j = ilo,...,ihi
= PR(j) for j = ihi+1,..., n.
The order in which the interchanges are made is n to ihi+1,
then 1 to ilo-1.

1164

4 Intel® Math Kernel Library Reference Manual

REAL for single-precision flavorsabnrm, bbnrm
DOUBLE PRECISION for double-precision flavors.
The one-norms of the balanced matrices A and B,
respectively.

REAL for single precision flavors DOUBLE PRECISION for
double precision flavors.

rconde, rcondv

Arrays, DIMENSION at least max(1, n) each.
If sense = 'E', or 'B', rconde contains the reciprocal
condition numbers of the eigenvalues, stored in consecutive
elements of the array. For a complex conjugate pair of
eigenvalues two consecutive elements of rconde are set to
the same value. Thus rconde(j), rcondv(j), and the j-th
columns of vl and vr all correspond to the same eigenpair
(but not in general the j-th eigenpair, unless all eigenpairs
are selected).
If sense = 'N', or 'V', rconde is not referenced.
If sense = 'V', or 'B', rcondv contains the estimated
reciprocal condition numbers of the eigenvectors, stored in
consecutive elements of the array. For a complex
eigenvector two consecutive elements of rcondv are set to
the same value.
If the eigenvalues cannot be reordered to compute
rcondv(j), rcondv(j) is set to 0; this can only occur when
the true value would be very small anyway.
If sense = 'N', or 'E', rcondv is not referenced.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work(1)

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, and

i ≤ n:
the QZ iteration failed. No eigenvectors have been calculated,
but alphar(j), alphai(j) (for real flavors), or alpha(j) (for
complex flavors), and beta(j), j=info+1,..., n should
be correct.
i > n: errors that usually indicate LAPACK problems:

1165

LAPACK Routines: Least Squares and Eigenvalue Problems 4

i = n+1: other than QZ iteration failed in ?hgeqz;
i = n+2: error return from ?tgevc.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran
77 counterparts. For general conventions applied to skip redundant or restorable arguments,
see Fortran-95 Interface Conventions.

Specific details for the routine ggevx interface are the following:

Holds the matrix A of size (n, n).a

Holds the matrix B of size (n, n).b

Holds the vector of length (n). Used in real flavors only.alphar

Holds the vector of length (n). Used in real flavors only.alphai

Holds the vector of length (n). Used in complex flavors only.alpha

Holds the vector of length (n).beta

Holds the matrix VL of size (n, n).vl

Holds the matrix VR of size (n, n).vr

Holds the vector of length (n).lscale

Holds the vector of length (n).rscale

Holds the vector of length (n).rconde

Holds the vector of length (n).rcondv

Must be 'N', 'B', or 'P'. The default value is 'N'.balanc

Restored based on the presence of the argument vl as follows:jobvl
jobvl = 'V', if vl is present,
jobvl = 'N', if vl is omitted.

Restored based on the presence of the argument vr as follows:jobvr
jobvr = 'V', if vr is present,
jobvr = 'N', if vr is omitted.

Restored based on the presence of arguments rconde and rcondv as
follows:

sense

sense = 'B', if both rconde and rcondv are present,
sense = 'E', if rconde is present and rcondv omitted,
sense = 'V', if rconde is omitted and rcondv present,
sense = 'N', if both rconde and rcondv are omitted.

1166

4 Intel® Math Kernel Library Reference Manual

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first
run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the
minimal value described, the routine completes the task, though probably not so fast as with
a recommended workspace, and provides the recommended workspace in the first element of
the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended
workspace in the first element of the corresponding array (work). This operation is called a
workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine
returns immediately with an error exit and does not provide any information on the recommended
workspace.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and
beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar
and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually
comparable with norm(A) in magnitude, and beta always less than and usually comparable
with norm(B).

1167

LAPACK Routines: Least Squares and Eigenvalue Problems 4

5LAPACK Auxiliary and Utility
Routines

This chapter describes the Intel® Math Kernel Library implementation of LAPACK auxiliary and utility
routines. The library includes auxiliary routines for both real and complex data.

Auxiliary Routines
Routine naming conventions, mathematical notation, and matrix storage schemes used for LAPACK
auxiliary routines are the same as for the driver and computational routines described in previous
chapters.

The table below summarizes information about the available LAPACK auxiliary routines.

Table 5-1 LAPACK Auxiliary Routines

DescriptionData
Types

Routine Name

Conjugates a complex vector.c, z?lacgv

Multiplies a complex matrix by a square real matrix.c, z?lacrm

Performs a linear transformation of a pair of complex vectors.c, z?lacrt

Computes the eigenvalues and eigenvectors of a 2-by-2 complex
symmetric matrix.

c, z?laesy

Applies a plane rotation with real cosine and complex sine to a
pair of complex vectors.

c, z?rot

Computes a matrix-vector product for complex vectors using a
complex symmetric packed matrix

c, z?spmv

Performs the symmetrical rank-1 update of a complex symmetric
packed matrix.

c, z?spr

Computes a matrix-vector product for a complex symmetric
matrix.

c, z?symv

Performs the symmetric rank-1 update of a complex symmetric
matrix.

c, z?syr

1169

DescriptionData
Types

Routine Name

Finds the index of the vector element whose real part has
maximum absolute value.

c, zi?max1

Forms the 1-norm of the complex vector using the true
absolute value.

sc, dz?sum1

Computes the LU factorization of a general band matrix using
the unblocked version of the algorithm.

s, d, c, z?gbtf2

Reduces a general matrix to bidiagonal form using an
unblocked algorithm.

s, d, c, z?gebd2

Reduces a general square matrix to upper Hessenberg form
using an unblocked algorithm.

s, d, c, z?gehd2

Computes the LQ factorization of a general rectangular matrix
using an unblocked algorithm.

s, d, c, z?gelq2

Computes the QL factorization of a general rectangular matrix
using an unblocked algorithm.

s, d, c, z?geql2

Computes the QR factorization of a general rectangular matrix
using an unblocked algorithm.

s, d, c, z?geqr2

Computes the RQ factorization of a general rectangular matrix
using an unblocked algorithm.

s, d, c, z?gerq2

Solves a system of linear equations using the LU factorization
with complete pivoting computed by ?getc2.

s, d, c, z?gesc2

Computes the LU factorization with complete pivoting of the
general n-by-n matrix.

s, d, c, z?getc2

Computes the LU factorization of a general m-by-n matrix
using partial pivoting with row interchanges (unblocked
algorithm).

s, d, c, z?getf2

Solves a system of linear equations with a tridiagonal matrix
using the LU factorization computed by ?gttrf.

s, d, c, z?gtts2

Tests input for NaN.s, d,?isnan

1170

5 Intel® Math Kernel Library Reference Manual

DescriptionData
Types

Routine Name

Tests input for NaN by comparing itwo arguments for
inequality.

s, d,?laisnan

Reduces the first nb rows and columns of a general matrix to
a bidiagonal form.

s, d, c, z?labrd

Estimates the 1-norm of a square matrix, using reverse
communication for evaluating matrix-vector products.

s, d, c, z?lacn2

Estimates the 1-norm of a square matrix, using reverse
communication for evaluating matrix-vector products.

s, d, c, z?lacon

Copies all or part of one two-dimensional array to another.s, d, c, z?lacpy

Performs complex division in real arithmetic, avoiding
unnecessary overflow.

s, d, c, z?ladiv

Computes the eigenvalues of a 2-by-2 symmetric matrix.s, d?lae2

Computes the number of eigenvalues of a real symmetric
tridiagonal matrix which are less than or equal to a given
value, and performs other tasks required by the routine
?stebz.

s, d?laebz

Used by ?stedc. Computes all eigenvalues and corresponding
eigenvectors of an unreduced symmetric tridiagonal matrix
using the divide and conquer method.

s, d, c, z?laed0

Used by sstedc/dstedc. Computes the updated eigensystem
of a diagonal matrix after modification by a rank-one
symmetric matrix. Used when the original matrix is tridiagonal.

s, d?laed1

Used by sstedc/dstedc. Merges eigenvalues and deflates
secular equation. Used when the original matrix is tridiagonal.

s, d?laed2

Used by sstedc/dstedc. Finds the roots of the secular
equation and updates the eigenvectors. Used when the original
matrix is tridiagonal.

s, d?laed3

1171

LAPACK Auxiliary and Utility Routines 5

DescriptionData
Types

Routine Name

Used by sstedc/dstedc. Finds a single root of the secular
equation.

s, d?laed4

Used by sstedc/dstedc. Solves the 2-by-2 secular equation.s, d?laed5

Used by sstedc/dstedc. Computes one Newton step in
solution of the secular equation.

s, d?laed6

Used by ?stedc. Computes the updated eigensystem of a
diagonal matrix after modification by a rank-one symmetric
matrix. Used when the original matrix is dense.

s, d, c, z?laed7

Used by ?stedc. Merges eigenvalues and deflates secular
equation. Used when the original matrix is dense.

s, d, c, z?laed8

Used by sstedc/dstedc. Finds the roots of the secular
equation and updates the eigenvectors. Used when the original
matrix is dense.

s, d?laed9

Used by ?stedc. Computes the Z vector determining the
rank-one modification of the diagonal matrix. Used when the
original matrix is dense.

s, d?laeda

Computes a specified right or left eigenvector of an upper
Hessenberg matrix by inverse iteration.

s, d, c, z?laein

Computes the eigenvalues and eigenvectors of a 2-by-2
symmetric/Hermitian matrix.

s, d, c, z?laev2

Swaps adjacent diagonal blocks of a real upper
quasi-triangular matrix in Schur canonical form, by an
orthogonal similarity transformation.

s, d?laexc

Computes the eigenvalues of a 2-by-2 generalized eigenvalue
problem, with scaling as necessary to avoid over-/underflow.

s, d?lag2

Computes 2-by-2 orthogonal matrices U, V, and Q, and applies
them to matrices A and B such that the rows of the
transformed A and B are parallel.

s, d?lags2

1172

5 Intel® Math Kernel Library Reference Manual

DescriptionData
Types

Routine Name

Computes an LU factorization of a matrix T-λI, where T is a

general tridiagonal matrix, and λ a scalar, using partial
pivoting with row interchanges.

s, d?lagtf

Performs a matrix-matrix product of the form C = αab+βC,
where A is a tridiagonal matrix, B and C are rectangular

matrices, and α and β are scalars, which may be 0, 1, or -1.

s, d, c, z?lagtm

Solves the system of equations (T-λI)x = y or (T-λI)Tx = y

,where T is a general tridiagonal matrix and λ a scalar, using
the LU factorization computed by ?lagtf.

s, d?lagts

Computes the Generalized Schur factorization of a real 2-by-2
matrix pencil (A,B) where B is upper triangular.

s, d?lagv2

Computes the eigenvalues and Schur factorization of an upper
Hessenberg matrix, using the double-shift/single-shift QR
algorithm.

s, d, c, z?lahqr

Reduces the first nb columns of a general rectangular matrix
A so that elements below the k-th subdiagonal are zero, and
returns auxiliary matrices which are needed to apply the
transformation to the unreduced part of A.

s, d, c, z?lahrd

Reduces the specified number of first columns of a general
rectangular matrix A so that elements below thespecified
subdiagonal are zero, and returns auxiliary matrices which
are needed to apply the transformation to the unreduced part
of A.

s, d, c, z?lahr2

Applies one step of incremental condition estimation.s, d, c, z?laic1

Solves a 1-by-1 or 2-by-2 linear system of equations of the
specified form.

s, d?laln2

Applies back multiplying factors in solving the least squares
problem using divide and conquer SVD approach. Used by
?gelsd.

s, d, c, z?lals0

1173

LAPACK Auxiliary and Utility Routines 5

DescriptionData
Types

Routine Name

Computes the SVD of the coefficient matrix in compact form.
Used by ?gelsd.

s, d, c, z?lalsa

Uses the singular value decomposition of A to solve the least
squares problem.

s, d, c, z?lalsd

Creates a permutation list to merge the entries of two
independently sorted sets into a single set sorted in ascending
order.

s, d?lamrg

Computes the Sturm count.s, d?laneg

Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any element of
general band matrix.

s, d, c, z?langb

Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any element of
a general rectangular matrix.

s, d, c, z?lange

Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any element of
a general tridiagonal matrix.

s, d, c, z?langt

Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any element of
an upper Hessenberg matrix.

s, d, c, z?lanhs

Returns the value of the 1-norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of
a symmetric band matrix.

s, d, c, z?lansb

Returns the value of the 1-norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of
a Hermitian band matrix.

c, z?lanhb

Returns the value of the 1-norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of
a symmetric matrix supplied in packed form.

s, d, c, z?lansp

1174

5 Intel® Math Kernel Library Reference Manual

DescriptionData
Types

Routine Name

Returns the value of the 1-norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of
a complex Hermitian matrix supplied in packed form.

c, z?lanhp

Returns the value of the 1-norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of
a real symmetric or complex Hermitian tridiagonal matrix.

s, d/c, z?lanst/?lanht

Returns the value of the 1-norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of
a real/complex symmetric matrix.

s, d, c, z?lansy

Returns the value of the 1-norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of
a complex Hermitian matrix.

c, z?lanhe

Returns the value of the 1-norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of
a triangular band matrix.

s, d, c, z?lantb

Returns the value of the 1-norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of
a triangular matrix supplied in packed form.

s, d, c, z?lantp

Returns the value of the 1-norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of
a trapezoidal or triangular matrix.

s, d, c, z?lantr

Computes the Schur factorization of a real 2-by-2
nonsymmetric matrix in standard form.

s, d?lanv2

Measures the linear dependence of two vectors.s, d, c, z?lapll

Performs a forward or backward permutation of the columns
of a matrix.

s, d, c, z?lapmt

Returns sqrt(x2+y2).s, d?lapy2

Returns sqrt(x2+y2+z2).s, d?lapy3

1175

LAPACK Auxiliary and Utility Routines 5

DescriptionData
Types

Routine Name

Scales a general band matrix, using row and column scaling
factors computed by ?gbequ.

s, d, c, z?laqgb

Scales a general rectangular matrix, using row and column
scaling factors computed by ?geequ.

s, d, c, z?laqge

Scales a Hermetian band matrix, using scaling factors
computed by ?pbequ.

c, z?laqhb

Computes a QR factorization with column pivoting of the
matrix block.

s, d, c, z?laqp2

Computes a step of QR factorization with column pivoting of
a real m-by-n matrix A by using BLAS level 3.

s, d, c, z?laqps

Computes the eigenvalues of a Hessenberg matrix, and
optionally the marixes from the Schur decomposition.

s, d, c, z?laqr0

Sets a scalar multiple of the first column of the product of
2-by-2 or 3-by-3 matrix H and specified shifts.

s, d, c, z?laqr1

Performs the orthogonal/unitary similarity transformation of
a Hessenberg matrix to detect and deflate fully converged
eigenvalues from a trailing principal submatrix (aggresive
early deflation).

s, d, c, z?laqr2

Performs the orthogonal/unitary similarity transformation of
a Hessenberg matrix to detect and deflate fully converged
eigenvalues from a trailing principal submatrix (aggresive
early deflation).

s, d, c, z?laqr3

Computes the eigenvalues of a Hessenberg matrix, and
optionally the marices from the Schur decomposition.

s, d, c, z?laqr4

Performs a single small-bulge multi-shift QR sweep.s, d, c, z?laqr5

Scales a symmetric/Hermitian band matrix, using scaling
factors computed by ?pbequ.

s, d, c, z?laqsb

1176

5 Intel® Math Kernel Library Reference Manual

DescriptionData
Types

Routine Name

Scales a symmetric/Hermitian matrix in packed storage, using
scaling factors computed by ?ppequ.

s, d, c, z?laqsp

Scales a symmetric/Hermitian matrix, using scaling factors
computed by ?poequ.

s, d, c, z?laqsy

Solves a real quasi-triangular system of equations, or a
complex quasi-triangular system of special form, in real
arithmetic.

s, d?laqtr

Computes the (scaled) r-th column of the inverse of the
submatrix in rows b1 through bn of the tridiagonal matrix ldLT

- σI.

s, d, c, z?lar1v

Applies a vector of plane rotations with real cosines and
real/complex sines from both sides to a sequence of 2-by-2
symmetric/Hermitian matrices.

s, d, c, z?lar2v

Applies an elementary reflector to a general rectangular
matrix.

s, d, c, z?larf

Applies a block reflector or its transpose/conjugate-transpose
to a general rectangular matrix.

s, d, c, z?larfb

Generates an elementary reflector (Householder matrix).s, d, c, z?larfg

Forms the triangular factor T of a block reflector H = I - vtvHs, d, c, z?larft

Applies an elementary reflector to a general rectangular
matrix, with loop unrolling when the reflector has order ≤ 10.

s, d, c, z?larfx

Generates a vector of plane rotations with real cosines and
real/complex sines.

s, d, c, z?largv

Returns a vector of random numbers from a uniform or normal
distribution.

s, d, c, z?larnv

Computes the splitting points with the specified threshold.s, d?larra

1177

LAPACK Auxiliary and Utility Routines 5

DescriptionData
Types

Routine Name

Provides limited bisection to locate eigenvalues for more
accuracy.

s, d?larrb

Computes the number of eigenvalues of the symmetric
tridiagonal matrix.

s, d?larrc

Computes the eigenvalues of a symmetric tridiagonal matrix
to suitable accuracy.

s, d?larrd

Given the tridiagonal matrix T, sets small off-diagonal
elements to zero and for each unreduced block Ti, finds base
representations and eigenvalues.

s, d?larre

Finds a new relatively robust representation such that at least
one of the eigenvalues is relatively isolated.

s, d?larrf

Performs refinement of the initial estimates of the eigenvalues
of the matrix T.

s, d?larrj

Computes one eigenvalue of a symmetric tridiagonal matrix
T to suitable accuracy.

s, d?larrk

Performs tests to decide whether the symmetric tridiagonal
matrix T warrants expensive computations which guarantee
high relative accuracy in the eigenvalues.

s, d?larrr

Computes the eigenvectors of the tridiagonal matrix T = L D
LT given L, D and the eigenvalues of L D LT.

s, d, c, z?larrv

Generates a plane rotation with real cosine and real/complex
sine.

s, d, c, z?lartg

Applies a vector of plane rotations with real cosines and
real/complex sines to the elements of a pair of vectors.

s, d, c, z?lartv

Returns a vector of n random real numbers from a uniform
distribution.

s, d?laruv

Applies an elementary reflector (as returned by ?tzrzf) to
a general matrix.

s, d, c, z?larz

1178

5 Intel® Math Kernel Library Reference Manual

DescriptionData
Types

Routine Name

Applies a block reflector or its transpose/conjugate-transpose
to a general matrix.

s, d, c, z?larzb

Forms the triangular factor T of a block reflector H = I - vtvH.s, d, c, z?larzt

Computes singular values of a 2-by-2 triangular matrix.s, d?las2

Multiplies a general rectangular matrix by a real scalar defined
as cto/cfrom.

s, d, c, z?lascl

Computes the singular values of a real upper bidiagonal
n-by-m matrix B with diagonal d and off-diagonal e. Used by
?bdsdc.

s, d?lasd0

Computes the SVD of an upper bidiagonal matrix B of the
specified size. Used by ?bdsdc.

s, d?lasd1

Merges the two sets of singular values together into a single
sorted set. Used by ?bdsdc.

s, d?lasd2

Finds all square roots of the roots of the secular equation, as
defined by the values in D and Z, and then updates the
singular vectors by matrix multiplication. Used by ?bdsdc.

s, d?lasd3

Computes the square root of the i-th updated eigenvalue of
a positive symmetric rank-one modification to a positive
diagonal matrix. Used by ?bdsdc.

s, d?lasd4

Computes the square root of the i-th eigenvalue of a positive
symmetric rank-one modification of a 2-by-2 diagonal
matrix.Used by ?bdsdc.

s, d?lasd5

Computes the SVD of an updated upper bidiagonal matrix
obtained by merging two smaller ones by appending a row.
Used by ?bdsdc.

s, d?lasd6

Merges the two sets of singular values together into a single
sorted set. Then it tries to deflate the size of the problem.
Used by ?bdsdc.

s, d?lasd7

1179

LAPACK Auxiliary and Utility Routines 5

DescriptionData
Types

Routine Name

Finds the square roots of the roots of the secular equation,
and stores, for each element in D, the distance to its two
nearest poles. Used by ?bdsdc.

s, d?lasd8

Finds the square roots of the roots of the secular equation,
and stores, for each element in D, the distance to its two
nearest poles. Used by ?bdsdc.

s, d?lasd9

Computes the singular value decomposition (SVD) of a real
upper bidiagonal matrix with diagonal d and off-diagonal e.
Used by ?bdsdc.

s, d?lasda

Computes the SVD of a real bidiagonal matrix with diagonal
d and off-diagonal e. Used by ?bdsdc.

s, d?lasdq

Creates a tree of subproblems for bidiagonal divide and
conquer. Used by ?bdsdc.

s, d?lasdt

Initializes the off-diagonal elements and the diagonal elements
of a matrix to given values.

s, d, c, z?laset

Computes the singular values of a real square bidiagonal
matrix. Used by ?bdsqr.

s, d?lasq1

Computes all the eigenvalues of the symmetric positive
definite tridiagonal matrix associated with the qd Array Z to
high relative accuracy. Used by ?bdsqr and ?stegr.

s, d?lasq2

Checks for deflation, computes a shift and calls dqds. Used
by ?bdsqr.

s, d?lasq3

Computes an approximation to the smallest eigenvalue using
values of d from the previous transform. Used by ?bdsqr.

s, d?lasq4

Computes one dqds transform in ping-pong form. Used by
?bdsqr and ?stegr.

s, d?lasq5

Computes one dqd transform in ping-pong form. Used by
?bdsqr and ?stegr.

s, d?lasq6

1180

5 Intel® Math Kernel Library Reference Manual

DescriptionData
Types

Routine Name

Applies a sequence of plane rotations to a general rectangular
matrix.

s, d, c, z?lasr

Sorts numbers in increasing or decreasing order.s, d?lasrt

Updates a sum of squares represented in scaled form.s, d, c, z?lassq

Computes the singular value decomposition of a 2-by-2
triangular matrix.

s, d?lasv2

Performs a series of row interchanges on a general rectangular
matrix.

s, d, c, z?laswp

Solves the Sylvester matrix equation where the matrices are
of order 1 or 2.

s, d?lasy2

Computes a partial factorization of a real/complex symmetric
matrix, using the diagonal pivoting method.

s, d, c, z?lasyf

Computes a partial factorization of a complex Hermitian
indefinite matrix, using the diagonal pivoting method.

c, z?lahef

Solves a triangular banded system of equations.s, d, c, z?latbs

Uses the LU factorization of the n-by-n matrix computed by
?getc2 and computes a contribution to the reciprocal
Dif-estimate.

s, d, c, z?latdf

Solves a triangular system of equations with the matrix held
in packed storage.

s, d, c, z?latps

Reduces the first nb rows and columns of a
symmetric/Hermitian matrix A to real tridiagonal form by an
orthogonal/unitary similarity transformation.

s, d, c, z?latrd

Solves a triangular system of equations with the scale factor
set to prevent overflow.

s, d, c, z?latrs

Factors an upper trapezoidal matrix by means of
orthogonal/unitary transformations.

s, d, c, z?latrz

1181

LAPACK Auxiliary and Utility Routines 5

DescriptionData
Types

Routine Name

Computes the product UUH or LHL, where U and L are upper
or lower triangular matrices (unblocked algorithm).

s, d, c, z?lauu2

Computes the product UUH or LHL, where U and L are upper
or lower triangular matrices (blocked algorithm).

s, d, c, z?lauum

Checks for deflation, computes a shift and calls dqdss, d,?lazq3

Computes an approximation to the smallest eigenvalue using
values of d from the previous transform.

s, d,?lazq4

Generates all or part of the orthogonal/unitary matrix Q from
a QL factorization determined by ?geqlf (unblocked
algorithm).

s, d/c, z?org2l/?ung2l

Generates all or part of the orthogonal/unitary matrix Q from
a QR factorization determined by ?geqrf (unblocked
algorithm).

s, d/c, z?org2r/?ung2r

Generates all or part of the orthogonal/unitary matrix Q from
an LQ factorization determined by ?gelqf (unblocked
algorithm).

s, d/c, z?orgl2/?ungl2

Generates all or part of the orthogonal/unitary matrix Q from
an RQ factorization determined by ?gerqf (unblocked
algorithm).

s, d/c, z?orgr2/?ungr2

Multiplies a general matrix by the orthogonal/unitary matrix
from a QL factorization determined by ?geqlf (unblocked
algorithm).

s, d/c, z?orm2l/?unm2l

Multiplies a general matrix by the orthogonal/unitary matrix
from a QR factorization determined by ?geqrf (unblocked
algorithm).

s, d/c, z?orm2r/?unm2r

Multiplies a general matrix by the orthogonal/unitary matrix
from a LQ factorization determined by ?gelqf (unblocked
algorithm).

s, d/c, z?orml2/?unml2

1182

5 Intel® Math Kernel Library Reference Manual

DescriptionData
Types

Routine Name

Multiplies a general matrix by the orthogonal/unitary matrix
from a RQ factorization determined by ?gerqf (unblocked
algorithm).

s, d/c, z?ormr2/?unmr2

Multiplies a general matrix by the orthogonal/unitary matrix
from a RZ factorization determined by ?tzrzf (unblocked
algorithm).

s, d/c, z?ormr3/?unmr3

Computes the Cholesky factorization of a symmetric/
Hermitian positive definite band matrix (unblocked algorithm).

s, d, c, z?pbtf2

Computes the Cholesky factorization of a symmetric/Hermitian
positive definite matrix (unblocked algorithm).

s, d, c, z?potf2

Solves a tridiagonal system of the form AX=B using the L D
LH factorization computed by ?pttrf.

s, d, c, z?ptts2

Multiplies a vector by the reciprocal of a real scalar.s, d, cs,
zd

?rscl

Reduces a symmetric/Hermitian definite generalized
eigenproblem to standard form, using the factorization results
obtained from ?potrf (unblocked algorithm).

s, d/c, z?sygs2/?hegs2

Reduces a symmetric/Hermitian matrix to real symmetric
tridiagonal form by an orthogonal/unitary similarity
transformation (unblocked algorithm).

s, d/c, z?sytd2/?hetd2

Computes the factorization of a real/complex symmetric
indefinite matrix, using the diagonal pivoting method
(unblocked algorithm).

s, d, c, z?sytf2

Computes the factorization of a complex Hermitian matrix,
using the diagonal pivoting method (unblocked algorithm).

c, z?hetf2

Swaps adjacent diagonal blocks in an upper (quasi) triangular
matrix pair by an orthogonal/unitary equivalence
transformation.

s, d, c, z?tgex2

1183

LAPACK Auxiliary and Utility Routines 5

DescriptionData
Types

Routine Name

Solves the generalized Sylvester equation (unblocked
algorithm).

s, d, c, z?tgsy2

Computes the inverse of a triangular matrix (unblocked
algorithm).

s, d, c, z?trti2

Converts a complex single precision matrix to a complex
double precision matrix.

c → zclag2z

Converts a double precision matrix to a single precision matrix.d → sdlag2s

Converts a single precision matrix to a double precision matrix.s → dslag2d

Converts a complex double precision matrix to a complex
single precision matrix.

z → czlag2c

?lacgv
Conjugates a complex vector.

Syntax

call clacgv(n, x, incx)

call zlacgv(n, x, incx)

Description

This routine conjugates a complex vector x of length n and increment incx (see “Vector
Arguments in BLAS” in Appendix B).

Input Parameters

INTEGER. The length of the vector x (n ≥ 0).n

COMPLEX for clacgvx
COMPLEX*16 for zlacgv.
Array, dimension (1+(n-1)* |incx|).
Contains the vector of length n to be conjugated.

1184

5 Intel® Math Kernel Library Reference Manual

INTEGER. The spacing between successive elements of x.incx

Output Parameters

On exit, overwritten with conjg(x).x

?lacrm
Multiplies a complex matrix by a square real
matrix.

Syntax

call clacrm(m, n, a, lda, b, ldb, c, ldc, rwork)

call zlacrm(m, n, a, lda, b, ldb, c, ldc, rwork)

Description

This routine performs a simple matrix-matrix multiplication of the form

C = A*B,

where A is m-by-n and complex, B is n-by-n and real, C is m-by-n and complex.

Input Parameters

INTEGER. The number of rows of the matrix A and of the

matrix C (m ≥ 0).

m

INTEGER. The number of columns and rows of the matrix B
and the number of columns of the matrix C

n

(n ≥ 0).

COMPLEX for clacrma
COMPLEX*16 for zlacrm
Array, DIMENSION (lda, n). Contains the m-by-n matrix
A.

INTEGER. The leading dimension of the array a, lda ≥
max(1, m).

lda

REAL for clacrmb
DOUBLE PRECISION for zlacrm

1185

LAPACK Auxiliary and Utility Routines 5

Array, DIMENSION (ldb, n). Contains the n-by-n matrix
B.

INTEGER. The leading dimension of the array b, ldb ≥ max(1,
n).

ldb

INTEGER. The leading dimension of the output array c, ldc

≥ max(1, n).

ldc

REAL for clacrmrwork
DOUBLE PRECISION for zlacrm
Workspace array, DIMENSION (2*m*n).

Output Parameters

COMPLEX for clacrmc
COMPLEX*16 for zlacrm
Array, DIMENSION (ldc, n). Contains the m-by-n matrix C.

?lacrt
Performs a linear transformation of a pair of
complex vectors.

Syntax

call clacrt(n, cx, incx, cy, incy, c, s)

call zlacrt(n, cx, incx, cy, incy, c, s)

Description

This routine performs the following transformation

where c, s are complex scalars and x, y are complex vectors.

1186

5 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. The number of elements in the vectors cx and cy

(n ≥ 0).

n

COMPLEX for clacrtcx, cy
COMPLEX*16 for zlacrt
Arrays, dimension (n).
Contain input vectors x and y, respectively.

INTEGER. The increment between successive elements of
cx.

incx

INTEGER. The increment between successive elements of
cy.

incy

COMPLEX for clacrtc, s
COMPLEX*16 for zlacrt
Complex scalars that define the transform matrix

Output Parameters

On exit, overwritten with c*x + s*y .cx

On exit, overwritten with -s*x + c*y .cy

?laesy
Computes the eigenvalues and eigenvectors of a
2-by-2 complex symmetric matrix, and checks that
the norm of the matrix of eigenvectors is larger
than a threshold value.

Syntax

call claesy(a, b, c, rt1, rt2, evscal, cs1, sn1)

call zlaesy(a, b, c, rt1, rt2, evscal, cs1, sn1)

1187

LAPACK Auxiliary and Utility Routines 5

Description

This routine performs the eigendecomposition of a 2-by-2 symmetric matrix

provided the norm of the matrix of eigenvectors is larger than some threshold value.

rt1 is the eigenvalue of larger absolute value, and rt2 of smaller absolute value. If the
eigenvectors are computed, then on return (cs1, sn1) is the unit eigenvector for rt1, hence

Input Parameters

COMPLEX for claesya, b, c
COMPLEX*16 for zlaesy
Elements of the input matrix.

Output Parameters

COMPLEX for claesyrt1, rt2
COMPLEX*16 for zlaesy
Eigenvalues of larger and smaller modulus, respectively.

COMPLEX for claesyevscal
COMPLEX*16 for zlaesy
The complex value by which the eigenvector matrix was
scaled to make it orthonormal. If evscal is zero, the
eigenvectors were not computed. This means one of two
things: the 2-by-2 matrix could not be diagonalized, or the
norm of the matrix of eigenvectors before scaling was larger
than the threshold value thresh (set to 0.1E0).

1188

5 Intel® Math Kernel Library Reference Manual

COMPLEX for claesycs1, sn1
COMPLEX*16 for zlaesy
If evscal is not zero, then (cs1, sn1) is the unit right
eigenvector for rt1.

?rot
Applies a plane rotation with real cosine and
complex sine to a pair of complex vectors.

Syntax

call crot(n, cx, incx, cy, incy, c, s)

call zrot(n, cx, incx, cy, incy, c, s)

Description

This routine applies a plane rotation, where the cosine (c) is real and the sine (s) is complex,
and the vectors cx and cy are complex. This routine has its real equivalents in BLAS (see ?rot
in Chapter 2).

Input Parameters

INTEGER. The number of elements in the vectors cx and
cy.

n

COMPLEX for crotcx, cy
COMPLEX*16 for zrot
Arrays of dimension (n), contain input vectors x and y,
respectively.

INTEGER. The increment between successive elements of
cx.

incx

INTEGER. The increment between successive elements of
cy.

incy

REAL for crotc
DOUBLE PRECISION for zrot

COMPLEX for crots
COMPLEX*16 for zrot
Values that define a rotation

1189

LAPACK Auxiliary and Utility Routines 5

where c*c + s*conjg(s) = 1.0.

Output Parameters

On exit, overwritten with c*x + s*y.cx

On exit, overwritten with -conjg(s)*x + c*y.cy

?spmv
Computes a matrix-vector product for complex
vectors using a complex symmetric packed matrix.

Syntax

call cspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

call zspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

Description

These routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are complex scalars,

x and y are n-element complex vectors

a is an n-by-n complex symmetric matrix, supplied in packed form.

These routines have their real equivalents in BLAS (see ?spmv in Chapter 2).

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix a is supplied in the packed
array ap, as follows:

uplo

1190

5 Intel® Math Kernel Library Reference Manual

If uplo = 'U' or 'u', the upper triangular part of the
matrix a is supplied in the array ap.
If uplo = 'L' or 'l', the lower triangular part of the
matrix a is supplied in the array ap .

INTEGER.n
Specifies the order of the matrix a.
The value of n must be at least zero.

COMPLEX for cspmvalpha, beta
COMPLEX*16 for zspmv
Specify complex scalars alpha and beta. When beta is
supplied as zero, then y need not be set on input.

COMPLEX for cspmvap
COMPLEX*16 for zspmv
Array, DIMENSION at least ((n*(n + 1))/2). Before entry,
with uplo = 'U' or 'u', the array ap must contain the
upper triangular part of the symmetric matrix packed
sequentially, column-by-column, so that ap(1) contains
A(1, 1), ap(2) and ap(3) contain A(1, 2) and A(2, 2)
respectively, and so on. Before entry, with uplo = 'L' or
'l', the array ap must contain the lower triangular part of
the symmetric matrix packed sequentially,
column-by-column, so that ap(1) contains a(1, 1), ap(2)
and ap(3) contain a(2, 1) and a(3, 1) respectively, and
so on.

COMPLEX for cspmvx
COMPLEX*16 for zspmv
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x. The
value of incx must not be zero.

incx

COMPLEX for cspmvy
COMPLEX*16 for zspmv
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

1191

LAPACK Auxiliary and Utility Routines 5

INTEGER. Specifies the increment for the elements of y. The
value of incy must not be zero.

incy

Output Parameters

Overwritten by the updated vector y.y

?spr
Performs the symmetrical rank-1 update of a
complex symmetric packed matrix.

Syntax

call cspr(uplo, n, alpha, x, incx, ap)

call zspr(uplo, n, alpha, x, incx, ap)

Description

The ?spr routines perform a matrix-vector operation defined as

a:= alpha*x*conjg(x') + a,

where:

alpha is a complex scalar

x is an n-element complex vector

a is an n-by-n complex symmetric matrix, supplied in packed form.

These routines have their real equivalents in BLAS (see ?spr in Chapter 2).

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix a is supplied in the packed
array ap, as follows:

uplo

If uplo = 'U' or 'u', the upper triangular part of the
matrix a is supplied in the array ap.
If uplo = 'L' or 'l', the lower triangular part of the
matrix a is supplied in the array ap .

INTEGER.n

1192

5 Intel® Math Kernel Library Reference Manual

Specifies the order of the matrix a.
The value of n must be at least zero.

COMPLEX for cspralpha
COMPLEX*16 for zspr
Specifies the scalar alpha.

COMPLEX for csprx
COMPLEX*16 for zspr
Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before
entry, the incremented array x must contain the n-element
vector x.

INTEGER. Specifies the increment for the elements of x. The
value of incx must not be zero.

incx

COMPLEX for csprap
COMPLEX*16 for zspr
Array, DIMENSION at least ((n*(n + 1))/2). Before entry,
with uplo = 'U' or 'u', the array ap must contain the upper
triangular part of the symmetric matrix packed sequentially,
column-by-column, so that ap(1) contains A(1,1), ap(2)
and ap(3) contain A(1, 2) and A(2,2) respectively, and
so on.
Before entry, with uplo = 'L' or 'l', the array ap must
contain the lower triangular part of the symmetric matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1,1), ap(2) and ap(3) contain a(2,1) and
a(3,1) respectively, and so on.
Note that the imaginary parts of the diagonal elements need
not be set, they are assumed to be zero, and on exit they
are set to zero.

Output Parameters

With uplo = 'U' or 'u', overwritten by the upper
triangular part of the updated matrix.

ap

With uplo = 'L' or 'l', overwritten by the lower triangular
part of the updated matrix.

1193

LAPACK Auxiliary and Utility Routines 5

?symv
Computes a matrix-vector product for a complex
symmetric matrix.

Syntax

call csymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

call zsymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

Description

These routines perform the matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are complex scalars

x and y are n-element complex vectors

a is an n-by-n symmetric complex matrix.

These routines have their real equivalents in BLAS (see ?symv in Chapter 2).

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as follows:

uplo

If uplo = 'U' or 'u', the upper triangular part of the array
a is to be referenced. If uplo = 'L' or 'l', the lower
triangular part of the array a is to be referenced.

INTEGER. Specifies the order of the matrix a. The value of
n must be at least zero.

n

COMPLEX for csymvalpha, beta
COMPLEX*16 for zsymv
Specify the scalars alpha and beta. When beta is supplied
as zero, then y need not be set on input.

COMPLEX for csymva
COMPLEX*16 for zsymv

1194

5 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (lda, n). Before entry with uplo = 'U'
or 'u', the leading n-by-n upper triangular part of the array
a must contain the upper triangular part of the symmetric
matrix and the strictly lower triangular part of a is not
referenced. Before entry with uplo = 'L' or 'l', the
leading n-by-n lower triangular part of the array a must
contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the first dimension of A as declared in
the calling (sub)program. The value of lda must be at least
max(1,n).

lda

COMPLEX for csymvx
COMPLEX*16 for zsymv
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

INTEGER. Specifies the increment for the elements of x. The
value of incx must not be zero.

incx

COMPLEX for csymvy
COMPLEX*16 for zsymv
Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

INTEGER. Specifies the increment for the elements of y. The
value of incy must not be zero.

incy

Output Parameters

Overwritten by the updated vector y.y

1195

LAPACK Auxiliary and Utility Routines 5

?syr
Performs the symmetric rank-1 update of a
complex symmetric matrix.

Syntax

call csyr(uplo, n, alpha, x, incx, a, lda)

call zsyr(uplo, n, alpha, x, incx, a, lda)

Description

These routines perform the symmetric rank 1 operation defined as

a := alpha*x*x' + a,

where:

alpha is a complex scalar

x is an n-element complex vector

a is an n-by-n complex symmetric matrix.

These routines have their real equivalents in BLAS (see ?syr in Chapter 2).

Input Parameters

CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as follows:

uplo

If uplo = 'U' or 'u', the upper triangular part of the array
a is to be referenced. If uplo = 'L' or 'l', the lower
triangular part of the array a is to be referenced.

INTEGER. Specifies the order of the matrix a. The value of
n must be at least zero.

n

COMPLEX for csyralpha
COMPLEX*16 for zsyr
Specifies the scalar alpha.

COMPLEX for csyrx
COMPLEX*16 for zsyr
Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

1196

5 Intel® Math Kernel Library Reference Manual

INTEGER. Specifies the increment for the elements of x. The
value of incx must not be zero.

incx

COMPLEX for csyra
COMPLEX*16 for zsyr
Array, DIMENSION (lda, n). Before entry with uplo =
'U' or 'u', the leading n-by-n upper triangular part of the
array a must contain the upper triangular part of the
symmetric matrix and the strictly lower triangular part of a
is not referenced.
Before entry with uplo = 'L' or 'l', the leading n-by-n
lower triangular part of the array a must contain the lower
triangular part of the symmetric matrix and the strictly upper
triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in
the calling (sub)program. The value of lda must be at least
max(1,n).

lda

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the
array a is overwritten by the upper triangular part of the
updated matrix.

a

With uplo = 'L' or 'l', the lower triangular part of the
array a is overwritten by the lower triangular part of the
updated matrix.

i?max1
Finds the index of the vector element whose real
part has maximum absolute value.

Syntax

index = icmax1(n, cx, incx)

index = izmax1(n, cx, incx)

1197

LAPACK Auxiliary and Utility Routines 5

Description

Given a complex vector cx, the i?max1 functions return the index of the vector element whose
real part has maximum absolute value. These functions are based on the BLAS functions
icamax/izamax, but using the absolute value of the real part. They are designed for use with
clacon/zlacon.

Input Parameters

INTEGER. Specifies the number of elements in the vector
cx.

n

COMPLEX for icmax1cx
COMPLEX*16 for izmax1
Array, DIMENSION at least (1+(n-1)*abs(incx)).
Contains the input vector.

INTEGER. Specifies the spacing between successive elements
of cx.

incx

Output Parameters

INTEGER. Contains the index of the vector element whose
real part has maximum absolute value.

index

?sum1
Forms the 1-norm of the complex vector using the
true absolute value.

Syntax

res = scsum1(n, cx, incx)

res = dzsum1(n, cx, incx)

Description

Given a complex vector cx, scsum1/dzsum1 functions take the sum of the absolute values of
vector elements and return a single/DOUBLE PRECISION result, respectively. These functions
are based on scasum/dzasum from Level 1 BLAS, but use the true absolute value and were
designed for use with clacon/zlacon.

1198

5 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. Specifies the number of elements in the vector
cx.

n

COMPLEX for scsum1cx
COMPLEX*16 for dzsum1
Array, DIMENSION at least (1+(n-1)*abs(incx)).
Contains the input vector whose elements will be summed.

INTEGER. Specifies the spacing between successive elements
of cx (incx > 0).

incx

Output Parameters

REAL for scsum1res
DOUBLE PRECISION for dzsum1
Contains the sum of absolute values.

?gbtf2
Computes the LU factorization of a general band
matrix using the unblocked version of the
algorithm.

Syntax

call sgbtf2(m, n, kl, ku, ab, ldab, ipiv, info)

call dgbtf2(m, n, kl, ku, ab, ldab, ipiv, info)

call cgbtf2(m, n, kl, ku, ab, ldab, ipiv, info)

call zgbtf2(m, n, kl, ku, ab, ldab, ipiv, info)

Description

The routine forms the LU factorization of a general real/complex m-by-n band matrix A with kl
sub-diagonals and ku super-diagonals. The routine uses partial pivoting with row interchanges
and implements the unblocked version of the algorithm, calling Level 2 BLAS. See also ?gbtrf.

Input Parameters

INTEGER. The number of rows of the matrix A (m ≥ 0).m

1199

LAPACK Auxiliary and Utility Routines 5

INTEGER. The number of columns in A (n ≥ 0).n

INTEGER. The number of sub-diagonals within the band of

A (kl ≥ 0).

kl

INTEGER. The number of super-diagonals within the band

of A (ku ≥ 0).

ku

REAL for sgbtf2ab
DOUBLE PRECISION for dgbtf2
COMPLEX for cgbtf2
COMPLEX*16 for zgbtf2.
Array, DIMENSION (ldab,*).
The array ab contains the matrix A in band storage (see
Matrix Arguments).
The second dimension of ab must be at least max(1, n).

INTEGER. The first dimension of the array ab.ldab

(ldab ≥ 2kl + ku +1)

Output Parameters

Overwritten by details of the factorization. The diagonal and
kl + ku super-diagonals of U are stored in the first 1 + kl
+ ku rows of ab. The multipliers used during the factorization
are stored in the next kl rows.

ab

INTEGER.ipiv
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: row i was interchanged with row ipiv(i).

INTEGER. If info =0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i, uii is 0. The factorization has been completed,
but U is exactly singular. Division by 0 will occur if you use
the factor U for solving a system of linear equations.

1200

5 Intel® Math Kernel Library Reference Manual

?gebd2
Reduces a general matrix to bidiagonal form using
an unblocked algorithm.

Syntax

call sgebd2(m, n, a, lda, d, e, tauq, taup, work, info)

call dgebd2(m, n, a, lda, d, e, tauq, taup, work, info)

call cgebd2(m, n, a, lda, d, e, tauq, taup, work, info)

call zgebd2(m, n, a, lda, d, e, tauq, taup, work, info)

Description

The routine reduces a general m-by-n matrix A to upper or lower bidiagonal form B by an
orthogonal (unitary) transformation: Q'*A*P = B

If m ≥ n, B is upper bidiagonal; if m < n, B is lower bidiagonal.

The routine does not form the matrices Q and P explicitly, but represents them as products of

elementary reflectors. if m ≥ n,

Q = H(1)H(2)...H(n) and P = G(1)G(2)...G(n-1)

if m < n,

Q = H(1)H(2)...H(m-1) and P = G(1)G(2)...G(m)

Each H(i) and G(i) has the form

H(i) = I - tauq*v*v' and G(i) = I - taup*u*u'

where tauq and taup are scalars (real for sgebd2/dgebd2, complex for cgebd2/zgebd2), and
v and u are vectors (real for sgebd2/dgebd2, complex for cgebd2/zgebd2).

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgebd2a, work
DOUBLE PRECISION for dgebd2
COMPLEX for cgebd2

1201

LAPACK Auxiliary and Utility Routines 5

COMPLEX*16 for zgebd2.
Arrays:
a(lda,*) contains the m-by-n general matrix A to be
reduced. The second dimension of a must be at least max(1,
n).
work(*) is a workspace array, the dimension of work must
be at least max(1, m, n).

INTEGER. The first dimension of a; at least max(1, m).lda

Output Parameters

if m ≥ n, the diagonal and first super-diagonal of a are
overwritten with the upper bidiagonal matrix B. Elements
below the diagonal, with the array tauq, represent the

a

orthogonal/unitary matrix Q as a product of elementary
reflectors, and elements above the first superdiagonal, with
the array taup, represent the orthogonal/unitary matrix p
as a product of elementary reflectors.
if m < n, the diagonal and first sub-diagonal of a are
overwritten by the lower bidiagonal matrix B. Elements
below the first subdiagonal, with the array tauq, represent
the orthogonal/unitary matrix Q as a product of elementary
reflectors, and elements above the diagonal, with the array
taup, represent the orthogonal/unitary matrix p as a product
of elementary reflectors.

REAL for single-precision flavorsd
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, min(m, n)).
Contains the diagonal elements of the bidiagonal matrix B:
d(i) = a(i, i).

REAL for single-precision flavorse
DOUBLE PRECISION for double-precision flavors. Array,
DIMENSION at least max(1, min(m, n) - 1).
Contains the off-diagonal elements of the bidiagonal matrix
B:

if m ≥ n, e(i) = a(i, i+1) for i = 1,2,..., n-1;
if m < n, e(i) = a(i+1, i) for i = 1,2,..., m-1.

1202

5 Intel® Math Kernel Library Reference Manual

REAL for sgebd2tauq, taup
DOUBLE PRECISION for dgebd2
COMPLEX for cgebd2
COMPLEX*16 for zgebd2.
Arrays, DIMENSION at least max (1, min(m, n)).
Contain scalar factors of the elementary reflectors which
represent orthogonal/unitary matrices Q and p, respectively.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?gehd2
Reduces a general square matrix to upper
Hessenberg form using an unblocked algorithm.

Syntax

call sgehd2(n, ilo, ihi, a, lda, tau, work, info)

call dgehd2(n, ilo, ihi, a, lda, tau, work, info)

call cgehd2(n, ilo, ihi, a, lda, tau, work, info)

call zgehd2(n, ilo, ihi, a, lda, tau, work, info)

Description

The routine reduces a real/complex general matrix A to upper Hessenberg form H by an
orthogonal or unitary similarity transformation Q'*A*Q = H.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
elementary reflectors.

Input Parameters

INTEGER The order of the matrix A (n ≥ 0).n

INTEGER. It is assumed that A is already upper triangular
in rows and columns 1:ilo -1 and ihi+1:n.

ilo, ihi

If A has been output by ?gebal, then

1203

LAPACK Auxiliary and Utility Routines 5

ilo and ihi must contain the values returned by that
routine. Otherwise they should be set to ilo = 1 and ihi

= n. Constraint: 1 ≤ ilo ≤ ihi ≤ max(1, n).

REAL for sgehd2a, work
DOUBLE PRECISION for dgehd2
COMPLEX for cgehd2
COMPLEX*16 for zgehd2.
Arrays:
a (lda,*) contains the n-by-n matrix A to be reduced. The
second dimension of a must be at least max(1, n).
work (n) is a workspace array.

INTEGER. The first dimension of a; at least max(1, n).lda

Output Parameters

On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H and
the elements below the first subdiagonal, with the array
tau, represent the orthogonal/unitary matrix Q as a product
of elementary reflectors. See Application Notes below.

a

REAL for sgehd2tau
DOUBLE PRECISION for dgehd2
COMPLEX for cgehd2
COMPLEX*16 for zgehd2.
Array, DIMENSION at least max (1, n-1).
Contains the scalar factors of elementary reflectors. See
Application Notes below.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The matrix Q is represented as a product of (ihi - ilo) elementary reflectors

Q = H(ilo) H(ilo +1) ... H(ihi -1)

Each H(i) has the form

H(i) = I - tau*v*v'

1204

5 Intel® Math Kernel Library Reference Manual

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i) = 0, v(i+1)
= 1 and v(ihi+1:n) = 0.

On exit, v(i+2:ihi) is stored in a(i+2:ihi, i) and tau in tau(i).

The contents of a are illustrated by the following example, with n = 7, ilo = 2 and ihi =
6:

where a denotes an element of the original matrix A, h denotes a modified element of the upper
Hessenberg matrix H, and vi denotes an element of the vector defining H(i).

?gelq2
Computes the LQ factorization of a general
rectangular matrix using an unblocked algorithm.

Syntax

call sgelq2(m, n, a, lda, tau, work, info)

call dgelq2(m, n, a, lda, tau, work, info)

call cgelq2(m, n, a, lda, tau, work, info)

call zgelq2(m, n, a, lda, tau, work, info)

Description

The routine computes an LQ factorization of a real/complex m-by-n matrix A as A = L*Q.

1205

LAPACK Auxiliary and Utility Routines 5

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors :

Q = H(k) ... H(2) H(1) (or Q = H(k)' ... H(2)' H(1)' for complex flavors), where k
= min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v'

where tau is a real/complex scalar stored in tau(i), and v is a real/complex vector with v(1:i-1)
= 0 and v(i) = 1.

On exit, v(i+1:n) is stored in a(i, i+1:n).

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgelq2a, work
DOUBLE PRECISION for dgelq2
COMPLEX for cgelq2
COMPLEX*16 for zgelq2.
Arrays: a(lda,*) contains the m-by-n matrix A. The second
dimension of a must be at least max(1, n).
work(m) is a workspace array.

INTEGER. The first dimension of a; at least max(1, m).lda

Output Parameters

Overwritten by the factorization data as follows:a
on exit, the elements on and below the diagonal of the array
a contain the m-by-min(n,m) lower trapezoidal matrix L (L

is lower triangular if n ≥ m); the elements above the
diagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of min(n,m)
elementary reflectors.

REAL for sgelq2tau
DOUBLE PRECISION for dgelq2
COMPLEX for cgelq2

1206

5 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for zgelq2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?geql2
Computes the QL factorization of a general
rectangular matrix using an unblocked algorithm.

Syntax

call sgeql2(m, n, a, lda, tau, work, info)

call dgeql2(m, n, a, lda, tau, work, info)

call cgeql2(m, n, a, lda, tau, work, info)

call zgeql2(m, n, a, lda, tau, work, info)

Description

The routine computes a QL factorization of a real/complex m-by-n matrix A as A = Q*L.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors :

Q = H(k) ... H(2) H(1), where k = min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v'

where tau is a real/complex scalar stored in tau(i), and v is a real/complex vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1.

On exit, v(1:m-k+i-1) is stored in a(1:m-k+i-1, n-k+i).

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

1207

LAPACK Auxiliary and Utility Routines 5

REAL for sgeql2a, work
DOUBLE PRECISION for dgeql2
COMPLEX for cgeql2
COMPLEX*16 for zgeql2.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
work(m) is a workspace array.

INTEGER. The first dimension of a; at least max(1, m).lda

Output Parameters

Overwritten by the factorization data as follows:a

on exit, if m ≥ n, the lower triangle of the subarray
a(m-n+1:m, 1:n) contains the n-by-n lower triangular
matrix L; if m < n, the elements on and below the (n-m)th
superdiagonal contain the m-by-n lower trapezoidal matrix
L; the remaining elements, with the array tau, represent
the orthogonal/unitary matrix Q as a product of elementary
reflectors.

REAL for sgeql2tau
DOUBLE PRECISION for dgeql2
COMPLEX for cgeql2
COMPLEX*16 for zgeql2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

1208

5 Intel® Math Kernel Library Reference Manual

?geqr2
Computes the QR factorization of a general
rectangular matrix using an unblocked algorithm.

Syntax

call sgeqr2(m, n, a, lda, tau, work, info)

call dgeqr2(m, n, a, lda, tau, work, info)

call cgeqr2(m, n, a, lda, tau, work, info)

call zgeqr2(m, n, a, lda, tau, work, info)

Description

The routine computes a QR factorization of a real/complex m-by-n matrix A as A = Q*R.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors :

Q = H(1)H(2) ... H(k), where k = min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v'

where tau is a real/complex scalar stored in tau(i), and v is a real/complex vector with v(1:i-1)
= 0 and v(i) = 1.

On exit, v(i+1:m) is stored in a(i+1:m, i).

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgeqr2a, work
DOUBLE PRECISION for dgeqr2
COMPLEX for cgeqr2
COMPLEX*16 for zgeqr2.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

1209

LAPACK Auxiliary and Utility Routines 5

work(n) is a workspace array.

INTEGER. The first dimension of a; at least max(1, m).lda

Output Parameters

Overwritten by the factorization data as follows:a
on exit, the elements on and above the diagonal of the array
a contain the min(n,m)-by-n upper trapezoidal matrix R (R

is upper triangular if m ≥ n); the elements below the
diagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors.

REAL for sgeqr2tau
DOUBLE PRECISION for dgeqr2
COMPLEX for cgeqr2
COMPLEX*16 for zgeqr2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

?gerq2
Computes the RQ factorization of a general
rectangular matrix using an unblocked algorithm.

Syntax

call sgerq2(m, n, a, lda, tau, work, info)

call dgerq2(m, n, a, lda, tau, work, info)

call cgerq2(m, n, a, lda, tau, work, info)

call zgerq2(m, n, a, lda, tau, work, info)

Description

The routine computes a RQ factorization of a real/complex m-by-n matrix A as A = R*Q.

1210

5 Intel® Math Kernel Library Reference Manual

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors :

Q = H(1)H(2) ... H(k), where k = min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v'

where tau is a real/complex scalar stored in tau(i), and v is a real/complex vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1.

On exit, v(1:n-k+i-1) is stored in a(m-k+i, 1:n-k+i-1).

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgerq2a, work
DOUBLE PRECISION for dgerq2
COMPLEX for cgerq2
COMPLEX*16 for zgerq2.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).
work(m) is a workspace array.

INTEGER. The first dimension of a; at least max(1, m).lda

Output Parameters

Overwritten by the factorization data as follows:a

on exit, if m ≤ n, the upper triangle of the subarray a(1:m,
n-m+1:n) contains the m-by-m upper triangular matrix R;
if m > n, the elements on and above the (m-n)-th
subdiagonal contain the m-by-n upper trapezoidal matrix R;
the remaining elements, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors.

REAL for sgerq2tau
DOUBLE PRECISION for dgerq2

1211

LAPACK Auxiliary and Utility Routines 5

COMPLEX for cgerq2
COMPLEX*16 for zgerq2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

?gesc2
Solves a system of linear equations using the LU
factorization with complete pivoting computed by
?getc2.

Syntax

call sgesc2(n, a, lda, rhs, ipiv, jpiv, scale)

call dgesc2(n, a, lda, rhs, ipiv, jpiv, scale)

call cgesc2(n, a, lda, rhs, ipiv, jpiv, scale)

call zgesc2(n, a, lda, rhs, ipiv, jpiv, scale)

Description

This routine solves a system of linear equations

A*X = scale*RHS

with a general n-by-n matrix A using the LU factorization with complete pivoting computed by
?getc2.

Input Parameters

INTEGER. The order of the matrix A.n

REAL for sgesc2a, rhs
DOUBLE PRECISION for dgesc2
COMPLEX for cgesc2
COMPLEX*16 for zgesc2.
Arrays:
a(lda,*) contains the LU part of the factorization of the
n-by-n matrix A computed by ?getc2:

1212

5 Intel® Math Kernel Library Reference Manual

A = P*L*U*Q.
The second dimension of a must be at least max(1, n);
rhs(n) contains on entry the right hand side vector for the
system of equations.

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER.ipiv
Array, DIMENSION at least max(1,n).

The pivot indices: for 1 ≤ i ≤ n, row i of the matrix has
been interchanged with row ipiv(i).

INTEGER.jpiv
Array, DIMENSION at least max(1,n).

The pivot indices: for 1 ≤ j ≤ n, column j of the matrix
has been interchanged with column jpiv(j).

Output Parameters

On exit, overwritten with the solution vector X.rhs

REAL for sgesc2/cgesc2scale
DOUBLE PRECISION for dgesc2/zgesc2

Contains the scale factor. scale is chosen in the range 0 ≤

scale ≤ 1 to prevent overflow in the solution.

?getc2
Computes the LU factorization with complete
pivoting of the general n-by-n matrix.

Syntax

call sgetc2(n, a, lda, ipiv, jpiv, info)

call dgetc2(n, a, lda, ipiv, jpiv, info)

call cgetc2(n, a, lda, ipiv, jpiv, info)

call zgetc2(n, a, lda, ipiv, jpiv, info)

1213

LAPACK Auxiliary and Utility Routines 5

Description

This routine computes an LU factorization with complete pivoting of the n-by-n matrix A. The
factorization has the form A = P*L*U*Q, where p and Q are permutation matrices, L is lower
triangular with unit diagonal elements and U is upper triangular.

The LU factorization computed by this routine is used by ?latdf to compute a contribution to
the reciprocal Dif-estimate.

Input Parameters

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sgetc2a
DOUBLE PRECISION for dgetc2
COMPLEX for cgetc2
COMPLEX*16 for zgetc2.
Array a(lda,*) contains the n-by-n matrix A to be factored.
The second dimension of a must be at least max(1, n);

INTEGER. The first dimension of a; at least max(1, n).lda

Output Parameters

On exit, the factors L and U from the factorization A =
P*L*U*Q; the unit diagonal elements of L are not stored. If
U(k, k) appears to be less than smin, U(k, k) is given the
value of smin, i.e., giving a nonsingular perturbed system.

a

INTEGER.ipiv
Array, DIMENSION at least max(1,n).

The pivot indices: for 1 ≤ i ≤ n , row i of the matrix has
been interchanged with row ipiv(i).

INTEGER.jpiv
Array, DIMENSION at least max(1,n).

The pivot indices: for 1 ≤ j ≤ n , column j of the matrix
has been interchanged with column jpiv(j).

INTEGER.info
If info = 0, the execution is successful.

1214

5 Intel® Math Kernel Library Reference Manual

If info = k >0, U(k, k) is likely to produce overflow if we
try to solve for x in A*x = b. So U is perturbed to avoid the
overflow.

?getf2
Computes the LU factorization of a general m-by-n
matrix using partial pivoting with row interchanges
(unblocked algorithm).

Syntax

call sgetf2(m, n, a, lda, ipiv, info)

call dgetf2(m, n, a, lda, ipiv, info)

call cgetf2(m, n, a, lda, ipiv, info)

call zgetf2(m, n, a, lda, ipiv, info)

Description

The routine computes the LU factorization of a general m-by-n matrix A using partial pivoting
with row interchanges. The factorization has the form

A = P*L*U

where p is a permutation matrix, L is lower triangular with unit diagonal elements (lower
trapezoidal if m > n) and U is upper triangular (upper trapezoidal if m < n).

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for sgetf2a
DOUBLE PRECISION for dgetf2
COMPLEX for cgetf2
COMPLEX*16 for zgetf2.
Array, DIMENSION (lda,*). Contains the matrix A to be
factored. The second dimension of a must be at least max(1,
n).

INTEGER. The first dimension of a; at least max(1, m).lda

1215

LAPACK Auxiliary and Utility Routines 5

Output Parameters

Overwritten by L and U. The unit diagonal elements of L are
not stored.

a

INTEGER.ipiv
Array, DIMENSION at least max(1,min(m,n)).

The pivot indices: for 1 ≤ i ≤ n , row i was interchanged
with row ipiv(i).

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.
If info = i >0, uii is 0. The factorization has been
completed, but U is exactly singular. Division by 0 will occur
if you use the factor U for solving a system of linear
equations.

?gtts2
Solves a system of linear equations with a
tridiagonal matrix using the LU factorization
computed by ?gttrf.

Syntax

call sgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

call dgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

call cgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

call zgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

Description

This routine solves for X one of the following systems of linear equations with multiple right
hand sides:

A*X = B, AT*X = B, or AH*X = B (for complex matrices only), with a tridiagonal matrix A
using the LU factorization computed by ?gttrf.

Input Parameters

INTEGER. Must be 0, 1, or 2.itrans

1216

5 Intel® Math Kernel Library Reference Manual

Indicates the form of the equations being solved:
If itrans = 0, then A*X = B (no transpose).
If itrans = 1, then AT*X = B (transpose).
If itrans = 2, then AH*X = B (conjugate transpose).

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The number of right-hand sides, i.e., the number

of columns in B (nrhs ≥ 0).

nrhs

REAL for sgtts2dl,d,du,du2,b
DOUBLE PRECISION for dgtts2
COMPLEX for cgtts2
COMPLEX*16 for zgtts2.
Arrays: dl(n - 1), d(n), du(n - 1), du2(n - 2),
b(ldb,nrhs).
The array dl contains the (n - 1) multipliers that define the
matrix L from the LU factorization of A.
The array d contains the n diagonal elements of the upper
triangular matrix U from the LU factorization of A.
The array du contains the (n - 1) elements of the first
super-diagonal of U.
The array du2 contains the (n - 2) elements of the second
super-diagonal of U.
The array b contains the matrix B whose columns are the
right-hand sides for the systems of equations.

INTEGER. The leading dimension of b; must be ldb ≥
max(1, n).

ldb

INTEGER.ipiv
Array, DIMENSION (n).
The pivot indices array, as returned by ?gttrf.

Output Parameters

Overwritten by the solution matrix X.b

1217

LAPACK Auxiliary and Utility Routines 5

?isnan
Tests input for NaN.

Syntax

val = sisnan(sin)

val = disnan(din)

Description

This logical routine returns .TRUE. if its argument is NaN, and .FALSE. otherwise.

Input Parameters

REAL for sisnansin
Input to test for NaN.

DOUBLE PRECISION for disnandin
Input to test for NaN.

Output Parameters

Logical. Result of the test.val

?laisnan
Tests input for NaN.

Syntax

val = slaisnan(sin1, sin2)

val = dlaisnan(din1, din2)

Description

This logical routine checks for NaNs (NaN stands for 'Not A Number') by comparing its two

arguments for inequality. NaN is the only floating-point value where NaN ≠ NaN returns .TRUE.
To check for NaNs, pass the same variable as both arguments.

This routine is not for general use. It exists solely to avoid over-optimization in ?isnan.

1218

5 Intel® Math Kernel Library Reference Manual

Input Parameters

REAL for sisnansin1, sin2
Two numbers to compare for inequality.

DOUBLE PRECISION for disnandin2, din2
Two numbers to compare for inequality.

Output Parameters

Logical. Result of the comparison.val

?labrd
Reduces the first nb rows and columns of a general
matrix to a bidiagonal form.

Syntax

call slabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

call dlabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

call clabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

call zlabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

Description

The routine reduces the first nb rows and columns of a general m-by-n matrix A to upper or
lower bidiagonal form by an orthogonal/unitary transformation Q'*A*P, and returns the matrices
X and Y which are needed to apply the transformation to the unreduced part of A.

if m ≥ n, A is reduced to upper bidiagonal form; if m < n, to lower bidiagonal form.

The matrices Q and P are represented as products of elementary reflectors: Q = H(1) H(2)
... H(nb) and P = G(1) G(2) ... G(nb)

Each H(i) and G(i) has the form

H(i) = I - tauq*v*v' and G(i) = I - taup*u*u'

where tauq and taup are scalars, and v and u are vectors.

1219

LAPACK Auxiliary and Utility Routines 5

The elements of the vectors v and u together form the m-by-nb matrix V and the nb-by-n matrix
U' which are needed, with X and Y, to apply the transformation to the unreduced part of the
matrix, using a block update of the form: A := A - V*Y' - X*U'.

This is an auxiliary routine called by ?gebrd.

Input Parameters

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

INTEGER. The number of leading rows and columns of A to
be reduced.

nb

REAL for slabrda
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.
Array a(lda,*) contains the matrix A to be reduced. The
second dimension of a must be at least max(1, n).

INTEGER. The first dimension of a; at least max(1, m).lda

INTEGER. The first dimension of the output array x; must
beat least max(1, m).

ldx

INTEGER. The first dimension of the output array y; must
beat least max(1, n).

ldy

Output Parameters

On exit, the first nb rows and columns of the matrix are
overwritten; the rest of the array is unchanged.

a

if m ≥ n, elements on and below the diagonal in the first nb
columns, with the array tauq, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors; and elements above the diagonal in the first nb
rows, with the array taup, represent the orthogonal/unitary
matrix p as a product of elementary reflectors.
if m < n, elements below the diagonal in the first nb
columns, with the array tauq, represent the
orthogonal/unitary matrix Q as a product of elementary

1220

5 Intel® Math Kernel Library Reference Manual

reflectors, and elements on and above the diagonal in the
first nb rows, with the array taup, represent the
orthogonal/unitary matrix p as a product of elementary
reflectors.

REAL for single-precision flavorsd, e
DOUBLE PRECISION for double-precision flavors. Arrays,
DIMENSION (nb) each. The array d contains the diagonal
elements of the first nb rows and columns of the reduced
matrix:
d(i) = a(i,i).
The array e contains the off-diagonal elements of the first
nb rows and columns of the reduced matrix.

REAL for slabrdtauq, taup
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.
Arrays, DIMENSION (nb) each. Contain scalar factors of the
elementary reflectors which represent the orthogonal/unitary
matrices Q and P, respectively.

REAL for slabrdx, y
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.
Arrays, dimension x(ldx, nb), y(ldy, nb).
The array x contains the m-by-nb matrix X required to update
the unreduced part of A.
The array y contains the n-by-nb matrix Y required to update
the unreduced part of A.

Application Notes

if m ≥ n, then for the elementary reflectors H(i) and G(i),

v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in a(i:m, i); u(1:i) = 0, u(i+1)
= 1, and u(i+1:n) is stored on exit in a(i, i+1:n);

tauq is stored in tauq(i) and taup in taup(i).

if m < n,

1221

LAPACK Auxiliary and Utility Routines 5

v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in a(i+2:m, i) ; u(1:i-1) = 0,
u(i) = 1, and u(i:n) is stored on exit in a(i, i+1:n); tauq is stored in tauq(i) and taup
in taup(i).

The contents of a on exit are illustrated by the following examples with nb = 2:

where a denotes an element of the original matrix which is unchanged, vi denotes an element
of the vector defining H(i), and ui an element of the vector defining G(i).

?lacn2
Estimates the 1-norm of a square matrix, using
reverse communication for evaluating matrix-vector
products.

Syntax

call slacn2(n, v, x, isgn, est, kase, isave)

call dlacn2(n, v, x, isgn, est, kase, isave)

call clacn2(n, v, x, est, kase, isave)

call zlacn2(n, v, x, est, kase, isave)

1222

5 Intel® Math Kernel Library Reference Manual

Description

This routine estimates the 1-norm of a square, real or complex matrix A. Reverse communication
is used for evaluating matrix-vector products.

Input Parameters

INTEGER. The order of the matrix A (n ≥ 1).n

REAL for slacn2v, x
DOUBLE PRECISION for dlacn2
COMPLEX for clacn2
COMPLEX*16 for zlacn2.
Arrays, DIMENSION (n) each.
v is a workspace array.
x is used as input after an intermediate return.

INTEGER.isgn
Workspace array, DIMENSION (n), used with real flavors
only.

REAL for slacn2/clacn2est
DOUBLE PRECISION for dlacn2/zlacn2
On entry with kase set to 1 or 2, and isave(1) = 1, est
must be unchanged from the previous call to the routine.

INTEGER.kase
On the initial call to the routine, kase must be set to 0.

INTEGER. Array, DIMENSION (3).isave
Contains variables from the previous call to the routine.

Output Parameters

An estimate (a lower bound) for norm(A).est

On an intermediate return, kase is set to 1 or 2, indicating
whether x should be overwritten by A*x or A'*x.

kase

On the final return, kase is set to 0.

On the final return, v = A*w, where est =
norm(v)/norm(w) (w is not returned).

v

On an intermediate return, x should be overwritten byx
A*x , if kase = 1,

1223

LAPACK Auxiliary and Utility Routines 5

A'*x , if kase = 2,
(A' is the conjugate transpose of A), and the routine must
be re-called with all the other parameters unchanged.

This parameter is used to save variables between calls to
the routine.

isave

?lacon
Estimates the 1-norm of a square matrix, using
reverse communication for evaluating matrix-vector
products.

Syntax

call slacon(n, v, x, isgn, est, kase)

call dlacon(n, v, x, isgn, est, kase)

call clacon(n, v, x, est, kase)

call zlacon(n, v, x, est, kase)

Description

This routine estimates the 1-norm of a square, real/complex matrix A. Reverse communication
is used for evaluating matrix-vector products.

Input Parameters

INTEGER. The order of the matrix A (n ≥ 1).n

REAL for slaconv, x
DOUBLE PRECISION for dlacon
COMPLEX for clacon
COMPLEX*16 for zlacon.
Arrays, DIMENSION (n) each.
v is a workspace array.
x is used as input after an intermediate return.

INTEGER.isgn
Workspace array, DIMENSION (n), used with real flavors
only.

REAL for slacon/claconest

1224

5 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dlacon/zlacon
An estimate that with kase=1 or 2 should be unchanged
from the previous call to ?lacon.

INTEGER.kase
On the initial call to ?lacon, kase should be 0.

Output Parameters

REAL for slacon/claconest
DOUBLE PRECISION for dlacon/zlacon
An estimate (a lower bound) for norm(A).

On an intermediate return, kase will be 1 or 2, indicating
whether x should be overwritten by A*x or A'*x. On the
final return from ?lacon, kase will again be 0.

kase

On the final return, v = A*w, where est =
norm(v)/norm(w) (w is not returned).

v

On an intermediate return, x should be overwritten byx
A*x , if kase = 1,
A'*x , if kase = 2,
(where for complex flavors A' is the conjugate transpose
of A), and ?lacon must be re-called with all the other
parameters unchanged.

?lacpy
Copies all or part of one two-dimensional array to
another.

Syntax

call slacpy(uplo, m, n, a, lda, b, ldb)

call dlacpy(uplo, m, n, a, lda, b, ldb)

call clacpy(uplo, m, n, a, lda, b, ldb)

call zlacpy(uplo, m, n, a, lda, b, ldb)

Description

This routine copies all or part of a two-dimensional matrix A to another matrix B.

1225

LAPACK Auxiliary and Utility Routines 5

Input Parameters

CHARACTER*1.uplo
Specifies the part of the matrix A to be copied to B.
If uplo = 'U', the upper triangular part of A is copied.
If uplo = 'L', the lower triangular part of A is copied.
Otherwise, all of the matrix A is copied.

INTEGER. The number of rows in the matrix A (m ≥ 0).m

INTEGER. The number of columns in A (n ≥ 0).n

REAL for slacpya
DOUBLE PRECISION for dlacpy
COMPLEX for clacpy
COMPLEX*16 for zlacpy.
Array a(lda,*), contains the m-by-n matrix A.
The second dimension of a must be at least max(1,n).
If uplo = 'U', only the upper triangle or trapezoid is
accessed; if uplo = 'L', only the lower triangle or
trapezoid is accessed.

INTEGER. The first dimension of a; lda ≥ max(1, m).lda

INTEGER. The first dimension of the output array b; ldb ≥
max(1, m).

ldb

Output Parameters

REAL for slacpyb
DOUBLE PRECISION for dlacpy
COMPLEX for clacpy
COMPLEX*16 for zlacpy.
Array b(ldb,*), contains the m-by-n matrix B.
The second dimension of b must be at least max(1,n).
On exit, B = A in the locations specified by uplo.

1226

5 Intel® Math Kernel Library Reference Manual

?ladiv
Performs complex division in real arithmetic,
avoiding unnecessary overflow.

Syntax

call sladiv(a, b, c, d, p, q)

call dladiv(a, b, c, d, p, q)

res = cladiv(x, y)

res = zladiv(x, y)

Description

The routines sladiv/dladiv perform complex division in real arithmetic as

Complex functions cladiv/zladiv compute the result as

res = x/y,

where x and y are complex. The computation of x / y will not overflow on an intermediary step
unless the results overflows.

Input Parameters

REAL for sladiva, b, c, d
DOUBLE PRECISION for dladiv
The scalars a, b, c, and d in the above expression (for real
flavors only).

COMPLEX for cladivx, y
COMPLEX*16 for zladiv
The complex scalars x and y (for complex flavors only).

Output Parameters

REAL for sladivp, q

1227

LAPACK Auxiliary and Utility Routines 5

DOUBLE PRECISION for dladiv
The scalars p and q in the above expression (for real flavors
only).

COMPLEX for cladivres
DOUBLE COMPLEX for zladiv
Contains the result of division x / y.

?lae2
Computes the eigenvalues of a 2-by-2 symmetric
matrix.

Syntax

call slae2(a, b, c, rt1, rt2)

call dlae2(a, b, c, rt1, rt2)

Description

The routines sla2/dlae2 compute the eigenvalues of a 2-by-2 symmetric matrix

On return, rt1 is the eigenvalue of larger absolute value, and rt1 is the eigenvalue of smaller
absolute value.

Input Parameters

REAL for slae2a, b, c
DOUBLE PRECISION for dlae2
The elements a, b, and c of the 2-by-2 matrix above.

Output Parameters

REAL for slae2rt1, rt2
DOUBLE PRECISION for dlae2

1228

5 Intel® Math Kernel Library Reference Manual

The computed eigenvalues of larger and smaller absolute
value, respectively.

Application Notes

rt1 is accurate to a few ulps barring over/underflow. rt2 may be inaccurate if there is massive
cancellation in the determinant a*c-b*b; higher precision or correctly rounded or correctly
truncated arithmetic would be needed to compute rt2 accurately in all cases.

Overflow is possible only if rt1 is within a factor of 5 of overflow. Underflow is harmless if the
input data is 0 or exceeds

underflow_threshold / macheps.

?laebz
Computes the number of eigenvalues of a real
symmetric tridiagonal matrix which are less than
or equal to a given value, and performs other tasks
required by the routine ?stebz.

Syntax

call slaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol, reltol, pivmin, d,
e, e2, nval, ab, c, mout, nab, work, iwork, info)

call dlaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol, reltol, pivmin, d,
e, e2, nval, ab, c, mout, nab, work, iwork, info)

Description

The routine ?laebz contains the iteration loops which compute and use the function n(w), which
is the count of eigenvalues of a symmetric tridiagonal matrix T less than or equal to its argument
w. It performs a choice of two types of loops:

=1, followed byijob

=2: It takes as input a list of intervals and returns a list of sufficiently
small intervals whose union contains the same eigenvalues as the union
of the original intervals. The input intervals are (ab(j,1),ab(j,2)],
j=1,...,minp. The output interval (ab(j,1),ab(j,2)] will contain

eigenvalues nab(j,1)+1,...,nab(j,2), where 1 ≤ j ≤ mout.

ijob

1229

LAPACK Auxiliary and Utility Routines 5

=3: It performs a binary search in each input interval
(ab(j,1),ab(j,2)] for a point w(j) such that n(w(j))=nval(j),
and uses c(j) as the starting point of the search. If such a w(j) is found,

ijob

then on output ab(j,1)=ab(j,2)=w. If no such w(j) is found, then on
output (ab(j,1),ab(j,2)] will be a small interval containing the point
where n(w) jumps through nval(j), unless that point lies outside the
initial interval.

Note that the intervals are in all cases half-open intervals, that is, of the form (a,b], which
includes b but not a .

To avoid underflow, the matrix should be scaled so that its largest element is no greater than
overflow**(1/2) * overflow**(1/4) in absolute value. To assure the most accurate computation
of small eigenvalues, the matrix should be scaled to be not much smaller than that, either.

NOTE. In general, the arguments are not checked for unreasonable values.

Input Parameters

INTEGER. Specifies what is to be done:ijob
= 1: Compute nab for the initial intervals.
= 2: Perform bisection iteration to find eigenvalues of T.
= 3: Perform bisection iteration to invert n(w), i.e., to find
a point which has a specified number of eigenvalues of T to
its left. Other values will cause ?laebz to return with
info=-1.

INTEGER. The maximum number of "levels" of bisection to
be performed, i.e., an interval of width W will not be made
smaller than 2**(-nitmax)*W. If not all intervals have
converged after nitmax iterations, then info is set to the
number of non-converged intervals.

nitmax

INTEGER. The dimension n of the tridiagonal matrix T. It
must be at least 1.

n

INTEGER. The maximum number of intervals. If more than
mmax intervals are generated, then ?laebz will quit with
info=mmax+1.

mmax

1230

5 Intel® Math Kernel Library Reference Manual

INTEGER. The initial number of intervals. It may not be
greater than mmax.

minp

INTEGER. The smallest number of intervals that should be
processed using a vector loop. If zero, then only the scalar
loop will be used.

nbmin

REAL for slaebzabstol
DOUBLE PRECISION for dlaebz.
The minimum (absolute) width of an interval. When an
interval is narrower than abstol, or than reltol times the
larger (in magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. This must be at least zero.

REAL for slaebzreltol
DOUBLE PRECISION for dlaebz.
The minimum relative width of an interval. When an interval
is narrower than abstol, or than reltol times the larger
(in magnitude) endpoint, then it is considered to be
sufficiently small, i.e., converged. Note: this should always
be at least radix*machine epsilon.

REAL for slaebzpivmin
DOUBLE PRECISION for dlaebz.
The minimum absolute value of a "pivot" in the Sturm
sequence loop. This value must be at least (max
|e(j)**2|*safe_min) and at least safe_min, where
safe_min is at least the smallest number that can divide
one without overflow.

REAL for slaebzd, e, e2
DOUBLE PRECISION for dlaebz.
Arrays, dimension (n) each. The array d contains the
diagonal elements of the tridiagonal matrix T.
The array e contains the off-diagonal elements of the
tridiagonal matrix T in positions 1 through n-1. e(n)vis
arbitrary.
The array e2 contains the squares of the off-diagonal
elements of the tridiagonal matrix T. e2(n) is ignored.

INTEGER.nval
Array, dimension (minp).
If ijob=1 or 2, not referenced.

1231

LAPACK Auxiliary and Utility Routines 5

If ijob=3, the desired values of n(w).

REAL for slaebzab
DOUBLE PRECISION for dlaebz.
Array, dimension (mmax,2) The endpoints of the intervals.
ab(j,1) is a(j), the left endpoint of the j-th interval, and
ab(j,2) is b(j), the right endpoint of the j-th interval.

REAL for slaebzc
DOUBLE PRECISION for dlaebz.
Array, dimension (mmax)
If ijob=1, ignored.
If ijob=2, workspace.
If ijob=3, then on input c(j) should be initialized to the
first search point in the binary search.

INTEGER.nab
Array, dimension (mmax,2)
If ijob=2, then on input, nab(i,j) should be set. It must
satisfy the condition:

n(ab(i,1)) ≤ nab(i,1) ≤ nab(i,2) ≤ n(ab(i,2)),
which means that in interval i only eigenvalues
nab(i,1)+1,...,nab(i,2) are considered. Usually,
nab(i,j)=n(ab(i,j)), from a previous call to ?laebz
with ijob=1.
If ijob=3, normally, nab should be set to some distinctive
value(s) before ?laebz is called.

REAL for slaebzwork
DOUBLE PRECISION for dlaebz.
Workspace array, dimension (mmax).

INTEGER.iwork
Workspace array, dimension (mmax).

Output Parameters

The elements of nval will be reordered to correspond with
the intervals in ab. Thus, nval(j) on output will not, in
general be the same as nval(j) on input, but it will
correspond with the interval (ab(j,1),ab(j,2)] on output.

nval

1232

5 Intel® Math Kernel Library Reference Manual

The input intervals will, in general, be modified, split, and
reordered by the calculation.

ab

INTEGER.mout
If ijob=1, the number of eigenvalues in the intervals.
If ijob=2 or 3, the number of intervals output.
If ijob=3, mout will equal minp.

If ijob=1, then on output nab(i,j) will be set to N(ab(i,j)).nab
If ijob=2, then on output, nab(i,j) will contain max(na(k,
min(nb(k), N(ab(i,j)))), where k is the index of the input
interval that the output interval (ab(j,1),ab(j,2)] came from,
and na(k) and nb(k) are the input values of nab(k,1) and
nab(k,2).
If ijob=3, then on output, nab(i,j) contains N(ab(i,j)), unless
N(w) > nval(i) for all search points w, in which case nab(i,1)
will not be modified, i.e., the output value will be the same
as the input value (modulo reorderings, see nval and ab),
or unless N(w) < nval(i) for all search points w, in which
case nab(i,2) will not be modified.

INTEGER.info

All intervals converged.0:
The last info intervals did not converge.1--mmax:

More than mmax intervals were generated.mmax+1:

Application Notes

This routine is intended to be called only by other LAPACK routines, thus the interface is less
user-friendly. It is intended for two purposes:

(a) finding eigenvalues. In this case, ?laebz should have one or more initial intervals set up
in ab, and ?laebz should be called with ijob=1. This sets up nab, and also counts the
eigenvalues. Intervals with no eigenvalues would usually be thrown out at this point. Also, if
not all the eigenvalues in an interval i are desired, nab(i,1) can be increased or nab(i,2)
decreased. For example, set nab(i,1)=nab(i,2)-1 to get the largest eigenvalue. ?laebz is then
called with ijob=2 and mmax no smaller than the value of mout returned by the call with ijob=1.
After this (ijob=2) call, eigenvalues nab(i,1)+1 through nab(i,2) are approximately ab(i,1) (or
ab(i,2)) to the tolerance specified by abstol and reltol.

1233

LAPACK Auxiliary and Utility Routines 5

(b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). In this case, start with a
Gershgorin interval (a,b). Set up ab to contain 2 search intervals, both initially (a,b). One nval
element should contain f-1 and the other should contain l, while c should contain a and b,
respectively. nab(i,1) should be -1 and nab(i,2) should be n+1, to flag an error if the desired
interval does not lie in (a,b). ?laebz is then called with ijob=3. On exit, if w(f-1) < w(f),
then one of the intervals -- j -- will have ab(j,1)=ab(j,2) and nab(j,1)=nab(j,2)=f-1,

while if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r ≥ 0, then the interval
will have n(ab(j,1))=nab(j,1)=f-k and n(ab(j,2))=nab(j,2)=f+r. The cases w(l) <
w(l+1) and w(l-r)=...=w(l+k) are handled similarly.

?laed0
Used by ?stedc. Computes all eigenvalues and
corresponding eigenvectors of an unreduced
symmetric tridiagonal matrix using the divide and
conquer method.

Syntax

call slaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs, work, iwork, info
)

call dlaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs, work, iwork, info
)

call claed0(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info)

call zlaed0(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info)

Description

Real flavors of this routine compute all eigenvalues and (optionally) corresponding eigenvectors
of a symmetric tridiagonal matrix using the divide and conquer method.

Complex flavors claed0/zlaed0 compute all eigenvalues of a symmetric tridiagonal matrix
which is one diagonal block of those from reducing a dense or band Hermitian matrix and
corresponding eigenvectors of the dense or band matrix.

Input Parameters

INTEGER. Used with real flavors only.icompq
If icompq = 0, compute eigenvalues only.

1234

5 Intel® Math Kernel Library Reference Manual

If icompq = 1, compute eigenvectors of original dense
symmetric matrix also.
On entry, the array q must contain the orthogonal matrix
used to reduce the original matrix to tridiagonal form.
If icompq = 2, compute eigenvalues and eigenvectors of
the tridiagonal matrix.

INTEGER.qsiz
The dimension of the orthogonal/unitary matrix used to

reduce the full matrix to tridiagonal form; qsiz ≥ n (for

real flavors, qsiz ≥ n if icompq = 1).

INTEGER. The dimension of the symmetric tridiagonal matrix

(n ≥ 0).

n

REAL for single-precision flavorsd, e, rwork
DOUBLE PRECISION for double-precision flavors. Arrays:
d(*) contains the main diagonal of the tridiagonal matrix.
The dimension of d must be at least max(1, n).
e(*) contains the off-diagonal elements of the tridiagonal
matrix. The dimension of e must be at least max(1, n-1).
rwork(*) is a workspace array used in complex flavors only.
The dimension of rwork must be at least (1
+3n+2nlg(n)+3n2), where lg(n) = smallest integer k such

that 2k ≥ n.

REAL for slaed0q, qstore
DOUBLE PRECISION for dlaed0
COMPLEX for claed0
COMPLEX*16 for zlaed0.
Arrays: q(ldq, *), qstore(ldqs, *). The second dimension
of these arrays must be at least max(1, n).
For real flavors:
If icompq = 0, array q is not referenced.
If icompq = 1, on entry, q is a subset of the columns of
the orthogonal matrix used to reduce the full matrix to
tridiagonal form corresponding to the subset of the full
matrix which is being decomposed at this time.

1235

LAPACK Auxiliary and Utility Routines 5

If icompq = 2, on entry, q will be the identity matrix. The
array qstore is a workspace array referenced only when
icompq = 1. Used to store parts of the eigenvector matrix
when the updating matrix multiplies take place.
For complex flavors:
On entry, q must contain an qsiz-by-n matrix whose
columns are unitarily orthonormal. It is a part of the unitary
matrix that reduces the full dense Hermitian matrix to a
(reducible) symmetric tridiagonal matrix. The array qstore
is a workspace array used to store parts of the eigenvector
matrix when the updating matrix multiplies take place.

INTEGER. The first dimension of the array q; ldq ≥ max(1,
n).

ldq

INTEGER. The first dimension of the array qstore; ldqs ≥
max(1, n).

ldqs

REAL for slaed0work
DOUBLE PRECISION for dlaed0.
Workspace array, used in real flavors only.
If icompq = 0 or 1, the dimension of work must be at
least (1 +3n+2nlg(n)+2n2), where lg(n) = smallest

integer k such that 2k ≥ n.
If icompq = 2, the dimension of work must be at least
(4n+n2).

INTEGER.iwork
Workspace array.
For real flavors, if icompq = 0 or 1, and for complex flavors,
the dimension of iwork must be at least (6+6n+5nlg(n)).
For real flavors, if icompq = 2, the dimension of iwork
must be at least (3+5n).

Output Parameters

On exit, contains eigenvalues in ascending order.d

On exit, the array has been destroyed.e

If icompq = 2, on exit, q contains the eigenvectors of the
tridiagonal matrix.

q

1236

5 Intel® Math Kernel Library Reference Manual

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i >0, the algorithm failed to compute an
eigenvalue while working on the submatrix lying in rows
and columns i/(n+1) through mod(i, n+1).

?laed1
Used by sstedc/dstedc. Computes the updated
eigensystem of a diagonal matrix after modification
by a rank-one symmetric matrix. Used when the
original matrix is tridiagonal.

Syntax

call slaed1(n, d, q, ldq, indxq, rho, cutpnt, work, iwork, info)

call dlaed1(n, d, q, ldq, indxq, rho, cutpnt, work, iwork, info)

Description

The routine ?laed1 computes the updated eigensystem of a diagonal matrix after modification
by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires
all eigenvalues and eigenvectors of a tridiagonal matrix. ?laed7 handles the case in which
eigenvalues only or eigenvalues and eigenvectors of a full symmetric matrix (which was reduced
to tridiagonal form) are desired.

T = Q(in)(D(in)+ rho*Z*Z')*Q'(in) = Q(out)*D(out)*Q'(out)

where Z = Q'u, u is a vector of length n with ones in the cutpnt and (cutpnt+1) -th elements
and zeros elsewhere. The eigenvectors of the original matrix are stored in Q, and the eigenvalues
are in D. The algorithm consists of three stages:

The first stage consists of deflating the size of the problem when there are multiple eigenvalues
or if there is a zero in the z vector. For each such occurrence the dimension of the secular
equation problem is reduced by one. This stage is performed by the routine ?laed2.

The second stage consists of calculating the updated eigenvalues. This is done by finding the
roots of the secular equation via the routine ?laed4 (as called by ?laed3). This routine also
calculates the eigenvectors of the current problem.

1237

LAPACK Auxiliary and Utility Routines 5

The final stage consists of computing the updated eigenvectors directly using the updated
eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors
from the overall problem.

Input Parameters

INTEGER. The dimension of the symmetric tridiagonal matrix

(n ≥ 0).

n

REAL for slaed1d, q, work
DOUBLE PRECISION for dlaed1.
Arrays:
d(*) contains the eigenvalues of the rank-1-perturbed
matrix. The dimension of d must be at least max(1, n).
q(ldq, *) contains the eigenvectors of the
rank-1-perturbed matrix. The second dimension of q must
be at least max(1, n).
work(*) is a workspace array, dimension at least (4n+n2).

INTEGER. The first dimension of the array q; ldq ≥ max(1,
n).

ldq

INTEGER. Array, dimension (n).indxq
On entry, the permutation which separately sorts the two
subproblems in d into ascending order.

REAL for slaed1rho
DOUBLE PRECISION for dlaed1.
The subdiagonal entry used to create the rank-1
modification.

INTEGER.cutpnt
The location of the last eigenvalue in the leading sub-matrix.

min(1,n) ≤ cutpnt ≤ n/2.

INTEGER.iwork
Workspace array, dimension (4n).

Output Parameters

On exit, contains the eigenvalues of the repaired matrix.d

On exit, q contains the eigenvectors of the repaired
tridiagonal matrix.

q

1238

5 Intel® Math Kernel Library Reference Manual

On exit, contains the permutation which will reintegrate the
subproblems back into sorted order, that is, d(indxq(i
= 1, n)) will be in ascending order.

indxq

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value. If
info = 1, an eigenvalue did not converge.

?laed2
Used by sstedc/dstedc. Merges eigenvalues and
deflates secular equation. Used when the original
matrix is tridiagonal.

Syntax

call slaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlamda, w, q2, indx, indxc,
indxp, coltyp, info)

call dlaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlamda, w, q2, indx, indxc,
indxp, coltyp, info)

Description

The routine ?laed2 merges the two sets of eigenvalues together into a single sorted set. Then
it tries to deflate the size of the problem. There are two ways in which deflation can occur:
when two or more eigenvalues are close together or if there is a tiny entry in the z vector. For
each such occurrence the order of the related secular equation problem is reduced by one.

Input Parameters

INTEGER. The number of non-deflated eigenvalues, and the

order of the related secular equation (0 ≤ k ≤ n).

k

INTEGER. The dimension of the symmetric tridiagonal matrix

(n ≥ 0).

n

INTEGER. The location of the last eigenvalue in the leading

sub-matrix; min(1,n) ≤ n1 ≤ n/2.

n1

REAL for slaed2d, q, z
DOUBLE PRECISION for dlaed2.

1239

LAPACK Auxiliary and Utility Routines 5

Arrays:
d(*) contains the eigenvalues of the two submatrices to be
combined. The dimension of d must be at least max(1, n).
q(ldq, *) contains the eigenvectors of the two submatrices
in the two square blocks with corners at (1,1), (n1,n1) and
(n1+1,n1+1), (n,n). The second dimension of q must be at
least max(1, n).
z(*) contains the updating vector (the last row of the first
sub-eigenvector matrix and the first row of the second
sub-eigenvector matrix).

INTEGER. The first dimension of the array q; ldq ≥ max(1,
n).

ldq

INTEGER. Array, dimension (n).indxq
On entry, the permutation which separately sorts the two
subproblems in d into ascending order. Note that elements
in the second half of this permutation must first have n1
added to their values.

REAL for slaed2rho
DOUBLE PRECISION for dlaed2.
On entry, the off-diagonal element associated with the
rank-1 cut which originally split the two submatrices which
are now being recombined.

INTEGER.indx, indxp
Workspace arrays, dimension (n) each. Array indx contains
the permutation used to sort the contents of dlamda into
ascending order.
Array indxp contains the permutation used to place deflated
values of d at the end of the array.
indxp(1:k) points to the nondeflated d-values and
indxp(k+1:n) points to the deflated eigenvalues.

INTEGER.coltyp
Workspace array, dimension (n).
During execution, a label which will indicate which of the
following types a column in the q2 matrix is:
1 : non-zero in the upper half only;
2 : dense;
3 : non-zero in the lower half only;

1240

5 Intel® Math Kernel Library Reference Manual

4 : deflated.

Output Parameters

On exit, d contains the trailing (n-k) updated eigenvalues
(those which were deflated) sorted into increasing order.

d

On exit, q contains the trailing (n-k) updated eigenvectors
(those which were deflated) in its last n-k columns.

q

Destroyed on exit.indxq

On exit, rho has been modified to the value required by
?laed3.

rho

REAL for slaed2dlamda, w, q2
DOUBLE PRECISION for dlaed2.
Arrays: dlamda(n), w(n), q2(n12+(n-n1)2).
The array dlamda contains a copy of the first k eigenvalues
which is used by ?laed3 to form the secular equation.
The array w contains the first k values of the final
deflation-altered z-vector which is passed to ?laed3.
The array q2 contains a copy of the first k eigenvectors
which is used by ?laed3 in a matrix multiply (sgemm/dgemm)
to solve for the new eigenvectors.

INTEGER. Array, dimension (n).indxc
The permutation used to arrange the columns of the deflated
q matrix into three groups: the first group contains non-zero
elements only at and above n1, the second contains
non-zero elements only below n1, and the third is dense.

On exit, coltyp(i) is the number of columns of type i, for
i=1 to 4 only (see the definition of types in the description
of coltyp in Input Parameters).

coltyp

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

1241

LAPACK Auxiliary and Utility Routines 5

?laed3
Used by sstedc/dstedc. Finds the roots of the
secular equation and updates the eigenvectors.
Used when the original matrix is tridiagonal.

Syntax

call slaed3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx, ctot, w, s, info)

call dlaed3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx, ctot, w, s, info)

Description

The routine ?laed3 finds the roots of the secular equation, as defined by the values in d, w,
and rho, between 1 and k.

It makes the appropriate calls to ?laed4 and then updates the eigenvectors by multiplying the
matrix of eigenvectors of the pair of eigensystems being combined by the matrix of eigenvectors
of the k-by-k system which is solved here.

This code makes very mild assumptions about floating point arithmetic. It will work on machines
with a guard digit in add/subtract, or on those binary machines without guard digits which
subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on
hexadecimal or decimal machines without guard digits, but none are known.

Input Parameters

INTEGER. The number of terms in the rational function to

be solved by ?laed4 (k ≥ 0).

k

INTEGER. The number of rows and columns in the q matrix.

n ≥ k (deflation may result in n >k).

n

INTEGER. The location of the last eigenvalue in the leading

sub-matrix; min(1,n) ≤ n1 ≤ n/2.

n1

REAL for slaed3q
DOUBLE PRECISION for dlaed3.
Array q(ldq, *). The second dimension of q must be at
least max(1, n).
Initially, the first k columns of this array are used as
workspace.

1242

5 Intel® Math Kernel Library Reference Manual

INTEGER. The first dimension of the array q; ldq ≥ max(1,
n).

ldq

REAL for slaed3rho
DOUBLE PRECISION for dlaed3.
The value of the parameter in the rank one update equation.

rho ≥ 0 required.

REAL for slaed3dlamda, q2, w
DOUBLE PRECISION for dlaed3.
Arrays: dlamda(k), q2(ldq2, *), w(k).
The first k elements of the array dlamda contain the old
roots of the deflated updating problem. These are the poles
of the secular equation.
The first k columns of the array q2 contain the non-deflated
eigenvectors for the split problem. The second dimension
of q2 must be at least max(1, n).
The first k elements of the array w contain the components
of the deflation-adjusted updating vector.

INTEGER. Array, dimension (n).indx
The permutation used to arrange the columns of the deflated
q matrix into three groups (see ?laed2).
The rows of the eigenvectors found by ?laed4 must be
likewise permuted before the matrix multiply can take place.

INTEGER. Array, dimension (4).ctot
A count of the total number of the various types of columns
in q, as described in indx. The fourth column type is any
column which has been deflated.

REAL for slaed3s
DOUBLE PRECISION for dlaed3.
Workspace array, dimension (n1+1)*k .
Will contain the eigenvectors of the repaired matrix which
will be multiplied by the previously accumulated eigenvectors
to update the system.

Output Parameters

REAL for slaed3d
DOUBLE PRECISION for dlaed3.

1243

LAPACK Auxiliary and Utility Routines 5

Array, dimension at least max(1, n).

d(i) contains the updated eigenvalues for 1 ≤ i ≤ k.

On exit, the columns 1 to k of q contain the updated
eigenvectors.

q

May be changed on output by having lowest order bit set
to zero on Cray X-MP, Cray Y-MP, Cray-2, or Cray C-90, as
described above.

dlamda

Destroyed on exit.w

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = 1, an eigenvalue did not converge.

?laed4
Used by sstedc/dstedc. Finds a single root of the
secular equation.

Syntax

call slaed4(n, i, d, z, delta, rho, dlam, info)

call dlaed4(n, i, d, z, delta, rho, dlam, info)

Description

This subroutine computes the i-th updated eigenvalue of a symmetric rank-one modification
to a diagonal matrix whose elements are given in the array d, and that

D(i) < D(j) for i < j

and that rho > 0. This is arranged by the calling routine, and is no loss in generality. The
rank-one modified system is thus

diag(D) + rho*Z * transpose(Z).

where we assume the Euclidean norm of Z is 1.

The method consists of approximating the rational functions in the secular equation by simpler
interpolating rational functions.

1244

5 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. The length of all arrays.n

INTEGER. The index of the eigenvalue to be computed; 1

≤ i ≤ n.

i

REAL for slaed4d, z
DOUBLE PRECISION for dlaed4
Arrays, dimension (n) each. The array d contains the original
eigenvalues. It is assumed that they are in order, d(i) <
d(j) for i < j.
The array z contains the components of the updating vector
Z.

REAL for slaed4rho
DOUBLE PRECISION for dlaed4
The scalar in the symmetric updating formula.

Output Parameters

REAL for slaed4delta
DOUBLE PRECISION for dlaed4
Array, dimension (n).

If n ≠ 1, delta contains (d(j) - lambda_i) in its j-th
component. If n = 1, then delta(1) = 1. The vector delta
contains the information necessary to construct the
eigenvectors.

REAL for slaed4dlam
DOUBLE PRECISION for dlaed4
The computed lambda_i, the i-th updated eigenvalue.

INTEGER.info
If info = 0, the execution is successful.
If info = 1, the updating process failed.

1245

LAPACK Auxiliary and Utility Routines 5

?laed5
Used by sstedc/dstedc. Solves the 2-by-2 secular
equation.

Syntax

call slaed5(i, d, z, delta, rho, dlam)

call dlaed5(i, d, z, delta, rho, dlam)

Description

This subroutine computes the i-th eigenvalue of a symmetric rank-one modification of a 2-by-2
diagonal matrix

diag(D) + rho*Z * transpose(Z).

The diagonal elements in the array D are assumed to satisfy

D(i) < D(j) for i < j .

We also assume rho > 0 and that the Euclidean norm of the vector Z is one.

Input Parameters

INTEGER. The index of the eigenvalue to be computed;i

1 ≤ i ≤ 2.

REAL for slaed5d, z
DOUBLE PRECISION for dlaed5
Arrays, dimension (2) each. The array d contains the original
eigenvalues. It is assumed that d(1) < d(2).
The array z contains the components of the updating vector.

REAL for slaed5rho
DOUBLE PRECISION for dlaed5
The scalar in the symmetric updating formula.

Output Parameters

REAL for slaed5delta
DOUBLE PRECISION for dlaed5
Array, dimension (2).

1246

5 Intel® Math Kernel Library Reference Manual

The vector delta contains the information necessary to
construct the eigenvectors.

REAL for slaed5dlam
DOUBLE PRECISION for dlaed5
The computed lambda_i, the i-th updated eigenvalue.

?laed6
Used by sstedc/dstedc. Computes one Newton
step in solution of the secular equation.

Syntax

call slaed6(kniter, orgati, rho, d, z, finit, tau, info)

call dlaed6(kniter, orgati, rho, d, z, finit, tau, info)

Description

This routine computes the positive or negative root (closest to the origin) of

It is assumed that if orgati = .TRUE. the root is between d(2) and d(3);otherwise it is between
d(1) and d(2) This routine is called by ?laed4 when necessary. In most cases, the root sought
is the smallest in magnitude, though it might not be in some extremely rare situations.

Input Parameters

INTEGER.kniter
Refer to ?laed4 for its significance.

LOGICAL.orgati
If orgati = .TRUE., the needed root is between d(2) and
d(3); otherwise it is between d(1) and d(2). See ?laed4
for further details.

REAL for slaed6rho
DOUBLE PRECISION for dlaed6

1247

LAPACK Auxiliary and Utility Routines 5

Refer to the equation for f(x) above.

REAL for slaed6d, z
DOUBLE PRECISION for dlaed6
Arrays, dimension (3) each.
The array d satisfies d(1) < d(2) < d(3).
Each of the elements in the array z must be positive.

REAL for slaed6finit
DOUBLE PRECISION for dlaed6
The value of f(x) at 0. It is more accurate than the one
evaluated inside this routine (if someone wants to do so).

Output Parameters

REAL for slaed6tau
DOUBLE PRECISION for dlaed6
The root of the equation for f(x).

INTEGER.info
If info = 0, the execution is successful.
If info = 1, failure to converge.

1248

5 Intel® Math Kernel Library Reference Manual

?laed7
Used by ?stedc. Computes the updated
eigensystem of a diagonal matrix after modification
by a rank-one symmetric matrix. Used when the
original matrix is dense.

Syntax

call slaed7(icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq, indxq, rho,
cutpnt, qstore, qptr, prmptr, perm, givptr, givcol, givnum, work, iwork, info
)

call dlaed7(icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq, indxq, rho,
cutpnt, qstore, qptr, prmptr, perm, givptr, givcol, givnum, work, iwork, info
)

call claed7(n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho, indxq,
qstore, qptr, prmptr, perm, givptr, givcol, givnum, work, rwork, iwork, info
)

call zlaed7(n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho, indxq,
qstore, qptr, prmptr, perm, givptr, givcol, givnum, work, rwork, iwork, info
)

Description

The routine ?laed7 computes the updated eigensystem of a diagonal matrix after modification
by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires
all eigenvalues and optionally eigenvectors of a dense symmetric/Hermitian matrix that has
been reduced to tridiagonal form. For real flavors, slaed1/dlaed1 handles the case in which
all eigenvalues and eigenvectors of a symmetric tridiagonal matrix are desired.

T = Q(in)*(D(in)+rho*Z*Z')*Q'(in) = Q(out)*D(out)*Q'(out)

where Z = Q'*u, u is a vector of length n with ones in the cutpnt and (cutpnt + 1) -th
elements and zeros elsewhere. The eigenvectors of the original matrix are stored in Q, and the
eigenvalues are in D. The algorithm consists of three stages:

The first stage consists of deflating the size of the problem when there are multiple eigenvalues
or if there is a zero in the z vector. For each such occurrence the dimension of the secular
equation problem is reduced by one. This stage is performed by the routine slaed8/dlaed8
(for real flavors) or by the routine slaed2/dlaed2 (for complex flavors).

1249

LAPACK Auxiliary and Utility Routines 5

The second stage consists of calculating the updated eigenvalues. This is done by finding the
roots of the secular equation via the routine ?laed4 (as called by ?laed9 or ?laed3). This
routine also calculates the eigenvectors of the current problem.

The final stage consists of computing the updated eigenvectors directly using the updated
eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors
from the overall problem.

Input Parameters

INTEGER. Used with real flavors only.icompq
If icompq = 0, compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense
symmetric matrix also. On entry, the array q must contain
the orthogonal matrix used to reduce the original matrix to
tridiagonal form.

INTEGER. The dimension of the symmetric tridiagonal matrix

(n ≥ 0).

n

INTEGER. The location of the last eigenvalue in the leading

sub-matrix. min(1,n) ≤ cutpnt ≤ n .

cutpnt

INTEGER.qsiz
The dimension of the orthogonal/unitary matrix used to

reduce the full matrix to tridiagonal form; qsiz ≥ n (for

real flavors, qsiz ≥ n if icompq = 1).

INTEGER. The total number of merging levels in the overall
divide and conquer tree.

tlvls

INTEGER. The current level in the overall merge routine, 0

≤ curlvl ≤ tlvls .

curlvl

INTEGER. The current problem in the current level in the
overall merge routine (counting from upper left to lower
right).

curpbm

REAL for slaed7/claed7d
DOUBLE PRECISION for dlaed7/zlaed7.
Array, dimension at least max(1, n).
Array d(*) contains the eigenvalues of the rank-1-perturbed
matrix.

1250

5 Intel® Math Kernel Library Reference Manual

REAL for slaed7q, work
DOUBLE PRECISION for dlaed7
COMPLEX for claed7
COMPLEX*16 for zlaed7.
Arrays:
q(ldq, *) contains the the eigenvectors of the
rank-1-perturbed matrix. The second dimension of q must
be at least max(1, n).
work(*) is a workspace array, dimension at least
(3n+qsiz*n) for real flavors and at least (qsiz*n) for
complex flavors.

INTEGER. The first dimension of the array q; ldq ≥ max(1,
n).

ldq

REAL for slaed7 /claed7rho
DOUBLE PRECISION for dlaed7/zlaed7.
The subdiagonal element used to create the rank-1
modification.

REAL for slaed7/claed7qstore
DOUBLE PRECISION for dlaed7/zlaed7.
Array, dimension (n2+1). Serves also as output parameter.
Stores eigenvectors of submatrices encountered during
divide and conquer, packed together. qptr points to
beginning of the submatrices.

INTEGER. Array, dimension (n+2). Serves also as output
parameter. List of indices pointing to beginning of
submatrices stored in qstore. The submatrices are
numbered starting at the bottom left of the divide and
conquer tree, from left to right and bottom to top.

qptr

INTEGER. Arrays, dimension (n lgn) each.prmptr, perm, givptr
The array prmptr(*) contains a list of pointers which indicate
where in perm a level's permutation is stored. prmptr(i+1)
- prmptr(i) indicates the size of the permutation and also
the size of the full, non-deflated problem.
The array perm(*) contains the permutations (from deflation
and sorting) to be applied to each eigenblock.

1251

LAPACK Auxiliary and Utility Routines 5

The array givptr(*) contains a list of pointers which indicate
where in givcol a level's Givens rotations are stored.
givptr(i+1) - givptr(i) indicates the number of Givens
rotations.

INTEGER. Array, dimension (2, n lgn).givcol
Each pair of numbers indicates a pair of columns to take
place in a Givens rotation.

REAL for slaed7/claed7givnum
DOUBLE PRECISION for dlaed7/zlaed7.
Array, dimension (2, n lgn).
Each number indicates the S value to be used in the
corresponding Givens rotation.

INTEGER.iwork
Workspace array, dimension (4n).

REAL for claed7rwork
DOUBLE PRECISION for zlaed7.
Workspace array, dimension (3n+2qsiz*n). Used in complex
flavors only.

Output Parameters

On exit, contains the eigenvalues of the repaired matrix.d

On exit, q contains the eigenvectors of the repaired
tridiagonal matrix.

q

INTEGER. Array, dimension (n).indxq
Contains the permutation which will reintegrate the
subproblems back into sorted order, that is,
d(indxq(i = 1, n)) will be in ascending order.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = 1, an eigenvalue did not converge.

1252

5 Intel® Math Kernel Library Reference Manual

?laed8
Used by ?stedc. Merges eigenvalues and deflates
secular equation. Used when the original matrix is
dense.

Syntax

call slaed8(icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z, dlamda,
q2, ldq2, w, perm, givptr, givcol, givnum, indxp, indx, info)

call dlaed8(icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z, dlamda,
q2, ldq2, w, perm, givptr, givcol, givnum, indxp, indx, info)

call claed8(k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2, ldq2, w, indxp,
indx, indxq, perm, givptr, givcol, givnum, info)

call zlaed8(k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2, ldq2, w, indxp,
indx, indxq, perm, givptr, givcol, givnum, info)

Description

This routine merges the two sets of eigenvalues together into a single sorted set. Then it tries
to deflate the size of the problem. There are two ways in which deflation can occur: when two
or more eigenvalues are close together or if there is a tiny element in the z vector. For each
such occurrence the order of the related secular equation problem is reduced by one.

Input Parameters

INTEGER. Used with real flavors only.icompq
If icompq = 0, compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense
symmetric matrix also.
On entry, the array q must contain the orthogonal matrix
used to reduce the original matrix to tridiagonal form.

INTEGER. The dimension of the symmetric tridiagonal matrix

(n ≥ 0).

n

INTEGER. The location of the last eigenvalue in the leading

sub-matrix. min(1,n) ≤ cutpnt ≤ n .

cutpnt

INTEGER.qsiz

1253

LAPACK Auxiliary and Utility Routines 5

The dimension of the orthogonal/unitary matrix used to

reduce the full matrix to tridiagonal form; qsiz ≥ n (for

real flavors, qsiz ≥ n if icompq = 1).

REAL for slaed8/claed8d, z
DOUBLE PRECISION for dlaed8/zlaed8.
Arrays, dimension at least max(1, n) each. The array d(*)
contains the eigenvalues of the two submatrices to be
combined.
On entry, z(*) contains the updating vector (the last row
of the first sub-eigenvector matrix and the first row of the
second sub-eigenvector matrix). The contents of z are
destroyed by the updating process.

REAL for slaed8q
DOUBLE PRECISION for dlaed8
COMPLEX for claed8
COMPLEX*16 for zlaed8.
Array
q(ldq, *). The second dimension of q must be at least
max(1, n). On entry, q contains the eigenvectors of the
partially solved system which has been previously updated
in matrix multiplies with other partially solved eigensystems.
For real flavors, If icompq = 0, q is not referenced.

INTEGER. The first dimension of the array q; ldq ≥ max(1,
n).

ldq

INTEGER. The first dimension of the output array q2; ldq2

≥ max(1, n).

ldq2

INTEGER. Array, dimension (n).indxq
The permutation which separately sorts the two
sub-problems in d into ascending order. Note that elements
in the second half of this permutation must first have cutpnt
added to their values in order to be accurate.

REAL for slaed8/claed8rho
DOUBLE PRECISION for dlaed8/zlaed8.
On entry, the off-diagonal element associated with the
rank-1 cut which originally split the two submatrices which
are now being recombined.

1254

5 Intel® Math Kernel Library Reference Manual

Output Parameters

INTEGER. The number of non-deflated eigenvalues, and the
order of the related secular equation.

k

On exit, contains the trailing (n-k) updated eigenvalues
(those which were deflated) sorted into increasing order.

d

On exit, q contains the trailing (n-k) updated eigenvectors
(those which were deflated) in its last (n-k) columns.

q

On exit, rho has been modified to the value required by
?laed3.

rho

REAL for slaed8/claed8dlamda, w
DOUBLE PRECISION for dlaed8/zlaed8.
Arrays, dimension (n) each. The array dlamda(*) contains
a copy of the first k eigenvalues which will be used by
?laed3 to form the secular equation.
The array w(*) will hold the first k values of the final
deflation-altered z-vector and will be passed to ?laed3.

REAL for slaed8q2
DOUBLE PRECISION for dlaed8
COMPLEX for claed8
COMPLEX*16 for zlaed8.
Array
q2(ldq2, *). The second dimension of q2 must be at least
max(1, n).
Contains a copy of the first k eigenvectors which will be
used by slaed7/dlaed7 in a matrix multiply (sgemm/dgemm)
to update the new eigenvectors. For real flavors, If icompq
= 0, q2 is not referenced.

INTEGER. Workspace arrays, dimension (n) each.indxp, indx
The array indxp(*) will contain the permutation used to
place deflated values of d at the end of the array. On output,
indxp(1:k) points to the nondeflated d-values and
indxp(k+1:n) points to the deflated eigenvalues.
The array indx(*) will contain the permutation used to sort
the contents of d into ascending order.

INTEGER. Array, dimension (n).perm

1255

LAPACK Auxiliary and Utility Routines 5

Contains the permutations (from deflation and sorting) to
be applied to each eigenblock.

INTEGER. Contains the number of Givens rotations which
took place in this subproblem.

givptr

INTEGER. Array, dimension (2, n).givcol
Each pair of numbers indicates a pair of columns to take
place in a Givens rotation.

REAL for slaed8/claed8givnum
DOUBLE PRECISION for dlaed8/zlaed8.
Array, dimension (2, n).
Each number indicates the S value to be used in the
corresponding Givens rotation.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

?laed9
Used by sstedc/dstedc. Finds the roots of the
secular equation and updates the eigenvectors.
Used when the original matrix is dense.

Syntax

call slaed9(k, kstart, kstop, n, d, q, ldq, rho, dlamda, w, s, lds, info)

call dlaed9(k, kstart, kstop, n, d, q, ldq, rho, dlamda, w, s, lds, info)

Description

This routine finds the roots of the secular equation, as defined by the values in d, z, and rho,
between kstart and kstop. It makes the appropriate calls to slaed4/dlaed4 and then stores
the new matrix of eigenvectors for use in calculating the next level of z vectors.

Input Parameters

INTEGER. The number of terms in the rational function to

be solved by slaed4/dlaed4 (k ≥ 0).

k

INTEGER. The updated eigenvalues lambda(i),kstart, kstop

1256

5 Intel® Math Kernel Library Reference Manual

kstart ≤ i ≤ kstop are to be computed.

1 ≤ kstart ≤ kstop ≤ k.

INTEGER. The number of rows and columns in the Q matrix.

n ≥ k (deflation may result in n > k).

n

REAL for slaed9q
DOUBLE PRECISION for dlaed9.
Workspace array, dimension (ldq, *).
The second dimension of q must be at least max(1, n).

INTEGER. The first dimension of the array q; ldq ≥ max(1,
n).

ldq

REAL for slaed9rho
DOUBLE PRECISION for dlaed9
The value of the parameter in the rank one update equation.

rho ≥ 0 required.

REAL for slaed9dlamda, w
DOUBLE PRECISION for dlaed9
Arrays, dimension (k) each. The first k elements of the array
dlamda(*) contain the old roots of the deflated updating
problem. These are the poles of the secular equation.
The first k elements of the array w(*) contain the
components of the deflation-adjusted updating vector.

INTEGER. The first dimension of the output array s; lds ≥
max(1, k).

lds

Output Parameters

REAL for slaed9d
DOUBLE PRECISION for dlaed9
Array, dimension (n). d (i) contains the updated eigenvalues

for kstart ≤ i ≤ kstop.

REAL for slaed9s
DOUBLE PRECISION for dlaed9.
Array, dimension (lds, *) .

1257

LAPACK Auxiliary and Utility Routines 5

The second dimension of s must be at least max(1, k).
Will contain the eigenvectors of the repaired matrix which
will be stored for subsequent z vector calculation and
multiplied by the previously accumulated eigenvectors to
update the system.

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value. If
info = 1, the eigenvalue did not converge.

?laeda
Used by ?stedc. Computes the Z vector
determining the rank-one modification of the
diagonal matrix. Used when the original matrix is
dense.

Syntax

call slaeda(n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol, givnum,
q, qptr, z, ztemp, info)

call dlaeda(n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol, givnum,
q, qptr, z, ztemp, info)

Description

The routine ?laeda computes the Z vector corresponding to the merge step in the curlvl-th
step of the merge process with tlvls steps for the curpbm-th problem.

Input Parameters

INTEGER. The dimension of the symmetric tridiagonal matrix

(n ≥ 0).

n

INTEGER. The total number of merging levels in the overall
divide and conquer tree.

tlvls

INTEGER. The current level in the overall merge routine, 0

≤ curlvl ≤ tlvls .

curlvl

1258

5 Intel® Math Kernel Library Reference Manual

INTEGER. The current problem in the current level in the
overall merge routine (counting from upper left to lower
right).

curpbm

INTEGER. Arrays, dimension (n lgn) each.prmptr, perm, givptr
The array prmptr(*) contains a list of pointers which indicate
where in perm a level's permutation is stored. prmptr(i+1)
- prmptr(i) indicates the size of the permutation and also
the size of the full, non-deflated problem.
The array perm(*) contains the permutations (from deflation
and sorting) to be applied to each eigenblock.
The array givptr(*) contains a list of pointers which indicate
where in givcol a level's Givens rotations are stored.
givptr(i+1) - givptr(i) indicates the number of Givens
rotations.

INTEGER. Array, dimension (2, n lgn).givcol
Each pair of numbers indicates a pair of columns to take
place in a Givens rotation.

REAL for slaedagivnum
DOUBLE PRECISION for dlaeda.
Array, dimension (2, n lgn).
Each number indicates the S value to be used in the
corresponding Givens rotation.

REAL for slaedaq
DOUBLE PRECISION for dlaeda.
Array, dimension (n2).
Contains the square eigenblocks from previous levels, the
starting positions for blocks are given by qptr.

INTEGER. Array, dimension (n+2). Contains a list of pointers
which indicate where in q an eigenblock is stored. sqrt(
qptr(i+1) - qptr(i)) indicates the size of the block.

qptr

REAL for slaedaztemp
DOUBLE PRECISION for dlaeda.
Workspace array, dimension (n).

Output Parameters

REAL for slaedaz

1259

LAPACK Auxiliary and Utility Routines 5

DOUBLE PRECISION for dlaeda.
Array, dimension (n). Contains the updating vector (the last
row of the first sub-eigenvector matrix and the first row of
the second sub-eigenvector matrix).

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

?laein
Computes a specified right or left eigenvector of
an upper Hessenberg matrix by inverse iteration.

Syntax

call slaein(rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb, work, eps3,
smlnum, bignum, info)

call dlaein(rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb, work, eps3,
smlnum, bignum, info)

call claein(rightv, noinit, n, h, ldh, w, v, b, ldb, rwork, eps3, smlnum,
info)

call zlaein(rightv, noinit, n, h, ldh, w, v, b, ldb, rwork, eps3, smlnum,
info)

Description

The routine ?laein uses inverse iteration to find a right or left eigenvector corresponding to
the eigenvalue (wr,wi) of a real upper Hessenberg matrix H (for real flavors slaein/dlaein)
or to the eigenvalue w of a complex upper Hessenberg matrix H (for complex flavors
claein/zlaein).

Input Parameters

LOGICAL.rightv
If rightv = .TRUE., compute right eigenvector;
if rightv = .FALSE., compute left eigenvector.

LOGICAL.noinit

1260

5 Intel® Math Kernel Library Reference Manual

If noinit = .TRUE., no initial vector is supplied in (vr,vi)
or in v (for complex flavors);
if noinit = .FALSE., initial vector is supplied in (vr,vi)
or in v (for complex flavors).

INTEGER. The order of the matrix H (n ≥ 0).n

REAL for slaeinh
DOUBLE PRECISION for dlaein
COMPLEX for claein
COMPLEX*16 for zlaein.
Array h(ldh, *).
The second dimension of h must be at least max(1, n).
Contains the upper Hessenberg matrix H.

INTEGER. The first dimension of the array h; ldh ≥ max(1,
n).

ldh

REAL for slaeinwr, wi
DOUBLE PRECISION for dlaein.
The real and imaginary parts of the eigenvalue of H whose
corresponding right or left eigenvector is to be computed
(for real flavors of the routine).

COMPLEX for claeinw
COMPLEX*16 for zlaein.
The eigenvalue of H whose corresponding right or left
eigenvector is to be computed (for complex flavors of the
routine).

REAL for slaeinvr, vi
DOUBLE PRECISION for dlaein.
Arrays, dimension (n) each. Used for real flavors only. On
entry, if noinit = .FALSE. and wi = 0.0, vr must contain
a real starting vector for inverse iteration using the real
eigenvalue wr;

if noinit = .FALSE. and wi ≠ 0.0, vr and vi must
contain the real and imaginary parts of a complex starting
vector for inverse iteration using the complex eigenvalue
(wr,wi);otherwise vr and vi need not be set.

COMPLEX for claeinv
COMPLEX*16 for zlaein.

1261

LAPACK Auxiliary and Utility Routines 5

Array, dimension (n). Used for complex flavors only. On
entry, if noinit = .FALSE., v must contain a starting
vector for inverse iteration; otherwise v need not be set.

REAL for slaeinb
DOUBLE PRECISION for dlaein
COMPLEX for claein
COMPLEX*16 for zlaein.
Workspace array b(ldb, *). The second dimension of b must
be at least max(1, n).

INTEGER. The first dimension of the array b;ldb

ldb ≥ n+1 for real flavors;

ldb ≥ max(1, n) for complex flavors.

REAL for slaeinwork
DOUBLE PRECISION for dlaein.
Workspace array, dimension (n).
Used for real flavors only.

REAL for claeinrwork
DOUBLE PRECISION for zlaein.
Workspace array, dimension (n).
Used for complex flavors only.

REAL for slaein/claeineps3, smlnum
DOUBLE PRECISION for dlaein/zlaein.
eps3 is a small machine-dependent value which is used to
perturb close eigenvalues, and to replace zero pivots.
smlnum is a machine-dependent value close to underflow
threshold.

REAL for slaeinbignum
DOUBLE PRECISION for dlaein.
bignum is a machine-dependent value close to overflow
threshold. Used for real flavors only.

Output Parameters

On exit, if wi = 0.0 (real eigenvalue), vr contains the

computed real eigenvector; if wi ≠ 0.0 (complex
eigenvalue), vr and vi contain the real and imaginary parts

vr, vi

1262

5 Intel® Math Kernel Library Reference Manual

of the computed complex eigenvector. The eigenvector is
normalized so that the component of largest magnitude has
magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x| + |y|.
vi is not referenced if wi = 0.0.

On exit, v contains the computed eigenvector, normalized
so that the component of largest magnitude has magnitude
1; here the magnitude of a complex number (x,y) is taken
to be |x| + |y|.

v

INTEGER.info
If info = 0, the execution is successful.
If info = 1, inverse iteration did not converge. For real

flavors, vr is set to the last iterate, and so is vi, if wi ≠
0.0. For complex flavors, v is set to the last iterate.

?laev2
Computes the eigenvalues and eigenvectors of a
2-by-2 symmetric/Hermitian matrix.

Syntax

call slaev2(a, b, c, rt1, rt2, cs1, sn1)

call dlaev2(a, b, c, rt1, rt2, cs1, sn1)

call claev2(a, b, c, rt1, rt2, cs1, sn1)

call zlaev2(a, b, c, rt1, rt2, cs1, sn1)

Description

This routine performs the eigendecomposition of a 2-by-2 symmetric matrix

(for claev2/zlaev2).

1263

LAPACK Auxiliary and Utility Routines 5

On return, rt1 is the eigenvalue of larger absolute value, rt2 of smaller absolute value, and
(cs1, sn1) is the unit right eigenvector for rt1, giving the decomposition

(for slaev2/dlaev2),

or

(for claev2/zlaev2).

Input Parameters

REAL for slaev2a, b, c
DOUBLE PRECISION for dlaev2
COMPLEX for claev2
COMPLEX*16 for zlaev2.
Elements of the input matrix.

Output Parameters

REAL for slaev2/claev2rt1, rt2
DOUBLE PRECISION for dlaev2/zlaev2.
Eigenvalues of larger and smaller absolute value,
respectively.

REAL for slaev2/claev2cs1
DOUBLE PRECISION for dlaev2/zlaev2.

REAL for slaev2sn1
DOUBLE PRECISION for dlaev2
COMPLEX for claev2

1264

5 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for zlaev2.
The vector (cs1, sn1) is the unit right eigenvector for rt1.

Application Notes

rt1 is accurate to a few ulps barring over/underflow. rt2 may be inaccurate if there is massive
cancellation in the determinant a*c-b*b; higher precision or correctly rounded or correctly
truncated arithmetic would be needed to compute rt2 accurately in all cases. cs1 and sn1 are
accurate to a few ulps barring over/underflow. Overflow is possible only if rt1 is within a factor
of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds underflow_threshold
/ macheps.

?laexc
Swaps adjacent diagonal blocks of a real upper
quasi-triangular matrix in Schur canonical form,
by an orthogonal similarity transformation.

Syntax

call slaexc(wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)

call dlaexc(wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)

Description

This routine swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in an upper
quasi-triangular matrix T by an orthogonal similarity transformation.

T must be in Schur canonical form, that is, block upper triangular with 1-by-1 and 2-by-2
diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal
elements of opposite sign.

Input Parameters

LOGICAL.wantq
If wantq = .TRUE., accumulate the transformation in the
matrix Q;
If wantq = .FALSE., do not accumulate the transformation.

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for slaexct, q

1265

LAPACK Auxiliary and Utility Routines 5

DOUBLE PRECISION for dlaexc
Arrays:
t(ldt,*) contains on entry the upper quasi-triangular
matrix T, in Schur canonical form.
The second dimension of t must be at least max(1, n).
q(ldq,*) contains on entry, if wantq = .TRUE., the
orthogonal matrix Q. If wantq = .FALSE., q is not
referenced. The second dimension of q must be at least
max(1, n).

INTEGER. The first dimension of t; at least max(1, n).ldt

INTEGER. The first dimension of q;ldq

If wantq = .FALSE., then ldq ≥ 1.

If wantq = .TRUE., then ldq ≥ max(1,n).

INTEGER. The index of the first row of the first block T11.j1

INTEGER. The order of the first block T11n1
(n1 = 0, 1, or 2).

INTEGER. The order of the second block T22n2
(n2 = 0, 1, or 2).

REAL for slaexc;work
DOUBLE PRECISION for dlaexc.
Workspace array, DIMENSION (n).

Output Parameters

On exit, the updated matrix T, again in Schur canonical
form.

t

On exit, if wantq = .TRUE., the updated matrix Q.q

INTEGER.info
If info = 0, the execution is successful.
If info = 1, the transformed matrix T would be too far
from Schur form; the blocks are not swapped and T and Q
are unchanged.

1266

5 Intel® Math Kernel Library Reference Manual

?lag2
Computes the eigenvalues of a 2-by-2 generalized
eigenvalue problem, with scaling as necessary to
avoid over-/underflow.

Syntax

call slag2(a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)

call dlag2(a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)

Description

This routine computes the eigenvalues of a 2 x 2 generalized eigenvalue problem A - w *B, with
scaling as necessary to avoid over-/underflow. The scaling factor, s, results in a modified
eigenvalue equation

s*A - w*B ,

where s is a non-negative scaling factor chosen so that w, w*B, and s*A do not overflow and,
if possible, do not underflow, either.

Input Parameters

REAL for slag2a, b
DOUBLE PRECISION for dlag2
Arrays:
a(lda,2) contains, on entry, the 2 x 2 matrix A. It is
assumed that its 1-norm is less than 1/safmin. Entries less
than sqrt(safmin)*norm(A) are subject to being treated
as zero.
b(ldb,2) contains, on entry, the 2 x 2 upper triangular
matrix B. It is assumed that the one-norm of B is less than
1/safmin. The diagonals should be at least sqrt(safmin)
times the largest element of B (in absolute value); if a
diagonal is smaller than that, then +/- sqrt(safmin) will
be used instead of that diagonal.

INTEGER. The first dimension of a; lda ≥ 2.lda

INTEGER. The first dimension of b; ldb ≥ 2.ldb

REAL for slag2;safmin

1267

LAPACK Auxiliary and Utility Routines 5

DOUBLE PRECISION for dlag2.
The smallest positive number such that 1/safmin does not
overflow. (This should always be ?lamch('S') - it is an
argument in order to avoid having to call ?lamch
frequently.)

Output Parameters

REAL for slag2;scale1
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the
eigenvalue equation which defines the first eigenvalue. If
the eigenvalues are complex, then the eigenvalues are (wr1
+/- wii)/scale1 (which may lie outside the exponent
range of the machine), scale1=scale2, and scale1 will
always be positive.
If the eigenvalues are real, then the first (real) eigenvalue
is wr1/scale1, but this may overflow or underflow, and in
fact, scale1 may be zero or less than the underflow
threshhold if the exact eigenvalue is sufficiently large.

REAL for slag2;scale2
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the
eigenvalue equation which defines the second eigenvalue.
If the eigenvalues are complex, then scale2=scale1. If
the eigenvalues are real, then the second (real) eigenvalue
is wr2/scale2, but this may overflow or underflow, and in
fact, scale2 may be zero or less than the underflow
threshold if the exact eigenvalue is sufficiently large.

REAL for slag2;wr1
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wr1 is scale1 times the
eigenvalue closest to the (2,2) element of A*inv(B).
If the eigenvalue is complex, then wr1=wr2 is scale1 times
the real part of the eigenvalues.

REAL for slag2;wr2
DOUBLE PRECISION for dlag2.

1268

5 Intel® Math Kernel Library Reference Manual

If the eigenvalue is real, then wr2 is scale2 times the other
eigenvalue. If the eigenvalue is complex, then wr1=wr2 is
scale1 times the real part of the eigenvalues.

REAL for slag2;wi
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wi is zero. If the eigenvalue
is complex, then wi is scale1 times the imaginary part of
the eigenvalues. wi will always be non-negative.

?lags2
Computes 2-by-2 orthogonal matrices U, V, and
Q, and applies them to matrices A and B such that
the rows of the transformed A and B are parallel.

Syntax

call slags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)

call dlags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)

Description

This routine computes 2-by-2 orthogonal matrices U, V and Q, such that if upper = .TRUE.,
then

and

or if upper = .FALSE., then

1269

LAPACK Auxiliary and Utility Routines 5

and

The rows of the transformed A and B are parallel, where

Here Z' denotes the transpose of Z.

Input Parameters

LOGICAL.upper
If upper = .TRUE., the input matrices A and B are upper
triangular; If upper = .FALSE., the input matrices A and
B are lower triangular.

REAL for slags2a1, a2, a3
DOUBLE PRECISION for dlags2
On entry, a1, a2 and a3 are elements of the input 2-by-2
upper (lower) triangular matrix A.

REAL for slags2b1, b2, b3
DOUBLE PRECISION for dlags2
On entry, b1, b2 and b3 are elements of the input 2-by-2
upper (lower) triangular matrix B.

1270

5 Intel® Math Kernel Library Reference Manual

Output Parameters

REAL for slags2csu, snu
DOUBLE PRECISION for dlags2
The desired orthogonal matrix U.

REAL for slags2csv, snv
DOUBLE PRECISION for dlags2
The desired orthogonal matrix V.

REAL for slags2csq, snq
DOUBLE PRECISION for dlags2
The desired orthogonal matrix Q.

?lagtf

Computes an LU factorization of a matrix T-λI,
where T is a general tridiagonal matrix, and λ a
scalar, using partial pivoting with row interchanges.

Syntax

call slagtf(n, a, lambda, b, c, tol, d, in, info)

call dlagtf(n, a, lambda, b, c, tol, d, in, info)

Description

This routine factorizes the matrix (T - lambda*I), where T is an n-by-n tridiagonal matrix
and lambda is a scalar, as

T - lambda*I = P*L*U,

where p is a permutation matrix, L is a unit lower tridiagonal matrix with at most one non-zero
sub-diagonal elements per column and U is an upper triangular matrix with at most two non-zero
super-diagonal elements per column. The factorization is obtained by Gaussian elimination with
partial pivoting and implicit row scaling. The parameter lambda is included in the routine so
that ?lagtf may be used, in conjunction with ?lagts, to obtain eigenvectors of T by inverse
iteration.

Input Parameters

INTEGER. The order of the matrix T (n ≥ 0).n

1271

LAPACK Auxiliary and Utility Routines 5

REAL for slagtfa, b, c
DOUBLE PRECISION for dlagtf
Arrays, dimension a(n), b(n-1), c(n-1):
On entry, a(*) must contain the diagonal elements of the
matrix T.
On entry, b(*) must contain the (n-1) super-diagonal
elements of T.
On entry, c(*) must contain the (n-1) sub-diagonal
elements of T.

REAL for slagtftol
DOUBLE PRECISION for dlagtf
On entry, a relative tolerance used to indicate whether or
not the matrix (T - lambda*I) is nearly singular. tol should
normally be chose as approximately the largest relative
error in the elements of T. For example, if the elements of
T are correct to about 4 significant figures, then tol should
be set to about 5*10-4. If tol is supplied as less than eps,
where eps is the relative machine precision, then the value
eps is used in place of tol.

Output Parameters

On exit, a is overwritten by the n diagonal elements of the
upper triangular matrix U of the factorization of T.

a

On exit, b is overwritten by the n-1 super-diagonal elements
of the matrix U of the factorization of T.

b

On exit, c is overwritten by the n-1 sub-diagonal elements
of the matrix L of the factorization of T.

c

REAL for slagtfd
DOUBLE PRECISION for dlagtf
Array, dimension (n-2).
On exit, d is overwritten by the n-2 second super-diagonal
elements of the matrix U of the factorization of T.

INTEGER.in
Array, dimension (n).

1272

5 Intel® Math Kernel Library Reference Manual

On exit, in contains details of the permutation matrix p. If
an interchange occurred at the k-th step of the elimination,
then in(k) = 1, otherwise in(k) = 0. The element in(n)
returns the smallest positive integer j such that

abs(u(j,j)) ≤ norm((T - lambda*I)(j))*tol,
where norm(A(j)) denotes the sum of the absolute values
of the j-th row of the matrix A.
If no such j exists then in(n) is returned as zero. If in(n)
is returned as positive, then a diagonal element of U is small,
indicating that (T - lambda*I) is singular or nearly
singular.

INTEGER.info
If info = 0, the execution is successful.
If info = -k, the k-th parameter had an illegal value.

?lagtm
Performs a matrix-matrix product of the form C =
alpha*A*B+beta*C, where A is a tridiagonal
matrix, B and C are rectangular matrices, and
alpha and beta are scalars, which may be 0, 1,
or -1.

Syntax

call slagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

call dlagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

call clagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

call zlagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

Description

This routine performs a matrix-vector product of the form:

B := alpha*A*X + beta*B

where A is a tridiagonal matrix of order n, B and X are n-by-nrhs matrices, and alpha and beta
are real scalars, each of which may be 0., 1., or -1.

1273

LAPACK Auxiliary and Utility Routines 5

Input Parameters

CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', then B := alpha*A*X + beta*B (no
transpose);
If trans = 'T', then B := alpha*AT*X + beta*B
(transpose);
If trans = 'C', then B := alpha*AH*X + beta*B
(conjugate transpose)

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The number of right-hand sides, i.e., the number

of columns in X and B (nrhs ≥ 0).

nrhs

REAL for slagtm/clagtmalpha, beta
DOUBLE PRECISION for dlagtm/zlagtm

The scalars α and β. alpha must be 0., 1., or -1.; otherwise,
it is assumed to be 0. beta must be 0., 1., or -1.; otherwise,
it is assumed to be 1.

REAL for slagtmdl, d, du
DOUBLE PRECISION for dlagtm
COMPLEX for clagtm
COMPLEX*16 for zlagtm.
Arrays: dl(n - 1), d(n), du(n - 1).
The array dl contains the (n - 1) sub-diagonal elements of
T.
The array d contains the n diagonal elements of T.
The array du contains the (n - 1) super-diagonal elements
of T.

REAL for slagtmx, b
DOUBLE PRECISION for dlagtm
COMPLEX for clagtm
COMPLEX*16 for zlagtm.
Arrays:
x(ldx,*) contains the n-by-nrhs matrix X. The second
dimension of x must be at least max(1, nrhs).

1274

5 Intel® Math Kernel Library Reference Manual

b(ldb,*) contains the n-by-nrhs matrix B. The second
dimension of b must be at least max(1, nrhs).

INTEGER. The leading dimension of the array x; ldx ≥
max(1, n).

ldx

INTEGER. The leading dimension of the array b; ldb ≥
max(1, n).

ldb

Output Parameters

Overwritten by the matrix expression B := alpha*A*X +
beta*B

b

?lagts
Solves the system of equations (T - lambda*I)*x
= y or (T - lambda*I)T*x = y ,where T is a general
tridiagonal matrix and lambda is a scalar, using
the LU factorization computed by ?lagtf.

Syntax

call slagts(job, n, a, b, c, d, in, y, tol, info)

call dlagts(job, n, a, b, c, d, in, y, tol, info)

Description

This routine may be used to solve for x one of the systems of equations:

(T - lambda*I)*x = y or (T - lambda*I)'*x = y,

where T is an n-by-n tridiagonal matrix, following the factorization of (T - lambda*I) as

T - lambda*I = P*L*U,

computed by the routine ?lagtf.

The choice of equation to be solved is controlled by the argument job, and in each case there
is an option to perturb zero or very small diagonal elements of U, this option being intended
for use in applications such as inverse iteration.

1275

LAPACK Auxiliary and Utility Routines 5

Input Parameters

INTEGER. Specifies the job to be performed by ?lagts as
follows:

job

= 1: The equations (T - lambda*I)x = y are to be solved,
but diagonal elements of U are not to be perturbed.
= -1: The equations (T - lambda*I)x = y are to be solved
and, if overflow would otherwise occur, the diagonal
elements of U are to be perturbed. See argument tol below.
= 2: The equations (T - lambda*I)'x = y are to be
solved, but diagonal elements of U are not to be perturbed.
= -2: The equations (T - lambda*I)'x = y are to be
solved and, if overflow would otherwise occur, the diagonal
elements of U are to be perturbed. See argument tol below.

INTEGER. The order of the matrix T (n ≥ 0).n

REAL for slagtsa, b, c, d
DOUBLE PRECISION for dlagts
Arrays, dimension a(n), b(n-1), c(n-1), d(n-2):
On entry, a(*) must contain the diagonal elements of U as
returned from ?lagtf.
On entry, b(*) must contain the first super-diagonal
elements of U as returned from ?lagtf.
On entry, c(*) must contain the sub-diagonal elements of
L as returned from ?lagtf.
On entry, d(*) must contain the second super-diagonal
elements of U as returned from ?lagtf.

INTEGER.in
Array, dimension (n).
On entry, in(*) must contain details of the matrix p as
returned from ?lagtf.

REAL for slagtsy
DOUBLE PRECISION for dlagts
Array, dimension (n). On entry, the right hand side vector
y.

REAL for slagtftol
DOUBLE PRECISION for dlagtf.

1276

5 Intel® Math Kernel Library Reference Manual

On entry, with job < 0, tol should be the minimum
perturbation to be made to very small diagonal elements of
U. tol should normally be chosen as about eps*norm(U),
where eps is the relative machine precision, but if tol is
supplied as non-positive, then it is reset to eps*max(abs(
u(i,j))). If job > 0 then tol is not referenced.

Output Parameters

On exit, y is overwritten by the solution vector x.y

On exit, tol is changed as described in Input Parameters
section above, only if tol is non-positive on entry. Otherwise
tol is unchanged.

tol

INTEGER.info
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value. If
info = i >0, overflow would occur when computing the
ith element of the solution vector x. This can only occur
when job is supplied as positive and either means that a
diagonal element of U is very small, or that the elements of
the right-hand side vector y are very large.

?lagv2
Computes the Generalized Schur factorization of
a real 2-by-2 matrix pencil (A,B) where B is upper
triangular.

Syntax

call slagv2(a, lda, b, ldb, alphar, alphai, beta, csl, snl, csr, snr)

call dlagv2(a, lda, b, ldb, alphar, alphai, beta, csl, snl, csr, snr)

Description

This routine computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B)
where B is upper triangular. The routine computes orthogonal (rotation) matrices given by csl,
snl and csr, snr such that:

1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types), then

1277

LAPACK Auxiliary and Utility Routines 5

2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then

where b11 ≥ b22>0.

Input Parameters

REAL for slagv2a, b
DOUBLE PRECISION for dlagv2
Arrays:
a(lda,2) contains the 2-by-2 matrix A;
b(ldb,2) contains the upper triangular 2-by-2 matrix B.

INTEGER. The leading dimension of the array a;lda

lda ≥ 2.

1278

5 Intel® Math Kernel Library Reference Manual

INTEGER. The leading dimension of the array b;ldb

ldb ≥ 2.

Output Parameters

On exit, a is overwritten by the “A-part” of the generalized
Schur form.

a

On exit, b is overwritten by the “B-part” of the generalized
Schur form.

b

REAL for slagv2alphar, alphai, beta
DOUBLE PRECISION for dlagv2.
Arrays, dimension (2) each.
(alphar(k) + i*alphai(k))/beta(k) are the
eigenvalues of the pencil (A,B), k=1,2 and i = sqrt(-1).
Note that beta(k) may be zero.

REAL for slagv2csl, snl
DOUBLE PRECISION for dlagv2
The cosine and sine of the left rotation matrix, respectively.

REAL for slagv2csr, snr
DOUBLE PRECISION for dlagv2
The cosine and sine of the right rotation matrix, respectively.

1279

LAPACK Auxiliary and Utility Routines 5

?lahqr
Computes the eigenvalues and Schur factorization
of an upper Hessenberg matrix, using the
double-shift/single-shift QR algorithm.

Syntax

call slahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz,
info)

call dlahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz,
info)

call clahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info
)

call zlahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info
)

Description

This routine is an auxiliary routine called by ?hseqr to update the eigenvalues and Schur
decomposition already computed by ?hseqr, by dealing with the Hessenberg submatrix in rows
and columns ilo to ihi.

Input Parameters

LOGICAL.wantt
If wantt = .TRUE., the full Schur form T is required;
If wantt = .FALSE., eigenvalues only are required.

LOGICAL.wantz
If wantz = .TRUE., the matrix of Schur vectors Z is
required;
If wantz = .FALSE., Schur vectors are not required.

INTEGER. The order of the matrix H (n ≥ 0).n

INTEGER.ilo, ihi

1280

5 Intel® Math Kernel Library Reference Manual

It is assumed that h is already upper quasi-triangular in
rows and columns ihi+1:n, and that h(ilo,ilo-1) = 0
(unless ilo = 1). The routine ?lahqr works primarily with
the Hessenberg submatrix in rows and columns ilo to ihi,
but applies transformations to all of h if wantt = .TRUE..
Constraints:

1 ≤ ilo ≤ max(1,ihi); ihi ≤ n.

REAL for slahqrh, z
DOUBLE PRECISION for dlahqr
COMPLEX for clahqr
COMPLEX*16 for zlahqr.
Arrays:
h(ldh,*) contains the upper Hessenberg matrix h.
The second dimension of h must be at least max(1, n).
z(ldz,*)
If wantz = .TRUE., then, on entry, z must contain the
current matrix z of transformations accumulated by ?hseqr.
If wantz = .FALSE., then z is not referenced. The second
dimension of z must be at least max(1, n).

INTEGER. The first dimension of h; at least max(1, n).ldh

INTEGER. The first dimension of z; at least max(1, n).ldz

INTEGER. Specify the rows of z to which transformations
must be applied if wantz = .TRUE..

iloz, ihiz

1 ≤ iloz ≤ ilo; ihi ≤ ihiz ≤ n.

Output Parameters

On exit, if info= 0 and wantt = .TRUE., then,h

• for slahqr/dlahqr, h is upper quasi-triangular in rows
and columns ilo:ihi with any 2-by-2 diagonal blocks
in standard form.

• for clahqr/zlahqr, h is upper triangular in rows and
columns ilo:ihi.

1281

LAPACK Auxiliary and Utility Routines 5

If info= 0 and wantt = .FALSE., the contents of h are
unspecified on exit. If info is positive, see description of
info for the output state of h.

REAL for slahqrwr, wi
DOUBLE PRECISION for dlahqr
Arrays, DIMENSION at least max(1, n) each. Used with real
flavors only. The real and imaginary parts, respectively, of
the computed eigenvalues ilo to ihi are stored in the
corresponding elements of wr and wi. If two eigenvalues
are computed as a complex conjugate pair, they are stored
in consecutive elements of wr and wi, say the i-th and
(i+1)-th, with wi(i)> 0 and wi(i+1) < 0.
If wantt = .TRUE., the eigenvalues are stored in the same
order as on the diagonal of the Schur form returned in h,
with wr(i) = h(i,i), and, if h(i:i+1, i:i+1) is a 2-by-2
diagonal block, wi(i) = sqrt(h(i+1,i)*h(i,i+1)) and
wi(i+1) = -wi(i).

COMPLEX for clahqrw
COMPLEX*16 for zlahqr.
Array, DIMENSION at least max(1, n). Used with complex
flavors only. The computed eigenvalues ilo to ihi are
stored in the corresponding elements of w.
If wantt = .TRUE., the eigenvalues are stored in the same
order as on the diagonal of the Schur form returned in h,
with w(i) = h(i,i).

If wantz = .TRUE., then, on exit z has been updated;
transformations are applied only to the submatrix
z(iloz:ihiz, ilo:ihi).

z

INTEGER.info
If info = 0, the execution is successful.
With info > 0,

• if info = i, ?lahqr failed to compute all the eigenvalues
ilo to ihi in a total of 30 iterations per eigenvalue;
elements i+1:ihi of wr and wi (for slahqr/dlahqr) or
w (for clahqr/zlahqr) contain those eigenvalues which
have been successfully computed.

1282

5 Intel® Math Kernel Library Reference Manual

• if wantt is .FALSE., then on exit the remaining
unconverged eigenvalues are the eigenvalues of the
upper Hessenberg matrix rows and columns ilo thorugh
info of the final output value of h.

• if wantt is .TRUE., then on exit

(initial value of h)*u = u*(final value of h),
(*)

where u is an orthognal matrix. The final value of h is
upper Hessenberg and triangular in rows and columns
info+1 through ihi.

• if wantz is .TRUE., then on exit

(final value of z) = (initial value of z)* u,

where u is an orthognal matrix in (*) regardless of the
value of wantt.

?lahrd
Reduces the first nb columns of a general
rectangular matrix A so that elements below the
k-th subdiagonal are zero, and returns auxiliary
matrices which are needed to apply the
transformation to the unreduced part of A.

Syntax

call slahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)

call dlahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)

call clahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)

call zlahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)

1283

LAPACK Auxiliary and Utility Routines 5

Description

The routine reduces the first nb columns of a real/complex general n-by-(n-k+1) matrix A so
that elements below the k-th subdiagonal are zero. The reduction is performed by an
orthogonal/unitary similarity transformation Q'*A*Q. The routine returns the matrices V and T
which determine Q as a block reflector I - V*T*V', and also the matrix Y = A*V*T.

The matrix Q is represented as products of nb elementary reflectors:

Q = H(1) H(2)... H(nb)

Each H(i) has the form

H(i) = I - tau*v*v'

where tau is a real/complex scalar, and v is a real/complex vector.

This is an obsolete auxiliary routine. Please use the new routine ?lahr2 instead.

Input Parameters

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The offset for the reduction. Elements below the
k-th subdiagonal in the first nb columns are reduced to zero.

k

INTEGER. The number of columns to be reduced.nb

REAL for slahrda
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.
Array a(lda, n-k+1) contains the n-by-(n-k+1) general
matrix A to be reduced.

INTEGER. The first dimension of a; at least max(1, n).lda

INTEGER. The first dimension of the output array t; must
be at least max(1, nb).

ldt

INTEGER. The first dimension of the output array y; must
be at least max(1, n).

ldy

1284

5 Intel® Math Kernel Library Reference Manual

Output Parameters

On exit, the elements on and above the k-th subdiagonal
in the first nb columns are overwritten with the
corresponding elements of the reduced matrix; the elements

a

below the k-th subdiagonal, with the array tau, represent
the matrix Q as a product of elementary reflectors. The other
columns of a are unchanged. See Application Notes below.

REAL for slahrdtau
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.
Array, DIMENSION (nb).
Contains scalar factors of the elementary reflectors.

REAL for slahrdt, y
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.
Arrays, dimension t(ldt, nb), y(ldy, nb).
The array t contains upper triangular matrix T.
The array y contains the n-by-nb matrix Y .

Application Notes

For the elementary reflector H(i),

v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in a(i+k+1:n, i) and tau is
stored in tau(i).

The elements of the vectors v together form the (n-k+1)-by-nb matrix V which is needed, with
T and Y, to apply the transformation to the unreduced part of the matrix, using an update of
the form:

A := (I - V T V') * (A - Y V').

The contents of A on exit are illustrated by the following example with n = 7, k = 3 and nb
= 2:

1285

LAPACK Auxiliary and Utility Routines 5

where a denotes an element of the original matrix A, h denotes a modified element of the upper
Hessenberg matrix H, and vi denotes an element of the vector defining H(i).

?lahr2
Reduces the specified number of first columns of
a general rectangular matrix A so that elements
below the specified subdiagonal are zero, and
returns auxiliary matrices which are needed to
apply the transformation to the unreduced part of
A.

Syntax

call slahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)

call dlahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)

call clahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)

call zlahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)

Description

The routine reduces the first nb columns of a real/complex general n-by-(n-k+1) matrix A so
that elements below the k-th subdiagonal are zero. The reduction is performed by an
orthogonal/unitary similarity transformation Q'*A*Q. The routine returns the matrices V and T
which determine Q as a block reflector I - V*T*V', and also the matrix Y = A*V*T.

1286

5 Intel® Math Kernel Library Reference Manual

The matrix Q is represented as products of nb elementary reflectors:

Q = H(1) H(2)... H(nb)

Each H(i) has the form

H(i) = I - tau*v*v'

where tau is a real/complex scalar, and v is a real/complex vector.

This is an auxiliary routine called by ?gehrd.

Input Parameters

INTEGER. The order of the matrix A (n ≥ 0).n

INTEGER. The offset for the reduction. Elements below the
k-th subdiagonal in the first nb columns are reduced to zero
(k < n).

k

INTEGER. The number of columns to be reduced.nb

REAL for slahr2a
DOUBLE PRECISION for dlahr2
COMPLEX for clahr2
COMPLEX*16 for zlahr2.
Array, DIMENSION (lda, n-k+1) contains the n-by-(n-k+1)
general matrix A to be reduced.

INTEGER. The first dimension of the array a; lda ≥ max(1,
n).

lda

INTEGER. The first dimension of the output array t; ldt ≥
nb.

ldt

INTEGER. The first dimension of the output array y; ldy ≥
n.

ldy

Output Parameters

On exit, the elements on and above the k-th subdiagonal
in the first nb columns are overwritten with the
corresponding elements of the reduced matrix; the elements

a

below the k-th subdiagonal, with the array tau, represent
the matrix Q as a product of elementary reflectors. The other
columns of a are unchanged. See Application Notes below.

1287

LAPACK Auxiliary and Utility Routines 5

REAL for slahr2tau
DOUBLE PRECISION for dlahr2
COMPLEX for clahr2
COMPLEX*16 for zlahr2.
Array, DIMENSION (nb).
Contains scalar factors of the elementary reflectors.

REAL for slahr2t, y
DOUBLE PRECISION for dlahr2
COMPLEX for clahr2
COMPLEX*16 for zlahr2.
Arrays, dimension t(ldt, nb), y(ldy, nb).
The array t contains upper triangular matrix T.
The array y contains the n-by-nb matrix Y .

Application Notes

For the elementary reflector H(i),

v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in a(i+k+1:n, i) and tau is
stored in tau(i).

The elements of the vectors v together form the (n-k+1)-by-nb matrix V which is needed, with
T and Y, to apply the transformation to the unreduced part of the matrix, using an update of
the form:

A := (I - V*T*V') * (A - Y*V').

The contents of A on exit are illustrated by the following example with n = 7, k = 3 and nb
= 2:

1288

5 Intel® Math Kernel Library Reference Manual

where a denotes an element of the original matrix A, h denotes a modified element of the upper
Hessenberg matrix H, and vi denotes an element of the vector defining H(i).

?laic1
Applies one step of incremental condition
estimation.

Syntax

call slaic1(job, j, x, sest, w, gamma, sestpr, s, c)

call dlaic1(job, j, x, sest, w, gamma, sestpr, s, c)

call claic1(job, j, x, sest, w, gamma, sestpr, s, c)

call zlaic1(job, j, x, sest, w, gamma, sestpr, s, c)

Description

The routine ?laic1 applies one step of incremental condition estimation in its simplest version.

Let x, ||x||2 = 1 (where ||a||2 denotes the 2-norm of a), be an approximate singular vector
of an j-by-j lower triangular matrix L, such that

||L*x||2 = sest

Then ?laic1 computes sestpr, s, c such that the vector

is an approximate singular vector of

1289

LAPACK Auxiliary and Utility Routines 5

in the sense that

||Lhat*xhat||2 = sestpr.

Depending on job, an estimate for the largest or smallest singular value is computed.

Note that [s c]' and sestpr2 is an eigenpair of the system (for slaic1/claic)

where alpha = x'*w ;

or of the system (for claic1/zlaic)

where alpha = conjg(x)'*w.

Input Parameters

INTEGER.job
If job =1, an estimate for the largest singular value is
computed;
If job =2, an estimate for the smallest singular value is
computed;

INTEGER. Length of x and w.j

REAL for slaic1x, w
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
COMPLEX*16 for zlaic1.
Arrays, dimension (j) each. Contain vectors x and w,
respectively.

REAL for slaic1/claic1;sest

1290

5 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dlaic1/zlaic1.
Estimated singular value of j-by-j matrix L.

REAL for slaic1gamma
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
COMPLEX*16 for zlaic1.
The diagonal element gamma.

Output Parameters

REAL for slaic1/claic1;sestpr
DOUBLE PRECISION for dlaic1/zlaic1.
Estimated singular value of (j+1)-by-(j+1) matrix Lhat.

REAL for slaic1s, c
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
COMPLEX*16 for zlaic1.
Sine and cosine needed in forming xhat.

?laln2
Solves a 1-by-1 or 2-by-2 linear system of
equations of the specified form.

Syntax

call slaln2(ltrans, na, nw, smin, ca, a, lda, d1, d2, b, ldb, wr, wi, x, ldx,
scale, xnorm, info)

call dlaln2(ltrans, na, nw, smin, ca, a, lda, d1, d2, b, ldb, wr, wi, x, ldx,
scale, xnorm, info)

Description

The routine solves a system of the form

(ca*A - w*D)*X = s*B, or (ca*A' - w*D)*X = s*B

with possible scaling (s) and perturbation of A (A' means A-transpose.)

1291

LAPACK Auxiliary and Utility Routines 5

A is an na-by-na real matrix, ca is a real scalar, D is an na-by-na real diagonal matrix, w is a
real or complex value, and X and B are na-by-1 matrices: real if w is real, complex if w is complex.
The parameter na may be 1 or 2.

If w is complex, X and B are represented as na-by-2 matrices, the first column of each being
the real part and the second being the imaginary part.

The routine computes the scaling factor s (≤ 1) so chosen that X can be computed without
overflow. X is further scaled if necessary to assure that norm(ca*A - w*D)*norm(X) is less
than overflow.

If both singular values of (ca&*A - w*D) are less than smin, smin*I (where I stands for
identity) will be used instead of (ca*A - w*D). If only one singular value is less than smin, one
element of (ca*A - w*D) will be perturbed enough to make the smallest singular value roughly
smin.

If both singular values are at least smin, (ca*A - w*D) will not be perturbed. In any case,
the perturbation will be at most some small multiple of max(smin, ulp*norm(ca*A - w*D)).

The singular values are computed by infinity-norm approximations, and thus will only be correct
to a factor of 2 or so.

NOTE. All input quantities are assumed to be smaller than overflow by a reasonable
factor (see bignum).

Input Parameters

LOGICAL.trans
If trans = .TRUE., A- transpose will be used.
If trans = .FALSE., A will be used (not transposed.)

INTEGER. The size of the matrix A, possible values 1 or 2.na

INTEGER. This parameter must be 1 if w is real, and 2 if w
is complex. Possible values 1 or 2.

nw

REAL for slaln2smin
DOUBLE PRECISION for dlaln2.
The desired lower bound on the singular values of A.

1292

5 Intel® Math Kernel Library Reference Manual

This should be a safe distance away from underflow or
overflow, for example, between
(underflow/machine_precision) and
(machine_precision * overflow). (See bignum and ulp).

REAL for slaln2ca
DOUBLE PRECISION for dlaln2.
The coefficient by which A is multiplied.

REAL for slaln2a
DOUBLE PRECISION for dlaln2.
Array, DIMENSION (lda,na).
The na-by-na matrix A.

INTEGER. The leading dimension of a. Must be at least na.lda

REAL for slaln2d1, d2
DOUBLE PRECISION for dlaln2.
The (1,1) and (2,2) elements in the diagonal matrix D,
respectively. d2 is not used if nw = 1.

REAL for slaln2b
DOUBLE PRECISION for dlaln2.
Array, DIMENSION (ldb,nw). The na-by-nw matrix B
(right-hand side). If nw =2 (w is complex), column 1 contains
the real part of B and column 2 contains the imaginary part.

INTEGER. The leading dimension of b. Must be at least na.ldb

REAL for slaln2wr, wi
DOUBLE PRECISION for dlaln2.
The real and imaginary part of the scalar w, respectively.
wi is not used if nw = 1.

INTEGER. The leading dimension of the output array x. Must
be at least na.

ldx

Output Parameters

REAL for slaln2x
DOUBLE PRECISION for dlaln2.
Array, DIMENSION (ldx,nw). The na-by-nw matrix X
(unknowns), as computed by the routine. If nw = 2 (w is
complex), on exit, column 1 will contain the real part of X
and column 2 will contain the imaginary part.

1293

LAPACK Auxiliary and Utility Routines 5

REAL for slaln2scale
DOUBLE PRECISION for dlaln2.
The scale factor that B must be multiplied by to insure that
overflow does not occur when computing X. Thus (ca*A -
w*D) X will be scale*B, not B (ignoring perturbations of
A.) It will be at most 1.

REAL for slaln2xnorm
DOUBLE PRECISION for dlaln2.
The infinity-norm of X, when X is regarded as an na-by-nw
real matrix.

INTEGER.info
An error flag. It will be zero if no error occurs, a negative
number if an argument is in error, or a positive number if
(ca*A - w*D) had to be perturbed. The possible values
are:
If info = 0: no error occurred, and (ca*A - w*D) did not
have to be perturbed.
If info = 1: (ca*A - w*D) had to be perturbed to make
its smallest (or only) singular value greater than smin.

NOTE. For higher speed, this routine does not check the inputs for errors.

1294

5 Intel® Math Kernel Library Reference Manual

?lals0
Applies back multiplying factors in solving the least
squares problem using divide and conquer SVD
approach. Used by ?gelsd.

Syntax

call slals0 (icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr,
givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, info)

call dlals0 (icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr,
givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, info)

call clals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr,
givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, rwork, info)

call zlals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr,
givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, rwork, info)

Description

The routine applies back the multiplying factors of either the left or right singular vector matrix
of a diagonal matrix appended by a row to the right hand side matrix B in solving the least
squares problem using the divide-and-conquer SVD approach.

For the left singular vector matrix, three types of orthogonal matrices are involved:

(1L) Givens rotations: the number of such rotations is givptr;the pairs of columns/rows they
were applied to are stored in givcol;and the c- and s-values of these rotations are stored in
givnum.

(2L) Permutation. The (nl+1)-st row of B is to be moved to the first row, and for j=2:n,
perm(j)-th row of B is to be moved to the j-th row.

(3L) The left singular vector matrix of the remaining matrix.

For the right singular vector matrix, four types of orthogonal matrices are involved:

(1R) The right singular vector matrix of the remaining matrix.

(2R) If sqre = 1, one extra Givens rotation to generate the right null space.

(3R) The inverse transformation of (2L).

(4R) The inverse transformation of (1L).

1295

LAPACK Auxiliary and Utility Routines 5

Input Parameters

INTEGER. Specifies whether singular vectors are to be
computed in factored form:

icompq

If icompq = 0: Left singular vector matrix.
If icompq = 1: Right singular vector matrix.

INTEGER. The row dimension of the upper block.nl

nl ≥ 1.

INTEGER. The row dimension of the lower block.nr

nr ≥ 1.

INTEGER.sqre
If sqre = 0: the lower block is an nr-by-nr square matrix.
If sqre = 1: the lower block is an nr-by-(nr+1) rectangular
matrix. The bidiagonal matrix has row dimension n = nl
+ nr + 1, and column dimension m = n + sqre.

INTEGER. The number of columns of B and bx.nrhs
Must be at least 1.

REAL for slals0b
DOUBLE PRECISION for dlals0
COMPLEX for clals0
COMPLEX*16 for zlals0.
Array, DIMENSION (ldb, nrhs).
Contains the right hand sides of the least squares problem
in rows 1 through m.

INTEGER. The leading dimension of b.ldb
Must be at least max(1,max(m, n)).

REAL for slals0bx
DOUBLE PRECISION for dlals0
COMPLEX for clals0
COMPLEX*16 for zlals0.
Workspace array, DIMENSION (ldbx, nrhs).

INTEGER. The leading dimension of bx.ldbx

INTEGER. Array, DIMENSION (n).perm
The permutations (from deflation and sorting) applied to
the two blocks.

1296

5 Intel® Math Kernel Library Reference Manual

INTEGER. The number of Givens rotations which took place
in this subproblem.

givptr

INTEGER. Array, DIMENSION (ldgcol, 2). Each pair of
numbers indicates a pair of rows/columns involved in a
Givens rotation.

givcol

INTEGER. The leading dimension of givcol, must be at least
n.

ldgcol

REAL for slals0/clals0givnum
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (ldgnum, 2). Each number indicates the
c or s value used in the corresponding Givens rotation.

INTEGER. The leading dimension of arrays difr, poles and
givnum, must be at least k.

ldgnum

REAL for slals0/clals0poles
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (ldgnum, 2). On entry, poles(1:k, 1)
contains the new singular values obtained from solving the
secular equation, and poles(1:k, 2) is an array containing
the poles in the secular equation.

REAL for slals0/clals0difl
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (k). On entry, difl(i) is the distance
between i-th updated (undeflated) singular value and the
i-th (undeflated) old singular value.

REAL for slals0/clals0difr
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (ldgnum, 2). On entry, difr(i, 1)
contains the distances between i-th updated (undeflated)
singular value and the i+1-th (undeflated) old singular
value. And difr(i, 2) is the normalizing factor for the i-th
right singular vector.

REAL for slals0/clals0z
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (k). Contains the components of the
deflation-adjusted updating row vector.

1297

LAPACK Auxiliary and Utility Routines 5

INTEGER. Contains the dimension of the non-deflated matrix.

This is the order of the related secular equation. 1 ≤ k ≤
n.

K

REAL for slals0/clals0c
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre =0 and the c value of a Givens
rotation related to the right null space if sqre = 1.

REAL for slals0/clals0s
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre =0 and the s value of a Givens
rotation related to the right null space if sqre = 1.

REAL for slals0work
DOUBLE PRECISION for dlals0
Workspace array, DIMENSION (k). Used with real flavors
only.

REAL for clals0rwork
DOUBLE PRECISION for zlals0
Workspace array, DIMENSION (k*(1+nrhs) + 2*nrhs). Used
with complex flavors only.

Output Parameters

On exit, contains the solution X in rows 1 through n.b

INTEGER.info
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.

1298

5 Intel® Math Kernel Library Reference Manual

?lalsa
Computes the SVD of the coefficient matrix in
compact form. Used by ?gelsd.

Syntax

call slalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl,
difr, z, poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info
)

call dlalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl,
difr, z, poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info
)

call clalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl,
difr, z, poles, givptr, givcol, ldgcol, perm, givnum, c, s, rwork, iwork,
info)

call zlalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl,
difr, z, poles, givptr, givcol, ldgcol, perm, givnum, c, s, rwork, iwork,
info)

Description

The routine is an itermediate step in solving the least squares problem by computing the SVD
of the coefficient matrix in compact form. The singular vectors are computed as products of
simple orthorgonal matrices.

If icompq = 0, ?lalsa applies the inverse of the left singular vector matrix of an upper
bidiagonal matrix to the right hand side; and if icompq = 1, the routine applies the right
singular vector matrix to the right hand side. The singular vector matrices were generated in
the compact form by ?lalsa.

Input Parameters

INTEGER. Specifies whether the left or the right singular
vector matrix is involved. If icompq = 0: left singular vector
matrix is used

icompq

If icompq = 1: right singular vector matrix is used.

INTEGER. The maximum size of the subproblems at the
bottom of the computation tree.

smlsiz

1299

LAPACK Auxiliary and Utility Routines 5

INTEGER. The row and column dimensions of the upper
bidiagonal matrix.

n

INTEGER. The number of columns of b and bx. Must be at
least 1.

nrhs

REAL for slalsab
DOUBLE PRECISION for dlalsa
COMPLEX for clalsa
COMPLEX*16 for zlalsa
Array, DIMENSION (ldb, nrhs). Contains the right hand sides
of the least squares problem in rows 1 through m.

INTEGER. The leading dimension of b in the calling
subprogram. Must be at least max(1,max(m, n)).

ldb

INTEGER. The leading dimension of the output array bx.ldbx

REAL for slalsa/clalsau
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, smlsiz). On entry, u contains the
left singular vector matrices of all subproblems at the bottom
level.

INTEGER, ldu ≥ n. The leading dimension of arrays u, vt,
difl, difr, poles, givnum, and z.

ldu

REAL for slalsa/clalsavt
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, smlsiz +1). On entry, contains
the right singular vector matrices of all subproblems at the
bottom level.

INTEGER array, DIMENSION (n).k

REAL for slalsa/clalsadifl
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, nlvl), where nlvl = int(log2(n
/(smlsiz+1))) + 1.

REAL for slalsa/clalsadifr
DOUBLE PRECISION for dlalsa/zlalsa

1300

5 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (ldu, 2*nlvl). On entry, difl(*, i)
and difr(*, 2i -1) record distances between singular values
on the i-th level and singular values on the (i -1)-th level,
and difr(*, 2i) record the normalizing factors of the right
singular vectors matrices of subproblems on i-th level.

REAL for slalsa/clalsaz
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, nlvl . On entry, z(1, i) contains
the components of the deflation- adjusted updating the row
vector for subproblems on the i-th level.

REAL for slalsa/clalsapoles
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, 2*nlvl).
On entry, poles(*, 2i-1: 2i) contains the new and old
singular values involved in the secular equations on the i-th
level.

INTEGER. Array, DIMENSION (n).givptr
On entry, givptr(i) records the number of Givens
rotations performed on the i-th problem on the computation
tree.

INTEGER. Array, DIMENSION (ldgcol, 2*nlvl). On entry,
for each i, givcol(*, 2i-1: 2i) records the locations of
Givens rotations performed on the i-th level on the
computation tree.

givcol

INTEGER, ldgcol ≥ n. The leading dimension of arrays
givcol and perm.

ldgcol

INTEGER. Array, DIMENSION (ldgcol, nlvl). On entry,
perm(*, i) records permutations done on the i-th level of
the computation tree.

perm

REAL for slalsa/clalsagivnum
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, 2*nlvl). On entry, givnum(*, 2i-1
: 2i) records the c and s values of Givens rotations
performed on the i-th level on the computation tree.

REAL for slalsa/clalsac
DOUBLE PRECISION for dlalsa/zlalsa

1301

LAPACK Auxiliary and Utility Routines 5

Array, DIMENSION (n). On entry, if the i-th subproblem
is not square, c(i) contains the c value of a Givens rotation
related to the right null space of the i-th subproblem.

REAL for slalsa/clalsas
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (n). On entry, if the i-th subproblem
is not square, s(i) contains the s-value of a Givens rotation
related to the right null space of the i-th subproblem.

REAL for slalsawork
DOUBLE PRECISION for dlalsa
Workspace array, DIMENSION at least (n). Used with real
flavors only.

REAL for clalsarwork
DOUBLE PRECISION for zlalsa
Workspace array, DIMENSION at least max(n,
(smlsz+1)*nrhs*3). Used with complex flavors only.

INTEGER.iwork
Workspace array, DIMENSION at least (3n).

Output Parameters

On exit, contains the solution X in rows 1 through n.b

REAL for slalsabx
DOUBLE PRECISION for dlalsa
COMPLEX for clalsa
COMPLEX*16 for zlalsa
Array, DIMENSION (ldbx, nrhs). On exit, the result of
applying the left or right singular vector matrix to b.

INTEGER. If info = 0: successful exitinfo
If info = -i < 0, the i-th argument had an illegal value.

1302

5 Intel® Math Kernel Library Reference Manual

?lalsd
Uses the singular value decomposition of A to solve
the least squares problem.

Syntax

call slalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, iwork,
info)

call dlalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, iwork,
info)

call clalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, rwork,
iwork, info)

call zlalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, rwork,
iwork, info)

Description

The routine uses the singular value decomposition of A to solve the least squares problem of
finding X to minimize the Euclidean norm of each column of A*X-B, where A is n-by-n upper
bidiagonal, and X and B are n-by-nrhs. The solution X overwrites B.

The singular values of A smaller than rcond times the largest singular value are treated as zero
in solving the least squares problem; in this case a minimum norm solution is returned. The
actual singular values are returned in d in ascending order.

This code makes very mild assumptions about floating point arithmetic. It will work on machines
with a guard digit in add/subtract, or on those binary machines without guard digits which
subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.

It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know
of none.

Input Parameters

CHARACTER*1.uplo
If uplo = 'U', d and e define an upper bidiagonal matrix.
If uplo = 'L', d and e define a lower bidiagonal matrix.

INTEGER. The maximum size of the subproblems at the
bottom of the computation tree.

smlsiz

1303

LAPACK Auxiliary and Utility Routines 5

INTEGER. The dimension of the bidiagonal matrix.n

n ≥ 0.

INTEGER. The number of columns of B. Must be at least 1.nrhs

REAL for slalsd/clalsdd
DOUBLE PRECISION for dlalsd/zlalsd
Array, DIMENSION (n). On entry, d contains the main
diagonal of the bidiagonal matrix.

REAL for slalsd/clalsde
DOUBLE PRECISION for dlalsd/zlalsd
Array, DIMENSION (n-1). Contains the super-diagonal entries
of the bidiagonal matrix. On exit, e is destroyed.

REAL for slalsdb
DOUBLE PRECISION for dlalsd
COMPLEX for clalsd
COMPLEX*16 for zlalsd
Array, DIMENSION (ldb,nrhs).
On input, b contains the right hand sides of the least squares
problem. On output, b contains the solution X.

INTEGER. The leading dimension of b in the calling
subprogram. Must be at least max(1,n).

ldb

REAL for slalsd/clalsdrcond
DOUBLE PRECISION for dlalsd/zlalsd
The singular values of A less than or equal to rcond times
the largest singular value are treated as zero in solving the
least squares problem. If rcond is negative, machine
precision is used instead. For example, for the least squares
problem diag(S)*X=B, where diag(S) is a diagonal matrix
of singular values, the solution is X(i)=B(i)/S(i) if S(i)
is greater than rcond *max(S), and X(i)=0 if S(i) is less
than or equal to rcond *max(S).

INTEGER. The number of singular values of A greater than
rcond times the largest singular value.

rank

REAL for slalsdwork
DOUBLE PRECISION for dlalsd
COMPLEX for clalsd
COMPLEX*16 for zlalsd

1304

5 Intel® Math Kernel Library Reference Manual

Workspace array.
DIMENSION for real flavors at least
(9n+2n*smlsiz+8n*nlvl+n*nrhs+(smlsiz+1)2),
where
nlvl = max(0, int(log2(n/(smlsiz+1))) + 1).
DIMENSION for complex flavors is (n*nrhs).

REAL for clalsdrwork
DOUBLE PRECISION for zlalsd
Workspace array, used with complex flavors only.
DIMENSION at least (9n + 2n*smlsiz + 8n*nlvl +
3*mlsiz*nrhs + (smlsiz+1)2),
where
nlvl = max(0, int(log2(min(m,n)/(smlsiz+1))) +
1).

INTEGER.iwork
Workspace array of DIMENSION (3n*nlvl + 11n).

Output Parameters

On exit, if info = 0, d contains singular values of the
bidiagonal matrix.

d

On exit, destroyed.e

On exit, b contains the solution X.b

INTEGER.info
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info > 0: The algorithm failed to compute a singular
value while working on the submatrix lying in rows and
columns info/(n+1) through mod(info,n+1).

1305

LAPACK Auxiliary and Utility Routines 5

?lamrg
Creates a permutation list to merge the entries of
two independently sorted sets into a single set
sorted in acsending order.

Syntax

call slamrg(n1, n2, a, strd1, strd2, index)

call dlamrg(n1, n2, a, strd1, strd2, index)

Description

The routine creates a permutation list which will merge the elements of a (which is composed
of two independently sorted sets) into a single set which is sorted in ascending order.

Input Parameters

INTEGER. These arguments contain the respective lengths
of the two sorted lists to be merged.

n1, n2

REAL for slamrga
DOUBLE PRECISION for dlamrg.
Array, DIMENSION (n1+n2).
The first n1 elements of a contain a list of numbers which
are sorted in either ascending or descending order. Likewise
for the final n2 elements.

INTEGER.strd1, strd2
These are the strides to be taken through the array a.
Allowable strides are 1 and -1. They indicate whether a
subset of a is sorted in ascending (strdx = 1) or
descending (strdx = -1) order.

Output Parameters

INTEGER. Array, DIMENSION (n1+n2).index
On exit, this array will contain a permutation such that if
b(i) = a(index(i)) for i=1, n1+n2, then b will be sorted
in ascending order.

1306

5 Intel® Math Kernel Library Reference Manual

?laneg
Computes the Sturm count, the number of negative
pivots encountered while factoring tridiagonal
T-sigma*I = L*D*LT.

Syntax

value = slaneg(n, d, lld, sigma, pivmin, r)

value = dlaneg(n, d, lld, sigma, pivmin, r)

Description

The routine computes the Sturm count, the number of negative pivots encountered while
factoring tridiagonal T-sigma*I = L*D*LT. This implementation works directly on the factors
without forming the tridiagonal matrix T. The Sturm count is also the number of eigenvalues
of T less than sigma. This routine is called from ?larb. The current routine does not use the
pivmin parameter but rather requires IEEE-754 propagation of infinities and NaNs (NaN stands
for 'Not A Number'). This routine also has no input range restrictions but does require default
exception handling such that x/0 produces Inf when x is non-zero, and Inf/Inf produces
NaN. (For more information see [Marques06]).

Input Parameters

INTEGER. The order of the matrix.n

REAL for slanegd
DOUBLE PRECISION for dlaneg
Array, DIMENSION (n).
Contains n diagonal elements of the matrix D.

REAL for slaneglld
DOUBLE PRECISION for dlaneg
Array, DIMENSION (n-1).
Contains (n-1) elements L(i)*L(i)*D(i).

REAL for slanegsigma
DOUBLE PRECISION for dlaneg
Shift amount in T-sigma*I = L*D*L**T.

REAL for slanegpivmin
DOUBLE PRECISION for dlaneg

1307

LAPACK Auxiliary and Utility Routines 5

The minimum pivot in the Sturm sequence. May be used
when zero pivots are encountered on non-IEEE-754
architectures.

INTEGER.r
The twist index for the twisted factorization that is used for
the negcount.

Output Parameters

INTEGER. The number of negative pivots encountered while
factoring.

value

?langb
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element of general band matrix.

Syntax

val = slangb(norm, n, kl, ku, ab, ldab, work)

val = dlangb(norm, n, kl, ku, ab, ldab, work)

val = clangb(norm, n, kl, ku, ab, ldab, work)

val = zlangb(norm, n, kl, ku, ab, ldab, work)

Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or
the element of largest absolute value of an n-by-n band matrix A, with kl sub-diagonals and
ku super-diagonals.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O' or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

1308

5 Intel® Math Kernel Library Reference Manual

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

INTEGER. The order of the matrix A. n ≥ 0. When n = 0,
?langb is set to zero.

n

INTEGER. The number of sub-diagonals of the matrix A. kl

≥ 0.

kl

INTEGER. The number of super-diagonals of the matrix A.

ku ≥ 0.

ku

REAL for slangbab
DOUBLE PRECISION for dlangb
COMPLEX for clangb
COMPLEX*16 for zlangb
Array, DIMENSION (ldab,n).
The band matrix A, stored in rows 1 to kl+ku+1. The j-th
column of A is stored in the j-th column of the array ab as
follows:
ab(ku+1+i-j,j) = a(i,j)

for max(1,j-ku) ≤ i ≤ min(n,j+kl).

INTEGER. The leading dimension of the array ab.ldab

ldab ≥ kl+ku+1.

REAL for slangb/clangbwork
DOUBLE PRECISION for dlangb/zlangb
Workspace array, DIMENSION (max(1,lwork)), where

lwork ≥ n when norm = 'I'; otherwise, work is not
referenced.

Output Parameters

REAL for slangb/clangbval

1309

LAPACK Auxiliary and Utility Routines 5

DOUBLE PRECISION for dlangb/zlangb
Value returned by the function.

?lange
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element of a general rectangular matrix.

Syntax

val = slange(norm, m, n, a, lda, work)

val = dlange(norm, m, n, a, lda, work)

val = clange(norm, m, n, a, lda, work)

val = zlange(norm, m, n, a, lda, work)

Description

The function ?lange returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real/complex matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O' or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

INTEGER. The number of rows of the matrix A.m

m ≥ 0. When m = 0, ?lange is set to zero.

1310

5 Intel® Math Kernel Library Reference Manual

INTEGER. The number of columns of the matrix A.n

n ≥ 0. When n = 0, ?lange is set to zero.

REAL for slangea
DOUBLE PRECISION for dlange
COMPLEX for clange
COMPLEX*16 for zlange
Array, DIMENSION (lda,n).
The m-by-n matrix A.

INTEGER. The leading dimension of the array a.lda

lda ≥ max(m,1).

REAL for slange and clange.work
DOUBLE PRECISION for dlange and zlange.
Workspace array, DIMENSION max(1,lwork), where lwork

≥ m when norm = 'I'; otherwise, work is not referenced.

Output Parameters

REAL for slange/clangeval
DOUBLE PRECISION for dlange/zlange
Value returned by the function.

?langt
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element of a general tridiagonal matrix.

Syntax

val = slangt(norm, n, dl, d, du)

val = dlangt(norm, n, dl, d, du)

val = clangt(norm, n, dl, d, du)

val = zlangt(norm, n, dl, d, du)

1311

LAPACK Auxiliary and Utility Routines 5

Description

The routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or
the element of largest absolute value of a real/complex tridiagonal matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O'or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

INTEGER. The order of the matrix A. n ≥ 0. When n = 0,
?langt is set to zero.

n

REAL for slangtdl, d, du
DOUBLE PRECISION for dlangt
COMPLEX for clangt
COMPLEX*16 for zlangt
Arrays: dl (n-1), d (n), du (n-1).
The array dl contains the (n-1) sub-diagonal elements of
A.
The array d contains the diagonal elements of A.
The array du contains the (n-1) super-diagonal elements of
A.

Output Parameters

REAL for slangt/clangtval
DOUBLE PRECISION for dlangt/zlangt
Value returned by the function.

1312

5 Intel® Math Kernel Library Reference Manual

?lanhs
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element of an upper Hessenberg matrix.

Syntax

val = slanhs(norm, n, a, lda, work)

val = dlanhs(norm, n, a, lda, work)

val = clanhs(norm, n, a, lda, work)

val = zlanhs(norm, n, a, lda, work)

Description

The function ?lanhs returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a Hessenberg matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O' or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

INTEGER. The order of the matrix A.n

n ≥ 0. When n = 0, ?lanhs is set to zero.

REAL for slanhsa
DOUBLE PRECISION for dlanhs
COMPLEX for clanhs

1313

LAPACK Auxiliary and Utility Routines 5

COMPLEX*16 for zlanhs
Array, DIMENSION (lda,n). The n-by-n upper Hessenberg
matrix A; the part of A below the first sub-diagonal is not
referenced.

INTEGER. The leading dimension of the array a.lda

lda ≥ max(n,1).

REAL for slanhs and clanhs.work
DOUBLE PRECISION for dlange and zlange.
Workspace array, DIMENSION (max(1,lwork)), where

lwork ≥ n when norm = 'I'; otherwise, work is not
referenced.

Output Parameters

REAL for slanhs/clanhsval
DOUBLE PRECISION for dlanhs/zlanhs
Value returned by the function.

?lansb
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of
largest absolute value of a symmetric band matrix.

Syntax

val = slansb(norm, uplo, n, k, ab, ldab, work)

val = dlansb(norm, uplo, n, k, ab, ldab, work)

val = clansb(norm, uplo, n, k, ab, ldab, work)

val = zlansb(norm, uplo, n, k, ab, ldab, work)

Description

The function ?lansb returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n-by-n real/complex symmetric band
matrix A, with k super-diagonals.

The value val returned by the function is:

1314

5 Intel® Math Kernel Library Reference Manual

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O' or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
band matrix A is supplied. If uplo = 'U': upper triangular
part is supplied; If uplo = 'L': lower triangular part is
supplied.

INTEGER. The order of the matrix A. n ≥ 0.n

When n = 0, ?lansb is set to zero.

INTEGER. The number of super-diagonals or sub-diagonals

of the band matrix A. k ≥ 0.

k

REAL for slansbab
DOUBLE PRECISION for dlansb
COMPLEX for clansb
COMPLEX*16 for zlansb
Array, DIMENSION (ldab,n).
The upper or lower triangle of the symmetric band matrix
A, stored in the first k+1 rows of ab. The j-th column of A
is stored in the j-th column of the array ab as follows:
if uplo = 'U', ab(k+1+i-j,j) = a(i,j)

for max(1,j-k) ≤ i≤ j;
if uplo = 'L', ab(1+i-j,j) = a(i,j) for

j≤i≤min(n,j+k).

INTEGER. The leading dimension of the array ab.ldab

1315

LAPACK Auxiliary and Utility Routines 5

ldab ≥ k+1.

REAL for slansb and clansb.work
DOUBLE PRECISION for dlansb and zlansb.
Workspace array, DIMENSION (max(1,lwork)), where

lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise,
work is not referenced.

Output Parameters

REAL for slansb/clansbval
DOUBLE PRECISION for dlansb/zlansb
Value returned by the function.

?lanhb
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of
largest absolute value of a Hermitian band matrix.

Syntax

val = clanhb(norm, uplo, n, k, ab, ldab, work)

val = zlanhb(norm, uplo, n, k, ab, ldab, work)

Description

The routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or
the element of largest absolute value of an n-by-n Hermitian band matrix A, with k
super-diagonals.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O' or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

1316

5 Intel® Math Kernel Library Reference Manual

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
band matrix A is supplied.
If uplo = 'U': upper triangular part is supplied;
If uplo = 'L': lower triangular part is supplied.

INTEGER. The order of the matrix A. n ≥ 0. When n = 0,
?lanhb is set to zero.

n

INTEGER. The number of super-diagonals or sub-diagonals
of the band matrix A.

k

k ≥ 0.

COMPLEX for clanhb.ab
COMPLEX*16 for zlanhb.
Array, DIMENSION (ldaB,n). The upper or lower triangle of
the Hermitian band matrix A, stored in the first k+1 rows
of ab. The j-th column of A is stored in the j-th column of
the array ab as follows:
if uplo = 'U', ab(k+1+i-j,j) = a(i,j)

for max(1,j-k) ≤ i ≤ j;

if uplo = 'L', ab(1+i-j,j) = a(i,j) for j ≤ i ≤
min(n,j+k).
Note that the imaginary parts of the diagonal elements need
not be set and are assumed to be zero.

INTEGER. The leading dimension of the array ab. ldab ≥
k+1.

ldab

REAL for clanhb.work
DOUBLE PRECISION for zlanhb.
Workspace array, DIMENSION max(1, lwork), where

1317

LAPACK Auxiliary and Utility Routines 5

lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise,
work is not referenced.

Output Parameters

REAL for slanhb/clanhbval
DOUBLE PRECISION for dlanhb/zlanhb
Value returned by the function.

?lansp
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of
largest absolute value of a symmetric matrix
supplied in packed form.

Syntax

val = slansp(norm, uplo, n, ap, work)

val = dlansp(norm, uplo, n, ap, work)

val = clansp(norm, uplo, n, ap, work)

val = zlansp(norm, uplo, n, ap, work)

Description

The function ?lansp returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real/complex symmetric matrix A, supplied
in packed form.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O' or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

1318

5 Intel® Math Kernel Library Reference Manual

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
symmetric matrix A is supplied.
If uplo = 'U': Upper triangular part of A is supplied
If uplo = 'L': Lower triangular part of A is supplied.

INTEGER. The order of the matrix A. n ≥ 0. Whenn

n = 0, ?lansp is set to zero.

REAL for slanspap
DOUBLE PRECISION for dlansp
COMPLEX for clansp
COMPLEX*16 for zlansp
Array, DIMENSION (n(n+1)/2).
The upper or lower triangle of the symmetric matrix A,
packed columnwise in a linear array. The j-th column of A
is stored in the array ap as follows:

if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1 ≤ i

≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j

≤ i ≤ n.

REAL for slansp and clansp.work
DOUBLE PRECISION for dlansp and zlansp.
Workspace array, DIMENSION (max(1,lwork)), where

lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise,
work is not referenced.

Output Parameters

REAL for slansp/clanspval

1319

LAPACK Auxiliary and Utility Routines 5

DOUBLE PRECISION for dlansp/zlansp
Value returned by the function.

?lanhp
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of
largest absolute value of a complex Hermitian
matrix supplied in packed form.

Syntax

val = clanhp(norm, uplo, n, ap, work)

val = zlanhp(norm, uplo, n, ap, work)

Description

The function ?lanhp returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex Hermitian matrix A, supplied in
packed form.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O' or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is supplied.

1320

5 Intel® Math Kernel Library Reference Manual

If uplo = 'U': Upper triangular part of A is supplied
If uplo = 'L': Lower triangular part of A is supplied.

INTEGER. The order of the matrix A.n

n ≥ 0. When n = 0, ?lanhp is set to zero.

COMPLEX for clanhp.ap
COMPLEX*16 for zlanhp.
Array, DIMENSION (n(n+1)/2). The upper or lower triangle
of the Hermitian matrix A, packed columnwise in a linear
array. The j-th column of A is stored in the array ap as
follows:

if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1 ≤ i

≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j

≤ i ≤ n.

REAL for clanhp.work
DOUBLE PRECISION for zlanhp.
Workspace array, DIMENSION (max(1,lwork)), where

lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise,
work is not referenced.

Output Parameters

REAL for clanhp.val
DOUBLE PRECISION for zlanhp.
Value returned by the function.

1321

LAPACK Auxiliary and Utility Routines 5

?lanst/?lanht
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of
largest absolute value of a real symmetric or
complex Hermitian tridiagonal matrix.

Syntax

val = slanst(norm, n, d, e)

val = dlanst(norm, n, d, e)

val = clanht(norm, n, d, e)

val = zlanht(norm, n, d, e)

Description

The functions ?lanst/?lanht return the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a real symmetric or a complex Hermitian
tridiagonal matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O' or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

INTEGER. The order of the matrix A.n

n ≥ 0. When n = 0, ?lanst/?lanht is set to zero.

REAL for slanst/clanhtd

1322

5 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dlanst/zlanht
Array, DIMENSION (n). The diagonal elements of A.

REAL for slanste
DOUBLE PRECISION for dlanst
COMPLEX for clanht
COMPLEX*16 for zlanht
Array, DIMENSION (n-1).
The (n-1) sub-diagonal or super-diagonal elements of A.

Output Parameters

REAL for slanst/clanhtval
DOUBLE PRECISION for dlanst/zlanht
Value returned by the function.

?lansy
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of
largest absolute value of a real/complex symmetric
matrix.

Syntax

val = slansy(norm, uplo, n, a, lda, work)

val = dlansy(norm, uplo, n, a, lda, work)

val = clansy(norm, uplo, n, a, lda, work)

val = zlansy(norm, uplo, n, a, lda, work)

Description

The function ?lansy returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real/complex symmetric matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O' or 'o'

= normI(A), if norm = 'I' or 'i'

1323

LAPACK Auxiliary and Utility Routines 5

= normF(A), if norm = 'F', 'f', 'E' or 'e'

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
symmetric matrix A is to be referenced.
= 'U': Upper triangular part of A is referenced.
= 'L': Lower triangular part of A is referenced

INTEGER. The order of the matrix A. n ≥ 0. When n = 0,
?lansy is set to zero.

n

REAL for slansya
DOUBLE PRECISION for dlansy
COMPLEX for clansy
COMPLEX*16 for zlansy
Array, DIMENSION (lda,n). The symmetric matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of
a contains the upper triangular part of the matrix A, and
the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
a contains the lower triangular part of the matrix A, and the
strictly upper triangular part of a is not referenced.

INTEGER. The leading dimension of the array a.lda

lda ≥ max(n,1).

REAL for slansy and clansy.work
DOUBLE PRECISION for dlansy and zlansy.
Workspace array, DIMENSION (max(1,lwork)), where

lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise,
work is not referenced.

1324

5 Intel® Math Kernel Library Reference Manual

Output Parameters

REAL for slansy/clansyval
DOUBLE PRECISION for dlansy/zlansy
Value returned by the function.

?lanhe
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of
largest absolute value of a complex Hermitian
matrix.

Syntax

val = clanhe(norm, uplo, n, a, lda, work)

val = zlanhe(norm, uplo, n, a, lda, work)

Description

The function ?lanhe returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex Hermitian matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O'or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

CHARACTER*1.uplo

1325

LAPACK Auxiliary and Utility Routines 5

Specifies whether the upper or lower triangular part of the
Hermitian matrix A is to be referenced.
= 'U': Upper triangular part of A is referenced.
= 'L': Lower triangular part of A is referenced

INTEGER. The order of the matrix A. n ≥ 0. When n = 0,
?lanhe is set to zero.

n

COMPLEX for clanhe.a
COMPLEX*16 for zlanhe.
Array, DIMENSION (lda,n). The Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of
a contains the upper triangular part of the matrix A, and
the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
a contains the lower triangular part of the matrix A, and the
strictly upper triangular part of a is not referenced.

INTEGER. The leading dimension of the array a.lda

lda ≥ max(n,1).

REAL for clanhe.work
DOUBLE PRECISION for zlanhe.
Workspace array, DIMENSION (max(1,lwork)) , where

lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise,
work is not referenced.

Output Parameters

REAL for clanhe.val
DOUBLE PRECISION for zlanhe.
Value returned by the function.

1326

5 Intel® Math Kernel Library Reference Manual

?lantb
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of
largest absolute value of a triangular band matrix.

Syntax

val = slantb(norm, uplo, diag, n, k, ab, ldab, work)

val = dlantb(norm, uplo, diag, n, k, ab, ldab, work)

val = clantb(norm, uplo, diag, n, k, ab, ldab, work)

val = zlantb(norm, uplo, diag, n, k, ab, ldab, work)

Description

The function ?lantb returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n-by-n triangular band matrix A, with (k
+ 1) diagonals.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O' or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

CHARACTER*1.uplo
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular.

1327

LAPACK Auxiliary and Utility Routines 5

CHARACTER*1.diag
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular.

INTEGER. The order of the matrix A. n ≥ 0. When n = 0,
?lantb is set to zero.

n

INTEGER. The number of super-diagonals of the matrix A if
uplo = 'U', or the number of sub-diagonals of the matrix

A if uplo = 'L'. k ≥ 0.

k

REAL for slantbab
DOUBLE PRECISION for dlantb
COMPLEX for clantb
COMPLEX*16 for zlantb
Array, DIMENSION (ldab,n). The upper or lower triangular
band matrix A, stored in the first k+1 rows of ab.
The j-th column of A is stored in the j-th column of the
array ab as follows:
if uplo = 'U', ab(k+1+i-j,j) = a(i,j) for max(1,j-k)

≤ i ≤ j;

if uplo = 'L', ab(1+i-j,j) = a(i,j) for j≤ i≤
min(n,j+k).
Note that when diag = 'U', the elements of the array ab
corresponding to the diagonal elements of the matrix A are
not referenced, but are assumed to be one.

INTEGER. The leading dimension of the array ab.ldab

ldab ≥ k+1.

REAL for slantb and clantb.work
DOUBLE PRECISION for dlantb and zlantb.
Workspace array, DIMENSION (max(1,lwork)), where

lwork ≥ n when norm = 'I' ; otherwise, work is not
referenced.

Output Parameters

REAL for slantb/clantb.val
DOUBLE PRECISION for dlantb/zlantb.

1328

5 Intel® Math Kernel Library Reference Manual

Value returned by the function.

?lantp
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of
largest absolute value of a triangular matrix
supplied in packed form.

Syntax

val = slantp(norm, uplo, diag, n, ap, work)

val = dlantp(norm, uplo, diag, n, ap, work)

val = clantp(norm, uplo, diag, n, ap, work)

val = zlantp(norm, uplo, diag, n, ap, work)

Description

The function ?lantp returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a triangular matrix A, supplied in packed
form.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O' or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

CHARACTER*1.uplo

1329

LAPACK Auxiliary and Utility Routines 5

Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular.

CHARACTER*1.diag
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular.

INTEGER. The order of the matrix A.n

n ≥ 0. When n = 0, ?lantp is set to zero.

REAL for slantpap
DOUBLE PRECISION for dlantp
COMPLEX for clantp
COMPLEX*16 for zlantp
Array, DIMENSION (n(n+1)/2).
The upper or lower triangular matrix A, packed columnwise
in a linear array. The j-th column of A is stored in the array
ap as follows:

if uplo = 'U', AP(i + (j-1)j/2) = a(i,j) for 1≤ i≤
j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = a(i,j) for

j≤ i≤ n.
Note that when diag = 'U', the elements of the array ap
corresponding to the diagonal elements of the matrix A are
not referenced, but are assumed to be one.

REAL for slantp and clantp.work
DOUBLE PRECISION for dlantp and zlantp.
Workspace array, DIMENSION (max(1,lwork)), where

lwork ≥ n when norm = 'I' ; otherwise, work is not
referenced.

Output Parameters

REAL for slantp/clantp.val
DOUBLE PRECISION for dlantp/zlantp.
Value returned by the function.

1330

5 Intel® Math Kernel Library Reference Manual

?lantr
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of
largest absolute value of a trapezoidal or triangular
matrix.

Syntax

val = slantr(norm, uplo, diag, m, n, a, lda, work)

val = dlantr(norm, uplo, diag, m, n, a, lda, work)

val = clantr(norm, uplo, diag, m, n, a, lda, work)

val = zlantr(norm, uplo, diag, m, n, a, lda, work)

Description

The function ?lantr returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a trapezoidal or triangular matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = 'M' or 'm'

= norm1(A), if norm = '1' or 'O' or 'o'

= normI(A), if norm = 'I' or 'i'

= normF(A), if norm = 'F', 'f', 'E' or 'e'

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a consistent matrix
norm.

Input Parameters

CHARACTER*1. Specifies the vaule to be returned by the
routine as described above.

norm

CHARACTER*1.uplo
Specifies whether the matrix A is upper or lower trapezoidal.
= 'U': Upper trapezoidal
= 'L': Lower trapezoidal.

1331

LAPACK Auxiliary and Utility Routines 5

Note that A is triangular instead of trapezoidal if m = n.

CHARACTER*1.diag
Specifies whether or not the matrix A has unit diagonal.
= 'N': Non-unit diagonal
= 'U': Unit diagonal.

INTEGER. The number of rows of the matrix A. m ≥ 0, and

if uplo = 'U', m ≤ n.

m

When m = 0, ?lantr is set to zero.

INTEGER. The number of columns of the matrix A. n ≥ 0,

and if uplo = 'L', n ≤ m.

n

When n = 0, ?lantr is set to zero.

REAL for slantra
DOUBLE PRECISION for dlantr
COMPLEX for clantr
COMPLEX*16 for zlantr
Array, DIMENSION (lda,n).
The trapezoidal matrix A (A is triangular if m = n).
If uplo = 'U', the leading m-by-n upper trapezoidal part
of the array a contains the upper trapezoidal matrix, and
the strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading m-by-n lower trapezoidal part
of the array a contains the lower trapezoidal matrix, and
the strictly upper triangular part of A is not referenced. Note
that when diag = 'U', the diagonal elements of A are not
referenced and are assumed to be one.

INTEGER. The leading dimension of the array a.lda

lda ≥ max(m,1).

REAL for slantr/clantrp.work
DOUBLE PRECISION for dlantr/zlantr.
Workspace array, DIMENSION (max(1,lwork)), where

lwork ≥ m when norm = 'I' ; otherwise, work is not
referenced.

1332

5 Intel® Math Kernel Library Reference Manual

Output Parameters

REAL for slantr/clantrp.val
DOUBLE PRECISION for dlantr/zlantr.
Value returned by the function.

?lanv2
Computes the Schur factorization of a real 2-by-2
nonsymmetric matrix in standard form.

Syntax

call slanv2(a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn)

call dlanv2(a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn)

Description

The routine computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard
form:

where either

1. cc = 0 so that aa and dd are real eigenvalues of the matrix, or

2. aa = dd and bb*cc < 0, so that aa ± sqrt(bb*cc) are complex conjugate eigenvalues.

The routine was adjusted to reduce the risk of cancellation errors, when computing real

eigenvalues, and to ensure, if possible, that abs(rt1r) ≥ abs(rt2r).

Input Parameters

REAL for slanv2a, b, c, d
DOUBLE PRECISION for dlanv2.
On entry, elements of the input matrix.

1333

LAPACK Auxiliary and Utility Routines 5

Output Parameters

On exit, overwritten by the elements of the standardized
Schur form.

a, b, c, d

REAL for slanv2rt1r, rt1i, rt2r, rt2i
DOUBLE PRECISION for dlanv2.
The real and imaginary parts of the eigenvalues.
If the eigenvalues are a complex conjugate pair, rt1i >
0.

REAL for slanv2cs, sn
DOUBLE PRECISION for dlanv2.
Parameters of the rotation matrix.

?lapll
Measures the linear dependence of two vectors.

Syntax

call slapll(n, x, incx, Y, incy, ssmin)

call dlapll(n, x, incx, Y, incy, ssmin)

call clapll(n, x, incx, Y, incy, ssmin)

call zlapll(n, x, incx, Y, incy, ssmin)

Description

Given two column vectors x and y of length n, let

A = (x y) be the n-by-2 matrix.

The routine ?lapll first computes the QR factorization of A as A = Q*R and then computes the
SVD of the 2-by-2 upper triangular matrix R. The smaller singular value of R is returned in
ssmin, which is used as the measurement of the linear dependency of the vectors x and y.

Input Parameters

INTEGER. The length of the vectors x and y.n

REAL for slapllx
DOUBLE PRECISION for dlapll
COMPLEX for clapll

1334

5 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for zlapll
Array, DIMENSION (1+(n-1)incx).
On entry, x contains the n-vector x.

REAL for slaplly
DOUBLE PRECISION for dlapll
COMPLEX for clapll
COMPLEX*16 for zlapll
Array, DIMENSION (1+(n-1)incy).
On entry, y contains the n-vector y.

INTEGER. The increment between successive elements of
x; incx > 0.

incx

INTEGER. The increment between successive elements of
y; incy > 0.

incy

Output Parameters

On exit, x is overwritten.x

On exit, y is overwritten.y

REAL for slapll/clapllssmin
DOUBLE PRECISION for dlapll/zlapll
The smallest singular value of the n-by-2 matrix A = (x y)
.

?lapmt
Performs a forward or backward permutation of
the columns of a matrix.

Syntax

call slapmt(forwrd, m, n, x, ldx, k)

call dlapmt(forwrd, m, n, x, ldx, k)

call clapmt(forwrd, m, n, x, ldx, k)

call zlapmt(forwrd, m, n, x, ldx, k)

1335

LAPACK Auxiliary and Utility Routines 5

Description

The routine ?lapmt rearranges the columns of the m-by-n matrix X as specified by the
permutation k(1),k(2),...,k(n) of the integers 1,...,n.

If forwrd = .TRUE., forward permutation:

X(*,k(j)) is moved to X(*,j) for j=1,2,...,n.

If forwrd = .FALSE., backward permutation:

X(*,j) is moved to X(*,k(j)) for j = 1,2,...,n.

Input Parameters

LOGICAL.forwrd
If forwrd = .TRUE., forward permutation
If forwrd = .FALSE., backward permutation

INTEGER. The number of rows of the matrix X. m ≥ 0.m

INTEGER. The number of columns of the matrix X. n ≥ 0.n

REAL for slapmtx
DOUBLE PRECISION for dlapmt
COMPLEX for clapmt
COMPLEX*16 for zlapmt
Array, DIMENSION (ldx,n). On entry, the m-by-n matrix X.

INTEGER. The leading dimension of the array X, ldx ≥
max(1,m).

ldx

INTEGER. Array, DIMENSION (n). On entry, k contains the
permutation vector and is used as internal workspace.

k

Output Parameters

On exit, x contains the permuted matrix X.x

On exit, k is reset to its original value.k

1336

5 Intel® Math Kernel Library Reference Manual

?lapy2
Returns sqrt(x2+y2).

Syntax

val = slapy2(x, y)

val = dlapy2(x, y)

Description

The function ?lapy2 returns sqrt(x2+y2), avoiding unnecessary overflow or harmful underflow.

Input Parameters

REAL for slapy2x, y
DOUBLE PRECISION for dlapy2
Specify the input values x and y.

Output Parameters

REAL for slapy2val
DOUBLE PRECISION for dlapy2.
Value returned by the function.

?lapy3
Returns sqrt(x2+y2+z2).

Syntax

val = slapy3(x, y, z)

val = dlapy3(x, y, z)

Description

The function ?lapy3 returns sqrt(x2+y2+z2), avoiding unnecessary overflow or harmful
underflow.

1337

LAPACK Auxiliary and Utility Routines 5

Input Parameters

REAL for slapy3x, y, z
DOUBLE PRECISION for dlapy3
Specify the input values x, y and z.

Output Parameters

REAL for slapy3val
DOUBLE PRECISION for dlapy3.
Value returned by the function.

?laqgb
Scales a general band matrix, using row and
column scaling factors computed by ?gbequ.

Syntax

call slaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)

call dlaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)

call claqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)

call zlaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)

Description

The routine equilibrates a general m-by-n band matrix A with kl subdiagonals and ku
superdiagonals using the row and column scaling factors in the vectors r and c.

Input Parameters

INTEGER. The number of rows of the matrix A. m ≥ 0.m

INTEGER. The number of columns of the matrix A. n ≥ 0.n

INTEGER. The number of subdiagonals within the band of

A. kl ≥ 0.

kl

INTEGER. The number of superdiagonals within the band of

A. ku ≥ 0.

ku

1338

5 Intel® Math Kernel Library Reference Manual

REAL for slaqgbab
DOUBLE PRECISION for dlaqgb
COMPLEX for claqgb
COMPLEX*16 for zlaqgb
Array, DIMENSION (ldab,n). On entry, the matrix A in band
storage, in rows 1 to kl+ku+1. The j-th column of A is
stored in the j-th column of the array ab as follows:

ab(ku+1+i-j,j) = A(i,j) for max(1,j-ku) ≤ i ≤
min(m,j+kl).

INTEGER. The leading dimension of the array ab.ldab

lda ≥ kl+ku+1.

REAL for slaqgb/claqgbamax
DOUBLE PRECISION for dlaqgb/zlaqgb
Absolute value of largest matrix entry.

REAL for slaqgb/claqgbr, c
DOUBLE PRECISION for dlaqgb/zlaqgb
Arrays r (m), c (n). Contain the row and column scale factors
for A, respectively.

REAL for slaqgb/claqgbrowcnd
DOUBLE PRECISION for dlaqgb/zlaqgb
Ratio of the smallest r(i) to the largest r(i).

REAL for slaqgb/claqgbcolcnd
DOUBLE PRECISION for dlaqgb/zlaqgb
Ratio of the smallest c(i) to the largest c(i).

Output Parameters

On exit, the equilibrated matrix, in the same storage format
as A.

ab

See equed for the form of the equilibrated matrix.

CHARACTER*1.equed
Specifies the form of equilibration that was done.
If equed = 'N': No equilibration
If equed = 'R': Row equilibration, that is, A has been
premultiplied by diag(r).
If equed = 'C': Column equilibration, that is, A has been
postmultiplied by diag(c).

1339

LAPACK Auxiliary and Utility Routines 5

If equed = 'B': Both row and column equilibration, that
is, A has been replaced by diag(r)*A*diag(c).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following
meaning. thresh is a threshold value used to decide if row or column scaling should be done
based on the ratio of the row or column scaling factors. If rowcnd < thresh, row scaling is
done, and if colcnd < thresh, column scaling is done. large and small are threshold values
used to decide if row scaling should be done based on the absolute size of the largest matrix
element. If amax > large or amax < small, row scaling is done.

?laqge
Scales a general rectangular matrix, using row and
column scaling factors computed by ?geequ.

Syntax

call slaqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

call dlaqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

call claqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

call zlaqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

Description

The routine equilibrates a general m-by-n matrix A using the row and column scaling factors in
the vectors r and c.

Input Parameters

INTEGER. The number of rows of the matrix A.m

m ≥ 0.

INTEGER. The number of columns of the matrix A.n

n ≥ 0.

REAL for slaqgea
DOUBLE PRECISION for dlaqge
COMPLEX for claqge

1340

5 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for zlaqge
Array, DIMENSION (lda,n). On entry, the m-by-n matrix A.

INTEGER. The leading dimension of the array a.lda

lda ≥ max(m,1).

REAL for slanqge/claqger
DOUBLE PRECISION for dlaqge/zlaqge
Array, DIMENSION (m). The row scale factors for A.

REAL for slanqge/claqgec
DOUBLE PRECISION for dlaqge/zlaqge
Array, DIMENSION (n). The column scale factors for A.

REAL for slanqge/claqgerowcnd
DOUBLE PRECISION for dlaqge/zlaqge
Ratio of the smallest r(i) to the largest r(i).

REAL for slanqge/claqgecolcnd
DOUBLE PRECISION for dlaqge/zlaqge
Ratio of the smallest c(i) to the largest c(i).

REAL for slanqge/claqgeamax
DOUBLE PRECISION for dlaqge/zlaqge
Absolute value of largest matrix entry.

Output Parameters

On exit, the equilibrated matrix.a
See equed for the form of the equilibrated matrix.

CHARACTER*1.equed
Specifies the form of equilibration that was done.
If equed = 'N': No equilibration
If equed = 'R': Row equilibration, that is, A has been
premultiplied by diag(r).
If equed = 'C': Column equilibration, that is, A has been
postmultiplied by diag(c).
If equed = 'B': Both row and column equilibration, that
is, A has been replaced by diag(r)*A*diag(c).

1341

LAPACK Auxiliary and Utility Routines 5

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following
meaning. thresh is a threshold value used to decide if row or column scaling should be done
based on the ratio of the row or column scaling factors. If rowcnd < thresh, row scaling is
done, and if colcnd < thresh, column scaling is done. large and small are threshold values
used to decide if row scaling should be done based on the absolute size of the largest matrix
element. If amax > large or amax < small, row scaling is done.

?laqhb
Scales a Hermetian band matrix, using scaling
factors computed by ?pbequ.

Syntax

call claqhb(uplo, n, kd, ab, ldab, s, scond, amax, equed)

call zlaqhb(uplo, n, kd, ab, ldab, s, scond, amax, equed)

Description

The routine equilibrates a Hermetian band matrix A using the scaling factors in the vector s.

Input Parameters

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
band matrix A is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.

INTEGER. The order of the matrix A.n

n ≥ 0.

INTEGER. The number of super-diagonals of the matrix A if
uplo = 'U', or the number of sub-diagonals if uplo =
'L'.

kd

kd ≥ 0.

COMPLEX for claqhbab
COMPLEX*16 for zlaqhb

1342

5 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (ldab,n). On entry, the upper or lower
triangle of the band matrix A, stored in the first kd+1 rows
of the array. The j-th column of A is stored in the j-th
column of the array ab as follows:
if uplo = 'U', ab(kd+1+i-j,j) = A(i,j) for

max(1,j-kd) ≤ i ≤ j;

if uplo = 'L', ab(1+i-j,j) = A(i,j) for j ≤ i ≤
min(n,j+kd).

INTEGER. The leading dimension of the array ab.ldab

ldab ≥ kd+1.

REAL for claqsbscond
DOUBLE PRECISION for zlaqsb
Ratio of the smallest s(i) to the largest s(i).

REAL for claqsbamax
DOUBLE PRECISION for zlaqsb
Absolute value of largest matrix entry.

Output Parameters

On exit, if info = 0, the triangular factor U or L from the
Cholesky factorization A = U'*U or A = L*L' of the band
matrix A, in the same storage format as A.

ab

REAL for claqsbs
DOUBLE PRECISION for zlaqsb
Array, DIMENSION (n). The scale factors for A.

CHARACTER*1.equed
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed = 'Y': Equilibration was done, that is, A has been
replaced by diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following
meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of
the scaling factors. If scond < thresh, scaling is done.

1343

LAPACK Auxiliary and Utility Routines 5

The values large and small are threshold values used to decide if scaling should be done based
on the absolute size of the largest matrix element. If amax > large or amax < small, scaling
is done.

?laqp2
Computes a QR factorization with column pivoting
of the matrix block.

Syntax

call slaqp2(m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

call dlaqp2(m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

call claqp2(m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

call zlaqp2(m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

Description

The routine computes a QR factorization with column pivoting of the block A(offset+1:m,1:n).
The block A(1:offset,1:n) is accordingly pivoted, but not factorized.

Input Parameters

INTEGER. The number of rows of the matrix A. m ≥ 0.m

INTEGER. The number of columns of the matrix A. n ≥ 0.n

INTEGER. The number of rows of the matrix A that must be

pivoted but no factorized. offset ≥ 0.

offset

REAL for slaqp2a
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2
Array, DIMENSION (lda,n). On entry, the m-by-n matrix A.

INTEGER. The leading dimension of the array a. lda ≥
max(1,m).

lda

INTEGER.jpvt
Array, DIMENSION (n).

1344

5 Intel® Math Kernel Library Reference Manual

On entry, if jpvt(i) ≠ 0, the i-th column of A is permuted
to the front of A*P (a leading column); if jpvt(i) = 0, the
i-th column of A is a free column.

REAL for slaqp2/claqp2vn1, vn2
DOUBLE PRECISION for dlaqp2/zlaqp2
Arrays, DIMENSION (n) each. Contain the vectors with the
partial and exact column norms, respectively.

REAL for slaqp2work
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2 Workspace array, DIMENSION (n).

Output Parameters

On exit, the upper triangle of block A(offset+1:m,1:n) is
the triangular factor obtained; the elements in block
A(offset+1:m,1:n) below the diagonal, together with the

a

array tau, represent the orthogonal matrix Q as a product
of elementary reflectors. Block A(1:offset,1:n) has been
accordingly pivoted, but not factorized.

On exit, if jpvt(i) = k, then the i-th column of A*P was
the k-th column of A.

jpvt

REAL for slaqp2tau
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2
Array, DIMENSION (min(m,n)).
The scalar factors of the elementary reflectors.

Contain the vectors with the partial and exact column norms,
respectively.

vn1, vn2

1345

LAPACK Auxiliary and Utility Routines 5

?laqps
Computes a step of QR factorization with column
pivoting of a real m-by-n matrix A by using BLAS
level 3.

Syntax

call slaqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf
)

call dlaqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf
)

call claqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf
)

call zlaqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf
)

Description

This routine computes a step of QR factorization with column pivoting of a real m-by-n matrix
A by using BLAS level 3. The routine tries to factorize NB columns from A starting from the row
offset+1, and updates all of the matrix with BLAS level 3 routine ?gemm.

In some cases, due to catastrophic cancellations, ?laqps cannot factorize NB columns. Hence,
the actual number of factorized columns is returned in kb.

Block A(1:offset,1:n) is accordingly pivoted, but not factorized.

Input Parameters

INTEGER. The number of rows of the matrix A. m ≥ 0.m

INTEGER. The number of columns of the matrix A. n ≥ 0.n

INTEGER. The number of rows of A that have been factorized
in previous steps.

offset

INTEGER. The number of columns to factorize.nb

REAL for slaqpsa
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps

1346

5 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (lda,n).
On entry, the m-by-n matrix A.

INTEGER. The leading dimension of the array a.lda

lda ≥ max(1,m).

INTEGER. Array, DIMENSION (n).jpvt
If jpvt(I) = k then column k of the full matrix A has been
permuted into position i in AP.

REAL for slaqps/claqpsvn1, vn2
DOUBLE PRECISION for dlaqps/zlaqps
Arrays, DIMENSION (n) each. Contain the vectors with the
partial and exact column norms, respectively.

REAL for slaqpsauxv
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (nb). Auxiliary vector.

REAL for slaqpsf
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (ldf,nb). Matrix F' = L*Y'*A.

INTEGER. The leading dimension of the array f.ldf

ldf ≥ max(1,n).

Output Parameters

INTEGER. The number of columns actually factorized.kb

On exit, block A(offset+1:m,1:kb) is the triangular factor
obtained and block A(1:offset,1:n) has been accordingly
pivoted, but no factorized. The rest of the matrix, block
A(offset+1:m,kb+1:n) has been updated.

a

INTEGER array, DIMENSION (n). If jpvt(I) = k then
column k of the full matrix A has been permuted into position
i in AP.

jpvt

REAL for slaqpstau
DOUBLE PRECISION for dlaqps

1347

LAPACK Auxiliary and Utility Routines 5

COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (kb). The scalar factors of the elementary
reflectors.

The vectors with the partial and exact column norms,
respectively.

vn1, vn2

Auxiliary vector.auxv

Matrix F' = L*Y'*A.f

?laqr0
Computes the eigenvalues of a Hessenberg matrix,
and optionally the marixes from the Schur
decomposition.

Syntax

call slaqr0(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz,
work, lwork, info)

call dlaqr0(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz,
work, lwork, info)

call claqr0(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work,
lwork, info)

call zlaqr0(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work,
lwork, info)

Description

This routine computes the eigenvalues of a Hessenberg matrix H, and, optionally, the matrices
T and Z from the Schur decomposition H=Z*T*ZH, where T is an upper quasi-triangular/triangular
matrix (the Schur form), and Z is the orthogonal/unitary matrix of Schur vectors.

Optionally Z may be postmultiplied into an input orthogonal/unitary matrix Q so that this routine
can give the Schur factorization of a matrix A which has been reduced to the Hessenberg form
H by the orthogonal/unitary matrix Q: A = Q*H*QH = (QZ)*H*(QZ)H.

Input Parameters

LOGICAL.wantt

1348

5 Intel® Math Kernel Library Reference Manual

If wantt = .TRUE., the full Schur form T is required;
If wantt = .FALSE., only eigenvalues are required.

LOGICAL.wantz
If wantz = .TRUE., the matrix of Schur vectors Z is
required;
If wantz = .FALSE., Schur vectors are not required.

INTEGER. The order of the Hessenberg matrix H. (n ≥ 0).n

INTEGER.ilo, ihi
It is assumed that H is already upper triangular in rows and
columns 1:ilo-1 and ihi+1:n, and if ilo > 1 then
H(ilo, ilo-1) = 0.
ilo and ihi are normally set by a previous call to cgebal,
and then passed to cgehrd when the matrix output by
cgebal is reduced to Hessenberg form. Otherwise, ilo and
ihi should be set to 1 and n, respectively.

If n > 0, then 1 ≤ ilo ≤ ihi ≤ n.
If n=0, then ilo=1 and ihi=0

REAL for slaqr0h
DOUBLE PRECISION for dlaqr0
COMPLEX for claqr0
COMPLEX*16 for zlaqr0.
Array, DIMENSION (ldh, n), contains the upper Hessenberg
matrix H.

INTEGER. The leading dimension of the array h. ldh ≥
max(1, n).

ldh

INTEGER. Specify the rows of Z to which transformations

must be applied if wantz is .TRUE., 1 ≤ iloz ≤ ilo;

ihi ≤ ihiz ≤ n.

iloz, ihiz

REAL for slaqr0z
DOUBLE PRECISION for dlaqr0
COMPLEX for claqr0
COMPLEX*16 for zlaqr0.
Array, DIMENSION (ldz, ihi), contains the matrix Z if
wantz is .TRUE.. If wantz is .FALSE., z is not referenced.

1349

LAPACK Auxiliary and Utility Routines 5

INTEGER. The leading dimension of the array z.ldz

If wantz is .TRUE., then ldz ≥ max(1, ihiz). Otherwise,

ldz ≥ 1.

REAL for slaqr0work
DOUBLE PRECISION for dlaqr0
COMPLEX for claqr0
COMPLEX*16 for zlaqr0.
Workspace array with dimension lwork.

INTEGER. The dimension of the array work.lwork

lwork ≥ max(1,n) is sufficient, but for the optimal
performance a greater workspace may be required, typically
as large as 6*n.
It is recommended to use the worlspace query to determine
the optimal workspace size. If lwork=-1,then the routine
performs a workspace query: it estimates the optimal
workspace size for the given values of the input parameters
n, ilo, and ihi. The estimate is returned in work(1). No
error messages related to the lwork is issued by xerbla.
Neither H nor Z are accessed.

Output Parameters

If info=0 , and wantt is .TRUE., then h contains the upper
quasi-triangular/triangular matrix T from the Schur
decomposition (the Schur form).

h

If info=0 , and wantt is .FALSE., then the contents of h
are unspecified on exit.
(The output values of h when info > 0 are given under
the description of the info parameter below.)
The routine may explicitly set h(i,j) for i>j and
j=1,2,...ilo-1 or j=ihi+1, ihi+2,...n.

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

COMPLEX for claqr0w
COMPLEX*16 for zlaqr0.

1350

5 Intel® Math Kernel Library Reference Manual

Arrays, DIMENSION(n). The computed eigenvalues of
h(ilo:ihi, ilo:ihi) are stored in w(ilo:ihi). If wantt is
.TRUE., then the eigenvalues are stored in the same order
as on the diagonal of the Schur form returned in h, with
w(i) = h(i,i).

REAL for slaqr0wr, wi
DOUBLE PRECISION for dlaqr0
Arrays, DIMENSION(ihi) each. The real and imaginary parts,
respectively, of the computed eigenvalues of h(ilo:ihi,
ilo:ihi) are stored in the wr(ilo:ihi) and wi(ilo:ihi).
If two eigenvalues are computed as a complex conjugate
pair, they are stored in consecutive elements of wr and wi,
say the i-th and (i+1)-th, with wi(i)> 0 and wi(i+1) <
0. If wantt is .TRUE. , then the eigenvalues are stored in
the same order as on the diagonal of the Schur form
returned in h, with wr(i) = h(i,i), and if
h(i:i+1,i:i+1)is a 2-by-2 diagonal block, then
wi(i)=sqrt(-h(i+1,i)*h(i,i+1)).

If wantz is .TRUE., then z(ilo:ihi, iloz:ihiz) is
replaced by z(ilo:ihi, iloz:ihiz)*U, where U is the
orthogonal/unitary Schur factor of h(ilo:ihi, ilo:ihi).

z

If wantz is .FALSE., z is not referenced.
(The output values of z when info > 0 are given under
the description of the info parameter below.)

INTEGER.info
= 0: the execution is successful.
> 0: if info = i, then the routine failed to compute all the
eigenvalues. Elements 1:ilo-1 and i+1:n of wr and wi
contain those eigenvalues which have been successfully
computed.
> 0: if wantt is .FALSE., then the remaining unconverged
eigenvalues are the eigenvalues of the upper Hessenberg
matrix rows and columns ilo through info of the final
output value of h.

1351

LAPACK Auxiliary and Utility Routines 5

> 0: if wantt is .TRUE., then (initial value of h)*U =
U*(final value of h, where U is an orthogonal/unitary
matrix. The final value of h is upper Hessenberg and
quasi-triangular/triangular in rows and columns info+1
through ihi.
> 0: if wantz is .TRUE., then (final value of z(ilo:ihi,
iloz:ihiz))=(initial value of z(ilo:ihi, iloz:ihiz)*U,
where U is the orthogonal/unitary matrix in the previous
expression (regardless of the value of wantt).
> 0: if wantz is .FALSE., then z is not accessed.

?laqr1
Sets a scalar multiple of the first column of the
product of 2-by-2 or 3-by-3 matrix H and specified
shifts.

Syntax

call slaqr1(n, h, ldh, sr1, si1, sr2, si2, v)

call dlaqr1(n, h, ldh, sr1, si1, sr2, si2, v)

call claqr1(n, h, ldh, s1, s2, v)

call zlaqr1(n, h, ldh, s1, s2, v)

Description

Given a 2-by-2 or 3-by-3 matrix H, this routine sets v to a scalar multiple of the first column
of the product

K = (H - s1*I)*(H - s2*I), or K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)

scaling to avoid overflows and most underflows.

It is assumed that either 1) sr1 = sr2 and si1 = -si2, or 2) si1 = si2 = 0.

This is useful for starting double implicit shift bulges in the QR algorithm.

Input Parameters

INTEGER.n
The order of the matrix H. n must be equal to 2 or 3.

1352

5 Intel® Math Kernel Library Reference Manual

REAL for slaqr1sr1, si2, sr2, si2
DOUBLE PRECISION for dlaqr1
Shift values that define K in the formula above.

COMPLEX for claqr1s1, s2
COMPLEX*16 for zlaqr1.
Shift values that define K in the formula above.

REAL for slaqr1h
DOUBLE PRECISION for dlaqr1
COMPLEX for claqr1
COMPLEX*16 for zlaqr1.
Array, DIMENSION (ldh, n), contains 2-by-2 or 3-by-3 matrix
H in the formula above.

INTEGER.ldh
The leading dimension of the array h just as declared in the

calling routine. ldh ≥ n.

Output Parameters

REAL for slaqr1v
DOUBLE PRECISION for dlaqr1
COMPLEX for claqr1
COMPLEX*16 for zlaqr1.
Array with dimension (n).
A scalar multiple of the first column of the matrix K in the
formula above.

1353

LAPACK Auxiliary and Utility Routines 5

?laqr2
Performs the orthogonal/unitary similarity
transformation of a Hessenberg matrix to detect
and deflate fully converged eigenvalues from a
trailing principal submatrix (aggresive early
deflation).

Syntax

call slaqr2(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns,
nd, sr, si, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)

call dlaqr2(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns,
nd, sr, si, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)

call claqr2(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns,
nd, sh, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)

call zlaqr2(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns,
nd, sh, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)

Description

This routine accepts as input an upper Hessenberg matrix H and performs an orthogonal/unitary
similarity transformation designed to detect and deflate fully converged eigenvalues from a
trailing principal submatrix. On output H has been overwritten by a new Hessenberg matrix
that is a perturbation of an orthogonal/unitary similarity transformation of H. It is to be hoped
that the final version of H has many zero subdiagonal entries.

This subroutine is identical to ?laqr3 except that it avoids recursion by calling ?lahqr instead
of ?laqr4.

Input Parameters

LOGICAL.wantt
If wantt = .TRUE., then the Hessenberg matrix H is fully
updated so that the quasi-triangular/triangular Schur factor
may be computed (in cooperation with the calling
subroutine).
If wantt = .FALSE., then only enough of H is updated to
preserve the eigenvalues.

LOGICAL.wantz

1354

5 Intel® Math Kernel Library Reference Manual

If wantz = .TRUE., then the orthogonal/unitary matrix Z
is updated so that the orthogonal/unitary Schur factor may
be computed (in cooperation with the calling subroutine).
If wantz = .FALSE., then Z is not referenced.

INTEGER. The order of the Hessenberg matrix H and (if
wantz = .TRUE.) the order of the orthogonal/unitary matrix
Z. .

n

INTEGER.ktop
It is assumed that either ktop=1 or h(ktop,ktop-1)=0.
ktop and kbot together determine an isolated block along
the diagonal of the Hessenberg matrix.

INTEGER.kbot
It is assumed without a check that either kbot=n or
h(kbot+1,kbot)=0. ktop and kbot together determine an
isolated block along the diagonal of the Hessenberg matrix.

INTEGER.nw

Size of the deflation window. 1 ≤ nw ≤ (kbot-ktop+1).

REAL for slaqr2h
DOUBLE PRECISION for dlaqr2
COMPLEX for claqr2
COMPLEX*16 for zlaqr2.
Array, DIMENSION (ldh, n), on input the initial n-by-n
section of h stores the Hessenberg matrix H undergoing
aggressive early deflation.

INTEGER. The leading dimension of the array h just as

declared in the calling subroutine. ldh≥n.

ldh

INTEGER. Specify the rows of Z to which transformations

must be applied if wantz is .TRUE.. 1 ≤ iloz ≤ ihiz ≤
n.

iloz, ihiz

REAL for slaqr2z
DOUBLE PRECISION for dlaqr2
COMPLEX for claqr2
COMPLEX*16 for zlaqr2.
Array, DIMENSION (ldz, ihi), contains the matrix Z if
wantz is .TRUE.. If wantz is .FALSE., then z is not
referenced.

1355

LAPACK Auxiliary and Utility Routines 5

INTEGER. The leading dimension of the array z just as

declared in the calling subroutine. ldz ≥ 1.

ldz

REAL for slaqr2v
DOUBLE PRECISION for dlaqr2
COMPLEX for claqr2
COMPLEX*16 for zlaqr2.
Workspace array with dimension (ldv, nw). An nw-by-nw
work array.

INTEGER. The leading dimension of the array v just as

declared in the calling subroutine. ldv ≥ nw.

ldv

INTEGER. The number of column of t. nh ≥ nw.nh

REAL for slaqr2t
DOUBLE PRECISION for dlaqr2
COMPLEX for claqr2
COMPLEX*16 for zlaqr2.
Workspace array with dimension (ldt, nw).

INTEGER. The leading dimension of the array t just as

declared in the calling subroutine. ldt≥nw.

ldt

INTEGER. The number of rows of work array wv available

for workspace. nv≥nw.

nv

REAL for slaqr2wv
DOUBLE PRECISION for dlaqr2
COMPLEX for claqr2
COMPLEX*16 for zlaqr2.
Workspace array with dimension (ldwv, nw).

INTEGER. The leading dimension of the array wv just as

declared in the calling subroutine. ldwv≥nw.

ldwv

REAL for slaqr2work
DOUBLE PRECISION for dlaqr2
COMPLEX for claqr2
COMPLEX*16 for zlaqr2.
Workspace array with dimension lwork.

INTEGER. The dimension of the array work.lwork

1356

5 Intel® Math Kernel Library Reference Manual

lwork=2*nw) is sufficient, but for the optimal performance
a greater workspace may be required.
If lwork=-1,then the routine performs a workspace query:
it estimates the optimal workspace size for the given values
of the input parameters n, nw, ktop, and kbot. The estimate
is returned in work(1). No error messages related to the
lwork is issued by xerbla. Neither H nor Z are accessed.

Output Parameters

On output h has been transformed by an orthogonal/unitary
similarity transformation, perturbed, and the returned to
Hessenberg form that (it is to be hoped) has some zero
subdiagonal entries.

h

On exit work(1) is set to an estimate of the optimal value
of lwork for the given values of the input parameters n,
nw, ktop, and kbot.

work(1)

If wantz is .TRUE., then the orthogonal/unitary similarity
transformation is accumulated into z(iloz:ihiz, ilo:ihi)
from the right.

z

If wantz is .FALSE., then z is unreferenced.

INTEGER. The number of converged eigenvalues uncovered
by the routine.

nd

INTEGER. The number of unconverged, that is approximate
eigenvalues returned in sr, si or in sh that may be used
as shifts by the calling subroutine.

ns

COMPLEX for claqr2sh
COMPLEX*16 for zlaqr2.
Arrays, DIMENSION (kbot).
The approximate eigenvalues that may be used for shifts
are stored in the sh(kbot-nd-ns+1)through the
sh(kbot-nd).
The converged eigenvalues are stored in the
sh(kbot-nd+1)through the sh(kbot).

REAL for slaqr2sr, si
DOUBLE PRECISION for dlaqr2
Arrays, DIMENSION (kbot) each.

1357

LAPACK Auxiliary and Utility Routines 5

The real and imaginary parts of the approximate eigenvalues
that may be used for shifts are stored in the
sr(kbot-nd-ns+1)through the sr(kbot-nd), and
si(kbot-nd-ns+1) through the si(kbot-nd), respectively.
The real and imaginary parts of converged eigenvalues are
stored in the sr(kbot-nd+1)through the sr(kbot), and
si(kbot-nd+1) through the si(kbot), respectively.

?laqr3
Performs the orthogonal/unitary similarity
transformation of a Hessenberg matrix to detect
and deflate fully converged eigenvalues from a
trailing principal submatrix (aggresive early
deflation).

Syntax

call slaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns,
nd, sr, si, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)

call dlaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns,
nd, sr, si, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)

call claqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns,
nd, sh, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)

call zlaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns,
nd, sh, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)

Description

This routine accepts as input an upper Hessenberg matrix H and performs an orthogonal/unitary
similarity transformation designed to detect and deflate fully converged eigenvalues from a
trailing principal submatrix. On output H has been overwritten by a new Hessenberg matrix
that is a perturbation of an orthogonal/unitary similarity transformation of H. It is to be hoped
that the final version of H has many zero subdiagonal entries.

Input Parameters

LOGICAL.wantt

1358

5 Intel® Math Kernel Library Reference Manual

If wantt = .TRUE., then the Hessenberg matrix H is fully
updated so that the quasi-triangular/triangular Schur factor
may be computed (in cooperation with the calling
subroutine).
If wantt = .FALSE., then only enough of H is updated to
preserve the eigenvalues.

LOGICAL.wantz
If wantz = .TRUE., then the orthogonal/unitary matrix Z
is updated so that the orthogonal/unitary Schur factor may
be computed (in cooperation with the calling subroutine).
If wantz = .FALSE., then Z is not referenced.

INTEGER. The order of the Hessenberg matrix H and (if
wantz = .TRUE.) the order of the orthogonal/unitary matrix
Z.

n

INTEGER.ktop
It is assumed that either ktop=1 or h(ktop,ktop-1)=0.
ktop and kbot together determine an isolated block along
the diagonal of the Hessenberg matrix.

INTEGER.kbot
It is assumed without a check that either kbot=n or
h(kbot+1,kbot)=0. ktop and kbot together determine an
isolated block along the diagonal of the Hessenberg matrix.

INTEGER.nw

Size of the deflation window. 1≤nw≤(kbot-ktop+1).

REAL for slaqr3h
DOUBLE PRECISION for dlaqr3
COMPLEX for claqr3
COMPLEX*16 for zlaqr3.
Array, DIMENSION (ldh, n), on input the initial n-by-n
section of h stores the Hessenberg matrix H undergoing
aggressive early deflation.

INTEGER. The leading dimension of the array h just as

declared in the calling subroutine. ldh≥n.

ldh

INTEGER. Specify the rows of Z to which transformations

must be applied if wantz is .TRUE.. 1≤iloz≤ihiz≤n.

iloz, ihiz

1359

LAPACK Auxiliary and Utility Routines 5

REAL for slaqr3z
DOUBLE PRECISION for dlaqr3
COMPLEX for claqr3
COMPLEX*16 for zlaqr3.
Array, DIMENSION (ldz, ihi), contains the matrix Z if
wantz is .TRUE.. If wantz is .FALSE., then z is not
referenced.

INTEGER. The leading dimension of the array z just as

declared in the calling subroutine. ldz≥1.

ldz

REAL for slaqr3v
DOUBLE PRECISION for dlaqr3
COMPLEX for claqr3
COMPLEX*16 for zlaqr3.
Workspace array with dimension (ldv, nw). An nw-by-nw
work array.

INTEGER. The leading dimension of the array v just as

declared in the calling subroutine. ldv≥nw.

ldv

INTEGER. The number of column of t. nh≥nw.nh

REAL for slaqr3t
DOUBLE PRECISION for dlaqr3
COMPLEX for claqr3
COMPLEX*16 for zlaqr3.
Workspace array with dimension (ldt, nw).

INTEGER. The leading dimension of the array t just as

declared in the calling subroutine. ldt≥nw.

ldt

INTEGER. The number of rows of work array wv available

for workspace. nv≥nw.

nv

REAL for slaqr3wv
DOUBLE PRECISION for dlaqr3
COMPLEX for claqr3
COMPLEX*16 for zlaqr3.
Workspace array with dimension (ldwv, nw).

INTEGER. The leading dimension of the array wv just as

declared in the calling subroutine. ldwv≥nw.

ldwv

1360

5 Intel® Math Kernel Library Reference Manual

REAL for slaqr3work
DOUBLE PRECISION for dlaqr3
COMPLEX for claqr3
COMPLEX*16 for zlaqr3.
Workspace array with dimension lwork.

INTEGER. The dimension of the array work.lwork
lwork=2*nw) is sufficient, but for the optimal performance
a greater workspace may be required.
If lwork=-1,then the routine performs a workspace query:
it estimates the optimal workspace size for the given values
of the input parameters n, nw, ktop, and kbot. The estimate
is returned in work(1). No error messages related to the
lwork is issued by xerbla. Neither H nor Z are accessed.

Output Parameters

On output h has been transformed by an orthogonal/unitary
similarity transformation, perturbed, and the returned to
Hessenberg form that (it is to be hoped) has some zero
subdiagonal entries.

h

On exit work(1) is set to an estimate of the optimal value
of lwork for the given values of the input parameters n,
nw, ktop, and kbot.

work(1)

If wantz is .TRUE., then the orthogonal/unitary similarity
transformation is accumulated into z(iloz:ihiz, ilo:ihi)
from the right.

z

If wantz is .FALSE., then z is unreferenced.

INTEGER. The number of converged eigenvalues uncovered
by the routine.

nd

INTEGER. The number of unconverged, that is approximate
eigenvalues returned in sr, si or in sh that may be used
as shifts by the calling subroutine.

ns

COMPLEX for claqr3sh
COMPLEX*16 for zlaqr3.
Arrays, DIMENSION (kbot).

1361

LAPACK Auxiliary and Utility Routines 5

The approximate eigenvalues that may be used for shifts
are stored in the sh(kbot-nd-ns+1)through the
sh(kbot-nd).
The converged eigenvalues are stored in the
sh(kbot-nd+1)through the sh(kbot).

REAL for slaqr3sr, si
DOUBLE PRECISION for dlaqr3
Arrays, DIMENSION (kbot) each.
The real and imaginary parts of the approximate eigenvalues
that may be used for shifts are stored in the
sr(kbot-nd-ns+1)through the sr(kbot-nd), and
si(kbot-nd-ns+1) through the si(kbot-nd), respectively.
The real and imaginary parts of converged eigenvalues are
stored in the sr(kbot-nd+1)through the sr(kbot), and
si(kbot-nd+1) through the si(kbot), respectively.

?laqr4
Computes the eigenvalues of a Hessenberg matrix,
and optionally the marices from the Schur
decomposition.

Syntax

call slaqr4(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz,
work, lwork, info)

call dlaqr4(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz,
work, lwork, info)

call claqr4(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work,
lwork, info)

call zlaqr4(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work,
lwork, info)

Description

This routine computes the eigenvalues of a Hessenberg matrix H, and, optionally, the matrices
T and Z from the Schur decomposition H=Z*T*ZH, where T is an upper quasi-triangular/triangular
matrix (the Schur form), and Z is the orthogonal/unitary matrix of Schur vectors.

1362

5 Intel® Math Kernel Library Reference Manual

Optionally Z may be postmultiplied into an input orthogonal/unitary matrix Q so that this routine
can give the Schur factorization of a matrix A which has been reduced to the Hessenberg form
H by the orthogonal/unitary matrix Q: A = Q*H*QH = (QZ)*H*(QZ)H.

This routine implements one level of recursion for ?laqr0. It is a complete implementation of
the small bulge multi-shift QR algorithm. It may be called by ?laqr0 and, for large enough
deflation window size, it may be called by ?laqr3. This routine is identical to ?laqr0 except
that it calls ?laqr2 instead of ?laqr3.

Input Parameters

LOGICAL.wantt
If wantt = .TRUE., the full Schur form T is required;
If wantt = .FALSE., only eigenvalues are required.

LOGICAL.wantz
If wantz = .TRUE., the matrix of Schur vectors Z is
required;
If wantz = .FALSE., Schur vectors are not required.

INTEGER. The order of the Hessenberg matrix H. (n ≥ 0).n

INTEGER.ilo, ihi
It is assumed that H is already upper triangular in rows and
columns 1:ilo-1 and ihi+1:n, and if ilo > 1 then
h(ilo, ilo-1) = 0.
ilo and ihi are normally set by a previous call to cgebal,
and then passed to cgehrd when the matrix output by
cgebal is reduced to Hessenberg form. Otherwise, ilo and
ihi should be set to 1 and n, respectively.

If n > 0, then 1 ≤ ilo ≤ ihi ≤ n.
If n=0, then ilo=1 and ihi=0

REAL for slaqr4h
DOUBLE PRECISION for dlaqr4
COMPLEX for claqr4
COMPLEX*16 for zlaqr4.
Array, DIMENSION (ldh, n), contains the upper Hessenberg
matrix H.

INTEGER. The leading dimension of the array h. ldh ≥
max(1, n).

ldh

1363

LAPACK Auxiliary and Utility Routines 5

INTEGER. Specify the rows of Z to which transformations

must be applied if wantz is .TRUE., 1 ≤ iloz ≤ ilo;

ihi ≤ ihiz ≤ n.

iloz, ihiz

REAL for slaqr4z
DOUBLE PRECISION for dlaqr4
COMPLEX for claqr4
COMPLEX*16 for zlaqr4.
Array, DIMENSION (ldz, ihi), contains the matrix Z if
wantz is .TRUE.. If wantz is .FALSE., z is not referenced.

INTEGER. The leading dimension of the array z.ldz

If wantz is .TRUE., then ldz ≥ max(1, ihiz). Otherwise,

ldz ≥ 1.

REAL for slaqr4work
DOUBLE PRECISION for dlaqr4
COMPLEX for claqr4
COMPLEX*16 for zlaqr4.
Workspace array with dimension lwork.

INTEGER. The dimension of the array work.lwork

lwork ≥ max(1,n) is sufficient, but for the optimal
performance a greater workspace may be required, typically
as large as 6*n.
It is recommended to use the worlspace query to determine
the optimal workspace size. If lwork=-1,then the routine
performs a workspace query: it estimates the optimal
workspace size for the given values of the input parameters
n, ilo, and ihi. The estimate is returned in work(1). No
error messages related to the lwork is issued by xerbla.
Neither H nor Z are accessed.

Output Parameters

If info=0 , and wantt is .TRUE., then h contains the upper
quasi-triangular/triangular matrix T from the Schur
decomposition (the Schur form).

h

If info=0 , and wantt is .FALSE., then the contents of h
are unspecified on exit.

1364

5 Intel® Math Kernel Library Reference Manual

(The output values of h when info > 0 are given under
the description of the info parameter below.)
The routines may explicitly set h(i,j) for i>j and
j=1,2,...ilo-1 or j=ihi+1, ihi+2,...n.

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

COMPLEX for claqr4w
COMPLEX*16 for zlaqr4.
Arrays, DIMENSION(n). The computed eigenvalues of
h(ilo:ihi, ilo:ihi) are stored in w(ilo:ihi). If wantt is
.TRUE., then the eigenvalues are stored in the same order
as on the diagonal of the Schur form returned in h, with
w(i) = h(i,i).

REAL for slaqr4wr, wi
DOUBLE PRECISION for dlaqr4
Arrays, DIMENSION(ihi) each. The real and imaginary parts,
respectively, of the computed eigenvalues of h(ilo:ihi,
ilo:ihi) are stored in the wr(ilo:ihi) and wi(ilo:ihi).
If two eigenvalues are computed as a complex conjugate
pair, they are stored in consecutive elements of wr and wi,
say the i-th and (i+1)-th, with wi(i)> 0 and wi(i+1) <
0. If wantt is .TRUE. , then the eigenvalues are stored in
the same order as on the diagonal of the Schur form
returned in h, with wr(i) = h(i,i), and if
h(i:i+1,i:i+1)is a 2-by-2 diagonal block, then
wi(i)=sqrt(-h(i+1,i)*h(i,i+1)).

If wantz is .TRUE., then z(ilo:ihi, iloz:ihiz) is
replaced by z(ilo:ihi, iloz:ihiz)*U, where U is the
orthogonal/unitary Schur factor of h(ilo:ihi, ilo:ihi).

z

If wantz is .FALSE., z is not referenced.
(The output values of z when info > 0 are given under
the description of the info parameter below.)

INTEGER.info
= 0: the execution is successful.

1365

LAPACK Auxiliary and Utility Routines 5

> 0: if info = i, then the routine failed to compute all the
eigenvalues. Elements 1:ilo-1 and i+1:n of wr and wi
contain those eigenvalues which have been successfully
computed.
> 0: if wantt is .FALSE., then the remaining unconverged
eigenvalues are the eigenvalues of the upper Hessenberg
matrix rows and columns ilo through info of the final
output value of h.
> 0: if wantt is .TRUE., then (initial value of h)*U =
U*(final value of h, where U is an orthogonal/unitary
matrix. The final value of h is upper Hessenberg and
quasi-triangular/triangular in rows and columns info+1
through ihi.
> 0: if wantz is .TRUE., then (final value of z(ilo:ihi,
iloz:ihiz))=(initial value of z(ilo:ihi, iloz:ihiz)*U,
where U is the orthogonal/unitary matrix in the previous
expression (regardless of the value of wantt).
> 0: if wantz is .FALSE., then z is not accessed.

?laqr5
Performs a single small-bulge multi-shift QR sweep.

Syntax

call slaqr5(wantt, wantz, kacc22, n, ktop, kbot, nshfts, sr, si, h, ldh,
iloz, ihiz, z, ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh)

call dlaqr5(wantt, wantz, kacc22, n, ktop, kbot, nshfts, sr, si, h, ldh,
iloz, ihiz, z, ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh)

call claqr5(wantt, wantz, kacc22, n, ktop, kbot, nshfts, s, h, ldh, iloz,
ihiz, z, ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh)

call zlaqr5(wantt, wantz, kacc22, n, ktop, kbot, nshfts, s, h, ldh, iloz,
ihiz, z, ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh)

Description

This auxiliary routine called by ?laqr0 performs a single small-bulge multi-shift QR sweep.

1366

5 Intel® Math Kernel Library Reference Manual

Input Parameters

LOGICAL.wantt
wantt = .TRUE. if the quasi-triangular/triangular Schur
factor is computed.
wantt is set to .FALSE. otherwise.

LOGICAL.wantz
wantz = .TRUE. if the orthogonal/unitary Schur factor is
computed.
wantz is set to .FALSE. otherwise.

INTEGER. Possible values are 0, 1, or 2.kacc22
Specifies the computation mode of far-from-diagonal
orthogonal updates.
= 0: the routine does not accumulate reflections and does
not use matrix-matrix multiply to update far-from-diagonal
matrix entries.
= 1: the routine accumulates reflections and uses
matrix-matrix multiply to update the far-from-diagonal
matrix entries.
= 2: the routine accumulates reflections, uses matrix-matrix
multiply to update the far-from-diagonal matrix entries, and
takes advantage of 2-by-2 block structure during matrix
multiplies.

INTEGER. The order of the Hessenberg matrix H upon which
the routine operates.

n

INTEGER.ktop, kbot
It is assumed without a check that either ktop=1 or
h(ktop,ktop-1)=0, and either kbot=n or
h(kbot+1,kbot)=0.

INTEGER.nshfts
Number of simultaneous shifts, must be positive and even.

REAL for slaqr5sr, si
DOUBLE PRECISION for dlaqr5
Arrays, DIMENSION (nshfts) each.
sr contains the real parts and si contains the
imaginary parts of the nshfts shifts of origin that
define the multi-shift QR sweep.

1367

LAPACK Auxiliary and Utility Routines 5

COMPLEX for claqr5s
COMPLEX*16 for zlaqr5.
Arrays, DIMENSION (nshfts).
s contains the shifts of origin that define the multi-shift
QR sweep.
REAL for slaqr5h
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
COMPLEX*16 for zlaqr5.
Array, DIMENSION (ldh, n), on input contains the
Hessenberg matrix.

INTEGER. The leading dimension of the array h just as

declared in the calling routine. ldh ≥ max(1, n).

ldh

INTEGER. Specify the rows of Z to which transformations

must be applied if wantz is .TRUE.. 1 ≤ iloz ≤ ihiz ≤
n.

iloz, ihiz

REAL for slaqr5z
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
COMPLEX*16 for zlaqr5.
Array, DIMENSION (ldz, ihi), contains the matrix Z if
wantz is .TRUE.. If wantz is .FALSE., then z is not
referenced.

INTEGER. The leading dimension of the array z just as

declared in the calling routine. ldz ≥ n.

ldz

REAL for slaqr5v
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
COMPLEX*16 for zlaqr5.
Workspace array with dimension (ldv, nshfts/2).

INTEGER. The leading dimension of the array v just as

declared in the calling routine. ldv ≥ 3.

ldv

REAL for slaqr5u
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5

1368

5 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for zlaqr5.
Workspace array with dimension (ldu, 3*nshfts-3).

INTEGER. The leading dimension of the array u just as

declared in the calling routine. ldu ≥ 3*nshfts-3.

ldu

INTEGER. The number of column in the array wh available

for workspace. nh ≥ 1.

nh

REAL for slaqr5wh
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
COMPLEX*16 for zlaqr5.
Workspace array with dimension (ldwh, nh)

INTEGER. The leading dimension of the array wh just as

declared in the calling routine. ldwh ≥ 3*nshfts-3

ldwh

INTEGER. The number of rows of the array wv available for

workspace. nv ≥ 1.

nv

REAL for slaqr5wv
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
COMPLEX*16 for zlaqr5.
Workspace array with dimension (ldwv, 3*nshfts-3).

INTEGER. The leading dimension of the array wv just as

declared in the calling routine. ldwv ≥ nv.

ldwv

Output Parameters

On output a multi-shift QR Sweep with shifts
sr(j)+i*si(j) or s(j) is applied to the isolated diagonal
block in rows and columns ktop through kbot .

h

If wantz is .TRUE., then the QR Sweep orthogonal/unitary
similarity transformation is accumulated into z(iloz:ihiz,
ilo:ihi) from the right.

z

If wantz is .FALSE., then z is unreferenced.

1369

LAPACK Auxiliary and Utility Routines 5

?laqsb
Scales a symmetric band matrix, using scaling
factors computed by ?pbequ.

Syntax

call slaqsb(uplo, n, kd, ab, ldab, s, scond, amax, equed)

call dlaqsb(uplo, n, kd, ab, ldab, s, scond, amax, equed)

call claqsb(uplo, n, kd, ab, ldab, s, scond, amax, equed)

call zlaqsb(uplo, n, kd, ab, ldab, s, scond, amax, equed)

Description

The routine equilibrates a symmetric band matrix A using the scaling factors in the vector s.

Input Parameters

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.

INTEGER. The order of the matrix A.n

n ≥ 0.

INTEGER. The number of super-diagonals of the matrix A if
uplo = 'U', or the number of sub-diagonals if uplo =
'L'.

kd

kd ≥ 0.

REAL for slaqsbab
DOUBLE PRECISION for dlaqsb
COMPLEX for claqsb
COMPLEX*16 for zlaqsb
Array, DIMENSION (ldab,n). On entry, the upper or lower
triangle of the symmetric band matrix A, stored in the first
kd+1 rows of the array. The j-th column of A is stored in
the j-th column of the array ab as follows:

1370

5 Intel® Math Kernel Library Reference Manual

if uplo = 'U', ab(kd+1+i-j,j) = A(i,j) for

max(1,j-kd) ≤ i ≤ j;

if uplo = 'L', ab(1+i-j,j) = A(i,j) for j ≤ i ≤
min(n,j+kd).

INTEGER. The leading dimension of the array ab.ldab

ldab ≥ kd+1.

REAL for slaqsb/claqsbs
DOUBLE PRECISION for dlaqsb/zlaqsb
Array, DIMENSION (n). The scale factors for A.

REAL for slaqsb/claqsbscond
DOUBLE PRECISION for dlaqsb/zlaqsb
Ratio of the smallest s(i) to the largest s(i).

REAL for slaqsb/claqsbamax
DOUBLE PRECISION for dlaqsb/zlaqsb
Absolute value of largest matrix entry.

Output Parameters

On exit, if info = 0, the triangular factor U or L from the
Cholesky factorization A = U'*U or A = L*L' of the band
matrix A, in the same storage format as A.

ab

CHARACTER*1.equed
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed = 'Y': Equilibration was done, that is, A has been
replaced by diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following
meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of
the scaling factors. If scond < thresh, scaling is done. large and small are threshold values
used to decide if scaling should be done based on the absolute size of the largest matrix element.
If amax > large or amax < small, scaling is done.

1371

LAPACK Auxiliary and Utility Routines 5

?laqsp
Scales a symmetric/Hermitian matrix in packed
storage, using scaling factors computed by ?ppequ.

Syntax

call slaqsp(uplo, n, ap, s, scond, amax, equed)

call dlaqsp(uplo, n, ap, s, scond, amax, equed)

call claqsp(uplo, n, ap, s, scond, amax, equed)

call zlaqsp(uplo, n, ap, s, scond, amax, equed)

Description

The routine ?laqsp equilibrates a symmetric matrix A using the scaling factors in the vector
s.

Input Parameters

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.

INTEGER. The order of the matrix A. n ≥ 0.n

REAL for slaqspap
DOUBLE PRECISION for dlaqsp
COMPLEX for claqsp
COMPLEX*16 for zlaqsp
Array, DIMENSION (n(n+1)/2).
On entry, the upper or lower triangle of the symmetric
matrix A, packed columnwise in a linear array. The j-th
column of A is stored in the array ap as follows:

if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1 ≤ i

≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for

j≤i≤n.

1372

5 Intel® Math Kernel Library Reference Manual

REAL for slaqsp/claqsps
DOUBLE PRECISION for dlaqsp/zlaqsp
Array, DIMENSION (n). The scale factors for A.

REAL for slaqsp/claqspscond
DOUBLE PRECISION for dlaqsp/zlaqsp
Ratio of the smallest s(i) to the largest s(i).

REAL for slaqsp/claqspamax
DOUBLE PRECISION for dlaqsp/zlaqsp
Absolute value of largest matrix entry.

Output Parameters

On exit, the equilibrated matrix: diag(s)*A*diag(s), in
the same storage format as A.

ap

CHARACTER*1.equed
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed = 'Y': Equilibration was done, that is, A has been
replaced by diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following
meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of
the scaling factors. If scond < thresh, scaling is done. large and small are threshold values
used to decide if scaling should be done based on the absolute size of the largest matrix element.
If amax > large or amax < small, scaling is done.

1373

LAPACK Auxiliary and Utility Routines 5

?laqsy
Scales a symmetric/Hermitian matrix, using scaling
factors computed by ?poequ.

Syntax

call slaqsy(uplo, n, a, lda, s, scond, amax, equed)

call dlaqsy(uplo, n, a, lda, s, scond, amax, equed)

call claqsy(uplo, n, a, lda, s, scond, amax, equed)

call zlaqsy(uplo, n, a, lda, s, scond, amax, equed)

Description

The routine equilibrates a symmetric matrix A using the scaling factors in the vector s.

Input Parameters

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.

INTEGER. The order of the matrix A.n

n ≥ 0.

REAL for slaqsya
DOUBLE PRECISION for dlaqsy
COMPLEX for claqsy
COMPLEX*16 for zlaqsy
Array, DIMENSION (lda,n). On entry, the symmetric matrix
A.
If uplo = 'U', the leading n-by-n upper triangular part of
a contains the upper triangular part of the matrix A, and
the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
a contains the lower triangular part of the matrix A, and the
strictly upper triangular part of a is not referenced.

INTEGER. The leading dimension of the array a.lda

1374

5 Intel® Math Kernel Library Reference Manual

lda ≥ max(n,1).

REAL for slaqsy/claqsys
DOUBLE PRECISION for dlaqsy/zlaqsy
Array, DIMENSION (n). The scale factors for A.

REAL for slaqsy/claqsyscond
DOUBLE PRECISION for dlaqsy/zlaqsy
Ratio of the smallest s(i) to the largest s(i).

REAL for slaqsy/claqsyamax
DOUBLE PRECISION for dlaqsy/zlaqsy
Absolute value of largest matrix entry.

Output Parameters

On exit, if equed = 'Y', the equilibrated matrix:
diag(s)*A*diag(s).

a

CHARACTER*1.equed
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed = 'Y': Equilibration was done, i.e., A has been
replaced by diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following
meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of
the scaling factors. If scond < thresh, scaling is done. large and small are threshold values
used to decide if scaling should be done based on the absolute size of the largest matrix element.
If amax > large or amax < small, scaling is done.

?laqtr
Solves a real quasi-triangular system of equations,
or a complex quasi-triangular system of special
form, in real arithmetic.

Syntax

call slaqtr(ltran, lreal, n, t, ldt, b, w, scale, x, work, info)

call dlaqtr(ltran, lreal, n, t, ldt, b, w, scale, x, work, info)

1375

LAPACK Auxiliary and Utility Routines 5

Description

The routine ?laqtr solves the real quasi-triangular system

op(T) * p = scale*c, if lreal = .TRUE.

or the complex quasi-triangular systems

op(T + iB)*(p+iq) = scale*(c+id), if lreal = .FALSE.

in real arithmetic, where T is upper quasi-triangular.

If lreal = .FALSE., then the first diagonal block of T must be 1-by-1, B is the specially
structured matrix

op(A) = A or A', A' denotes the conjugate transpose of matrix A.

On input,

This routine is designed for the condition number estimation in routine ?trsna.

Input Parameters

LOGICAL.ltran
On entry, ltran specifies the option of conjugate transpose:
= .FALSE., op(T + iB) = T + iB,

1376

5 Intel® Math Kernel Library Reference Manual

= .TRUE., op(T + iB) = (T + iB)'.

LOGICAL.lreal
On entry, lreal specifies the input matrix structure:
= .FALSE., the input is complex
= .TRUE., the input is real.

INTEGER.n

On entry, n specifies the order of T + iB. n ≥ 0.

REAL for slaqtrt
DOUBLE PRECISION for dlaqtr
Array, dimension (ldt,n). On entry, t contains a matrix in
Schur canonical form. If lreal = .FALSE., then the first
diagonal block of t must be 1-by-1.

INTEGER. The leading dimension of the matrix T.ldt

ldt ≥ max(1,n).

REAL for slaqtrb
DOUBLE PRECISION for dlaqtr
Array, dimension (n). On entry, b contains the elements to
form the matrix B as described above. If lreal = .TRUE.,
b is not referenced.

REAL for slaqtrw
DOUBLE PRECISION for dlaqtr
On entry, w is the diagonal element of the matrix B.
If lreal = .TRUE., w is not referenced.

REAL for slaqtrx
DOUBLE PRECISION for dlaqtr
Array, dimension (2n). On entry, x contains the right hand
side of the system.

REAL for slaqtrwork
DOUBLE PRECISION for dlaqtr
Workspace array, dimension (n).

Output Parameters

REAL for slaqtrscale
DOUBLE PRECISION for dlaqtr
On exit, scale is the scale factor.

1377

LAPACK Auxiliary and Utility Routines 5

On exit, X is overwritten by the solution.x

INTEGER.info
If info = 0: successful exit.
If info = 1: the some diagonal 1-by-1 block has been
perturbed by a small number smin to keep nonsingularity.
If info = 2: the some diagonal 2-by-2 block has been
perturbed by a small number in ?laln2 to keep
nonsingularity.

NOTE. For higher speed, this routine does not check the inputs for errors.

?lar1v
Computes the (scaled) r-th column of the inverse
of the submatrix in rows b1 through bn of
tridiagonal matrix.

Syntax

call slar1v(n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc,
negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)

call dlar1v(n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc,
negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)

call clar1v(n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc,
negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)

call zlar1v(n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc,
negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)

Description

The routine ?lar1v computes the (scaled) r-th column of the inverse of the submatrix in rows

b1 through bn of the tridiagonal matrix L*D*LT - λ*I. When λ is close to an eigenvalue, the
computed vector is an accurate eigenvector. Usually, r corresponds to the index where the
eigenvector is largest in magnitude.

The following steps accomplish this computation :

1378

5 Intel® Math Kernel Library Reference Manual

• Stationary qd transform, L*D*LT - λ*I = L(+)*D(+)*L(+)T

• Progressive qd transform, L*D*LT - λ*I = U(-)*D(-)*U(-)T,

• Computation of the diagonal elements of the inverse of L*D*LT - λ*I by combining the
above transforms, and choosing r as the index where the diagonal of the inverse is (one of
the) largest in magnitude.

• Computation of the (scaled) r-th column of the inverse using the twisted factorization
obtained by combining the top part of the stationary and the bottom part of the progressive
transform.

Input Parameters

INTEGER. The order of the matrix L*D*LT.n

INTEGER. First index of the submatrix of L*D*LT.b1

INTEGER. Last index of the submatrix of L*D*LT.bn

REAL for slar1v/clar1vlambda
DOUBLE PRECISION for dlar1v/zlar1v
The shift. To compute an accurate eigenvector, lambda
should be a good approximation to an eigenvalue of L*D*LT.

REAL for slar1v/clar1vl
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n-1).
The (n-1) subdiagonal elements of the unit bidiagonal matrix
L, in elements 1 to n-1.

REAL for slar1v/clar1vd
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n).
The n diagonal elements of the diagonal matrix D.

REAL for slar1v/clar1vld
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n-1).
The n-1 elements Li*Di.

REAL for slar1v/clar1vlld
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n-1).
The n-1 elements Li*Li*Di.

1379

LAPACK Auxiliary and Utility Routines 5

REAL for slar1v/clar1vpivmin
DOUBLE PRECISION for dlar1v/zlar1v
The minimum pivot in the Sturm sequence.

REAL for slar1v/clar1vgaptol
DOUBLE PRECISION for dlar1v/zlar1v
Tolerance that indicates when eigenvector entries are
negligible with respect to their contribution to the residual.

REAL for slar1vz
DOUBLE PRECISION for dlar1v
COMPLEX for clar1v
COMPLEX*16 for zlar1v
Array, DIMENSION (n). All entries of z must be set to 0.

LOGICAL.wantnc
Specifies whether negcnt has to be computed.

INTEGER.r
The twist index for the twisted factorization used to compute

z. On input, 0 ≤ r ≤ n. If r is input as 0, r is set to the index
where (L*D*LT - lambda*I)-1 is largest in magnitude. If

1 ≤ r ≤ n, r is unchanged.

REAL for slar1v/clar1vwork
DOUBLE PRECISION for dlar1v/zlar1v
Workspace array, DIMENSION (4*n).

Output Parameters

REAL for slar1vz
DOUBLE PRECISION for dlar1v
COMPLEX for clar1v
COMPLEX*16 for zlar1v
Array, DIMENSION (n). The (scaled) r-th column of the
inverse. z(r) is returned to be 1.

INTEGER. If wantnc is .TRUE. then negcnt = the number
of pivots < pivmin in the matrix factorization L*D*LT, and
negcnt = -1 otherwise.

negcnt

REAL for slar1v/clar1vztz
DOUBLE PRECISION for dlar1v/zlar1v
The square of the 2-norm of z.

1380

5 Intel® Math Kernel Library Reference Manual

REAL for slar1v/clar1vmingma
DOUBLE PRECISION for dlar1v/zlar1v
The reciprocal of the largest (in magnitude) diagonal element
of the inverse of L*D*LT - lambda*I.

On output, r is the twist index used to compute z. Ideally,
r designates the position of the maximum entry in the
eigenvector.

r

INTEGER. Array, DIMENSION (2). The support of the vector
in Z, that is, the vector z is nonzero only in elements
isuppz(1) through isuppz(2).

isuppz

REAL for slar1v/clar1vnrminv
DOUBLE PRECISION for dlar1v/zlar1v
Equals 1/sqrt(ztz).

REAL for slar1v/clar1vresid
DOUBLE PRECISION for dlar1v/zlar1v
The residual of the FP vector.
resid = ABS(mingma)/sqrt(ztz).

REAL for slar1v/clar1vrqcorr
DOUBLE PRECISION for dlar1v/zlar1v
The Rayleigh Quotient correction to lambda.
rqcorr = mingma/ztz.

?lar2v
Applies a vector of plane rotations with real cosines
and real/complex sines from both sides to a
sequence of 2-by-2 symmetric/Hermitian matrices.

Syntax

call slar2v(n, x, y, z, incx, c, s, incc)

call dlar2v(n, x, y, z, incx, c, s, incc)

call clar2v(n, x, y, z, incx, c, s, incc)

call zlar2v(n, x, y, z, incx, c, s, incc)

1381

LAPACK Auxiliary and Utility Routines 5

Description

The routine ?lar2v applies a vector of real/complex plane rotations with real cosines from both
sides to a sequence of 2-by-2 real symmetric or complex Hermitian matrices, defined by the
elements of the vectors x, y and z. For i = 1,2,...,n

Input Parameters

INTEGER. The number of plane rotations to be applied.n

REAL for slar2vx, y, z
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
COMPLEX*16 for zlar2v
Arrays, DIMENSION (1+(n-1)*incx) each. Contain the
vectors x, y and z, respectively. For all flavors of ?lar2v,
elements of x and y are assumed to be real.

INTEGER. The increment between elements of x, y, and z.
incx > 0.

incx

REAL for slar2v/clar2vc
DOUBLE PRECISION for dlar2v/zlar2v
Array, DIMENSION (1+(n-1)*incc). The cosines of the plane
rotations.

REAL for slar2vs
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
COMPLEX*16 for zlar2v
Array, DIMENSION (1+(n-1)*incc). The sines of the plane
rotations.

INTEGER. The increment between elements of c and s. incc
> 0.

incc

1382

5 Intel® Math Kernel Library Reference Manual

Output Parameters

Vectors x, y and z, containing the results of transform.x, y, z

?larf
Applies an elementary reflector to a general
rectangular matrix.

Syntax

call slarf(side, m, n, v, incv, tau, c, ldc, work)

call dlarf(side, m, n, v, incv, tau, c, ldc, work)

call clarf(side, m, n, v, incv, tau, c, ldc, work)

call zlarf(side, m, n, v, incv, tau, c, ldc, work)

Description

The routine applies a real/complex elementary reflector H to a real/complex m-by-n matrix C,
from either the left or the right. H is represented in the form

H = I - tau*v*v',

where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then H is taken to be the unit matrix. For clarf/zlarf, to apply H' (the conjugate
transpose of H), supply conjg(tau) instead of tau.

Input Parameters

CHARACTER*1.side
If side = 'L': form H*C
If side = 'R': form C*H.

INTEGER. The number of rows of the matrix C.m

INTEGER. The number of columns of the matrix C.n

REAL for slarfv
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Array, DIMENSION

1383

LAPACK Auxiliary and Utility Routines 5

(1 + (m-1)*abs(incv)) if side = 'L' or
(1 + (n-1)*abs(incv)) if side = 'R'. The vector v in
the representation of H. v is not used if tau = 0.

INTEGER. The increment between elements of v.incv

incv ≠ 0.

REAL for slarftau
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
The value tau in the representation of H.

REAL for slarfc
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Array, DIMENSION (ldc,n).
On entry, the m-by-n matrix C.

INTEGER. The leading dimension of the array c.ldc

ldc ≥ max(1,m).

REAL for slarfwork
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.

Output Parameters

On exit, C is overwritten by the matrix H*C if side = 'L',
or C*H if side = 'R'.

c

1384

5 Intel® Math Kernel Library Reference Manual

?larfb
Applies a block reflector or its
transpose/conjugate-transpose to a general
rectangular matrix.

Syntax

call slarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc,
work, ldwork)

call dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc,
work, ldwork)

call clarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc,
work, ldwork)

call zlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc,
work, ldwork)

Description

The routine ?larfb applies a complex block reflector H or its transpose H' to a complex m-by-n
matrix C from either left or right.

Input Parameters

CHARACTER*1.side
If side = 'L': apply H or H' from the left
If side = 'R': apply H or H' from the right

CHARACTER*1.trans
If trans = 'N': apply H (No transpose)
If trans = 'C': apply H' (Conjugate transpose)

CHARACTER*1.direct
Indicates how H is formed from a product of elementary
reflectors
If direct = 'F': H = H(1) H(2) . . . H(k) (forward)
If direct = 'B': H = H(k) . . . H(2) H(1) (backward)

CHARACTER*1.storev
Indicates how the vectors which define the elementary
reflectors are stored:
If storev = 'C': Column-wise

1385

LAPACK Auxiliary and Utility Routines 5

If storev = 'R': Row-wise

INTEGER. The number of rows of the matrix C.m

INTEGER. The number of columns of the matrix C.n

INTEGER. The order of the matrix T (equal to the number
of elementary reflectors whose product defines the block
reflector).

k

REAL for slarfbv
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION
(ldv, k) if storev = 'C'
(ldv, m) if storev = 'R' and side = 'L'
(ldv, n) if storev = 'R' and side = 'R'
The matrix v.

INTEGER. The leading dimension of the array v.ldv

If storev = 'C' and side = 'L', ldv ≥ max(1,m);

if storev = 'C' and side = 'R', ldv ≥ max(1,n);

if storev = 'R', ldv ≥ k.

REAL for slarfbt
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION (ldt,k).
Contains the triangular k-by-k matrix T in the representation
of the block reflector.

INTEGER. The leading dimension of the array t.LDT

ldt ≥ k.

REAL for slarfbc
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION (ldc,n).
On entry, the m-by-n matrix C.

INTEGER. The leading dimension of the array c.ldc

1386

5 Intel® Math Kernel Library Reference Manual

ldc ≥ max(1,m).

REAL for slarfbwork
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Workspace array, DIMENSION (ldwork, k).

INTEGER. The leading dimension of the array work.ldwork

If side = 'L', ldwork ≥ max(1, n);

if side = 'R', ldwork ≥ max(1, m).

Output Parameters

On exit, c is overwritten by H*C, or H'*C, or C*H, or C*H'.c

?larfg
Generates an elementary reflector (Householder
matrix).

Syntax

call slarfg(n, alpha, x, incx, tau)

call dlarfg(n, alpha, x, incx, tau)

call clarfg(n, alpha, x, incx, tau)

call zlarfg(n, alpha, x, incx, tau)

Description

The routine ?larfg generates a real/complex elementary reflector H of order n, such that

where alpha and beta are scalars (with beta real for all flavors), and x is an (n-1)-element
real/complex vector. H is represented in the form

1387

LAPACK Auxiliary and Utility Routines 5

where tau is a real/complex scalar and v is a real/complex (n-1)-element vector. Note that for
clarfg/zlarfg, H is not Hermitian.

If the elements of x are all zero (and, for complex flavors, alpha is real), then tau = 0 and H
is taken to be the unit matrix.

Otherwise, 1 ≤ tau ≤ 2 (for real flavors), or

1 ≤ Re(tau) ≤ 2 and abs(tau-1) ≤ 1 (for complex flavors).

Input Parameters

INTEGER. The order of the elementary reflector.n

REAL for slarfgalpha
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg On entry, the value alpha.

REAL for slarfgx
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg
Array, DIMENSION (1+(n-2)*abs(incx)).
On entry, the vector x.

INTEGER.incx
The increment between elements of x. incx > 0.

Output Parameters

On exit, it is overwritten with the value beta.alpha

On exit, it is overwritten with the vector v.x

REAL for slarfgtau
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg

1388

5 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for zlarfg The value tau.

?larft
Forms the triangular factor T of a block reflector H
= I - V*T*VH.

Syntax

call slarft(direct, storev, n, k, v, ldv, tau, t, ldt)

call dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)

call clarft(direct, storev, n, k, v, ldv, tau, t, ldt)

call zlarft(direct, storev, n, k, v, ldv, tau, t, ldt)

Description

The routine ?larft forms the triangular factor T of a real/complex block reflector H of order
n, which is defined as a product of k elementary reflectors.

If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

If storev = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th
column of the array v, and H = I - V*T*V' .

If storev = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th
row of the array v, and H = I - V'*T*V.

Input Parameters

CHARACTER*1.direct
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (forward)
= 'B': H = H(k) . . . H(2) H(1) (backward)

CHARACTER*1.storev
Specifies how the vectors which define the elementary
reflectors are stored (see also Application Notes below):
= 'C': column-wise
= 'R': row-wise.

1389

LAPACK Auxiliary and Utility Routines 5

INTEGER. The order of the block reflector H. n ≥ 0.n

INTEGER. The order of the triangular factor T (equal to the

number of elementary reflectors). k ≥ 1.

k

REAL for slarftv
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION
(ldv, k) if storev = 'C' or
(ldv, n) if storev = 'R'.
The matrix V.

INTEGER. The leading dimension of the array v.ldv

If storev = 'C', ldv ≥ max(1,n);

if storev = 'R', ldv ≥ k.

REAL for slarfttau
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION (k). tau(i) must contain the scalar factor
of the elementary reflector H(i).

INTEGER. The leading dimension of the output array t. ldt

≥ k.

ldt

Output Parameters

REAL for slarftt
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION (ldt,k). The k-by-k triangular factor T
of the block reflector. If direct = 'F', T is upper
triangular; if direct = 'B', T is lower triangular. The rest
of the array is not used.

The matrix V.v

1390

5 Intel® Math Kernel Library Reference Manual

Application Notes

The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated
by the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the
corresponding array elements are modified but restored on exit. The rest of the array is not
used.

1391

LAPACK Auxiliary and Utility Routines 5

?larfx
Applies an elementary reflector to a general
rectangular matrix, with loop unrolling when the
reflector has order ≥ 10.

Syntax

call slarfx(side, m, n, v, tau, c, ldc, work)

call dlarfx(side, m, n, v, tau, c, ldc, work)

call clarfx(side, m, n, v, tau, c, ldc, work)

call zlarfx(side, m, n, v, tau, c, ldc, work)

Description

The routine ?larfx applies a real/complex elementary reflector H to a real/complex m-by-n
matrix C, from either the left or the right.

H is represented in the form

H = I - tau*v*v', where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then H is taken to be the unit matrix

Input Parameters

CHARACTER*1.side
If side = 'L': form H*C
If side = 'R': form C*H.

INTEGER. The number of rows of the matrix C.m

INTEGER. The number of columns of the matrix C.n

REAL for slarfxv
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Array, DIMENSION
(m) if side = 'L' or
(n) if side = 'R'.
The vector v in the representation of H.

REAL for slarfxtau

1392

5 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
The value tau in the representation of H.

REAL for slarfxc
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Array, DIMENSION (ldc,n). On entry, the m-by-n matrix C.

INTEGER. The leading dimension of the array c. lda ≥ (1,m).ldc

REAL for slarfxwork
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.
work is not referenced if H has order < 11.

Output Parameters

On exit, C is overwritten by the matrix H*C if side = 'L',
or C*H if side = 'R'.

c

?largv
Generates a vector of plane rotations with real
cosines and real/complex sines.

Syntax

call slargv(n, x, incx, y, incy, c, incc)

call dlargv(n, x, incx, y, incy, c, incc)

call clargv(n, x, incx, y, incy, c, incc)

call zlargv(n, x, incx, y, incy, c, incc)

1393

LAPACK Auxiliary and Utility Routines 5

Description

The routine generates a vector of real/complex plane rotations with real cosines, determined
by elements of the real/complex vectors x and y.

For slargv/dlargv:

For clargv/zlargv:

where c(i)2 + abs(s(i))2 = 1 and the following conventions are used (these are the same
as in clartg/zlartg but differ from the BLAS Level 1 routine crotg/zrotg):

If yi = 0, then c(i) = 1 and s(i) = 0;

If xi = 0, then c(i) = 0 and s(i) is chosen so that ri is real.

Input Parameters

INTEGER. The number of plane rotations to be generated.n

REAL for slargvx, y
DOUBLE PRECISION for dlargv
COMPLEX for clargv
COMPLEX*16 for zlargv
Arrays, DIMENSION (1+(n-1)*incx) and (1+(n-1)*incy),
respectively. On entry, the vectors x and y.

INTEGER. The increment between elements of x.incx
incx > 0.

INTEGER. The increment between elements of y.incy
incy > 0.

1394

5 Intel® Math Kernel Library Reference Manual

INTEGER. The increment between elements of the output
array c. incc > 0.

incc

Output Parameters

On exit, x(i) is overwritten by ai (for real flavors), or by ri
(for complex flavors), for i = 1,...,n.

x

On exit, the sines s(i) of the plane rotations.y

REAL for slargv/clargvc
DOUBLE PRECISION for dlargv/zlargv
Array, DIMENSION (1+(n-1)*incc). The cosines of the plane
rotations.

?larnv
Returns a vector of random numbers from a
uniform or normal distribution.

Syntax

call slarnv(idist, iseed, n, x)

call dlarnv(idist, iseed, n, x)

call clarnv(idist, iseed, n, x)

call zlarnv(idist, iseed, n, x)

Description

The routine ?larnv returns a vector of n random real/complex numbers from a uniform or
normal distribution.

This routine calls the auxiliary routine ?laruv to generate random real numbers from a uniform
(0,1) distribution, in batches of up to 128 using vectorisable code. The Box-Muller method is
used to transform numbers from a uniform to a normal distribution.

Input Parameters

INTEGER. Specifies the distribution of the random numbers:
for slarnv and dlanrv:

idist

= 1: uniform (0,1)
= 2: uniform (-1,1)

1395

LAPACK Auxiliary and Utility Routines 5

= 3: normal (0,1).
for clarnv and zlanrv:
= 1: real and imaginary parts each uniform (0,1)
= 2: real and imaginary parts each uniform (-1,1)
= 3: real and imaginary parts each normal (0,1)
= 4: uniformly distributed on the disc abs(z) < 1
= 5: uniformly distributed on the circle abs(z) = 1

INTEGER. Array, DIMENSION (4).iseed
On entry, the seed of the random number generator; the
array elements must be between 0 and 4095, and iseed(4)
must be odd.

INTEGER. The number of random numbers to be generated.n

Output Parameters

REAL for slarnvx
DOUBLE PRECISION for dlarnv
COMPLEX for clarnv
COMPLEX*16 for zlarnv
Array, DIMENSION (n). The generated random numbers.

On exit, the seed is updated.iseed

?larra
Computes the splitting points with the specified
threshold.

Syntax

call slarra(n, d, e, e2, spltol, tnrm, nsplit, isplit, info)

call dlarra(n, d, e, e2, spltol, tnrm, nsplit, isplit, info)

Description

This routine computes the splitting points with the specified threshold and sets any "small"
off-diagonal elements to zero.

Input Parameters

INTEGER. The order of the matrix (n > 1).n

1396

5 Intel® Math Kernel Library Reference Manual

REAL for slarrad
DOUBLE PRECISION for dlarra
Array, DIMENSION (n).
Contains n diagonal elements of the tridiagonal matrix T.

REAL for slarrae
DOUBLE PRECISION for dlarra
Array, DIMENSION (n).
First (n-1) entries contain the subdiagonal elements of the
tridiagonal matrix T; e(n) need not be set.

REAL for slarrae2
DOUBLE PRECISION for dlarra
Array, DIMENSION (n).
First (n-1) entries contain the squares of the subdiagonal
elements of the tridiagonal matrix T; e2(n) need not be
set.

REAL for slarraspltol
DOUBLE PRECISION for dlarra
The threshold for splitting. Two criteria can be used:
spltol<0 : criterion based on absolute off-diagonal value;
spltol>0 : criterion that preserves relative accuracy.

REAL for slarratnrm
DOUBLE PRECISION for dlarra
The norm of the matrix.

Output Parameters

On exit, the entries e(isplit(i)), 1 ≤ i ≤ nsplit, are
set to zero, the other entries of e are untouched.

e

On exit, the entries e2(isplit(i)), 1 ≤ i ≤ nsplit,
are set to zero.

e2

INTEGER.nsplit

The number of blocks the matrix T splits into. 1 ≤ nsplit

≤ n

INTEGER.
Array, DIMENSION (n).

isplit

1397

LAPACK Auxiliary and Utility Routines 5

The splitting points, at which T breaks up into blocks. The
first block consists of rows/columns 1 to isplit(1), the
second of rows/columns isplit(1)+1 through isplit(2),
and so on, and the nsplit-th consists of rows/columns
isplit(nsplit-1)+1 through isplit(nsplit)=n.

INTEGER.info
= 0: successful exit.

?larrb
Provides limited bisection to locate eigenvalues for
more accuracy.

Syntax

call slarrb(n, d, lld, ifirst, ilast, rtol1, rtol2, offset, w, wgap, werr,
work, iwork, pivmin, spdiam, twist, info)

call dlarrb(n, d, lld, ifirst, ilast, rtol1, rtol2, offset, w, wgap, werr,
work, iwork, pivmin, spdiam, twist, info)

Description

Given the relatively robust representation (RRR) L*D*LT, the routine does “limited” bisection
to refine the eigenvalues of L*D*LT, w(ifirst-offset) through w(ilast-offset), to more
accuracy. Initial guesses for these eigenvalues are input in w. The corresponding estimate of
the error in these guesses and their gaps are input in werr and wgap, respectively. During
bisection, intervals [left, right] are maintained by storing their mid-points and semi-widths
in the arrays w and werr respectively.

Input Parameters

INTEGER. The order of the matrix.n

REAL for slarrbd
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). The n diagonal elements of the
diagonal matrix D.

REAL for slarrblld
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n-1).

1398

5 Intel® Math Kernel Library Reference Manual

The n-1 elements Li*Li*Di.

INTEGER. The index of the first eigenvalue to be computed.ifirst

INTEGER. The index of the last eigenvalue to be computed.ilast

REAL for slarrbrtol1, rtol2
DOUBLE PRECISION for dlarrb
Tolerance for the convergence of the bisection intervals. An
interval [left, right] has converged if
RIGHT-LEFT.LT.MAX(rtol1*gap,
rtol2*max(|left|,|right|)), where gap is the
(estimated) distance to the nearest eigenvalue.

INTEGER. Offset for the arrays w, wgap and werr, that is,
the ifirst-offset through ilast-offset elements of these
arrays are to be used.

offset

REAL for slarrbw
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). On input, w(ifirst-offset) through
w(ilast-offset) are estimates of the eigenvalues of
L*D*LT indexed ifirst through ilast.

REAL for slarrbwgap
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n-1). The estimated gaps between
consecutive eigenvalues of L*D*LT, that is, wgap(i-offset)
is the gap between eigenvalues i and i+1. Note that if
IFIRST.EQ.ILAST then wgap(ifirst-offset) must be set
to 0.

REAL for slarrbwerr
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). On input, werr(ifirst-offset)
through werr(ilast-offset) are the errors in the estimates
of the corresponding elements in w.

REAL for slarrbwork
DOUBLE PRECISION for dlarrb
Workspace array, DIMENSION (2*n).

REAL for slarrbpivmin
DOUBLE PRECISION for dlarrb
The minimum pivot in the Sturm sequence.

1399

LAPACK Auxiliary and Utility Routines 5

REAL for slarrbspdiam
DOUBLE PRECISION for dlarrb
The spectral diameter of the matrix.

INTEGER. The twist index for the twisted factorization that
is used for the negcount.

twist

twist = n: Compute negcount from L*D*LT - lambda*i
= L+ * D+ * L+T

twist = n: Compute negcount from L*D*LT - lambda*i
= U- * D- * U-T

twist = n: Compute negcount from L*D*LT - lambda*i
= Nr*D r*Nr

INTEGER.iwork
Workspace array, DIMENSION (2*n).

Output Parameters

On output, the estimates of the eigenvalues are“refined”.w

On output, the gaps are refined.wgap

On output, “refined” errors in the estimates of w.werr

INTEGER.info
Error flag.

?larrc
Computes the number of eigenvalues of the
symmetric tridiagonal matrix.

Syntax

call slarrc(jobt, n, vl, vu, d, e, pivmin, eigcnt, lcnt, rcnt, info)

call dlarrc(jobt, n, vl, vu, d, e, pivmin, eigcnt, lcnt, rcnt, info)

Description

This routine finds the number of eigenvalues of the symmetric tridiagonal matrix T or of its
factorization L*D*L**T in the specified interval.

1400

5 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*1.jobt
= 'T': computes Sturm count for matrix T.
= 'L': computes Sturm count for matrix L*D*L**T.

INTEGER.n
The order of the matrix. (n > 1).

REAL for slarrcvl,vu
DOUBLE PRECISION for dlarrc
The lower and upper bounds for the eigenvalues.
REAL for slarrcd
DOUBLE PRECISION for dlarrc
Array, DIMENSION (n).
If jobt= 'T': contains the n diagonal elements of the
tridiagonal matrix T.
If jobt= 'L': contains the n diagonal elements of the
diagonal matrix D.

REAL for slarrce
DOUBLE PRECISION for dlarrc
Array, DIMENSION (n).
If jobt= 'T': contains the (n-1)offdiagonal elements of
the matrix T.
If jobt= 'L': contains the (n-1)offdiagonal elements of
the matrix L.

REAL for slarrcpivmin
DOUBLE PRECISION for dlarrc
The minimum pivot in the Sturm sequence for the matrix
T.

Output Parameters

INTEGER.
The number of eigenvalues of the symmetric tridiagonal
matrix T that are in the half-open interval (vl,vu].

eigcnt

INTEGER.lcnt,rcnt
The left and right negcounts of the interval.

INTEGER.info

1401

LAPACK Auxiliary and Utility Routines 5

Now it is not used and always is set to 0.

?larrd
Computes the eigenvalues of a symmetric
tridiagonal matrix to suitable accuracy.

Syntax

call slarrd(range, order, n, vl, vu, il, iu, gers, reltol, d, e, e2, pivmin,
nsplit, isplit, m, w, werr, wl, wu, iblock, indexw, work, iwork, info)

call dlarrd(range, order, n, vl, vu, il, iu, gers, reltol, d, e, e2, pivmin,
nsplit, isplit, m, w, werr, wl, wu, iblock, indexw, work, iwork, info)

Description

The routine computes the eigenvalues of a symmetric tridiagonal matrix T to suitable accuracy.
This is an auxiliary code to be called from ?stemr. The user may ask for all eigenvalues, all
eigenvalues in the half-open interval (vl, vu], or the il-th through iu-th eigenvalues.

To avoid overflow, the matrix must be scaled so that its largest element is no greater than
(overflow1/2*underflow1/4) in absolute value, and for greatest accuracy, it should not be
much smaller than that. (For more details see [Kahan66].

Input Parameters

CHARACTER.range
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(vl, vu] will be found.
= 'I': ("Index") the il-th through iu-th eigenvalues will
be found.

CHARACTER.order
= 'B': ("By block") the eigenvalues will be grouped by
split-off block (see iblock, isplit below) and ordered
from smallest to largest within the block.
= 'E': ("Entire matrix") the eigenvalues for the entire
matrix will be ordered from smallest to largest.

INTEGER. The order of the tridiagonal matrix T (n ≥ 1).n

1402

5 Intel® Math Kernel Library Reference Manual

REAL for slarrdvl,vu
DOUBLE PRECISION for dlarrd
If range = 'V': the lower and upper bounds of the
interval to be searched for eigenvalues. Eigenvalues less
than or equal to vl, or greater than vu, will not be returned.
vl < vu.
If range = 'A' or 'I': not referenced.

INTEGER.il,iu
If range = 'I': the indices (in ascending order) of the

smallest and largest eigenvalues to be returned. 1 ≤ il ≤

iu ≤ n, if n > 0; il=1 and iu=0 if n=0.
If range = 'A' or 'V': not referenced.

REAL for slarrdgers
DOUBLE PRECISION for dlarrd
Array, DIMENSION (2*n).
The n Gerschgorin intervals (the i-th Gerschgorin
interval is (gers(2*i-1), gers(2*i)).

REAL for slarrdreltol
DOUBLE PRECISION for dlarrd
The minimum relative width of an interval. When an interval
is narrower than reltol times the larger (in magnitude)
endpoint, then it is considered to be sufficiently small, that
is converged. Note: this should always be at least
radix*machine epsilon.

REAL for slarrdd
DOUBLE PRECISION for dlarrd
Array, DIMENSION (n).
Contains n diagonal elements of the tridiagonal matrix T.

REAL for slarrde
DOUBLE PRECISION for dlarrd
Array, DIMENSION (n-1).
Contains (n-1) off-diagonal elements of the tridiagonal
matrix T.

REAL for slarrde2
DOUBLE PRECISION for dlarrd
Array, DIMENSION (n-1).

1403

LAPACK Auxiliary and Utility Routines 5

Contains (n-1) squared off-diagonal elements of the
tridiagonal matrix T.

REAL for slarrdpivmin
DOUBLE PRECISION for dlarrd
The minimum pivot in the Sturm sequence for the matrix
T.

INTEGER.nsplit

The number of diagonal blocks the matrix T . 1 ≤ nsplit

≤ n

INTEGER.isplit
Arrays, DIMENSION (n).
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to
isplit(1), the second of rows/columns isplit(1)+1
through isplit(2), and so on, and the nsplit-th consists
of rows/columns isplit(nsplit-1)+1 through
isplit(nsplit)=n.
(Only the first nsplit elements actually is used, but since
the user cannot know a priori value of nsplit, n words
must be reserved for isplit.)

REAL for slarrdwork
DOUBLE PRECISION for dlarrd
Workspace array, DIMENSION (4*n).

INTEGER.iwork
Workspace array, DIMENSION (4*n).

Output Parameters

INTEGER.m

The actual number of eigenvalues found. 0 ≤ m ≤ n. (See
also the description of info=2,3.)

REAL for slarrdw
DOUBLE PRECISION for dlarrd
Array, DIMENSION (n).

1404

5 Intel® Math Kernel Library Reference Manual

The first m elements of w contain the eigenvalue
approximations. ?laprd computes an interval Ij = (aj,
bj] that includes eigenvalue j. The eigenvalue
approximation is given as the interval midpoint w(j)=
(aj+bj)/2. The corresponding error is bounded by werr(j)
= abs(aj-bj)/2.

REAL for slarrdwerr
DOUBLE PRECISION for dlarrd
Array, DIMENSION (n).
The error bound on the corresponding eigenvalue
approximation in w.

REAL for slarrdwl, wu
DOUBLE PRECISION for dlarrd
The interval (wl, wu] contains all the wanted eigenvalues.
If range = 'V': then wl=vl and wu=vu.
If range = 'A': then wl and wu are the global Gerschgorin
bounds on the spectrum.
If range = 'I': then wl and wu are computed by ?laebz
from the index range specified.

INTEGER.iblock
Array, DIMENSION (n).
At each row/column j where e(j) is zero or small, the
matrix T is considered to split into a block diagonal matrix.
If info = 0, then iblock(i) specifies to which block (from
1 to the number of blocks) the eigenvalue w(i) belongs.
(The routine may use the remaining n-m elements as
workspace.)

INTEGER.indexw
Array, DIMENSION (n).
The indices of the eigenvalues within each block (submatrix);
for example, indexw(i)= j and iblock(i)=k imply that
the i-th eigenvalue w(i) is the j-th eigenvalue in block k.

INTEGER.info
= 0: successful exit.
< 0: if info = -i, the i-th argument has an illegal value
> 0: some or all of the eigenvalues fail to converge or are
not computed:

1405

LAPACK Auxiliary and Utility Routines 5

=1 or 3: bisection fail to converge for some eigenvalues;
these eigenvalues are flagged by a negative block number.
The effect is that the eigenvalues may not be as accurate
as the absolute and relative tolerances.
=2 or 3: range='I' only: not all of the eigenvalues il:iu
are found.
=4: range='I', and the Gershgorin interval initially used
is too small. No eigenvalues are computed.

?larre
Given the tridiagonal matrix T, sets small
off-diagonal elements to zero and for each
unreduced block Ti, finds base representations and
eigenvalues.

Syntax

call slarre(range, n, vl, vu, il, iu, d, e, e2, rtol1, rtol2, spltol, nsplit,
isplit, m, w, werr, wgap, iblock, indexw, gers, pivmin, work, iwork, info)

call dlarre(range, n, vl, vu, il, iu, d, e, e2, rtol1, rtol2, spltol, nsplit,
isplit, m, w, werr, wgap, iblock, indexw, gers, pivmin, work, iwork, info)

Description

To find the desired eigenvalues of a given real symmetric tridiagonal matrix T, the routine sets
any “small” off-diagonal elements to zero, and for each unreduced block Ti, it finds

• a suitable shift at one end of the block spectrum

• the base representation, Ti - σi *I = Li*Di*Li
T, and

• eigenvalues of each Li*Di*Li
T.

The representations and eigenvalues found are then used by ?stemr to compute the eigenvectors
of a symmetric tridiagonal matrix. The accuracy varies depending on whether bisection is used
to find a few eigenvalues or the dqds algorithm (subroutine ?lasq2) to compute all and discard
any unwanted one. As an added benefit, ?larre also outputs the n Gerschgorin intervals for
the matrices Li*Di*Li

T.

1406

5 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER.range
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval
(vl, vu] will be found.
= 'I': ("Index") the il-th through iu-th eigenvalues of
the entire matrix will be found.

INTEGER. The order of the matrix. n > 0.n

REAL for slarrevl, vu
DOUBLE PRECISION for dlarre
If range='V', the lower and upper bounds for the
eigenvalues. Eigenvalues less than or equal to vl, or greater
than vu, are not returned. vl < vu.

INTEGER.il, iu
If range='I', the indices (in ascending order) of the

smallest and largest eigenvalues to be returned. 1 ≤ il ≤

iu ≤ n.

REAL for slarred
DOUBLE PRECISION for dlarre
Array, DIMENSION (n).
The n diagonal elements of the diagonal matrices T.

REAL for slarree
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). The first (n-1) entries contain the
subdiagonal elements of the tridiagonal matrix T; e(n) need
not be set.

REAL for slarree2
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). The first (n-1) entries contain the
squares of the subdiagonal elements of the tridiagonal
matrix T; e2(n) need not be set.

REAL for slarrertol1, rtol2
DOUBLE PRECISION for dlarre

1407

LAPACK Auxiliary and Utility Routines 5

Parameters for bisection. An interval [LEFT,RIGHT] has
converged if RIGHT-LEFT.LT.MAX(rtol1*gap,
rtol2*max(|LEFT|,|RIGHT|)).

REAL for slarrespltol
DOUBLE PRECISION for dlarre
The threshold for splitting.

REAL for slarrework
DOUBLE PRECISION for dlarre
Workspace array, DIMENSION (6*n).

INTEGER.iwork
Workspace array, DIMENSION (5*n).

Output Parameters

On exit, if range='I' or ='A', contain the bounds on the
desired part of the spectrum.

vl, vu

On exit, the n diagonal elements of the diagonal matrices
Di .

d

On exit, the subdiagonal elements of the unit bidiagonal

matrices Li . The entries e(isplit(i)), 1 ≤ i ≤ nsplit,
contain the base points sigmai on output.

e

On exit, the entries e2(isplit(i)), 1 ≤ i ≤ nsplit, have
been set to zero.

e2

INTEGER. The number of blocks T splits into. 1 ≤ nsplit

≤ n.

nsplit

INTEGER. Array, DIMENSION (n). The splitting points, at
which T breaks up into blocks. The first block consists of
rows/columns 1 to isplit(1), the second of rows/columns

isplit

isplit(1)+1 through isplit(2), etc., and the nsplit-th
consists of rows/columns isplit(nsplit-1)+1 through
isplit(nsplit)=n.

INTEGER. The total number of eigenvalues (of all the
Li*Di*Li

T) found.
m

REAL for slarrew
DOUBLE PRECISION for dlarre

1408

5 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (n). The first m elements contain the
eigenvalues. The eigenvalues of each of the blocks,
Li*Di*Li

T, are sorted in ascending order. The routine may
use the remaining n-m elements as workspace.

REAL for slarrewerr
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). The error bound on the corresponding
eigenvalue in w.

REAL for slarrewgap
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). The separation from the right
neighbor eigenvalue in w. The gap is only with respect to
the eigenvalues of the same block as each block has its own
representation tree. Exception: at the right end of a block
the left gap is stored.

INTEGER. Array, DIMENSION (n).iblock
The indices of the blocks (submatrices) associated with the
corresponding eigenvalues in w; iblock(i)=1 if eigenvalue
w(i) belongs to the first block from the top, =2 if w(i)
belongs to the second block, etc.

INTEGER. Array, DIMENSION (n).indexw
The indices of the eigenvalues within each block (submatrix);
for example, indexw(i)= 10 and iblock(i)=2 imply that
the i-th eigenvalue w(i) is the 10-th eigenvalue in the
second block.

REAL for slarregers
DOUBLE PRECISION for dlarre
Array, DIMENSION (2*n). The n Gerschgorin intervals (the
i-th Gerschgorin interval is (gers(2*i-1), gers(2*i)).

REAL for slarrepivmin
DOUBLE PRECISION for dlarre
The minimum pivot in the Sturm sequence for T .

INTEGER.info
If info = 0: successful exit
If info > 0: A problem occured in ?larre. If info = 5,
the Rayleigh Quotient Iteration failed to converge to full
accuracy.

1409

LAPACK Auxiliary and Utility Routines 5

If info < 0: One of the called subroutines signaled an
internal problem. Inspection of the corresponding parameter
info for further information is required.

• If info = -1, there is a problem in ?larrd

• If info = -2, no base representation could be found in
maxtry iterations. Increasing maxtry and recompilation
might be a remedy.

• If info = -3, there is a problem in ?larrb when
computing the refined root representation for ?lasq2.

• If info = -4, there is a problem in ?larrb when
preforming bisection on the desired part of the spectrum.

• If info = -5, there is a problem in ?lasq2.

• If info = -6, there is a problem in ?lasq2.

?larrf
Finds a new relatively robust representation such
that at least one of the eigenvalues is relatively
isolated.

Syntax

call slarrf(n, d, l, ld, clstrt, clend, w, wgap, werr, spdiam, clgapl, clgapr,
pivmin, sigma, dplus, lplus, work, info)

call dlarrf(n, d, l, ld, clstrt, clend, w, wgap, werr, spdiam, clgapl, clgapr,
pivmin, sigma, dplus, lplus, work, info)

Description

Given the initial representation L*D*LT and its cluster of close eigenvalues (in a relative measure),
w(clstrt), w(clstrt+1), ... w(clend), the routine ?larrf finds a new relatively robust
representation

L*D*LT - σi*I = L(+)*D(+)*L(+)T

such that at least one of the eigenvalues of L(+)*D*(+)*L(+)T is relatively isolated.

1410

5 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. The order of the matrix (subblock, if the matrix
is splitted).

n

REAL for slarrfd
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The n diagonal elements of the
diagonal matrix D.

REAL for slarrfl
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1).
The (n-1) subdiagonal elements of the unit bidiagonal matrix
L.

REAL for slarrfld
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1).
The n-1 elements Li*Di.

INTEGER. The index of the first eigenvalue in the cluster.clstrt

INTEGER. The index of the last eigenvalue in the cluster.clend

REAL for slarrfw
DOUBLE PRECISION for dlarrf

Array, DIMENSION ≥ (clend -clstrt+1). The eigenvalue
approximations of L*D*LT in ascending order. w(clstrt)
through w(clend) form the cluster of relatively close
eigenvalues.

REAL for slarrfwgap
DOUBLE PRECISION for dlarrf

Array, DIMENSION ≥ (clend -clstrt+1). The separation
from the right neighbor eigenvalue in w.

REAL for slarrfwerr
DOUBLE PRECISION for dlarrf

Array, DIMENSION ≥ (clend -clstrt+1). On input, werr
contains the semiwidth of the uncertainty interval of the
corresponding eigenvalue approximation in w.

REAL for slarrfspdiam
DOUBLE PRECISION for dlarrf

1411

LAPACK Auxiliary and Utility Routines 5

Estimate of the spectral diameter obtained from the
Gerschgorin intervals.

REAL for slarrfclgapl, clgapr
DOUBLE PRECISION for dlarrf
Absolute gap on each end of the cluster. Set by the calling
routine to protect against shifts too close to eigenvalues
outside the cluster.

REAL for slarrfpivmin
DOUBLE PRECISION for dlarrf
The minimum pivot allowed in the Sturm sequence.

REAL for slarrfwork
DOUBLE PRECISION for dlarrf
Workspace array, DIMENSION (2*n).

Output Parameters

On output, the gaps are refined.wgap

REAL for slarrfsigma
DOUBLE PRECISION for dlarrf
The shift used to form L(+)*D*(+)*L(+)T.

REAL for slarrfdplus
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The n diagonal elements of the
diagonal matrix D(+).

REAL for slarrflplus
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The first (n-1) elements of lplus
contain the subdiagonal elements of the unit bidiagonal
matrix L(+).

1412

5 Intel® Math Kernel Library Reference Manual

?larrj
Performs refinement of the initial estimates of the
eigenvalues of the matrix T.

Syntax

call slarrj(n, d, e2, ifirst, ilast, rtol, offset, w, werr, work, iwork,
pivmin, spdiam, info)

call dlarrj(n, d, e2, ifirst, ilast, rtol, offset, w, werr, work, iwork,
pivmin, spdiam, info)

Description

Given the initial eigenvalue approximations of T, this routine does bisection to refine the
eigenvalues of T, w(ifirst-offset) through w(ilast-offset) , to more accuracy. Initial
guesses for these eigenvalues are input in w, the corresponding estimate of the error in these
guesses in werr. During bisection, intervals [a,b] are maintained by storing their mid-points
and semi-widths in the arrays w and werr respectively.

Input Parameters

INTEGER. The order of the matrix T.n

REAL for slarrjd
DOUBLE PRECISION for dlarrj
Array, DIMENSION (n).
Contains n diagonal elements of the matrix T.

REAL for slarrje2
DOUBLE PRECISION for dlarrj
Array, DIMENSION (n-1).
Contains (n-1) squared sub-diagonal elements of the T.

INTEGER.ifirst
The index of the first eigenvalue to be computed.

INTEGER.ilast
The index of the last eigenvalue to be computed.
REAL for slarrjrtol
DOUBLE PRECISION for dlarrj

1413

LAPACK Auxiliary and Utility Routines 5

Tolerance for the convergence of the bisection intervals. An

interval [a,b] is considered to be converged if (b-a) ≤
rtol*max(|a|,|b|).

INTEGER.offset
Offset for the arrays w and werr, that is the
ifirst-offset through ilast-offset elements of
these arrays are to be used.
REAL for slarrjw
DOUBLE PRECISION for dlarrj
Array, DIMENSION (n).
On input, w(ifirst-offset) through w(ilast-offset)
are estimates of the eigenvalues of L*D*L**T indexed
ifirst through ilast.

REAL for slarrjwerr
DOUBLE PRECISION for dlarrj
Array, DIMENSION (n).
On input, werr(ifirst-offset) through
werr(ilast-offset) are the errors in the estimates of
the corresponding elements in w.

REAL for slarrjwork
DOUBLE PRECISION for dlarrj
Workspace array, DIMENSION (2*n).

INTEGER.iwork
Workspace array, DIMENSION (2*n).

REAL for slarrjpivmin
DOUBLE PRECISION for dlarrj
The minimum pivot in the Sturm sequence for the matrix
T.

REAL for slarrjspdiam
DOUBLE PRECISION for dlarrj
The spectral diameter of the matrix T.

Output Parameters

On exit, contains the refined estimates of the eigenvalues.w

1414

5 Intel® Math Kernel Library Reference Manual

On exit, contains the refined errors in the estimates of the
corresponding elements in w.

werr

INTEGER.info
Now it is not used and always is set to 0.

?larrk
Computes one eigenvalue of a symmetric
tridiagonal matrix T to suitable accuracy.

Syntax

call slarrk(n, iw, gl, gu, d, e2, pivmin, reltol, w, werr, info)

call dlarrk(n, iw, gl, gu, d, e2, pivmin, reltol, w, werr, info)

Description

The routine computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy.
This is an auxiliary code to be called from ?stemr.

To avoid overflow, the matrix must be scaled so that its largest element is no greater than
(overflow1/2*underflow1/4) in absolute value, and for greatest accuracy, it should not be
much smaller than that. (For more details see [[Kahan66]].

Input Parameters

INTEGER. The order of the matrix T. (n ≥ 1).n

INTEGER.iw
The index of the eigenvalue to be returned.

REAL for slarrkgl, gu
DOUBLE PRECISION for dlarrk
An upper and a lower bound on the eigenvalue.
REAL for slarrkd
DOUBLE PRECISION for dlarrk
Array, DIMENSION (n).
Contains n diagonal elements of the matrix T.

REAL for slarrke2
DOUBLE PRECISION for dlarrk
Array, DIMENSION (n-1).

1415

LAPACK Auxiliary and Utility Routines 5

Contains (n-1) squared off-diagonal elements of the T.

REAL for slarrkpivmin
DOUBLE PRECISION for dlarrk
The minimum pivot in the Sturm sequence for the matrix
T.

REAL for slarrkreltol
DOUBLE PRECISION for dlarrk
The minimum relative width of an interval. When an interval
is narrower than reltol times the larger (in magnitude)
endpoint, then it is considered to be sufficiently small, that
is converged. Note: this should always be at least
radix*machine epsilon.

Output Parameters

REAL for slarrkw
DOUBLE PRECISION for dlarrk
Contains the eigenvalue approximation.

REAL for slarrkwerr
DOUBLE PRECISION for dlarrk
Contains the error bound on the corresponding eigenvalue
approximation in w.

INTEGER.info
= 0: Eigenvalue converges
= -1: Eigenvalue does not converge

?larrr
Performs tests to decide whether the symmetric
tridiagonal matrix T warrants expensive
computations which guarantee high relative
accuracy in the eigenvalues.

Syntax

call slarrr(n, d, e, info)

call dlarrr(n, d, e, info)

1416

5 Intel® Math Kernel Library Reference Manual

Description

The routine performs tests to decide whether the symmetric tridiagonal matrix T warrants
expensive computations which guarantee high relative accuracy in the eigenvalues.

Input Parameters

INTEGER. The order of the matrix T. (n > 0).n

REAL for slarrrd
DOUBLE PRECISION for dlarrr
Array, DIMENSION (n).
Contains n diagonal elements of the matrix T.

REAL for slarrre
DOUBLE PRECISION for dlarrr
Array, DIMENSION (n).
The first (n-1) entries contain sub-diagonal elements of
the tridiagonal matrix T; e(n) is set to 0.

Output Parameters

INTEGER.info
= 0: the matrix warrants computations preserving relative
accuracy (default value).
= -1: the matrix warrants computations guaranteeing only
absolute accuracy.

1417

LAPACK Auxiliary and Utility Routines 5

?larrv
Computes the eigenvectors of the tridiagonal
matrix T = L*D* LT given L, D and the eigenvalues
of L*D* LT.

Syntax

call slarrv(n, vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtol1,
rtol2, w, werr, wgap, iblock, indexw, gers, z, ldz, isuppz, work, iwork, info
)

call dlarrv(n, vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtol1,
rtol2, w, werr, wgap, iblock, indexw, gers, z, ldz, isuppz, work, iwork, info
)

call clarrv(n, vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtol1,
rtol2, w, werr, wgap, iblock, indexw, gers, z, ldz, isuppz, work, iwork, info
)

call zlarrv(n, vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtol1,
rtol2, w, werr, wgap, iblock, indexw, gers, z, ldz, isuppz, work, iwork, info
)

Description

The routine ?larrv computes the eigenvectors of the tridiagonal matrix T = L*D* LT given L,
D and approximations to the eigenvalues of L*D* LT.

The input eigenvalues should have been computed by slarre for real flavors (slarrv/clarrv)
and by dlarre for double precision flavors (dlarre/zlarre).

Input Parameters

INTEGER. The order of the matrix. n ≥ 0.n

REAL for slarrv/clarrvvl, vu
DOUBLE PRECISION for dlarrv/zlarrv
Lower and upper bounds respectively of the interval that
contains the desired eigenvalues. vl < vu. Needed to
compute gaps on the left or right end of the extremal
eigenvalues in the desired range.

REAL for slarrv/clarrvd

1418

5 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n). On entry, the n diagonal elements
of the diagonal matrix D.

REAL for slarrv/clarrvl
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n).
On entry, the (n-1) subdiagonal elements of the unit
bidiagonal matrix L are contained in elements 1 to n-1 of L
if the matrix is not splitted. At the end of each block the
corresponding shift is stored as given by slarre for real
flavors and by dlarre for double precision flavors.

REAL for slarrv/clarrvpivmin
DOUBLE PRECISION for dlarrv/zlarrv
The minimum pivot allowed in the Sturm sequence.

INTEGER. Array, DIMENSION (n).isplit
The splitting points, at which T breaks up into blocks. The
first block consists of rows/columns 1 to isplit(1), the
second of rows/columns isplit(1)+1 through isplit(2),
etc.

INTEGER. The total number of eigenvalues found.m

0 ≤ m ≤ n. If range = 'A', m = n, and if range = 'I',
m = iu - il +1.

INTEGER.dol, dou
If you want to compute only selected eigenvectors from all
the eigenvalues supplied, specify an index range dol:dou.
Or else apply the setting dol=1, dou=m. Note that dol and
dou refer to the order in which the eigenvalues are stored
in w.
If you want to compute only selected eigenpairs, then the
columns dol-1 to dou+1 of the eigenvector space Z contain
the computed eigenvectors. All other columns of Z are set
to zero.

REAL for slarrv/clarrvminrgp, rtol1, rtol2
DOUBLE PRECISION for dlarrv/zlarrv
Parameters for bisection. An interval [LEFT,RIGHT] has
converged if RIGHT-LEFT.LT.MAX(rtol1*gap,
rtol2*max(|LEFT|,|RIGHT|)).

1419

LAPACK Auxiliary and Utility Routines 5

REAL for slarrv/clarrvw
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n). The first m elements of w contain the
approximate eigenvalues for which eigenvectors are to be
computed. The eigenvalues should be grouped by split-off
block and ordered from smallest to largest within the block
(the output array w from ?larre is expected here). These
eigenvalues are set with respect to the shift of the
corresponding root representation for their block.

REAL for slarrv/clarrvwerr
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n). The first m elements contain the
semiwidth of the uncertainty interval of the corresponding
eigenvalue in w.

REAL for slarrv/clarrvwgap
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n). The separation from the right
neighbor eigenvalue in w.

INTEGER. Array, DIMENSION (n).iblock
The indices of the blocks (submatrices) associated with the
corresponding eigenvalues in w; iblock(i)=1 if eigenvalue
w(i) belongs to the first block from the top, =2 if w(i)
belongs to the second block, etc.

INTEGER. Array, DIMENSION (n).indexw
The indices of the eigenvalues within each block (submatrix);
for example, indexw(i)= 10 and iblock(i)=2 imply that
the i-th eigenvalue w(i) is the 10-th eigenvalue in the
second block.

REAL for slarrv/clarrvgers
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (2*n). The n Gerschgorin intervals (the
i-th Gerschgorin interval is (gers(2*i-1), gers(2*i)).
The Gerschgorin intervals should be computed from the
original unshifted matrix.

INTEGER. The leading dimension of the output array Z. ldz

≥ 1, and if jobz = 'V', ldz ≥ max(1,n).

ldz

1420

5 Intel® Math Kernel Library Reference Manual

REAL for slarrv/clarrvwork
DOUBLE PRECISION for dlarrv/zlarrv
Workspace array, DIMENSION (12*n).

INTEGER.iwork
Workspace array, DIMENSION (7*n).

Output Parameters

On exit, d may be overwritten.d

On exit, l is overwritten.l

On exit, w holds the eigenvalues of the unshifted matrix.w

On exit, werr contains refined values of its input
approximations.

werr

On exit, wgap contains refined values of its input
approximations. Very small gaps are changed.

wgap

REAL for slarrvz
DOUBLE PRECISION for dlarrv
COMPLEX for clarrv
COMPLEX*16 for zlarrv
Array, DIMENSION (ldz, max(1,m)).
If info = 0, the first m columns of z contain the orthonormal
eigenvectors of the matrix T corresponding to the input
eigenvalues, with the i-th column of z holding the
eigenvector associated with w(i).

NOTE. The user must ensure that at least max(1,m)
columns are supplied in the array z.

INTEGER .isuppz
Array, DIMENSION (2*max(1,m)). The support of the
eigenvectors in z, that is, the indices indicating the nonzero
elements in z. The i-th eigenvector is nonzero only in
elements isuppz(2i-1) through isuppz(2i).

INTEGER.info
If info = 0: successful exit

1421

LAPACK Auxiliary and Utility Routines 5

If info > 0: A problem occured in ?larrv. If info = 5,
the Rayleigh Quotient Iteration failed to converge to full
accuracy.
If info < 0: One of the called subroutines signaled an
internal problem. Inspection of the corresponding parameter
info for further information is required.

• If info = -1, there is a problem in ?larrb when refining
a child eigenvalue;

• If info = -2, there is a problem in ?larrf when
computing the relatively robust representation (RRR) of
a child. When a child is inside a tight cluster, it can be
difficult to find an RRR. A partial remedy from the user's
point of view is to make the parameter minrgp smaller
and recompile. However, as the orthogonality of the
computed vectors is proportional to 1/minrgp, you should
be aware that you might be trading in precision when
you decrease minrgp.

• If info = -3, there is a problem in ?larrb when refining
a single eigenvalue after the Rayleigh correction was
rejected.

?lartg
Generates a plane rotation with real cosine and
real/complex sine.

Syntax

call slartg(f, g, cs, sn, r)

call dlartg(f, g, cs, sn, r)

call clartg(f, g, cs, sn, r)

call zlartg(f, g, cs, sn, r)

Description

The routine generates a plane rotation so that

1422

5 Intel® Math Kernel Library Reference Manual

where cs2 + |sn|2 = 1

This is a slower, more accurate version of the BLAS Level 1 routine ?rotg, except for the
following differences.

For slartg/dlartg:

f and g are unchanged on return;

If g=0, then cs=1 and sn=0;

If f=0 and g ≠ 0, then cs=0 and sn=1 without doing any floating point operations (saves work
in ?bdsqr when there are zeros on the diagonal);

If f exceeds g in magnitude, cs will be positive.

For clartg/zlartg:

f and g are unchanged on return;

If g=0, then cs=1 and sn=0;

If f=0, then cs=0 and sn is chosen so that r is real.

Input Parameters

REAL for slartgf, g
DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The first and second component of vector to be rotated.

Output Parameters

REAL for slartg/clartgcs
DOUBLE PRECISION for dlartg/zlartg
The cosine of the rotation.

REAL for slartgsn

1423

LAPACK Auxiliary and Utility Routines 5

DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The sine of the rotation.

REAL for slartgr
DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The nonzero component of the rotated vector.

?lartv
Applies a vector of plane rotations with real cosines
and real/complex sines to the elements of a pair
of vectors.

Syntax

call slartv(n, x, incx, y, incy, c, s, incc)

call dlartv(n, x, incx, y, incy, c, s, incc)

call clartv(n, x, incx, y, incy, c, s, incc)

call zlartv(n, x, incx, y, incy, c, s, incc)

Description

The routine applies a vector of real/complex plane rotations with real cosines to elements of
the real/complex vectors x and y. For i = 1,2,...,n

Input Parameters

INTEGER. The number of plane rotations to be applied.n

REAL for slartvx, y

1424

5 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dlartv
COMPLEX for clartv
COMPLEX*16 for zlartv
Arrays, DIMENSION (1+(n-1)*incx) and (1+(n-1)*incy),
respectively. The input vectors x and y.

INTEGER. The increment between elements of x. incx > 0.incx

INTEGER. The increment between elements of y. incy > 0.incy

REAL for slartv/clartvc
DOUBLE PRECISION for dlartv/zlartv
Array, DIMENSION (1+(n-1)*incc).
The cosines of the plane rotations.

REAL for slartvs
DOUBLE PRECISION for dlartv
COMPLEX for clartv
COMPLEX*16 for zlartv
Array, DIMENSION (1+(n-1)*incc).
The sines of the plane rotations.

INTEGER. The increment between elements of c and s. incc
> 0.

incc

Output Parameters

The rotated vectors x and y.x, y

?laruv
Returns a vector of n random real numbers from
a uniform distribution.

Syntax

call slaruv(iseed, n, x)

call dlaruv(iseed, n, x)

Description

The routine ?laruv returns a vector of n random real numbers from a uniform (0,1) distribution

(n ≤ 128).

1425

LAPACK Auxiliary and Utility Routines 5

This is an auxiliary routine called by ?larnv.

Input Parameters

INTEGER. Array, DIMENSION (4). On entry, the seed of the
random number generator; the array elements must be
between 0 and 4095, and iseed(4) must be odd.

iseed

INTEGER. The number of random numbers to be generated.

n ≤ 128.

n

Output Parameters

REAL for slaruvx
DOUBLE PRECISION for dlaruv
Array, DIMENSION (n). The generated random numbers.

On exit, the seed is updated.seed

?larz
Applies an elementary reflector (as returned by
?tzrzf) to a general matrix.

Syntax

call slarz(side, m, n, l, v, incv, tau, c, ldc, work)

call dlarz(side, m, n, l, v, incv, tau, c, ldc, work)

call clarz(side, m, n, l, v, incv, tau, c, ldc, work)

call zlarz(side, m, n, l, v, incv, tau, c, ldc, work)

Description

The routine ?larz applies a real/complex elementary reflector H to a real/complex m-by-n
matrix C, from either the left or the right. H is represented in the form

H = I - tau*v*v',

where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then H is taken to be the unit matrix.

1426

5 Intel® Math Kernel Library Reference Manual

For complex flavors, to apply H '(the conjugate transpose of H), supply conjg(tau) instead of
tau.

H is a product of k elementary reflectors as returned by ?tzrzf.

Input Parameters

CHARACTER*1.side
If side = 'L': form H*C
If side = 'R': form C*H

INTEGER. The number of rows of the matrix C.m

INTEGER. The number of columns of the matrix C.n

INTEGER. The number of entries of the vector v containing
the meaningful part of the Householder vectors.

l

If side = 'L', m ≥ L ≥ 0,

if side = 'R', n ≥ L ≥ 0.

REAL for slarzv
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
Array, DIMENSION (1+(l-1)*abs(incv)).
The vector v in the representation of H as returned by
?tzrzf.
v is not used if tau = 0.

INTEGER. The increment between elements of v.incv

incv ≠ 0.

REAL for slarztau
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
The value tau in the representation of H.

REAL for slarzc
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
Array, DIMENSION (ldc,n).
On entry, the m-by-n matrix C.

1427

LAPACK Auxiliary and Utility Routines 5

INTEGER. The leading dimension of the array c.ldc

ldc ≥ max(1,m).

REAL for slarzwork
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.

Output Parameters

On exit, C is overwritten by the matrix H*C if side = 'L',
or C*H if side = 'R'.

c

?larzb
Applies a block reflector or its
transpose/conjugate-transpose to a general matrix.

Syntax

call slarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc,
work, ldwork)

call dlarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc,
work, ldwork)

call clarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc,
work, ldwork)

call zlarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc,
work, ldwork)

Description

The routine applies a real/complex block reflector H or its transpose HT (or H for complex flavors)
to a real/complex distributed m-by-n matrix C from the left or the right. Currently, only storev
= 'R' and direct = 'B' are supported.

1428

5 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*1.side
If side = 'L': apply H or H' from the left
If side = 'R': apply H or H' from the right

CHARACTER*1.trans
If trans = 'N': apply H (No transpose)
If trans='C': apply H' (Transpose/conjugate transpose)

CHARACTER*1.direct
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2)... H(k) (forward, not supported)
= 'B': H = H(k)... H(2) H(1) (backward)

CHARACTER*1.storev
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Column-wise (not supported)
= 'R': Row-wise.

INTEGER. The number of rows of the matrix C.m

INTEGER. The number of columns of the matrix C.n

INTEGER. The order of the matrix T (equal to the number
of elementary reflectors whose product defines the block
reflector).

k

INTEGER. The number of columns of the matrix V containing
the meaningful part of the Householder reflectors.

l

If side = 'L', m ≥ l ≥ 0, if side = 'R', n ≥ l ≥ 0.

REAL for slarzbv
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldv, nv).
If storev = 'C', nv = k;
if storev = 'R', nv = l.

INTEGER. The leading dimension of the array v.ldv

If storev = 'C', ldv ≥ l; if storev = 'R', ldv ≥ k.

1429

LAPACK Auxiliary and Utility Routines 5

REAL for slarzbt
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldt,k). The triangular k-by-k matrix T
in the representation of the block reflector.

INTEGER. The leading dimension of the array t.ldt

ldt ≥ k.

REAL for slarzbc
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldc,n). On entry, the m-by-n matrix C.

INTEGER. The leading dimension of the array c.ldc

ldc ≥ max(1,m).

REAL for slarzbwork
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Workspace array, DIMENSION (ldwork, k).

INTEGER. The leading dimension of the array work.ldwork

If side = 'L', ldwork ≥ max(1, n);

if side = 'R', ldwork ≥ max(1, m).

Output Parameters

On exit, C is overwritten by H*C, or H'*C, or C*H, or C*H'.c

1430

5 Intel® Math Kernel Library Reference Manual

?larzt
Forms the triangular factor T of a block reflector H
= I - V*T*VH.

Syntax

call slarzt(direct, storev, n, k, v, ldv, tau, t, ldt)

call dlarzt(direct, storev, n, k, v, ldv, tau, t, ldt)

call clarzt(direct, storev, n, k, v, ldv, tau, t, ldt)

call zlarzt(direct, storev, n, k, v, ldv, tau, t, ldt)

Description

The routine forms the triangular factor T of a real/complex block reflector H of order > n, which
is defined as a product of k elementary reflectors.

If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular.

If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

If storev = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th
column of the array v, and H = I - V*T*V'

If storev = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th
row of the array v, and H = I - V'*T*V

Currently, only storev = 'R' and direct = 'B' are supported.

Input Parameters

CHARACTER*1.direct
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
If direct = 'F': H = H(1) H(2) . . . H(k) (forward,
not supported)
If direct = 'B': H = H(k) . . . H(2) H(1) (backward)

CHARACTER*1.storev
Specifies how the vectors which define the elementary
reflectors are stored (see also Application Notes below):
If storev = 'C': column-wise (not supported)
If storev = 'R': row-wise

1431

LAPACK Auxiliary and Utility Routines 5

INTEGER. The order of the block reflector H. n ≥ 0.n

INTEGER. The order of the triangular factor T (equal to the

number of elementary reflectors). k ≥ 1.

k

REAL for slarztv
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION
(ldv, k) if storev = 'C'
(ldv, n) if storev = 'R' The matrix V.

INTEGER. The leading dimension of the array v.ldv

If storev = 'C', ldv ≥ max(1,n);

if storev = 'R', ldv ≥ k.

REAL for slarzttau
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION (k). tau(i) must contain the scalar factor
of the elementary reflector H(i).

INTEGER. The leading dimension of the output array t.ldt

ldt ≥ k.

Output Parameters

REAL for slarztt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION (ldt,k). The k-by-k triangular factor T
of the block reflector. If direct = 'F', T is upper
triangular; if direct = 'B', T is lower triangular. The rest
of the array is not used.

The matrix V. See Application Notes below.v

1432

5 Intel® Math Kernel Library Reference Manual

Application Notes

The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated
by the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the
corresponding array elements are modified but restored on exit. The rest of the array is not
used.

1433

LAPACK Auxiliary and Utility Routines 5

?las2
Computes singular values of a 2-by-2 triangular
matrix.

Syntax

call slas2(f, g, h, ssmin, ssmax)

call dlas2(f, g, h, ssmin, ssmax)

Description

The routine ?las2 computes the singular values of the 2-by-2 matrix

1434

5 Intel® Math Kernel Library Reference Manual

On return, ssmin is the smaller singular value and SSMAX is the larger singular value.

Input Parameters

REAL for slas2f, g, h
DOUBLE PRECISION for dlas2
The (1,1), (1,2) and (2,2) elements of the 2-by-2 matrix,
respectively.

Output Parameters

REAL for slas2ssmin, ssmax
DOUBLE PRECISION for dlas2
The smaller and the larger singular values, respectively.

Application Notes

Barring over/underflow, all output quantities are correct to within a few units in the last place
(ulps), even in the absence of a guard digit in addition/subtraction. In ieee arithmetic, the
code works correctly if one matrix element is infinite. Overflow will not occur unless the largest
singular value itself overflows, or is within a few ulps of overflow. (On machines with partial
overflow, like the Cray, overflow may occur if the largest singular value is within a factor of 2
of overflow.) Underflow is harmless if underflow is gradual. Otherwise, results may correspond
to a matrix modified by perturbations of size near the underflow threshold.

1435

LAPACK Auxiliary and Utility Routines 5

?lascl
Multiplies a general rectangular matrix by a real
scalar defined as cto/cfrom.

Syntax

call slascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)

call dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)

call clascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)

call zlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)

Description

The routine ?lascl multiplies the m-by-n real/complex matrix A by the real scalar cto/cfrom.
The operation is performed without over/underflow as long as the final result cto*A(i,j)/cfrom
does not over/underflow.

type specifies that A may be full, upper triangular, lower triangular, upper Hessenberg, or
banded.

Input Parameters

CHARACTER*1. type indices the storage type of the input
matrix.

type

= 'G': A is a full matrix.
= 'L': A is a lower triangular matrix.
= 'U': A is an upper triangular matrix.
= 'H': A is an upper Hessenberg matrix.
= 'B': A is a symmetric band matrix with lower bandwidth
kl and upper bandwidth ku and with the only the lower half
stored
= 'Q': A is a symmetric band matrix with lower bandwidth
kl and upper bandwidth ku and with the only the upper half
stored.
= 'Z': A is a band matrix with lower bandwidth kl and
upper bandwidth ku.

INTEGER. The lower bandwidth of A. Referenced only if type
= 'B', 'Q' or 'Z'.

kl

1436

5 Intel® Math Kernel Library Reference Manual

INTEGER. The upper bandwidth of A. Referenced only if type
= 'B', 'Q' or 'Z'.

ku

REAL for slascl/clasclcfrom, cto
DOUBLE PRECISION for dlascl/zlascl
The matrix A is multiplied by cto/cfrom. A(i,j) is computed
without over/underflow if the final result cto*A(i,j)/cfrom
can be represented without over/underflow. cfrom must be
nonzero.

INTEGER. The number of rows of the matrix A. m ≥ 0.m

INTEGER. The number of columns of the matrix A. n ≥ 0.n

REAL for slascla
DOUBLE PRECISION for dlascl
COMPLEX for clascl
COMPLEX*16 for zlascl
Array, DIMENSION (lda, n). The matrix to be multiplied by
cto/cfrom. See type for the storage type.

INTEGER. The leading dimension of the array a.lda

lda ≥ max(1,m).

Output Parameters

The multiplied matrix A.a

INTEGER.info
If info = 0 - successful exit
If info = -i < 0, the i-th argument had an illegal value.

?lasd0
Computes the singular values of a real upper
bidiagonal n-by-m matrix B with diagonal d and
off-diagonal e. Used by ?bdsdc.

Syntax

call slasd0(n, sqre, d, e, u, ldu, vt, ldvt, smlsiz, iwork, work, info)

call dlasd0(n, sqre, d, e, u, ldu, vt, ldvt, smlsiz, iwork, work, info)

1437

LAPACK Auxiliary and Utility Routines 5

Description

Using a divide and conquer approach, the routine ?lasd0 computes the singular value
decomposition (SVD) of a real upper bidiagonal n-by-m matrix B with diagonal d and offdiagonal
e, where m = n + sqre.

The algorithm computes orthogonal matrices U and VT such that B = U*S*VT. The singular
values S are overwritten on d.

The related subroutine ?lasda computes only the singular values, and optionally, the singular
vectors in compact form.

Input Parameters

INTEGER. On entry, the row dimension of the upper
bidiagonal matrix. This is also the dimension of the main
diagonal array d.

n

INTEGER. Specifies the column dimension of the bidiagonal
matrix.

sqre

If sqre = 0: the bidiagonal matrix has column dimension
m = n.
If sqre = 1: the bidiagonal matrix has column dimension
m = n+1.

REAL for slasd0d
DOUBLE PRECISION for dlasd0
Array, DIMENSION (n). On entry, d contains the main
diagonal of the bidiagonal matrix.

REAL for slasd0e
DOUBLE PRECISION for dlasd0
Array, DIMENSION (m-1). Contains the subdiagonal entries
of the bidiagonal matrix. On exit, e is destroyed.

INTEGER. On entry, leading dimension of the output array
u.

ldu

INTEGER. On entry, leading dimension of the output array
vt.

ldvt

INTEGER. On entry, maximum size of the subproblems at
the bottom of the computation tree.

smlsiz

INTEGER.iwork
Workspace array, dimension must be at least (8 * n).

1438

5 Intel® Math Kernel Library Reference Manual

REAL for slasd0work
DOUBLE PRECISION for dlasd0
Workspace array, dimension must be at least (3 * m2 +
2 *m).

Output Parameters

On exit d, If info = 0, contains singular values of the
bidiagonal matrix.

d

REAL for slasd0u
DOUBLE PRECISION for dlasd0
Array, DIMENSION at least (ldq, n). On exit, u contains the
left singular vectors.

REAL for slasd0vt
DOUBLE PRECISION for dlasd0
Array, DIMENSION at least (ldvt, m). On exit, vt' contains
the right singular vectors.

INTEGER.info
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info = 1, an singular value did not converge.

?lasd1
Computes the SVD of an upper bidiagonal matrix
B of the specified size. Used by ?bdsdc.

Syntax

call slasd1(nl, nr, sqre, d, alpha, beta, u, ldu, vt, ldvt, idxq, iwork,
work, info)

call dlasd1(nl, nr, sqre, d, alpha, beta, u, ldu, vt, ldvt, idxq, iwork,
work, info)

Description

This routine computes the SVD of an upper bidiagonal n-by-m matrix B, where n = nl + nr
+ 1 and m = n + sqre.

The routine ?lasd1 is called from ?lasd0.

1439

LAPACK Auxiliary and Utility Routines 5

A related subroutine ?lasd7 handles the case in which the singular values (and the singular
vectors in factored form) are desired.

?lasd1 computes the SVD as follows:

= U(out)*(D(out) 0)*VT(out)

where Z' = (Z1' a Z2' b) = u' VT ', and u is a vector of dimension m with alpha and beta in
the nl+1 and nl+2-th entries and zeros elsewhere; and the entry b is empty if sqre = 0.

The left singular vectors of the original matrix are stored in u, and the transpose of the right
singular vectors are stored in vt, and the singular values are in d. The algorithm consists of
three stages:

1. The first stage consists of deflating the size of the problem when there are multiple singular
values or when there are zeros in the Z vector. For each such occurrence the dimension of
the secular equation problem is reduced by one. This stage is performed by the routine
?lasd2.

2. The second stage consists of calculating the updated singular values. This is done by finding
the square roots of the roots of the secular equation via the routine ?lasd4 (as called by
?lasd3). This routine also calculates the singular vectors of the current problem.

3. The final stage consists of computing the updated singular vectors directly using the updated
singular values. The singular vectors for the current problem are multiplied with the singular
vectors from the overall problem.

Input Parameters

INTEGER. The row dimension of the upper block.nl

nl ≥ 1.

INTEGER. The row dimension of the lower block.nr

nr ≥ 1.

1440

5 Intel® Math Kernel Library Reference Manual

INTEGER.sqre
If sqre = 0: the lower block is an nr-by-nr square matrix.
If sqre = 1: the lower block is an nr-by-(nr+1) rectangular
matrix. The bidiagonal matrix has row dimension n = nl
+ nr + 1, and column dimension m = n + sqre.

REAL for slasd1d
DOUBLE PRECISION for dlasd1
Array, DIMENSION (nl+nr+1). n = nl+nr+1. On entry
d(1:nl,1:nl) contains the singular values of the upper
block; and d(nl+2:n) contains the singular values of the
lower block.

REAL for slasd1alpha
DOUBLE PRECISION for dlasd1
Contains the diagonal element associated with the added
row.

REAL for slasd1beta
DOUBLE PRECISION for dlasd1
Contains the off-diagonal element associated with the added
row.

REAL for slasd1u
DOUBLE PRECISION for dlasd1
Array, DIMENSION (ldu, n). On entry u(1:nl, 1:nl)
contains the left singular vectors of the upper block;
u(nl+2:n, nl+2:n) contains the left singular vectors of
the lower block.

INTEGER. The leading dimension of the array U.ldu

ldu ≥ max(1, n).

REAL for slasd1vt
DOUBLE PRECISION for dlasd1
Array, DIMENSION (ldvt, m), where m = n + sqre.
On entry vt(1:nl+1, 1:nl+1)' contains the right singular
vectors of the upper block; vt(nl+2:m, nl+2:m)' contains
the right singular vectors of the lower block.

INTEGER. The leading dimension of the array vt.ldvt

ldvt ≥ max(1, M).

INTEGER.iwork

1441

LAPACK Auxiliary and Utility Routines 5

Workspace array, DIMENSION (4n).

REAL for slasd1work
DOUBLE PRECISION for dlasd1
Workspace array, DIMENSION (3m2 + 2m).

Output Parameters

On exit d(1:n) contains the singular values of the modified
matrix.

d

On exit, the diagonal element associated with the added
row deflated by max(abs(alpha), abs(beta),
abs(D(I))), I = 1,n.

alpha

On exit, the off-diagonal element associated with the added
row deflated by max(abs(alpha), abs(beta),
abs(D(I))), I = 1,n.

beta

On exit u contains the left singular vectors of the bidiagonal
matrix.

u

On exit vt' contains the right singular vectors of the
bidiagonal matrix.

vt

INTEGERidxq
Array, DIMENSION (n). Contains the permutation which will
reintegrate the subproblem just solved back into sorted
order, that is, d(idxq(i = 1, n)) will be in ascending
order.

INTEGER.info
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info = 1, an singular value did not converge.

1442

5 Intel® Math Kernel Library Reference Manual

?lasd2
Merges the two sets of singular values together
into a single sorted set. Used by ?bdsdc.

Syntax

call slasd2(nl, nr, sqre, k, d, z, alpha, beta, u, ldu, vt, ldvt, dsigma,
u2, ldu2, vt2, ldvt2, idxp, idx, idxp, idxq, coltyp, info)

call dlasd2(nl, nr, sqre, k, d, z, alpha, beta, u, ldu, vt, ldvt, dsigma,
u2, ldu2, vt2, ldvt2, idxp, idx, idxp, idxq, coltyp, info)

Description

The routine ?lasd2 merges the two sets of singular values together into a single sorted set.
Then it tries to deflate the size of the problem. There are two ways in which deflation can occur:
when two or more singular values are close together or if there is a tiny entry in the Z vector.
For each such occurrence the order of the related secular equation problem is reduced by one.

The routine ?lasd2 is called from ?lasd1.

Input Parameters

INTEGER. The row dimension of the upper block.nl

nl ≥ 1.

INTEGER. The row dimension of the lower block.nr

nr ≥ 1.

INTEGER.sqre
If sqre = 0): the lower block is an nr-by-nr square matrix
If sqre = 1): the lower block is an nr-by-(nr+1)
rectangular matrix. The bidiagonal matrix has n = nl +

nr + 1 rows and m = n + sqre ≥ n columns.

REAL for slasd2d
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). On entry d contains the singular
values of the two submatrices to be combined.

REAL for slasd2alpha
DOUBLE PRECISION for dlasd2

1443

LAPACK Auxiliary and Utility Routines 5

Contains the diagonal element associated with the added
row.

REAL for slasd2beta
DOUBLE PRECISION for dlasd2
Contains the off-diagonal element associated with the added
row.

REAL for slasd2u
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldu, n). On entry u contains the left
singular vectors of two submatrices in the two square blocks
with corners at (1,1), (nl, nl), and (nl+2, nl+2), (n,n).

INTEGER. The leading dimension of the array u.ldu

ldu ≥ n.

INTEGER. The leading dimension of the output array u2.

ldu2 ≥ n.

ldu2

REAL for slasd2vt
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldvt, m). On entry, vt' contains the right
singular vectors of two submatrices in the two square blocks
with corners at (1,1), (nl+1, nl+1), and (nl+2, nl+2), (m,
m).

INTEGER. The leading dimension of the array vt. ldvt ≥
m.

ldvt

INTEGER. The leading dimension of the output array vt2.

ldvt2 ≥ m.

ldvt2

INTEGER.idxp
Workspace array, DIMENSION (n). This will contain the
permutation used to place deflated values of D at the end
of the array. On output idxp(2:k) points to the nondeflated
d-values and idxp(k+1:n) points to the deflated singular
values.

INTEGER.idx
Workspace array, DIMENSION (n). This will contain the
permutation used to sort the contents of d into ascending
order.

1444

5 Intel® Math Kernel Library Reference Manual

INTEGER.coltyp
Workspace array, DIMENSION (n). As workspace, this array
contains a label that indicates which of the following types
a column in the u2 matrix or a row in the vt2 matrix is:
1 : non-zero in the upper half only
2 : non-zero in the lower half only
3 : dense
4 : deflated.

INTEGER. Array, DIMENSION (n). This parameter contains
the permutation that separately sorts the two sub-problems
in D into ascending order. Note that entries in the first half

idxq

of this permutation must first be moved one position
backward; and entries in the second half must first have
nl+1 added to their values.

Output Parameters

INTEGER. Contains the dimension of the non-deflated matrix,

This is the order of the related secular equation. 1 ≤ k ≤
n.

k

On exit D contains the trailing (n-k) updated singular values
(those which were deflated) sorted into increasing order.

d

On exit u contains the trailing (n-k) updated left singular
vectors (those which were deflated) in its last n-k columns.

u

REAL for slasd2z
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). On exit, z contains the updating row
vector in the secular equation.

REAL for slasd2dsigma
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). Contains a copy of the diagonal
elements (k-1 singular values and one zero) in the secular
equation.

REAL for slasd2u2
DOUBLE PRECISION for dlasd2

1445

LAPACK Auxiliary and Utility Routines 5

Array, DIMENSION (ldu2, n). Contains a copy of the first
k-1 left singular vectors which will be used by ?lasd3 in a
matrix multiply (?gemm) to solve for the new left singular
vectors. u2 is arranged into four blocks. The first block
contains a column with 1 at nl+1 and zero everywhere else;
the second block contains non-zero entries only at and above
nl; the third contains non-zero entries only below nl+1;
and the fourth is dense.

On exit, vt' contains the trailing (n-k) updated right singular
vectors (those which were deflated) in its last n-k columns.
In case sqre =1, the last row of vt spans the right null
space.

vt

REAL for slasd2vt2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldvt2, n). vt2' contains a copy of the
first k right singular vectors which will be used by ?lasd3
in a matrix multiply (?gemm) to solve for the new right
singular vectors. vt2 is arranged into three blocks. The first
block contains a row that corresponds to the special 0
diagonal element in sigma; the second block contains
non-zeros only at and before nl +1; the third block contains
non-zeros only at and after nl +2.

INTEGER. Array, DIMENSION (n). This will contain the
permutation used to arrange the columns of the deflated u
matrix into three groups: the first group contains non-zero
entries only at and above nl, the second contains non-zero
entries only below nl+2, and the third is dense.

idxc

On exit, it is an array of dimension 4, with coltyp(i) being
the dimension of the i-th type columns.

coltyp

INTEGER.info
If info = 0): successful exit
If info = -i < 0, the i-th argument had an illegal value.

1446

5 Intel® Math Kernel Library Reference Manual

?lasd3
Finds all square roots of the roots of the secular
equation, as defined by the values in D and Z, and
then updates the singular vectors by matrix
multiplication. Used by ?bdsdc.

Syntax

call slasd3(nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu, u2, ldu2, vt, ldvt,
vt2, ldvt2, idxc, ctot, z, info)

call dlasd3(nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu, u2, ldu2, vt, ldvt,
vt2, ldvt2, idxc, ctot, z, info)

Description

The routine ?lasd3 finds all the square roots of the roots of the secular equation, as defined
by the values in D and Z.

It makes the appropriate calls to ?lasd4 and then updates the singular vectors by matrix
multiplication.

The routine ?lasd3 is called from ?lasd1.

Input Parameters

INTEGER. The row dimension of the upper block.nl

nl ≥ 1.

INTEGER. The row dimension of the lower block.nr

nr ≥ 1.

INTEGER.sqre
If sqre = 0): the lower block is an nr-by-nr square matrix.
If sqre = 1): the lower block is an nr-by-(nr+1)
rectangular matrix. The bidiagonal matrix has n = nl +

nr + 1 rows and m = n + sqre ≥ n columns.

INTEGER.The size of the secular equation, 1 ≤ k ≤ n.k

REAL for slasd3q
DOUBLE PRECISION for dlasd3
Workspace array, DIMENSION at least (ldq, k).

1447

LAPACK Auxiliary and Utility Routines 5

INTEGER. The leading dimension of the array Q.ldq

ldq ≥ k.

REAL for slasd3dsigma
DOUBLE PRECISION for dlasd3
Array, DIMENSION (k). The first k elements of this array
contain the old roots of the deflated updating problem. These
are the poles of the secular equation.

INTEGER. The leading dimension of the array u.ldu

ldu ≥ n.

REAL for slasd3u2
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldu2, n).
The first k columns of this matrix contain the non-deflated
left singular vectors for the split problem.

INTEGER. The leading dimension of the array u2.ldu2

ldu2 ≥ n.

INTEGER. The leading dimension of the array vt.ldvt

ldvt ≥ n.

REAL for slasd3vt2
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldvt2, n).
The first k columns of vt2' contain the non-deflated right
singular vectors for the split problem.

INTEGER. The leading dimension of the array vt2.ldvt2

ldvt2 ≥ n.

INTEGER. Array, DIMENSION (n).idxc
The permutation used to arrange the columns of u (and
rows of vt) into three groups: the first group contains
non-zero entries only at and above (or before) nl +1; the
second contains non-zero entries only at and below (or after)
nl+2; and the third is dense. The first column of u and the
row of vt are treated separately, however. The rows of the
singular vectors found by ?lasd4 must be likewise permuted
before the matrix multiplies can take place.

1448

5 Intel® Math Kernel Library Reference Manual

INTEGER. Array, DIMENSION (4). A count of the total number
of the various types of columns in u (or rows in vt), as
described in idxc.

ctot

The fourth column type is any column which has been
deflated.

REAL for slasd3z
DOUBLE PRECISION for dlasd3
Array, DIMENSION (k). The first k elements of this array
contain the components of the deflation-adjusted updating
row vector.

Output Parameters

REAL for slasd3d
DOUBLE PRECISION for dlasd3
Array, DIMENSION (k). On exit the square roots of the roots
of the secular equation, in ascending order.

REAL for slasd3u
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldu, n).
The last n - k columns of this matrix contain the deflated
left singular vectors.

REAL for slasd3vt
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldvt, m).
The last m - k columns of vt' contain the deflated right
singular vectors.

Destroyed on exit.vt2

Destroyed on exit.z

INTEGER.info
If info = 0): successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info = 1, an singular value did not converge.

1449

LAPACK Auxiliary and Utility Routines 5

Application Notes

This code makes very mild assumptions about floating point arithmetic. It will work on machines
with a guard digit in add/subtract, or on those binary machines without guard digits which
subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. It could conceivably fail on
hexadecimal or decimal machines without guard digits, but we know of none.

?lasd4
Computes the square root of the i-th updated
eigenvalue of a positive symmetric rank-one
modification to a positive diagonal matrix. Used by
?bdsdc.

Syntax

call slasd4(n, i, d, z, delta, rho, sigma, work, info)

call dlasd4(n, i, d, z, delta, rho, sigma, work, info)

Description

This routine computes the square root of the i-th updated eigenvalue of a positive symmetric
rank-one modification to a positive diagonal matrix whose entries are given as the squares of

the corresponding entries in the array d, and that 0 ≤ d(i) < d(j) for i < j and that rho
> 0. This is arranged by the calling routine, and is no loss in generality. The rank-one modified
system is thus

diag(d)* diag(d) + rho*Z*Z_transpose,

where we assume the Euclidean norm of Z is 1.The method consists of approximating the
rational functions in the secular equation by simpler interpolating rational functions.

Input Parameters

INTEGER. The length of all arrays.n

INTEGER.i

The index of the eigenvalue to be computed. 1 ≤ i ≤ n.

REAL for slasd4d
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).

1450

5 Intel® Math Kernel Library Reference Manual

The original eigenvalues. It is assumed that they are in

order, 0 ≤ d(i) < d(j) for i < j.

REAL for slasd4z
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).
The components of the updating vector.

REAL for slasd4rho
DOUBLE PRECISION for dlasd4
The scalar in the symmetric updating formula.

REAL for slasd4work
DOUBLE PRECISION for dlasd4
Workspace array, DIMENSION (n).

If n ≠ 1, work contains (d(j) + sigma_i) in its j-th
component.
If n = 1, then work(1) = 1.

Output Parameters

REAL for slasd4delta
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).

If n ≠ 1, delta contains (d(j) - sigma_i) in its j-th
component.
If n = 1, then delta (1) = 1. The vector delta contains
the information necessary to construct the (singular)
eigenvectors.

REAL for slasd4sigma
DOUBLE PRECISION for dlasd4
The computed sigma_i, the i-th updated eigenvalue.

INTEGER.info
= 0: successful exit
> 0: If info = 1, the updating process failed.

1451

LAPACK Auxiliary and Utility Routines 5

?lasd5
Computes the square root of the i-th eigenvalue
of a positive symmetric rank-one modification of
a 2-by-2 diagonal matrix.Used by ?bdsdc.

Syntax

call slasd5(i, d, z, delta, rho, dsigma, work)

call dlasd5(i, d, z, delta, rho, dsigma, work)

Description

This routine computes the square root of the i-th eigenvalue of a positive symmetric rank-one
modification of a 2-by-2 diagonal matrix diag(d)* diag(d) + rho*Z*Z_transpose

The diagonal entries in the array d are assumed to satisfy 0 ≤ d(i) < d(j) for i < j .We
also assume rho > 0 and that the Euclidean norm of the vector Z is one.

Input Parameters

INTEGER.The index of the eigenvalue to be computed. i =
1 or i = 2.

i

REAL for slasd5d
DOUBLE PRECISION for dlasd5
Array, dimension (2).

The original eigenvalues. We assume 0 ≤ d(1) < d(2).

REAL for slasd5z
DOUBLE PRECISION for dlasd5
Array, dimension (2).
The components of the updating vector.

REAL for slasd5rho
DOUBLE PRECISION for dlasd5
The scalar in the symmetric updating formula.

REAL for slasd5work
DOUBLE PRECISION for dlasd5.
Workspace array, dimension (2). Contains (d(j) +
sigma_i) in its j-th component.

1452

5 Intel® Math Kernel Library Reference Manual

Output Parameters

REAL for slasd5delta
DOUBLE PRECISION for dlasd5.
Array, dimension (2).
Contains (d(j) - sigma_i) in its j-th component. The
vector delta contains the information necessary to construct
the eigenvectors.

REAL for slasd5dsigma
DOUBLE PRECISION for dlasd5.
The computed sigma_i , the i-th updated eigenvalue.

?lasd6
Computes the SVD of an updated upper bidiagonal
matrix obtained by merging two smaller ones by
appending a row. Used by ?bdsdc.

Syntax

call slasd6(icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, perm, givptr,
givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, iwork,
info)

call dlasd6(icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, perm, givptr,
givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, iwork,
info)

Description

The routine ?lasd6 computes the SVD of an updated upper bidiagonal matrix B obtained by
merging two smaller ones by appending a row. This routine is used only for the problem which
requires all singular values and optionally singular vector matrices in factored form. B is an
n-by-m matrix with n = nl + nr + 1 and m = n + sqre. A related subroutine, ?lasd1,
handles the case in which all singular values and singular vectors of the bidiagonal matrix are
desired. ?lasd6 computes the SVD as follows:

1453

LAPACK Auxiliary and Utility Routines 5

= U(out*(D(out)*VT(out)

where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension m with alpha and beta in
the nl+1 and nl+2-th entries and zeros elsewhere; and the entry b is empty if sqre = 0.

The singular values of B can be computed using D1, D2, the first components of all the right
singular vectors of the lower block, and the last components of all the right singular vectors of
the upper block. These components are stored and updated in vf and vl, respectively, in
?lasd6. Hence U and VT are not explicitly referenced.

The singular values are stored in D. The algorithm consists of two stages:

1. The first stage consists of deflating the size of the problem when there are multiple singular
values or if there is a zero in the Z vector. For each such occurrence the dimension of the
secular equation problem is reduced by one. This stage is performed by the routine ?lasd7.

2. The second stage consists of calculating the updated singular values. This is done by finding
the roots of the secular equation via the routine ?lasd4 (as called by ?lasd8). This routine
also updates vf and vl and computes the distances between the updated singular values
and the old singular values. ?lasd6 is called from ?lasda.

Input Parameters

INTEGER. Specifies whether singular vectors are to be
computed in factored form:

icompq

= 0: Compute singular values only
= 1: Compute singular vectors in factored form as well.

INTEGER. The row dimension of the upper block.nl

nl ≥ 1.

INTEGER. The row dimension of the lower block.nr

nr ≥ 1.

INTEGER .sqre
= 0: the lower block is an nr-by-nr square matrix.

1454

5 Intel® Math Kernel Library Reference Manual

= 1: the lower block is an nr-by-(nr+1) rectangular matrix.
The bidiagonal matrix has row dimension n=nl+nr+1, and
column dimension m = n + sqre.

REAL for slasd6d
DOUBLE PRECISION for dlasd6
Array, dimension (nl+nr+1). On entry d(1:nl,1:nl)
contains the singular values of the upper block, and
d(nl+2:n) contains the singular values of the lower block.

REAL for slasd6vf
DOUBLE PRECISION for dlasd6
Array, dimension (m).
On entry, vf(1:nl+1) contains the first components of all
right singular vectors of the upper block; and vf(nl+2:m)
contains the first components of all right singular vectors
of the lower block.

REAL for slasd6vl
DOUBLE PRECISION for dlasd6
Array, dimension (m).
On entry, vl(1:nl+1) contains the last components of all
right singular vectors of the upper block; and vl(nl+2:m)
contains the last components of all right singular vectors of
the lower block.

REAL for slasd6alpha
DOUBLE PRECISION for dlasd6
Contains the diagonal element associated with the added
row.

REAL for slasd6beta
DOUBLE PRECISION for dlasd6
Contains the off-diagonal element associated with the added
row.

INTEGER.The leading dimension of the output array givcol,
must be at least n.

ldgcol

INTEGER.ldgnum
The leading dimension of the output arrays givnum and
poles, must be at least n.

REAL for slasd6work
DOUBLE PRECISION for dlasd6

1455

LAPACK Auxiliary and Utility Routines 5

Workspace array, dimension (4m).

INTEGER.iwork

Workspace array, dimension (3n).

Output Parameters

On exit d(1:n) contains the singular values of the modified
matrix.

d

On exit, vf contains the first components of all right singular
vectors of the bidiagonal matrix.

vf

On exit, vl contains the last components of all right singular
vectors of the bidiagonal matrix.

vl

On exit, the diagonal element associated with the added
row deflated by max(abs(alpha), abs(beta),
abs(D(I))), I = 1,n.

alpha

On exit, the off-diagonal element associated with the added
row deflated by max(abs(alpha), abs(beta),
abs(D(I))), I = 1,n.

beta

INTEGER.idxq
Array, dimension (n). This contains the permutation which
will reintegrate the subproblem just solved back into sorted
order, that is, d(idxq(i = 1, n)) will be in ascending
order.

INTEGER.perm

Array, dimension (n). The permutations (from deflation
and sorting) to be applied to each block. Not referenced if
icompq = 0.

INTEGER. The number of Givens rotations which took place
in this subproblem. Not referenced if icompq = 0.

givptr

INTEGER.givcol

Array, dimension (ldgcol, 2). Each pair of numbers
indicates a pair of columns to take place in a Givens rotation.
Not referenced if icompq = 0.

REAL for slasd6givnum
DOUBLE PRECISION for dlasd6

1456

5 Intel® Math Kernel Library Reference Manual

Array, dimension (ldgnum, 2). Each number indicates the
C or S value to be used in the corresponding Givens rotation.
Not referenced if icompq = 0.

REAL for slasd6poles
DOUBLE PRECISION for dlasd6
Array, dimension (ldgnum, 2). On exit, poles(1,*) is an
array containing the new singular values obtained from
solving the secular equation, and poles(2,*) is an array
containing the poles in the secular equation. Not referenced
if icompq = 0.

REAL for slasd6difl
DOUBLE PRECISION for dlasd6
Array, dimension (n). On exit, difl(i) is the distance
between i-th updated (undeflated) singular value and the
i-th (undeflated) old singular value.

REAL for slasd6difr
DOUBLE PRECISION for dlasd6
Array, dimension (ldgnum, 2) if icompq = 1 and
dimension (n) if icompq = 0.
On exit, difr(i, 1) is the distance between i-th updated
(undeflated) singular value and the i+1-th (undeflated) old
singular value. If icompq = 1, difr(1: k, 2) is an array
containing the normalizing factors for the right singular
vector matrix.
See ?lasd8 for details on difl and difr.

REAL for slasd6z
DOUBLE PRECISION for dlasd6
Array, dimension (m).
The first elements of this array contain the components of
the deflation-adjusted updating row vector.

INTEGER. Contains the dimension of the non-deflated matrix.

This is the order of the related secular equation. 1 ≤ k ≤
n.

k

REAL for slasd6c
DOUBLE PRECISION for dlasd6
c contains garbage if sqre =0 and the C-value of a Givens
rotation related to the right null space if

1457

LAPACK Auxiliary and Utility Routines 5

sqre = 1.

REAL for slasd6s
DOUBLE PRECISION for dlasd6
s contains garbage if sqre =0 and the S-value of a Givens
rotation related to the right null space if
sqre = 1.

INTEGER.info

= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal value.
> 0: if info = 1, an singular value did not converge

?lasd7
Merges the two sets of singular values together
into a single sorted set. Then it tries to deflate the
size of the problem. Used by ?bdsdc.

Syntax

call slasd7(icompq, nl, nr, sqre, k, d, z, zw, vf, vfw, vl, vlw, alpha, beta,
dsigma, idx, idxp, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, c, s,
info)

call dlasd7(icompq, nl, nr, sqre, k, d, z, zw, vf, vfw, vl, vlw, alpha, beta,
dsigma, idx, idxp, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, c, s,
info)

Description

The routine ?lasd7 merges the two sets of singular values together into a single sorted set.
Then it tries to deflate the size of the problem. There are two ways in which deflation can occur:
when two or more singular values are close together or if there is a tiny entry in the Z vector.
For each such occurrence the order of the related secular equation problem is reduced by one.
?lasd7 is called from ?lasd6.

Input Parameters

INTEGER. Specifies whether singular vectors are to be
computed in compact form, as follows:

icompq

= 0: Compute singular values only.

1458

5 Intel® Math Kernel Library Reference Manual

= 1: Compute singular vectors of upper bidiagonal matrix
in compact form.

INTEGER. The row dimension of the upper block.nl

nl ≥ 1.

INTEGER. The row dimension of the lower block.nr

nr ≥ 1.

INTEGER.sqre
= 0: the lower block is an nr-by-nr square matrix.
= 1: the lower block is an nr-by-(nr+1) rectangular matrix.
The bidiagonal matrix has n = nl + nr + 1 rows and m

= n + sqre ≥ n columns.

REAL for slasd7d
DOUBLE PRECISION for dlasd7
Array, DIMENSION (n). On entry d contains the singular
values of the two submatrices to be combined.

REAL for slasd7zw
DOUBLE PRECISION for dlasd7
Array, DIMENSION (m).
Workspace for z.

REAL for slasd7vf
DOUBLE PRECISION for dlasd7
Array, DIMENSION (m). On entry, vf(1:nl+1) contains
the first components of all right singular vectors of the upper
block; and vf(nl+2:m) contains the first components of all
right singular vectors of the lower block.

REAL for slasd7vfw
DOUBLE PRECISION for dlasd7
Array, DIMENSION (m).
Workspace for vf.

REAL for slasd7vl
DOUBLE PRECISION for dlasd7
Array, DIMENSION (m).

1459

LAPACK Auxiliary and Utility Routines 5

On entry, vl(1:nl+1) contains the last components of all
right singular vectors of the upper block; and vl(nl+2:m)
contains the last components of all right singular vectors of
the lower block.

REAL for slasd7VLW
DOUBLE PRECISION for dlasd7
Array, DIMENSION (m).
Workspace for VL.

REAL for slasd7alpha
DOUBLE PRECISION for dlasd7.
Contains the diagonal element associated with the added
row.

REAL for slasd7beta
DOUBLE PRECISION for dlasd7
Contains the off-diagonal element associated with the added
row.

INTEGER.idx
Workspace array, DIMENSION (n). This will contain the
permutation used to sort the contents of d into ascending
order.

INTEGER.idxp
Workspace array, DIMENSION (n). This will contain the
permutation used to place deflated values of d at the end
of the array.

INTEGER.idxq
Array, DIMENSION (n).
This contains the permutation which separately sorts the
two sub-problems in d into ascending order. Note that
entries in the first half of this permutation must first be
moved one position backward; and entries in the second
half must first have nl+1 added to their values.

INTEGER.The leading dimension of the output array givcol,
must be at least n.

ldgcol

INTEGER. The leading dimension of the output array givnum,
must be at least n.

ldgnum

1460

5 Intel® Math Kernel Library Reference Manual

Output Parameters

INTEGER. Contains the dimension of the non-deflated matrix,
this is the order of the related secular equation.

k

1 ≤ k ≤ n.

On exit, d contains the trailing (n-k) updated singular values
(those which were deflated) sorted into increasing order.

d

REAL for slasd7z
DOUBLE PRECISION for dlasd7.
Array, DIMENSION (m).
On exit, Z contains the updating row vector in the secular
equation.

On exit, vf contains the first components of all right singular
vectors of the bidiagonal matrix.

vf

On exit, vl contains the last components of all right singular
vectors of the bidiagonal matrix.

vl

REAL for slasd7dsigma
DOUBLE PRECISION for dlasd7.
Array, DIMENSION (n). Contains a copy of the diagonal
elements (k-1 singular values and one zero) in the secular
equation.

On output, idxp(2: k) points to the nondeflated d-values
and idxp(k+1:n) points to the deflated singular values.

idxp

INTEGER.perm
Array, DIMENSION (n).
The permutations (from deflation and sorting) to be applied
to each singular block. Not referenced if icompq = 0.

INTEGER.givptr
The number of Givens rotations which took place in this
subproblem. Not referenced if icompq = 0.

INTEGER.givcol
Array, DIMENSION (ldgcol, 2). Each pair of numbers
indicates a pair of columns to take place in a Givens rotation.
Not referenced if icompq = 0.

REAL for slasd7givnum
DOUBLE PRECISION for dlasd7.

1461

LAPACK Auxiliary and Utility Routines 5

Array, DIMENSION (ldgnum, 2). Each number indicates the
C or S value to be used in the corresponding Givens rotation.
Not referenced if icompq = 0.

REAL for slasd7.c
DOUBLE PRECISION for dlasd7.
c contains garbage if sqre =0 and the C-value of a Givens
rotation related to the right null space if
sqre = 1.

REAL for slasd7.S
DOUBLE PRECISION for dlasd7.
s contains garbage if sqre =0 and the S-value of a Givens
rotation related to the right null space if
sqre = 1.

INTEGER.info
= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal value.

?lasd8
Finds the square roots of the roots of the secular
equation, and stores, for each element in D, the
distance to its two nearest poles. Used by ?bdsdc.

Syntax

call slasd8(icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info
)

call dlasd8(icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info
)

Description

The routine ?lasd8 finds the square roots of the roots of the secular equation, as defined by
the values in dsigma and z. It makes the appropriate calls to ?lasd4, and stores, for each
element in d, the distance to its two nearest poles (elements in dsigma). It also updates the
arrays vf and vl, the first and last components of all the right singular vectors of the original
bidiagonal matrix. ?lasd8 is called from ?lasd6.

1462

5 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. Specifies whether singular vectors are to be
computed in factored form in the calling routine:

icompq

= 0: Compute singular values only.
= 1: Compute singular vectors in factored form as well.

INTEGER. The number of terms in the rational function to

be solved by ?lasd4. k ≥ 1.

k

REAL for slasd8z
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k).
The first k elements of this array contain the components
of the deflation-adjusted updating row vector.

REAL for slasd8vf
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k).
On entry, vf contains information passed through dbede8.

REAL for slasd8vl
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k). On entry, vl contains information
passed through dbede8.

INTEGER. The leading dimension of the output array difr,
must be at least k.

lddifr

REAL for slasd8dsigma
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k).
The first k elements of this array contain the old roots of
the deflated updating problem. These are the poles of the
secular equation.

REAL for slasd8work
DOUBLE PRECISION for dlasd8.
Workspace array, DIMENSION at least (3k).

Output Parameters

REAL for slasd8d
DOUBLE PRECISION for dlasd8.

1463

LAPACK Auxiliary and Utility Routines 5

Array, DIMENSION (k).
On output, D contains the updated singular values.

On exit, vf contains the first k components of the first
components of all right singular vectors of the bidiagonal
matrix.

vf

On exit, vl contains the first k components of the last
components of all right singular vectors of the bidiagonal
matrix.

vl

REAL for slasd8difl
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k). On exit, difl(i) = d(i) -
dsigma(i).

REAL for slasd8difr
DOUBLE PRECISION for dlasd8.
Array,
DIMENSION (lddifr, 2) if icompq = 1 and
DIMENSION (k) if icompq = 0.
On exit, difr(i,1) = d(i) - dsigma(i+1), difr(k,1)
is not defined and will not be referenced. If icompq = 1,
difr(1:k,2) is an array containing the normalizing factors
for the right singular vector matrix.

INTEGER.info
= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal value.
> 0: If info = 1, an singular value did not converge.

?lasd9
Finds the square roots of the roots of the secular
equation, and stores, for each element in D, the
distance to its two nearest poles. Used by ?bdsdc.

Syntax

call slasd9(icompq, ldu, k, d, z, vf, vl, difl, difr, dsigma, work, info)

call dlasd9(icompq, ldu, k, d, z, vf, vl, difl, difr, dsigma, work, info)

1464

5 Intel® Math Kernel Library Reference Manual

Description

The routine ?lasd9 finds the square roots of the roots of the secular equation, as defined by
the values in dsigma and z. It makes the appropriate calls to ?lasd4, and stores, for each
element in d, the distance to its two nearest poles (elements in dsigma). It also updates the
arrays vf and vl, the first and last components of all the right singular vectors of the original
bidiagonal matrix. ?lasd9 is called from ?lasd7.

Input Parameters

INTEGER. Specifies whether singular vectors are to be
computed in factored form in the calling routine:

icompq

If icompq = 0, compute singular values only;
If icompq = 1, compute singular vector matrices in factored
form also.

INTEGER. The number of terms in the rational function to

be solved by slasd4. k ≥ 1.

k

REAL for slasd9dsigma
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k).
The first k elements of this array contain the old roots of
the deflated updating problem. These are the poles of the
secular equation.

REAL for slasd9z
DOUBLE PRECISION for dlasd9.
Array, DIMENSION (k). The first k elements of this array
contain the components of the deflation-adjusted updating
row vector.

REAL for slasd9vf
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). On entry, vf contains information
passed through sbede8.

REAL for slasd9vl
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). On entry, vl contains information
passed through sbede8.

REAL for slasd9work
DOUBLE PRECISION for dlasd9.

1465

LAPACK Auxiliary and Utility Routines 5

Workspace array, DIMENSION at least (3k).

Output Parameters

REAL for slasd9d
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). d(i) contains the updated singular
values.

On exit, vf contains the first k components of the first
components of all right singular vectors of the bidiagonal
matrix.

vf

On exit, vl contains the first k components of the last
components of all right singular vectors of the bidiagonal
matrix.

vl

REAL for slasd9difl
DOUBLE PRECISION for dlasd9.
Array, DIMENSION (k).
On exit, difl(i) = d(i) - dsigma(i).

REAL for slasd9difr
DOUBLE PRECISION for dlasd9.
Array,
DIMENSION (ldu, 2) if icompq =1 and
DIMENSION (k) if icompq = 0.
On exit, difr(i, 1) = d(i) - dsigma(i+1), difr(k, 1)
is not defined and will not be referenced.
If icompq = 1, difr(1:k, 2) is an array containing the
normalizing factors for the right singular vector matrix.

INTEGER.info
= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal value.
> 0: If info = 1, an singular value did not converge

1466

5 Intel® Math Kernel Library Reference Manual

?lasda
Computes the singular value decomposition (SVD)
of a real upper bidiagonal matrix with diagonal d
and off-diagonal e. Used by ?bdsdc.

Syntax

call slasda(icompq, smlsiz, n, sqre, d, e, u, ldu, vt, k, difl, difr, z,
poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info)

call dlasda(icompq, smlsiz, n, sqre, d, e, u, ldu, vt, k, difl, difr, z,
poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info)

Description

Using a divide and conquer approach, ?lasda computes the singular value decomposition (SVD)
of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e, where m = n +
sqre.

The algorithm computes the singular values in the SVD B = U*S*VT. The orthogonal matrices
U and VT are optionally computed in compact form. A related subroutine ?lasd0 computes the
singular values and the singular vectors in explicit form.

Input Parameters

INTEGER.icompq
Specifies whether singular vectors are to be computed in
compact form, as follows:
= 0: Compute singular values only.
= 1: Compute singular vectors of upper bidiagonal matrix
in compact form.

INTEGER.smlsiz
The maximum size of the subproblems at the bottom of the
computation tree.

INTEGER. The row dimension of the upper bidiagonal matrix.
This is also the dimension of the main diagonal array d.

n

INTEGER. Specifies the column dimension of the bidiagonal
matrix.

sqre

If sqre = 0: the bidiagonal matrix has column dimension
m = n

1467

LAPACK Auxiliary and Utility Routines 5

If sqre = 1: the bidiagonal matrix has column dimension
m = n + 1.

REAL for slasdad
DOUBLE PRECISION for dlasda.
Array, DIMENSION (n). On entry, d contains the main
diagonal of the bidiagonal matrix.

REAL for slasdae
DOUBLE PRECISION for dlasda.
Array, DIMENSION (m - 1). Contains the subdiagonal entries
of the bidiagonal matrix. On exit, e is destroyed.

INTEGER. The leading dimension of arrays u, vt, difl, difr,

poles, givnum, and z. ldu ≥ n.

ldu

INTEGER. The leading dimension of arrays givcol and perm.

ldgcol ≥ n.

ldgcol

REAL for slasdawork
DOUBLE PRECISION for dlasda.
Workspace array, DIMENSION (6 * n + (smlsiz + 1)2).

INTEGER.iwork
Workspace array, Dimension must be at least (7 * n).

Output Parameters

On exit d, if info = 0, contains the singular values of the
bidiagonal matrix.

d

REAL for slasdau
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, smlsiz) if icompq =1.
Not referenced if icompq = 0.
If icompq = 1, on exit, u contains the left singular vector
matrices of all subproblems at the bottom level.

REAL for slasdavt
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, smlsiz+1) if icompq = 1, and
not referenced if icompq = 0. If icompq = 1, on exit, vt'
contains the right singular vector matrices of all subproblems
at the bottom level.

1468

5 Intel® Math Kernel Library Reference Manual

INTEGER.k
Array, DIMENSION (n) if icompq = 1 and
DIMENSION (1) if icompq = 0.
If icompq = 1, on exit, k(i) is the dimension of the i-th
secular equation on the computation tree.

REAL for slasdadifl
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, nlvl),
where nlvl = floor (log2 (n/smlsiz))).

REAL for slasdadifr
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (ldu, 2 nlvl) if icompq = 1 and
DIMENSION (n) if icompq = 0.
If icompq = 1, on exit, difl(1:n, i) and difr(1:n,2i -1)
record distances between singular values on the i-th level
and singular values on the (i -1)-th level, and difr(1:n, 2i
) contains the normalizing factors for the right singular
vector matrix. See ?lasd8 for details.

REAL for slasdaz
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (ldu, nlvl) if icompq = 1 and
DIMENSION (n) if icompq = 0. The first k elements of z(1,
i) contain the components of the deflation-adjusted updating
row vector for subproblems on the i-th level.

REAL for slasdapoles
DOUBLE PRECISION for dlasda
Array, DIMENSION (ldu, 2*nlvl)
if icompq = 1, and not referenced if icompq = 0. If icompq
= 1, on exit, poles(1, 2i - 1) and poles(1, 2i) contain the
new and old singular values involved in the secular equations
on the i-th level.

INTEGER. Array, DIMENSION (n) if icompq = 1, and not
referenced if icompq = 0. If icompq = 1, on exit, givptr(
i) records the number of Givens rotations performed on
the i-th problem on the computation tree.

givptr

1469

LAPACK Auxiliary and Utility Routines 5

INTEGER .givcol
Array, DIMENSION (ldgcol, 2*nlvl) if icompq = 1, and
not referenced if icompq = 0. If icompq = 1, on exit, for
each i, givcol(1, 2 i - 1) and givcol(1, 2 i) record the
locations of Givens rotations performed on the i-th level on
the computation tree.

INTEGER . Array, DIMENSION (ldgcol, nlvl) if icompq =
1, and not referenced if icompq = 0. If icompq = 1, on
exit, perm (1, i) records permutations done on the i-th
level of the computation tree.

perm

REAL for slasdagivnum
DOUBLE PRECISION for dlasda.
Array DIMENSION (ldu, 2*nlvl) if icompq = 1, and not
referenced if icompq = 0. If icompq = 1, on exit, for each
i, givnum(1, 2 i - 1) and givnum(1, 2 i) record the C- and
S-values of Givens rotations performed on the i-th level on
the computation tree.

REAL for slasdac
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (n) if icompq = 1, and
DIMENSION (1) if icompq = 0.
If icompq = 1 and the i-th subproblem is not square, on
exit, c(i) contains the C-value of a Givens rotation related
to the right null space of the i-th subproblem.

REAL for slasdas
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (n) icompq = 1, and
DIMENSION (1) if icompq = 0.
If icompq = 1 and the i-th subproblem is not square, on
exit, s(i) contains the S-value of a Givens rotation related
to the right null space of the i-th subproblem.

INTEGER.info
= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal value
> 0: If info = 1, an singular value did not converge

1470

5 Intel® Math Kernel Library Reference Manual

?lasdq
Computes the SVD of a real bidiagonal matrix with
diagonal d and off-diagonal e. Used by ?bdsdc.

Syntax

call slasdq(uplo, sqre, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc,
work, info)

call dlasdq(uplo, sqre, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc,
work, info)

Description

The routine ?lasdq computes the singular value decomposition (SVD) of a real (upper or lower)
bidiagonal matrix with diagonal d and off-diagonal e, accumulating the transformations if
desired. Letting B denote the input bidiagonal matrix, the algorithm computes orthogonal
matrices Q and P such that B = Q*S*P' (P' denotes the transpose of P). The singular values S
are overwritten on d.

The input matrix U is changed to U*Q if desired.

The input matrix VT is changed to P' *VT if desired.

The input matrix C is changed to Q'*C if desired.

Input Parameters

CHARACTER*1. On entry, uplo specifies whether the input
bidiagonal matrix is upper or lower bidiagonal.

uplo

If uplo = 'U' or 'u' , B is upper bidiagonal;
If uplo = 'L' or 'l' , B is lower bidiagonal.

INTEGER.sqre
= 0: then the input matrix is n-by-n.
= 1: then the input matrix is n-by-(n+1) if uplu = 'U' and
(n+1)-by-n if uplu
= 'L'. The bidiagonal matrix has n = nl + nr + 1 rows

and m = n + sqre ≥ n columns.

INTEGER. On entry, n specifies the number of rows and
columns in the matrix. n must be at least 0.

n

1471

LAPACK Auxiliary and Utility Routines 5

INTEGER. On entry, ncvt specifies the number of columns
of the matrix VT. ncvt must be at least 0.

ncvt

INTEGER. On entry, nru specifies the number of rows of the
matrix U. nru must be at least 0.

nru

INTEGER. On entry, ncc specifies the number of columns
of the matrix C. ncc must be at least 0.

ncc

REAL for slasdqd
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (n). On entry, d contains the diagonal
entries of the bidiagonal matrix whose SVD is desired.

REAL for slasdqe
DOUBLE PRECISION for dlasdq.
Array, DIMENSION is (n-1) if sqre = 0 and n if sqre = 1.
On entry, the entries of e contain the off-diagonal entries
of the bidiagonal matrix whose SVD is desired.

REAL for slasdqvt
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (ldvt, ncvt). On entry, contains a matrix
which on exit has been premultiplied by P', dimension
n-by-ncvt if sqre = 0 and (n+1)-by-ncvt if sqre = 1 (not
referenced if ncvt=0).

INTEGER. On entry, ldvt specifies the leading dimension
of vt as declared in the calling (sub) program. ldvt must
be at least 1. If ncvt is nonzero, ldvt must also be at least
n.

ldvt

REAL for slasdqu
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (ldu, n). On entry, contains a matrix
which on exit has been postmultiplied by Q, dimension
nru-by-n if sqre = 0 and nru-by-(n+1) if sqre = 1 (not
referenced if nru=0).

INTEGER. On entry, ldu specifies the leading dimension of
u as declared in the calling (sub) program. ldu must be at
least max(1, nru) .

ldu

REAL for slasdqc
DOUBLE PRECISION for dlasdq.

1472

5 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (ldc, ncc). On entry, contains an
n-by-ncc matrix which on exit has been premultiplied by
Q', dimension n-by-ncc if sqre = 0 and (n+1)-by-ncc if
sqre = 1 (not referenced if ncc=0).

INTEGER. On entry, ldc specifies the leading dimension of
C as declared in the calling (sub) program. ldc must be at
least 1. If ncc is non-zero, ldc must also be at least n.

ldc

REAL for slasdqwork
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (4n). This is a workspace array. Only
referenced if one of ncvt, nru, or ncc is nonzero, and if n
is at least 2.

Output Parameters

On normal exit, d contains the singular values in ascending
order.

d

On normal exit, e will contain 0. If the algorithm does not
converge, d and e will contain the diagonal and
superdiagonal entries of a bidiagonal matrix orthogonally
equivalent to the one given as input.

e

On exit, the matrix has been premultiplied by P'.vt

On exit, the matrix has been postmultiplied by Q.u

On exit, the matrix has been premultiplied by Q'.c

INTEGER. On exit, a value of 0 indicates a successful exit.
If info < 0, argument number -info is illegal. If info >
0, the algorithm did not converge, and info specifies how
many superdiagonals did not converge.

info

1473

LAPACK Auxiliary and Utility Routines 5

?lasdt
Creates a tree of subproblems for bidiagonal divide
and conquer. Used by ?bdsdc.

Syntax

call slasdt(n, lvl, nd, inode, ndiml, ndimr, msub)

call dlasdt(n, lvl, nd, inode, ndiml, ndimr, msub)

Description

The routine creates a tree of subproblems for bidiagonal divide and conquer.

Input Parameters

INTEGER. On entry, the number of diagonal elements of the
bidiagonal matrix.

n

INTEGER. On entry, the maximum row dimension each
subproblem at the bottom of the tree can be of.

msub

Output Parameters

INTEGER. On exit, the number of levels on the computation
tree.

lvl

INTEGER. On exit, the number of nodes on the tree.nd

INTEGER.inode
Array, DIMENSION (n). On exit, centers of subproblems.

INTEGER .ndiml
Array, DIMENSION (n). On exit, row dimensions of left
children.

INTEGER .ndimr
Array, DIMENSION (n). On exit, row dimensions of right
children.

1474

5 Intel® Math Kernel Library Reference Manual

?laset
Initializes the off-diagonal elements and the
diagonal elements of a matrix to given values.

Syntax

call slaset(uplo, m, n, alpha, beta, a, lda)

call dlaset(uplo, m, n, alpha, beta, a, lda)

call claset(uplo, m, n, alpha, beta, a, lda)

call zlaset(uplo, m, n, alpha, beta, a, lda)

Description

The routine initializes an m-by-n matrix A to beta on the diagonal and alpha on the off-diagonals.

Input Parameters

CHARACTER*1. Specifies the part of the matrix A to be set.uplo
If uplo = 'U', upper triangular part is set; the strictly
lower triangular part of A is not changed.
If uplo = 'L': lower triangular part is set; the strictly
upper triangular part of A is not changed.
Otherwise: All of the matrix A is set.

INTEGER. The number of rows of the matrix A. m ≥ 0.m

INTEGER. The number of columns of the matrix A.n

n ≥ 0.

REAL for slasetalpha, beta
DOUBLE PRECISION for dlaset
COMPLEX for claset
COMPLEX*16 for zlaset.
The constants to which the off-diagonal and diagonal
elements are to be set, respectively.

REAL for slaseta
DOUBLE PRECISION for dlaset
COMPLEX for claset
COMPLEX*16 for zlaset.

1475

LAPACK Auxiliary and Utility Routines 5

Array, DIMENSION (lda, n).
On entry, the m-by-n matrix A.

INTEGER. The leading dimension of the array a.lda

lda ≥ max(1,m).

Output Parameters

On exit, the leading m-by-n submatrix of A is set as follows:a

if uplo = 'U', A(i,j) = alpha, 1≤ i ≤ j-1, 1≤ j ≤
n,

if uplo = 'L', A(i,j) = alpha, j+1≤ i ≤ m, 1≤ j ≤
n,

otherwise, A(i,j) = alpha, 1≤ i ≤ m, 1≤ j ≤ n, i ≠
j,

and, for all uplo, A(i,i) = beta, 1≤ i ≤ min(m, n).

?lasq1
Computes the singular values of a real square
bidiagonal matrix. Used by ?bdsqr.

Syntax

call slasq1(n, d, e, work, info)

call dlasq1(n, d, e, work, info)

Description

The routine ?lasq1 computes the singular values of a real n-by-n bidiagonal matrix with diagonal
d and off-diagonal e. The singular values are computed to high relative accuracy, in the absence
of denormalization, underflow and overflow.

Input Parameters

INTEGER.The number of rows and columns in the matrix. n

≥ 0.

n

REAL for slasq1d
DOUBLE PRECISION for dlasq1.

1476

5 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (n).
On entry, d contains the diagonal elements of the bidiagonal
matrix whose SVD is desired.

REAL for slasq1e
DOUBLE PRECISION for dlasq1.
Array, DIMENSION (n).
On entry, elements e(1:n-1) contain the off-diagonal
elements of the bidiagonal matrix whose SVD is desired.

REAL for slasq1work
DOUBLE PRECISION for dlasq1.
Workspace array, DIMENSION (4n).

Output Parameters

On normal exit, d contains the singular values in decreasing
order.

d

On exit, e is overwritten.e

INTEGER.info
= 0: successful exit;
< 0: if info = -i, the i-th argument had an illegal value;
> 0: the algorithm failed:
= 1, a split was marked by a positive value in e;
= 2, current block of z not diagonalized after 30*n iterations
(in inner while loop);
= 3, termination criterion of outer while loop not met
(program created more than n unreduced blocks.

?lasq2
Computes all the eigenvalues of the symmetric
positive definite tridiagonal matrix associated with
the qd array z to high relative accuracy. Used by
?bdsqr and ?stegr.

Syntax

call slasq2(n, z, info)

call dlasq2(n, z, info)

1477

LAPACK Auxiliary and Utility Routines 5

Description

The routine ?lasq2 computes all the eigenvalues of the symmetric positive definite tridiagonal
matrix associated with the qd array z to high relative accuracy, in the absence of
denormalization, underflow and overflow.

To see the relation of z to the tridiagonal matrix, let L be a unit lower bidiagonal matrix with
subdiagonals z(2,4,6,,..) and let U be an upper bidiagonal matrix with 1's above and diagonal
z(1,3,5,,..). The tridiagonal is LU or, if you prefer, the symmetric tridiagonal to which it is
similar.

Input Parameters

INTEGER. The number of rows and columns in the matrix.

n ≥ 0.

n

REAL for slasq2z
DOUBLE PRECISION for dlasq2.
Array, DIMENSION (4 * n).
On entry, z holds the qd array.

Output Parameters

On exit, entries 1 to n hold the eigenvalues in decreasing
order, z(2*n+1) holds the trace, and z(2*n+2) holds the
sum of the eigenvalues. If n > 2, then z(2*n+3) holds the
iteration count, z(2*n+4) holds ndivs/nin2, and z(2*n+5)
holds the percentage of shifts that failed.

z

INTEGER.info
= 0: successful exit;
< 0: if the i-th argument is a scalar and had an illegal value,
then info = -i, if the i-th argument is an array and the
j-entry had an illegal value, then info = -(i*100+ j);
> 0: the algorithm failed:
= 1, a split was marked by a positive value in e;
= 2, current block of z not diagonalized after 30*n iterations
(in inner while loop);
= 3, termination criterion of outer while loop not met
(program created more than n unreduced blocks).

1478

5 Intel® Math Kernel Library Reference Manual

Application Notes

The routine ?lasq2 defines a logical variable, ieee, which is .TRUE. on machines which follow
ieee-754 floating-point standard in their handling of infinities and NaNs, and .FALSE. otherwise.
This variable is passed to ?lazq3.

?lasq3
Checks for deflation, computes a shift and calls
dqds. Used by ?bdsqr.

Syntax

call slasq3(i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv, ieee
)

call dlasq3(i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv, ieee
)

Description

The routine ?lasq3 checks for deflation, computes a shift, and calls dqds. In case of failure, it
changes shifts, and tries again until output is positive.

Input Parameters

INTEGER. First index.i0

INTEGER. Last index.n0

REAL for slasq3z
DOUBLE PRECISION for dlasq3.
Array, DIMENSION (4n). z holds the qd array.

INTEGER. pp=0 for ping, pp=1 for pong.pp

REAL for slasq3desig
DOUBLE PRECISION for dlasq3.
Lower order part of sigma.

REAL for slasq3qmax
DOUBLE PRECISION for dlasq3.
Maximum value of q.

LOGICAL.ieee
Flag for ieee or non-ieee arithmetic (passed to ?lasq5).

1479

LAPACK Auxiliary and Utility Routines 5

Output Parameters

REAL for slasq3dmin
DOUBLE PRECISION for dlasq3.
Minimum value of d.

REAL for slasq3sigma
DOUBLE PRECISION for dlasq3.
Sum of shifts used in current segment.

Lower order part of sigma.desig

INTEGER. Number of times shift was too big.nfail

INTEGER. Number of iterations.iter

INTEGER. Number of divisions.ndiv

?lasq4
Computes an approximation to the smallest
eigenvalue using values of d from the previous
transform. Used by ?bdsqr.

Syntax

call slasq4(i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau, ttype
)

call dlasq4(i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau, ttype
)

Description

The routine computes an approximation tau to the smallest eigenvalue using values of d from
the previous transform.

Input Parameters

INTEGER. First index.i0

INTEGER. Last index.n0

REAL for slasq4z
DOUBLE PRECISION for dlasq4.
Array, DIMENSION (4n).

1480

5 Intel® Math Kernel Library Reference Manual

Z holds the qd array.

INTEGER. pp=0 for ping, pp=1 for pong.pp

INTEGER. The value of n0 at start of eigtest.n0in

REAL for slasq4dmin
DOUBLE PRECISION for dlasq4.
Minimum value of d.

REAL for slasq4dmin1
DOUBLE PRECISION for dlasq4.
Minimum value of d, excluding d(n0).

REAL for slasq4dmin2
DOUBLE PRECISION for dlasq4.
Minimum value of d, excluding d(n0)
and d(n0-1).

REAL for slasq4dn
DOUBLE PRECISION for dlasq4. Contains d(n).

REAL for slasq4dn1
DOUBLE PRECISION for dlasq4. Contains d(n-1).

REAL for slasq4dn2
DOUBLE PRECISION for dlasq4. Contains d(n-2).

Output Parameters

REAL for slasq4tau
DOUBLE PRECISION for dlasq4.
Shift.

INTEGER. Shift type.ttype

?lasq5
Computes one dqds transform in ping-pong form.
Used by ?bdsqr and ?stegr.

Syntax

call slasq5(i0, n0, z, pp, tau, dmin, dmin1, dmin2, dn, dnm1, dnm2, ieee)

call dlasq5(i0, n0, z, pp, tau, dmin, dmin1, dmin2, dn, dnm1, dnm2, ieee)

1481

LAPACK Auxiliary and Utility Routines 5

Description

The routine computes one dqds transform in ping-pong form: one version for ieee machines,
another for non-ieee machines.

Input Parameters

INTEGER. First index.i0

INTEGER. Last index.n0

REAL for slasq5z
DOUBLE PRECISION for dlasq5.
Array, DIMENSION (4n). z holds the qd array. emin is stored
in z(4*n0)
to avoid an extra argument.

INTEGER. pp=0 for ping, pp=1 for pong.pp

REAL for slasq5tau
DOUBLE PRECISION for dlasq5.
This is the shift.

LOGICAL. Flag for IEEE or non-IEEE arithmetic.ieee

Output Parameters

REAL for slasq5dmin
DOUBLE PRECISION for dlasq5.
Minimum value of d.

REAL for slasq5dmin1
DOUBLE PRECISION for dlasq5.
Minimum value of d, excluding d(n0).

REAL for slasq5dmin2
DOUBLE PRECISION for dlasq5.
Minimum value of d, excluding d(n0) and d(n0-1).

REAL for slasq5dn
DOUBLE PRECISION for dlasq5. Contains d(n0), the last
value of d.

REAL for slasq5dnm1
DOUBLE PRECISION for dlasq5. Contains d(n0-1).

REAL for slasq5dnm2

1482

5 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dlasq5. Contains d(n0-2).

?lasq6
Computes one dqd transform in ping-pong form.
Used by ?bdsqr and ?stegr.

Syntax

call slasq6(i0, n0, z, pp, dmin, dmin1, dmin2, dn, dnm1, dnm2)

call dlasq6(i0, n0, z, pp, dmin, dmin1, dmin2, dn, dnm1, dnm2)

Description

The routine ?lasq6 computes one dqd (shift equal to zero) transform in ping-pong form, with
protection against underflow and overflow.

Input Parameters

INTEGER. First index.i0

INTEGER. Last index.n0

REAL for slasq6z
DOUBLE PRECISION for dlasq6.
Array, DIMENSION (4n). Z holds the qd array. emin is stored
in z(4*n0) to avoid an extra argument.

INTEGER. pp=0 for ping, pp=1 for pong.pp

Output Parameters

REAL for slasq6dmin
DOUBLE PRECISION for dlasq6.
Minimum value of d.

REAL for slasq6dmin1
DOUBLE PRECISION for dlasq6.
Minimum value of d, excluding d(n0).

REAL for slasq6dmin2
DOUBLE PRECISION for dlasq6.
Minimum value of d, excluding d(n0) and d(n0-1).

REAL for slasq6dn

1483

LAPACK Auxiliary and Utility Routines 5

DOUBLE PRECISION for dlasq6. Contains d(n0), the last
value of d.

REAL for slasq6dnm1
DOUBLE PRECISION for dlasq6. Contains d(n0-1).

REAL for slasq6dnm2
DOUBLE PRECISION for dlasq6. Contains d(n0-2).

?lasr
Applies a sequence of plane rotations to a general
rectangular matrix.

Syntax

call slasr(side, pivot, direct, m, n, c, s, a, lda)

call dlasr(side, pivot, direct, m, n, c, s, a, lda)

call clasr(side, pivot, direct, m, n, c, s, a, lda)

call zlasr(side, pivot, direct, m, n, c, s, a, lda)

Description

The routine applies a sequence of plane rotations to a real/complex matrix A, from the left or
the right.

A := P*A, when side = 'L' (Left-hand side)

A := A*P', when side = 'R' (Right-hand side)

where P is an orthogonal matrix consisting of a sequence of plane rotations with z = m when
side = 'L' and z = n when side = 'R'.

When direct = 'F' (Forward sequence), then

P = P(z - 1) ... P(2) P(1),

and when direct = 'B' (Backward sequence), then

P = P(1) P(2) ... P(z - 1),

where P(k) is a plane rotation matrix defined by the 2-by-2 plane rotation:

1484

5 Intel® Math Kernel Library Reference Manual

When pivot = 'V' (Variable pivot), the rotation is performed for the plane (k, k + 1), that
is, P(k) has the form

where R(k) appears as a rank-2 modification to the identity matrix in rows and columns k and
k+1.

When pivot = 'T' (Top pivot), the rotation is performed for the plane (1,k+1), so P(k)
has the form

1485

LAPACK Auxiliary and Utility Routines 5

where R(k) appears in rows and columns k and k+1.

Similarly, when pivot = 'B' (Bottom pivot), the rotation is performed for the plane (k,z),
giving P(k) the form

where R(k) appears in rows and columns k and z. The rotations are performed without ever
forming P(k) explicitly.

Input Parameters

CHARACTER*1. Specifies whether the plane rotation matrix
P is applied to A on the left or the right.

side

1486

5 Intel® Math Kernel Library Reference Manual

= 'L': left, compute A := P*A
= 'R': right, compute A:= A*P'

CHARACTER*1. Specifies whether P is a forward or backward
sequence of plane rotations.

direct

= 'F': forward, P = P(z - 1)* ... * P(2) * P(
1)
= 'B': backward, P = P(1)* P(2)* ... * P(z -
1)

CHARACTER*1. Specifies the plane for which P(k) is a plane
rotation matrix.

pivot

= 'V': Variable pivot, the plane (k, k+1)
= 'T': Top pivot, the plane (1, k+1)
= 'B': Bottom pivot, the plane (k, z)

INTEGER. The number of rows of the matrix A.m

If m ≤ 1, an immediate return is effected.

INTEGER. The number of columns of the matrix A.n

If n ≤ 1, an immediate return is effected.

REAL for slasr/clasrc, s
DOUBLE PRECISION for dlasr/zlasr.
Arrays, DIMENSION
(m-1) if side = 'L',
(n-1) if side = 'R' .
c(k) and s(k) contain the cosine and sine of the plane
rotations respectively that define the 2-by-2 plane rotation
part (R(k)) of the P(k) matrix as described above in
Description.

REAL for slasra
DOUBLE PRECISION for dlasr
COMPLEX for clasr
COMPLEX*16 for zlasr.
Array, DIMENSION (lda, n).
The m-by-n matrix A.

INTEGER. The leading dimension of the array a.lda

lda ≥ max(1,m).

1487

LAPACK Auxiliary and Utility Routines 5

Output Parameters

On exit, A is overwritten by P*A if side = 'R', or by A*P'
if side = 'L'.

a

?lasrt
Sorts numbers in increasing or decreasing order.

Syntax

call slasrt(id, n, d, info)

call dlasrt(id, n, d, info)

Description

The routine ?lasrt sorts the numbers in d in increasing order (if id = 'I') or in decreasing

order (if id = 'D'). It uses Quick Sort, reverting to Insertion Sort on arrays of size ≤ 20.
Dimension of stack limits n to about 232.

Input Parameters

CHARACTER*1.id
= 'I': sort d in increasing order;
= 'D': sort d in decreasing order.

INTEGER. The length of the array d.n

REAL for slasrtd
DOUBLE PRECISION for dlasrt.
On entry, the array to be sorted.

Output Parameters

On exit, d has been sorted into increasing orderd

(d(1) ≤ ... ≤ d(n)) or into decreasing order

(d(1) ≥ ... ≥ d(n)), depending on id.

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value.

1488

5 Intel® Math Kernel Library Reference Manual

?lassq
Updates a sum of squares represented in scaled
form.

Syntax

call slassq(n, x, incx, scale, sumsq)

call dlassq(n, x, incx, scale, sumsq)

call classq(n, x, incx, scale, sumsq)

call zlassq(n, x, incx, scale, sumsq)

Description

The real routines slassq/dlassq return the values scl and smsq such that

scl2 * smsq = x(1)2 +...+ x(n)2 + scale2 *sumsq,

where x(i) = x(1 + (i - 1) incx).

The value of sumsq is assumed to be non-negative and scl returns the value

scl = max(scale, abs(x(i))).

Values scale and sumsq must be supplied in scale and sumsq, and scl and smsq are overwritten
on scale and sumsq, respectively.

The complex routines classq/zlassq return the values scl and ssq such that

scl2 * ssq = x(1)2 +...+ x(n)2 + scale2 *sumsq,

where x(i) = abs (x(1 + (i - 1) incx)).

The value of sumsq is assumed to be at least unity and the value of ssq will then satisfy 1.0

≤ ssq ≤ sumsq + 2n

scale is assumed to be non-negative and scl returns the value

scl = max(scale, abs(real(x(i))), abs(aimag(x(i)))).

Values scale and sumsq must be supplied in scale and sumsq, and scl and ssq are overwritten
on scale and sumsq, respectively.

All routines ?lassq make only one pass through the vector x.

1489

LAPACK Auxiliary and Utility Routines 5

Input Parameters

INTEGER. The number of elements to be used from the
vector x.

n

REAL for slassqx
DOUBLE PRECISION for dlassq
COMPLEX for classq
COMPLEX*16 for zlassq.
The vector for which a scaled sum of squares is computed:

x(i) = x(1 + (i - 1) incx), 1 ≤ i ≤ n.

INTEGER. The increment between successive values of the
vector x. incx > 0.

incx

REAL for slassq/classqscale
DOUBLE PRECISION for dlassq/zlassq.
On entry, the value scale in the equation above.

REAL for slassq/classqsumsq
DOUBLE PRECISION for dlassq/zlassq.
On entry, the value sumsq in the equation above.

Output Parameters

On exit, scale is overwritten with scl, the scaling factor
for the sum of squares.

scale

For real flavors:sumsq
On exit, sumsq is overwritten with the value smsq in the
equation above.
For complex flavors:
On exit, sumsq is overwritten with the value ssq in the
equation above.

1490

5 Intel® Math Kernel Library Reference Manual

?lasv2
Computes the singular value decomposition of a
2-by-2 triangular matrix.

Syntax

call slasv2(f, g, h, ssmin, ssmax, snr, csr, snl, csl)

call dlasv2(f, g, h, ssmin, ssmax, snr, csr, snl, csl)

Description

The routine ?lasv2 computes the singular value decomposition of a 2-by-2 triangular matrix

On return, abs(ssmax) is the larger singular value, abs(ssmin) is the smaller singular value,
and (csl,snl) and (csr,snr) are the left and right singular vectors for abs(ssmax), giving the
decomposition

Input Parameters

REAL for slasv2f, g, h
DOUBLE PRECISION for dlasv2.
The (1,1), (1,2) and (2,2) elements of the 2-by-2 matrix,
respectively.

Output Parameters

REAL for slasv2ssmin, ssmax

1491

LAPACK Auxiliary and Utility Routines 5

DOUBLE PRECISION for dlasv2.
abs(ssmin) and abs(ssmax) is the smaller and the larger
singular value, respectively.

REAL for slasv2snl, csl
DOUBLE PRECISION for dlasv2.
The vector (csl, snl) is a unit left singular vector for the
singular value abs(ssmax).

REAL for slasv2snr, csr
DOUBLE PRECISION for dlasv2.
The vector (csr, snr) is a unit right singular vector for the
singular value abs(ssmax).

Application Notes

Any input parameter may be aliased with any output parameter.

Barring over/underflow and assuming a guard digit in subtraction, all output quantities are
correct to within a few units in the last place (ulps).

In ieee arithmetic, the code works correctly if one matrix element is infinite. Overflow will not
occur unless the largest singular value itself overflows or is within a few ulps of overflow. (On
machines with partial overflow, like the Cray, overflow may occur if the largest singular value
is within a factor of 2 of overflow.) Underflow is harmless if underflow is gradual. Otherwise,
results may correspond to a matrix modified by perturbations of size near the underflow
threshold.

?laswp
Performs a series of row interchanges on a general
rectangular matrix.

Syntax

call slaswp(n, a, lda, k1, k2, ipiv, incx)

call dlaswp(n, a, lda, k1, k2, ipiv, incx)

call claswp(n, a, lda, k1, k2, ipiv, incx)

call zlaswp(n, a, lda, k1, k2, ipiv, incx)

1492

5 Intel® Math Kernel Library Reference Manual

Description

The routine performs a series of row interchanges on the matrix A. One row interchange is
initiated for each of rows k1 through k2 of A.

Input Parameters

INTEGER. The number of columns of the matrix A.n

REAL for slaswpa
DOUBLE PRECISION for dlaswp
COMPLEX for claswp
COMPLEX*16 for zlaswp.
Array, DIMENSION (lda, n).
On entry, the matrix of column dimension n to which the
row interchanges will be applied.

INTEGER. The leading dimension of the array a.lda

INTEGER. The first element of ipiv for which a row
interchange will be done.

k1

INTEGER. The last element of ipiv for which a row
interchange will be done.

k2

INTEGER.ipiv
Array, DIMENSION (k2 * abs(incx)).
The vector of pivot indices. Only the elements in positions
k1 through k2 of ipiv are accessed.
ipiv(k) = l implies rows k and l are to be interchanged.

INTEGER. The increment between successive values of ipiv.
If ipiv is negative, the pivots are applied in reverse order.

incx

Output Parameters

On exit, the permuted matrix.a

1493

LAPACK Auxiliary and Utility Routines 5

?lasy2
Solves the Sylvester matrix equation where the
matrices are of order 1 or 2.

Syntax

call slasy2(ltranl, ltranr, isgn, n1, n2, tl, ldtl, tr, ldtr, b, ldb, scale,
x, ldx, xnorm, info)

call dlasy2(ltranl, ltranr, isgn, n1, n2, tl, ldtl, tr, ldtr, b, ldb, scale,
x, ldx, xnorm, info)

Description

The routine solves for the n1-by-n2 matrix X, 1 ≤ n1, n2 ≤ 2, in

op(TL) * X + isgn * X *op(TR) = scale*B,

where

TL is n1-by-n1,

TR is n2-by-n2,

B is n1-by-n2,

and isgn = 1 or -1. op(T) = T or T', where T' denotes the transpose of T.

Input Parameters

LOGICAL.ltranl
On entry, ltranl specifies the op(TL):
= .FALSE., op(TL) = TL,
= .TRUE., op(TL) = TL'.

LOGICAL.ltranr
On entry, ltranr specifies the op(TR):
= .FALSE., op(TR) = TR,
= .TRUE., op(TR) = TR'.

INTEGER. On entry, isgn specifies the sign of the equation
as described before. isgn may only be 1 or -1.

isgn

INTEGER. On entry, n1 specifies the order of matrix TL.n1
n1 may only be 0, 1 or 2.

1494

5 Intel® Math Kernel Library Reference Manual

INTEGER. On entry, n2 specifies the order of matrix TR.n2
n2 may only be 0, 1 or 2.

REAL for slasy2tl
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldtl,2).
On entry, tl contains an n1-by-n1 matrix TL.

INTEGER.The leading dimension of the matrix TL.ldtl

ldtl ≥ max(1,n1).

REAL for slasy2tr
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldtr,2). On entry, tr contains an
n2-by-n2 matrix TR.

INTEGER. The leading dimension of the matrix tr.ldtr

ldtr ≥ max(1,n2).

REAL for slasy2b
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldb,2). On entry, the n1-by-n2 matrix
b contains the right-hand side of the equation.

INTEGER. The leading dimension of the matrix b.ldb

ldb ≥ max(1,n1).

INTEGER. The leading dimension of the output matrix x.ldx

ldx ≥ max(1,n1).

Output Parameters

REAL for slasy2scale
DOUBLE PRECISION for dlasy2.
On exit, scale contains the scale factor.
scale is chosen less than or equal to 1 to prevent the
solution overflowing.

REAL for slasy2x
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldx,2). On exit, x contains the n1-by-n2
solution.

REAL for slasy2xnorm

1495

LAPACK Auxiliary and Utility Routines 5

DOUBLE PRECISION for dlasy2.
On exit, xnorm is the infinity-norm of the solution.

INTEGER. On exit, info is set to 0: successful exit. 1: TL
and TR have too close eigenvalues, so TL or TR is perturbed
to get a nonsingular equation.

info

NOTE. For higher speed, this routine does not check the inputs for errors.

?lasyf
Computes a partial factorization of a real/complex
symmetric matrix, using the diagonal pivoting
method.

Syntax

call slasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call dlasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call clasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call zlasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

Description

The routine ?lasyf computes a partial factorization of a real/complex symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method. The partial factorization has the form:

1496

5 Intel® Math Kernel Library Reference Manual

where the order of D is at most nb.

The actual order is returned in the argument kb, and is either nb or nb-1, or n if n ≤ nb.

This is an auxiliary routine called by ?sytrf. It uses blocked code (calling Level 3 BLAS) to
update the submatrix A11 (if uplo = 'U') or A22 (if uplo = 'L').

Input Parameters

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

INTEGER. The order of the matrix A. n ≥ 0.n

INTEGER. The maximum number of columns of the matrix
A that should be factored. nb should be at least 2 to allow
for 2-by-2 pivot blocks.

nb

REAL for slasyfa
DOUBLE PRECISION for dlasyf
COMPLEX for clasyf
COMPLEX*16 for zlasyf.
Array, DIMENSION (lda, n). On entry, the symmetric matrix
A. If uplo = 'U', the leading n-by-n upper triangular part
of A contains the upper triangular part of the matrix A, and
the strictly lower triangular part of A is not referenced. If
uplo = 'L', the leading n-by-n lower triangular part of A
contains the lower triangular part of the matrix A, and the
strictly upper triangular part of A is not referenced.

INTEGER. The leading dimension of the array a. lda ≥
max(1,n).

lda

REAL for slasyfw
DOUBLE PRECISION for dlasyf
COMPLEX for clasyf
COMPLEX*16 for zlasyf.
Workspace array, DIMENSION (ldw, nb).

1497

LAPACK Auxiliary and Utility Routines 5

INTEGER. The leading dimension of the array w. ldw ≥
max(1,n).

ldw

Output Parameters

INTEGER. The number of columns of A that were actually

factored kb is either nb-1 or nb, or n if n ≤ nb.

kb

On exit, A contains details of the partial factorization.a

INTEGER. Array, DIMENSION (n). Details of the interchanges
and the block structure of D.

ipiv

If uplo = 'U', only the last kb elements of ipiv are set;
if uplo = 'L', only the first kb elements are set.
If ipiv(k) > 0, then rows and columns k and ipiv(k) were
interchanged and D(k, k) is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows
and columns k-1 and -ipiv(k) were interchanged and
D(k-1:k, k-1:k) is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows
and columns k+1 and -ipiv(k) were interchanged and
D(k:k+1, k:k+1) is a 2-by-2 diagonal block.

INTEGER.info
= 0: successful exit
> 0: if info = k, D(k, k) is exactly zero. The
factorization has been completed, but the block diagonal
matrix D is exactly singular.

?lahef
Computes a partial factorization of a complex
Hermitian indefinite matrix, using the diagonal
pivoting method.

Syntax

call clahef(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call zlahef(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

1498

5 Intel® Math Kernel Library Reference Manual

Description

The routine ?lahef computes a partial factorization of a complex Hermitian matrix A, using
the Bunch-Kaufman diagonal pivoting method. The partial factorization has the form:

where the order of D is at most nb.

The actual order is returned in the argument kb, and is either nb or nb-1, or n if n ≤ nb.

Note that U' denotes the conjugate transpose of U.

This is an auxiliary routine called by ?hetrf. It uses blocked code (calling Level 3 BLAS) to
update the submatrix A11 (if uplo = 'U') or A22 (if uplo = 'L').

Input Parameters

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored:
= 'U': upper triangular
= 'L': lower triangular

INTEGER. The order of the matrix A. n ≥ 0.n

INTEGER. The maximum number of columns of the matrix
A that should be factored. nb should be at least 2 to allow
for 2-by-2 pivot blocks.

nb

COMPLEX for clahefa
COMPLEX*16 for zlahef.

1499

LAPACK Auxiliary and Utility Routines 5

Array, DIMENSION (lda, n).
On entry, the Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of
A contains the upper triangular part of the matrix A, and
the strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
A contains the lower triangular part of the matrix A, and the
strictly upper triangular part of A is not referenced.

INTEGER. The leading dimension of the array a. lda ≥
max(1,n).

lda

COMPLEX for clahefw
COMPLEX*16 for zlahef.
Workspace array, DIMENSION (ldw, nb).

INTEGER. The leading dimension of the array w. ldw ≥
max(1,n).

ldw

Output Parameters

INTEGER. The number of columns of A that were actually

factored kb is either nb-1 or nb, or n if n ≤ nb.

kb

On exit, A contains details of the partial factorization.a

INTEGER.ipiv
Array, DIMENSION (n). Details of the interchanges and the
block structure of D.
If uplo = 'U', only the last kb elements of ipiv are set;
if uplo = 'L', only the first kb elements are set.
If ipiv(k) > 0, then rows and columns k and ipiv(k) are
interchanged and D(k, k) is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows
and columns k-1 and -ipiv(k) are interchanged and
D(k-1:k, k-1:k) is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows
and columns k+1 and -ipiv(k) are interchanged and D(
k:k+1, k:k+1) is a 2-by-2 diagonal block.

INTEGER.info
= 0: successful exit

1500

5 Intel® Math Kernel Library Reference Manual

> 0: if info = k, D(k, k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.

?latbs
Solves a triangular banded system of equations.

Syntax

call slatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm,
info)

call dlatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm,
info)

call clatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm,
info)

call zlatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm,
info)

Description

The routine solves one of the triangular systems

A*x = s*b, or AT*x = s*b, or AH*x = s*b (for complex flavors)

with scaling to prevent overflow, where A is an upper or lower triangular band matrix. Here AT

denotes the transpose of A, AH denotes the conjugate transpose of A, x and b are n-element
vectors, and s is a scaling factor, usually less than or equal to 1, chosen so that the components
of x will be less than the overflow threshold. If the unscaled problem will not cause overflow,
the Level 2 BLAS routine ?tbsv is called. If the matrix A is singular (A(j, j) = 0 for some
j), then s is set to 0 and a non-trivial solution to A*x = 0 is returned.

Input Parameters

CHARACTER*1.uplo
Specifies whether the matrix A is upper or lower triangular.
= 'U': upper triangular
= 'L': lower triangular

CHARACTER*1.trans
Specifies the operation applied to A.

1501

LAPACK Auxiliary and Utility Routines 5

= 'N': solve A*x = s*b (no transpose)
= 'T': solve AT*x = s*b (transpose)
= 'C': solve AH*x = s*b (conjugate transpose)

CHARACTER*1.diag
Specifies whether or not the matrix A is unit triangular
= 'N': non-unit triangular
= 'U': unit triangular

CHARACTER*1.normin
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry. On exit, the norms will
be computed and stored in cnorm.

INTEGER. The order of the matrix A. n ≥ 0.n

INTEGER. The number of subdiagonals or superdiagonals in

the triangular matrix A. kb ≥ 0.

kd

REAL for slatbsab
DOUBLE PRECISION for dlatbs
COMPLEX for clatbs
COMPLEX*16 for zlatbs.
Array, DIMENSION (ldab, n).
The upper or lower triangular band matrix A, stored in the
first kb+1 rows of the array. The j-th column of A is stored
in the j-th column of the array ab as follows:
if uplo = 'U', ab(kd+1+i -j,j) = A(i ,j) for max(1,

j-kd) ≤ i ≤ j;

if uplo = 'L', ab(1+i -j,j) = A(i ,j) for j ≤ i ≤
min(n, j+kd).

INTEGER. The leading dimension of the array ab. ldab ≥
kb+1.

ldab

REAL for slatbsx
DOUBLE PRECISION for dlatbs
COMPLEX for clatbs
COMPLEX*16 for zlatbs.
Array, DIMENSION (n).
On entry, the right hand side b of the triangular system.

1502

5 Intel® Math Kernel Library Reference Manual

REAL for slatbs/clatbscnorm
DOUBLE PRECISION for dlatbs/zlatbs.
Array, DIMENSION (n).
If NORMIN = 'Y', cnorm is an input argument and cnorm(j)
contains the norm of the off-diagonal part of the j-th column
of A.
If trans = 'N', cnorm(j) must be greater than or equal
to the infinity-norm, and if trans = 'T' or 'C' , cnorm(j)
must be greater than or equal to the 1-norm.

Output Parameters

REAL for slatbs/clatbsscale
DOUBLE PRECISION for dlatbs/zlatbs.
The scaling factor s for the triangular system as described
above. If scale = 0, the matrix A is singular or badly
scaled, and the vector x is an exact or approximate solution
to Ax = 0.

If normin = 'N', cnorm is an output argument and
cnorm(j) returns the 1-norm of the off-diagonal part of the
j-th column of A.

cnorm

INTEGER.info
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

?latdf
Uses the LU factorization of the n-by-n matrix
computed by ?getc2 and computes a contribution
to the reciprocal Dif-estimate.

Syntax

call slatdf(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

call dlatdf(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

call clatdf(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

call zlatdf(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

1503

LAPACK Auxiliary and Utility Routines 5

Description

The routine ?latdf uses the LU factorization of the n-by-n matrix Z computed by ?getc2 and
computes a contribution to the reciprocal Dif-estimate by solving Z*x = b for x, and choosing
the right-hand side b such that the norm of x is as large as possible. On entry rhs = b holds
the contribution from earlier solved sub-systems, and on return rhs = x.

The factorization of Z returned by ?getc2 has the form Z = P*L*U*Q, where p and Q are
permutation matrices. L is lower triangular with unit diagonal elements and U is upper triangular.

Input Parameters

INTEGER.ijob
ijob = 2: First compute an approximative null-vector e of
Z using ?gecon, e is normalized, and solve for
Zx = ±e -f with the sign giving the greater value of
2-norm(x). This option is about 5 times as expensive as
default.

ijob ≠ 2 (default): Local look ahead strategy where all
entries of the right-hand side b is chosen as either +1 or -1
.

INTEGER. The number of columns of the matrix Z.n

REAL for slatdf/clatdfz
DOUBLE PRECISION for dlatdf/zlatdf.
Array, DIMENSION (ldz, n)
On entry, the LU part of the factorization of the n-by-n
matrix Z computed by ?getc2: Z = P*L*U*Q.

INTEGER. The leading dimension of the array Z. lda ≥
max(1, n).

ldz

REAL for slatdf/clatdfrhs
DOUBLE PRECISION for dlatdf/zlatdf.
Array, DIMENSION (n).
On entry, rhs contains contributions from other subsystems.

REAL for slatdf/clatdfrdsum
DOUBLE PRECISION for dlatdf/zlatdf.

1504

5 Intel® Math Kernel Library Reference Manual

On entry, the sum of squares of computed contributions to
the Dif-estimate under computation by ?tgsyL, where the
scaling factor rdscal has been factored out. If trans =
'T', rdsum is not touched.
Note that rdsum only makes sense when ?tgsy2 is called
by ?tgsyL.

REAL for slatdf/clatdfrdscal
DOUBLE PRECISION for dlatdf/zlatdf.
On entry, scaling factor used to prevent overflow in rdsum.
If trans = T', rdscal is not touched.
Note that rdscal only makes sense when ?tgsy2 is called
by ?tgsyL.

INTEGER.ipiv
Array, DIMENSION (n).

The pivot indices; for 1 ≤ i ≤ n, row i of the matrix has
been interchanged with row ipiv(i).

INTEGER.jpiv
Array, DIMENSION (n).

The pivot indices; for 1 ≤ j ≤ n, column j of the matrix
has been interchanged with column jpiv(j).

Output Parameters

On exit, rhs contains the solution of the subsystem with
entries according to the value of ijob.

rhs

On exit, the corresponding sum of squares updated with
the contributions from the current sub-system.

rdsum

If trans = 'T', rdsum is not touched.

On exit, rdscal is updated with respect to the current
contributions in rdsum.

rdscal

If trans = 'T', rdscal is not touched.

1505

LAPACK Auxiliary and Utility Routines 5

?latps
Solves a triangular system of equations with the
matrix held in packed storage.

Syntax

call slatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

call dlatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

call clatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

call zlatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

Description

The routine ?latps solves one of the triangular systems

A*x = s*b, or AT*x = s*b, or AH*x = s*b (for complex flavors)

with scaling to prevent overflow, where A is an upper or lower triangular matrix stored in packed
form. Here AT denotes the transpose of A, AH denotes the conjugate transpose of A, x and b are
n-element vectors, and s is a scaling factor, usually less than or equal to 1, chosen so that the
components of x will be less than the overflow threshold. If the unscaled problem does not
cause overflow, the Level 2 BLAS routine ?tpsv is called. If the matrix A is singular (A(j, j)
= 0 for some j), then s is set to 0 and a non-trivial solution to Ax = 0 is returned.

Input Parameters

CHARACTER*1.uplo
Specifies whether the matrix A is upper or lower triangular.
= 'U': upper triangular
= 'L': uower triangular

CHARACTER*1.trans
Specifies the operation applied to A.
= 'N': solve A*x = s*b (no transpose)
= 'T': solve AT*x = s*b (transpose)
= 'C': solve AH*x = s*b (conjugate transpose)

CHARACTER*1.diag
Specifies whether or not the matrix A is unit triangular.
= 'N': non-unit triangular

1506

5 Intel® Math Kernel Library Reference Manual

= 'U': unit triangular

CHARACTER*1.normin
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry. On exit, the norms will
be computed and stored in cnorm.

INTEGER. The order of the matrix A. n ≥ 0.n

REAL for slatpsap
DOUBLE PRECISION for dlatps
COMPLEX for clatps
COMPLEX*16 for zlatps.
Array, DIMENSION (n(n+1)/2).
The upper or lower triangular matrix A, packed columnwise
in a linear array. The j-th column of A is stored in the array
ap as follows:

if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1≤ i ≤
j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i, j) for

j≤i≤n.

REAL for slatps DOUBLE PRECISION for dlatpsx
COMPLEX for clatps
COMPLEX*16 for zlatps.
Array, DIMENSION (n)
On entry, the right hand side b of the triangular system.

REAL for slatps/clatpscnorm
DOUBLE PRECISION for dlatps/zlatps.
Array, DIMENSION (n).
If normin = 'Y', cnorm is an input argument and cnorm(j)
contains the norm of the off-diagonal part of the j-th column
of A.
If trans = 'N', cnorm(j) must be greater than or equal
to the infinity-norm, and if trans = 'T' or 'C' , cnorm(j)
must be greater than or equal to the 1-norm.

1507

LAPACK Auxiliary and Utility Routines 5

Output Parameters

On exit, x is overwritten by the solution vector x.x

REAL for slatps/clatpsscale
DOUBLE PRECISION for dlatps/zlatps.
The scaling factor s for the triangular system as described
above.
If scale = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x =
0.

If normin = 'N', cnorm is an output argument and
cnorm(j) returns the 1-norm of the off-diagonal part of the
j-th column of A.

cnorm

INTEGER.info
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

?latrd
Reduces the first nb rows and columns of a
symmetric/Hermitian matrix A to real tridiagonal
form by an orthogonal/unitary similarity
transformation.

Syntax

call slatrd(uplo, n, nb, a, lda, e, tau, w, ldw)

call dlatrd(uplo, n, nb, a, lda, e, tau, w, ldw)

call clatrd(uplo, n, nb, a, lda, e, tau, w, ldw)

call zlatrd(uplo, n, nb, a, lda, e, tau, w, ldw)

Description

The routine ?latrd reduces nb rows and columns of a real symmetric or complex Hermitian
matrix A to symmetric/Hermitian tridiagonal form by an orthogonal/unitary similarity
transformation Q' A Q, and returns the matrices V and W which are needed to apply the
transformation to the unreduced part of A.

1508

5 Intel® Math Kernel Library Reference Manual

If uplo = 'U', ?latrd reduces the last nb rows and columns of a matrix, of which the upper
triangle is supplied;

if uplo = 'L', ?latrd reduces the first nb rows and columns of a matrix, of which the lower
triangle is supplied.

This is an auxiliary routine called by ?sytrd/?hetrd.

Input Parameters

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix A is stored:
= 'U': upper triangular
= 'L': lower triangular

INTEGER. The order of the matrix A.n

INTEGER. The number of rows and columns to be reduced.nb

REAL for slatrda
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix A
If uplo = 'U', the leading n-by-n upper triangular part of
A contains the upper triangular part of the matrix A, and
the strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
A contains the lower triangular part of the matrix A, and the
strictly upper triangular part of A is not referenced.

INTEGER. The leading dimension of the array a. lda ≥
(1,n).

lda

INTEGER.LDW

The leading dimension of the output array w. ldw ≥
max(1,n).

1509

LAPACK Auxiliary and Utility Routines 5

Output Parameters

On exit, if uplo = 'U', the last nb columns have been
reduced to tridiagonal form, with the diagonal elements
overwriting the diagonal elements of A; the elements above

a

the diagonal with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors;
if uplo = 'L', the first nb columns have been reduced to
tridiagonal form, with the diagonal elements overwriting the
diagonal elements of a; the elements below the diagonal
with the array tau, represent the orthogonal/unitary matrix
Q as a product of elementary reflectors.

REAL for slatrd/clatrde
DOUBLE PRECISION for dlatrd/zlatrd.
If uplo = 'U', e(n-nb:n-1) contains the superdiagonal
elements of the last nb columns of the reduced matrix;
if uplo = 'L', e(1:nb) contains the subdiagonal elements
of the first nb columns of the reduced matrix.

REAL for slatrdtau
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
Array, DIMENSION (lda, n).
The scalar factors of the elementary reflectors, stored in
tau(n-nb:n-1) if uplo = 'U', and in tau(1:nb) if uplo
= 'L'.

REAL for slatrdw
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
Array, DIMENSION (lda, n).
The n-by-nb matrix W required to update the unreduced part
of A.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

1510

5 Intel® Math Kernel Library Reference Manual

Q = H(n) H(n-1) . . . H(n-nb+1)

Each H(i) has the form

H(i) = I - tau*v*v'

where tau is a real/complex scalar, and v is a real/complex vector with v(i:n) = 0 and v(i-1)
= 1; v(1: i-1) is stored on exit in a(1: i-1, i), and tau in tau(i-1).

If uplo = 'L', the matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(nb)

Each H(i) has the form H(i) = I - tau*v*v'

where tau is a real/complex scalar, and v is a real/complex vector with v(1: i) = 0 and
v(i+1) = 1; v(i+1:n) is stored on exit in a(i+1:n, i), and tau in tau(i).

The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to
apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian
rank-2k update of the form:

A := A - VW' - WV'.

The contents of a on exit are illustrated by the following examples with n = 5 and nb = 2:

where d denotes a diagonal element of the reduced matrix, a denotes an element of the original
matrix that is unchanged, and vi denotes an element of the vector defining H(i).

1511

LAPACK Auxiliary and Utility Routines 5

?latrs
Solves a triangular system of equations with the
scale factor set to prevent overflow.

Syntax

call slatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)

call dlatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)

call clatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)

call zlatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)

Description

The routine solves one of the triangular systems

A*x = s*b, or AT*x = s*b, or AH*x = s*b (for complex flavors)

with scaling to prevent overflow. Here A is an upper or lower triangular matrix, AT denotes the
transpose of A, AH denotes the conjugate transpose of A, x and b are n-element vectors, and s

is a scaling factor, usually less than or equal to 1, chosen so that the components of x will be
less than the overflow threshold. If the unscaled problem will not cause overflow, the Level 2
BLAS routine ?trsv is called. If the matrix A is singular (A(j,j) = 0 for some j), then s is
set to 0 and a non-trivial solution to Ax = 0 is returned.

Input Parameters

CHARACTER*1.uplo
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

CHARACTER*1.trans
Specifies the operation applied to A.
= 'N': solve A*x = s*b (no transpose)
= 'T': solve AT*x = s*b (transpose)
= 'C': solve AH*x = s*b (conjugate transpose)

CHARACTER*1.diag
Specifies whether or not the matrix A is unit triangular.
= 'N': non-unit triangular
= 'N': non-unit triangular

1512

5 Intel® Math Kernel Library Reference Manual

CHARACTER*1.normin
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry. O
n exit, the norms will be computed and stored in cnorm.

INTEGER. The order of the matrix A. n ≥ 0n

REAL for slatrsa
DOUBLE PRECISION for dlatrs
COMPLEX for clatrs
COMPLEX*16 for zlatrs.
Array, DIMENSION (lda, n). Contains the triangular matrix
A.
If uplo = 'U', the leading n-by-n upper triangular part of
the array a contains the upper triangular matrix, and the
strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
the array a contains the lower triangular matrix, and the
strictly upper triangular part of A is not referenced.
If diag = 'U', the diagonal elements of A are also not
referenced and are assumed to be 1.

INTEGER. The leading dimension of the array a. lda ≥
max(1, n).

lda

REAL for slatrsx
DOUBLE PRECISION for dlatrs
COMPLEX for clatrs
COMPLEX*16 for zlatrs.
Array, DIMENSION (n).
On entry, the right hand side b of the triangular system.

REAL for slatrs/clatrscnorm
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (n).
If normin = 'Y', cnorm is an input argument and cnorm
(j) contains the norm of the off-diagonal part of the j-th
column of A.

1513

LAPACK Auxiliary and Utility Routines 5

If trans = 'N', cnorm (j) must be greater than or equal
to the infinity-norm, and if trans = 'T' or 'C', cnorm(j)
must be greater than or equal to the 1-norm.

Output Parameters

On exit, x is overwritten by the solution vector x.x

REAL for slatrs/clatrsscale
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (lda, n). The scaling factor s for the
triangular system as described above.
If scale = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to Ax =
0.

If normin = 'N', cnorm is an output argument and
cnorm(j) returns the 1-norm of the off-diagonal part of the
j-th column of A.

cnorm

INTEGER.info
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

Application Notes

A rough bound on x is computed; if that is less than overflow, ?trsv is called, otherwise,
specific code is used which checks for possible overflow or divide-by-zero at every operation.

A columnwise scheme is used for solving Ax = b. The basic algorithm if A is lower triangular
is

x[1:n] := b[1:n]

for j = 1, ..., n

x(j) := x(j) / A(j,j)

x[j+1:n] := x[j+1:n] - x(j)*a[j+1:n,j]

end

Define bounds on the components of x after j iterations of the loop:

M(j) = bound on x[1:j]

G(j) = bound on x[j+1:n]

1514

5 Intel® Math Kernel Library Reference Manual

Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.

Then for iteration j+1 we have

M(j+1) ≤ G(j) / | a(j+1,j+1)|

G(j+1) ≤ G(j) + M(j+1)*| a[j+2:n,j+1]|

≤ G(j)(1 + cnorm(j+1)/ | a(j+1,j+1)|,

where cnorm(j+1) is greater than or equal to the infinity-norm of column j+1 of a, not counting
the diagonal. Hence

and

Since |x(j)| ≤ M(j), we use the Level 2 BLAS routine ?trsv if the reciprocal of the largest
M(j), j=1,..,n, is larger than max(underflow, 1/overflow).

The bound on x(j) is also used to determine when a step in the columnwise method can be
performed without fear of overflow. If the computed bound is greater than a large constant, x
is scaled to prevent overflow, but if the bound overflows, x is set to 0, x(j) to 1, and scale to
0, and a non-trivial solution to Ax = 0 is found.

Similarly, a row-wise scheme is used to solve ATx = b or AHx = b. The basic algorithm for A
upper triangular is

for j = 1, ..., n

x(j) := (b(j) - A[1:j-1,j]' x[1:j-1]) / A(j,j)

end

We simultaneously compute two bounds

1515

LAPACK Auxiliary and Utility Routines 5

G(j) = bound on (b(i) - A[1:i-1,i]'*x[1:i-1]), 1≤ i≤ j

M(j) = bound on x(i), 1≤ i≤ j

The initial values are G(0) = 0, M(0) = max{ b(i), i=1,..,n}, and we add the constraint

G(j) ≥ G(j-1) and M(j) ≥ M(j-1) for j ≥ 1.

Then the bound on x(j) is

M(j) ≤ M(j-1) *(1 + cnorm(j)) / | A(j,j)|

and we can safely call ?trsv if 1/M(n) and 1/G(n) are both greater than max(underflow,
1/overflow).

?latrz
Factors an upper trapezoidal matrix by means of
orthogonal/unitary transformations.

Syntax

call slatrz(m, n, l, a, lda, tau, work)

call dlatrz(m, n, l, a, lda, tau, work)

call clatrz(m, n, l, a, lda, tau, work)

call zlatrz(m, n, l, a, lda, tau, work)

Description

The routine ?latrz factors the m-by-(m+l) real/complex upper trapezoidal matrix

[A1 A2] = [A(1:m,1:m) A(1: m, n-l+1:n)]

as (R 0)* Z, by means of orthogonal/unitary transformations. Z is an (m+l)-by-(m+l)
orthogonal/unitary matrix and R and A1 are m-by -m upper triangular matrices.

1516

5 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. The number of rows of the matrix A. m ≥ 0.m

INTEGER. The number of columns of the matrix A. n ≥ 0.n

INTEGER. The number of columns of the matrix A containing
the meaningful part of the Householder vectors.

l

n-m ≥ l ≥ 0.

REAL for slatrza
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Array, DIMENSION (lda, n).
On entry, the leading m-by-n upper trapezoidal part of the
array a must contain the matrix to be factorized.

INTEGER. The leading dimension of the array a. lda ≥
max(1,m).

lda

REAL for slatrzwork
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Workspace array, DIMENSION (m).

Output Parameters

On exit, the leading m-by-m upper triangular part of a
contains the upper triangular matrix R, and elements n-l+1
to n of the first m rows of a, with the array tau, represent
the orthogonal/unitary matrix Z as a product of m elementary
reflectors.

a

REAL for slatrztau
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Array, DIMENSION (m).
The scalar factors of the elementary reflectors.

1517

LAPACK Auxiliary and Utility Routines 5

Application Notes

The factorization is obtained by Householder's method. The k-th transformation matrix, z(k),
which is used to introduce zeros into the (m - k + 1)-th row of A, is given in the form

where

tau is a scalar and z(k) is an l-element vector. tau and z(k) are chosen to annihilate the
elements of the k-th row of A2.

The scalar tau is returned in the k-th element of tau and the vector u(k) in the k-th row of
A2, such that the elements of z(k) are in a(k, l + 1), ..., a(k, n).

The elements of r are returned in the upper triangular part of A1.

Z is given by

Z = Z(1) Z(2) ... Z(m).

1518

5 Intel® Math Kernel Library Reference Manual

?lauu2
Computes the product U*UH or LH*L, where U and
L are upper or lower triangular matrices (unblocked
algorithm).

Syntax

call slauu2(uplo, n, a, lda, info)

call dlauu2(uplo, n, a, lda, info)

call clauu2(uplo, n, a, lda, info)

call zlauu2(uplo, n, a, lda, info)

Description

The routine ?lauu2 computes the product U*U' or L'*L, where the triangular factor U or L is
stored in the upper or lower triangular part of the array a.

If uplo = 'U' or 'u' , then the upper triangle of the result is stored, overwriting the factor U
in A.

If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor L
in A.

This is the unblocked form of the algorithm, calling BLAS Level 2 Routines.

Input Parameters

CHARACTER*1.uplo
Specifies whether the triangular factor stored in the array
a is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular

INTEGER. The order of the triangular factor U or L. n ≥ 0.n

REAL for slauu2a
DOUBLE PRECISION for dlauu2
COMPLEX for clauu2
COMPLEX*16 for zlauu2.
Array, DIMENSION (lda, n). On entry, the triangular factor
U or L.

1519

LAPACK Auxiliary and Utility Routines 5

INTEGER. The leading dimension of the array a. lda ≥
max(1,n).

lda

Output Parameters

On exit, if uplo = 'U', the upper triangle of A is overwritten
with the upper triangle of the product U*U'; if uplo = 'L',
the lower triangle of A is overwritten with the lower triangle
of the product L'*L.

a

INTEGER.info
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

?lauum
Computes the product U*UH or LH*L, where U and
L are upper or lower triangular matrices (blocked
algorithm).

Syntax

call slauum(uplo, n, a, lda, info)

call dlauum(uplo, n, a, lda, info)

call clauum(uplo, n, a, lda, info)

call zlauum(uplo, n, a, lda, info)

Description

The routine ?lauum computes the product U*U' or L'*L, where the triangular factor U or L is
stored in the upper or lower triangular part of the array a.

If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor U
in A.

If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor L
in A.

This is the blocked form of the algorithm, calling BLAS Level 3 Routines.

1520

5 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*1.uplo
Specifies whether the triangular factor stored in the array
a is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular

INTEGER. The order of the triangular factor U or L. n ≥ 0.n

REAL for slauuma
DOUBLE PRECISION for dlauum
COMPLEX for clauum
COMPLEX*16 for zlauum .
Array, DIMENSION (lda, n).
On entry, the triangular factor U or L.

INTEGER. The leading dimension of the array a. lda ≥
max(1,n).

lda

Output Parameters

On exit, if uplo = 'U', the upper triangle of A is overwritten
with the upper triangle of the product U*U'; if uplo = 'L',
the lower triangle of A is overwritten with the lower triangle
of the product L'*L.

a

INTEGER.info
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

?lazq3
Checks for deflation, computes a shift and calls
dqds.

Syntax

call slazq3(i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv, ieee,
ttype, dmin1, dmin2, dn, dn1, dn2, tau)

call dlazq3(i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv, ieee,
ttype, dmin1, dmin2, dn, dn1, dn2, tau)

1521

LAPACK Auxiliary and Utility Routines 5

Description

The routine ?lazq3 checks for deflation, computes a shift (tau) and calls dqds. In case of
failure, it changes shifts, and tries again until output is positive.

This routine is a thread safe version of ?lasq3 routine, which passes ttype, dmin1, dmin2, dn,
dn1, dn2, and tau through the argument list in place of declaring them in a SAVE statement.

Input Parameters

INTEGER.i0
First index.

INTEGER.n0
Last index.

REAL for slasq3z
DOUBLE PRECISION for dlasq3.
Array, DIMENSION (4*n). z holds the qd array.

INTEGER.pp
pp=0 for ping, pp=1 for pong.

REAL for slazq3desig
DOUBLE PRECISION for dlazq3.
Lower order part of sigma.

REAL for slazq3qmax
DOUBLE PRECISION for dlazq3.
Maximum value of q.

LOGICAL.ieee
Flag for IEEE or non-IEEE arithmetic (passed to the routine).

INTEGER. Shift type.ttype

REAL for slazq3dmin1
DOUBLE PRECISION for dlazq3.
Minimum value of d, excluding d(n0). Should be 0 on entry
at the first iteration and should not be modified further.

REAL for slazq3dmin2
DOUBLE PRECISION for dlazq3.
Minimum value of d, excluding d(n0) and d(n0-1). Should
be 0 on entry at the first iteration and should not be
modified further.

REAL for slazq3dn

1522

5 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for dlazq3.
Contains d(n). Should be 0 on entry at the first iteration
and should not be modified further.

REAL for slazq3dn1
DOUBLE PRECISION for dlazq3.
Contains d(n-1). Should be 0 on entry at the first iteration
and should not be modified further.

REAL for slazq3dn2
DOUBLE PRECISION for dlazq3.
Contains d(n-2). Should be 0 on entry at the first iteration
and should not be modified further.

REAL for slazq3tau
DOUBLE PRECISION for dlazq3.
Shift value

Output Parameters

REAL for slazq3dmin
DOUBLE PRECISION for dlazq3.
Minimum value of d.

REAL for slazq3sigma
DOUBLE PRECISION for dlazq3.
Sum of shifts used in current segment.

Lower order part of sigma.desig

INTEGER.nfail
Number of times shift was too big.

INTEGER.iter
Number of iterations.

INTEGER.ndiv
Number of divisions.

Shift type.ttype

Minimum value of d, excluding d(n0).dmin1

Minimum value of d, excluding d(n0) and d(n0-1).dmin2

d(n).dn

d(n-1).dn1

1523

LAPACK Auxiliary and Utility Routines 5

d(n-2).dn2

Shift value.tau

?lazq4
Computes an approximation to the smallest
eigenvalue using values of d from the previous
transform.

Syntax

call slazq4(i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau,
ttype, g)

call dlazq4(i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau,
ttype, g)

Description

The routine computes an approximation tau to the smallest eigenvalue using values of d from
the previous transform.

This routine is a thread safe version of ?lasq4 routine, which passes g through the argument
list in place of declaring g in a SAVE statement.

Input Parameters

INTEGER.i0
First index.

INTEGER.n0
Last index.

REAL for slazq4z
DOUBLE PRECISION for dlazq4.
Array, DIMENSION (4*n).
z holds the qd array.

INTEGER.pp
pp=0 for ping, pp=1 for pong.

INTEGER. The value of n0 at start of eigtest.n0in

REAL for slazq4dmin
DOUBLE PRECISION for dlazq4.

1524

5 Intel® Math Kernel Library Reference Manual

Minimum value of d.

REAL for slazq4dmin1
DOUBLE PRECISION for dlazq4.
Minimum value of d, excluding d(n0).

REAL for slazq4dmin2
DOUBLE PRECISION for dlazq4.
Minimum value of d, excluding d(n0)
and d(n0-1).

REAL for slazq4dn
DOUBLE PRECISION for dlazq4.
Contains d(n).

REAL for slazq4dn1
DOUBLE PRECISION for dlazq4.
Contains d(n-1).

REAL for slazq4dn2
DOUBLE PRECISION for dlazq4.
Contains d(n-2).

REAL for slazq4g
DOUBLE PRECISION for dlazq4.
Shift coefficient.

Output Parameters

REAL for slazq4tau
DOUBLE PRECISION for dlazq4.
Shift value.

INTEGER.ttype
Shift type.

Shift coefficient.g

1525

LAPACK Auxiliary and Utility Routines 5

?org2l/?ung2l
Generates all or part of the orthogonal/unitary
matrix Q from a QL factorization determined by
?geqlf (unblocked algorithm).

Syntax

call sorg2l(m, n, k, a, lda, tau, work, info)

call dorg2l(m, n, k, a, lda, tau, work, info)

call cung2l(m, n, k, a, lda, tau, work, info)

call zung2l(m, n, k, a, lda, tau, work, info)

Description

The routine ?org2l/?ung2l generates an m-by-n real/complex matrix Q with orthonormal
columns, which is defined as the last n columns of a product of k elementary reflectors of order
m:

Q = H(k) . . . H(2) H(1) as returned by ?geqlf.

Input Parameters

INTEGER. The number of rows of the matrix Q. m ≥ 0.m

INTEGER. The number of columns of the matrix Q. m ≥ n

≥ 0.

n

INTEGER. The number of elementary reflectors whose

product defines the matrix Q. n ≥ k ≥ 0.

k

REAL for sorg2la
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Array, DIMENSION (lda,n).
On entry, the (n -k+i)-th column must contain the vector
which defines the elementary reflector H(i), for i = 1,2,...,
k, as returned by ?geqlf in the last k columns of its array
argument A.

1526

5 Intel® Math Kernel Library Reference Manual

INTEGER. The first dimension of the array a. lda ≥
max(1,m).

lda

REAL for sorg2ltau
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?geqlf.

REAL for sorg2lwork
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Workspace array, DIMENSION (n).

Output Parameters

On exit, the m-by-n matrix Q.a

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value

?org2r/?ung2r
Generates all or part of the orthogonal/unitary
matrix Q from a QR factorization determined by
?geqrf (unblocked algorithm).

Syntax

call sorg2r(m, n, k, a, lda, tau, work, info)

call dorg2r(m, n, k, a, lda, tau, work, info)

call cung2r(m, n, k, a, lda, tau, work, info)

call zung2r(m, n, k, a, lda, tau, work, info)

1527

LAPACK Auxiliary and Utility Routines 5

Description

The routine ?org2r/?ung2r generates an m-by-n real/complex matrix Q with orthonormal
columns, which is defined as the first n columns of a product of k elementary reflectors of order
m

Q = H(1) H(2) . . . H(k)

as returned by ?geqrf.

Input Parameters

INTEGER. The number of rows of the matrix Q. m ≥ 0.m

INTEGER. The number of columns of the matrix Q. m ≥ n

≥ 0.

n

INTEGER. The number of elementary reflectors whose

product defines the matrix Q. n ≥ k ≥ 0.

k

REAL for sorg2ra
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
COMPLEX*16 for zung2r.
Array, DIMENSION (lda, n).
On entry, the i-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,..., k, as
returned by ?geqrf in the first k columns of its array
argument a.

INTEGER. The first DIMENSION of the array a. lda ≥
max(1,m).

lda

REAL for sorg2rtau
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
COMPLEX*16 for zung2r.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?geqrf.

REAL for sorg2rwork
DOUBLE PRECISION for dorg2r

1528

5 Intel® Math Kernel Library Reference Manual

COMPLEX for cung2r
COMPLEX*16 for zung2r.
Workspace array, DIMENSION (n).

Output Parameters

On exit, the m-by-n matrix Q.a

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value

?orgl2/?ungl2
Generates all or part of the orthogonal/unitary
matrix Q from an LQ factorization determined by
?gelqf (unblocked algorithm).

Syntax

call sorgl2(m, n, k, a, lda, tau, work, info)

call dorgl2(m, n, k, a, lda, tau, work, info)

call cungl2(m, n, k, a, lda, tau, work, info)

call zungl2(m, n, k, a, lda, tau, work, info)

Description

The routine ?orgl2/?ungl2 generates a m-by-n real/complex matrix Q with orthonormal rows,
which is defined as the first m rows of a product of k elementary reflectors of order n

Q = H(k) . . . H(2) H(1) or Q = H(k) ' . . . H(2)' H(1)'

as returned by ?gelqf.

Input Parameters

INTEGER. The number of rows of the matrix Q. m ≥ 0.m

INTEGER. The number of columns of the matrix Q. n ≥ m.n

INTEGER. The number of elementary reflectors whose

product defines the matrix Q. m ≥ k ≥ 0.

k

1529

LAPACK Auxiliary and Utility Routines 5

REAL for sorgl2a
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Array, DIMENSION (lda, n). On entry, the i-th row must
contain the vector which defines the elementary reflector
H(i), for i = 1,2,..., k, as returned by ?gelqf in
the first k rows of its array argument a.

INTEGER. The first dimension of the array a. lda ≥
max(1,m).

lda

REAL for sorgl2tau
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?gelqf.

REAL for sorgl2work
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Workspace array, DIMENSION (m).

Output Parameters

On exit, the m-by-n matrix Q.a

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value.

1530

5 Intel® Math Kernel Library Reference Manual

?orgr2/?ungr2
Generates all or part of the orthogonal/unitary
matrix Q from an RQ factorization determined by
?gerqf (unblocked algorithm).

Syntax

call sorgr2(m, n, k, a, lda, tau, work, info)

call dorgr2(m, n, k, a, lda, tau, work, info)

call cungr2(m, n, k, a, lda, tau, work, info)

call zungr2(m, n, k, a, lda, tau, work, info)

Description

The routine ?orgr2/?ungr2 generates an m-by-n real matrix Q with orthonormal rows, which
is defined as the last m rows of a product of k elementary reflectors of order n

Q = H(1) H(2) . . . H(k) or Q = H(1)' H(2)' . . . H(k)'

as returned by ?gerqf.

Input Parameters

INTEGER. The number of rows of the matrix Q. m ≥ 0.m

INTEGER. The number of columns of the matrix Q. n ≥ mn

INTEGER.k
The number of elementary reflectors whose product defines

the matrix Q. m ≥ k ≥ 0.

REAL for sorgr2a
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
COMPLEX*16 for zungr2.
Array, DIMENSION (lda, n).
On entry, the (m- k+i)-th row must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,
k, as returned by ?gerqf in the last k rows of its array
argument a.

1531

LAPACK Auxiliary and Utility Routines 5

INTEGER. The first dimension of the array a. lda ≥
max(1,m).

lda

REAL for sorgr2tau
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
COMPLEX*16 for zungr2.
Array, DIMENSION (k).tau(i) must contain the scalar factor
of the elementary reflector H(i), as returned by ?gerqf.

REAL for sorgr2work
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
COMPLEX*16 for zungr2.
Workspace array, DIMENSION (m).

Output Parameters

On exit, the m-by-n matrix Q.a

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value

?orm2l/?unm2l
Multiplies a general matrix by the
orthogonal/unitary matrix from a QL factorization
determined by ?geqlf (unblocked algorithm).

Syntax

call sorm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call dorm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call cunm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call zunm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

Description

The routine ?orm2l/?unm2l overwrites the general real/complex m-by-n matrix C with

1532

5 Intel® Math Kernel Library Reference Manual

Q*C if side = 'L' and trans = 'N', or

Q'*C if side = 'L' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors), or

C*Q if side = 'R' and trans = 'N', or

C*Q' if side = 'R' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

Q = H(k) . . . H(2) H(1)

as returned by ?geqlf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

CHARACTER*1.side
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

CHARACTER*1.trans
= 'N': apply Q (no transpose)
= 'T': apply Q' (transpose, for real flavors)
= 'C': apply Q' (conjugate transpose, for complex flavors)

INTEGER. The number of rows of the matrix C. m ≥ 0.m

INTEGER. The number of columns of the matrix C. n ≥ 0.n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q.

k

If side = 'L', m ≥ k ≥ 0;

if side = 'R', n ≥ k ≥ 0.

REAL for sorm2la
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION (lda,k).

1533

LAPACK Auxiliary and Utility Routines 5

The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,..., k, as returned
by ?geqlf in the last k columns of its array argument a.
The array a is modified by the routine but restored on exit.

INTEGER. The leading dimension of the array a.lda

If side = 'L', lda ≥ max(1, m)

if side = 'R', lda ≥ max(1, n).

REAL for sorm2ltau
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION (k). tau(i) must contain the scalar factor
of the elementary reflector H(i), as returned by ?geqlf.

REAL for sorm2lc
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION (LDc, n).
On entry, the m-by-n matrix C.

INTEGER. The leading dimension of the array C. ldc ≥
max(1,m).

ldc

REAL for sorm2lwork
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Workspace array, DIMENSION:
(n) if side = 'L',
(m) if side = 'R'.

Output Parameters

On exit, c is overwritten by QC,or Q'C, or CQ', or CQ.c

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

1534

5 Intel® Math Kernel Library Reference Manual

?orm2r/?unm2r
Multiplies a general matrix by the
orthogonal/unitary matrix from a QR factorization
determined by ?geqrf (unblocked algorithm).

Syntax

call sorm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call dorm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call cunm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call zunm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

Description

The routine ?orm2r/?unm2r overwrites the general real/complex m-by-n matrix C with

Q*C if side = 'L' and trans = 'N', or

Q'*C if side = 'L' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors), or

C*Q if side = 'R' and trans = 'N', or

C*Q' if side = 'R' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

Q = H(1) H(2) . . . H(k)

as returned by ?geqrf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

CHARACTER*1.side
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

CHARACTER*1.trans
= 'N': apply Q (no transpose)
= 'T': apply Q' (transpose, for real flavors)

1535

LAPACK Auxiliary and Utility Routines 5

= 'C': apply Q' (conjugate transpose, for complex flavors)

INTEGER. The number of rows of the matrix C. m ≥ 0.m

INTEGER. The number of columns of the matrix C. n ≥ 0.n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q.

k

If side = 'L', m ≥ k ≥ 0;

if side = 'R', n ≥ k ≥ 0.

REAL for sorm2ra
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Array, DIMENSION (lda,k).
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,..., k, as returned
by ?geqrf in the first k columns of its array argument a.
The array a is modified by the routine but restored on exit.

INTEGER. The leading dimension of the array a.lda

If side = 'L', lda ≥ max(1, m);

if side = 'R', lda ≥ max(1, n).

REAL for sorm2rtau
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?geqrf.

REAL for sorm2rc
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Array, DIMENSION (LDc, n).
On entry, the m-by-n matrix C.

INTEGER. The leading dimension of the array c. ldc ≥
max(1,m).

ldc

1536

5 Intel® Math Kernel Library Reference Manual

REAL for sorm2rwork
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'.

Output Parameters

On exit, c is overwritten by QC, or Q'C, or CQ', or CQ.c

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

?orml2/?unml2
Multiplies a general matrix by the
orthogonal/unitary matrix from a LQ factorization
determined by ?gelqf (unblocked algorithm).

Syntax

call sorml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call dorml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call cunml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call zunml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

Description

The routine ?orml2/?unml2 overwrites the general real/complex m-by-n matrix C with

Q*C if side = 'L' and trans = 'N', or

Q'*C if side = 'L' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors), or

C*Q if side = 'R' and trans = 'N', or

C*Q' if side = 'R' and trans = 'T' (for real flavors) or

1537

LAPACK Auxiliary and Utility Routines 5

trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

Q = H(k) . . . H(2) H(1) or Q = H(k)' . . . H(2)' H(1)'

as returned by ?gelqf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

CHARACTER*1.side
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

CHARACTER*1.trans
= 'N': apply Q (no transpose)
= 'T': apply Q' (transpose, for real flavors)
= 'C': apply Q' (conjugate transpose, for complex flavors)

INTEGER. The number of rows of the matrix C. m ≥ 0.m

INTEGER. The number of columns of the matrix C. n ≥ 0.n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q.

k

If side = 'L', m ≥ k ≥ 0;

if side = 'r', n ≥ k ≥ 0.

REAL for sorml2a
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Array, DIMENSION
(lda, m) if side = 'L',
(lda, n) if side = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,..., k, as returned
by ?gelqf in the first k rows of its array argument a. The
array a is modified by the routine but restored on exit.

INTEGER. The leading dimension of the array a. lda ≥
max(1,k).

lda

1538

5 Intel® Math Kernel Library Reference Manual

REAL for sorml2tau
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?gelqf.

REAL for sorml2c
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Array, DIMENSION (ldc, n) On entry, the m-by-n matrix C.

INTEGER. The leading dimension of the array c. ldc ≥
max(1,m).

ldc

REAL for sorml2work
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'

Output Parameters

On exit, c is overwritten by QC, or Q'C, or CQ', or CQ.c

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

1539

LAPACK Auxiliary and Utility Routines 5

?ormr2/?unmr2
Multiplies a general matrix by the
orthogonal/unitary matrix from a RQ factorization
determined by ?gerqf (unblocked algorithm).

Syntax

call sormr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call dormr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call cunmr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call zunmr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

Description

The routine ?ormr2/?unmr2 overwrites the general real/complex m-by-n matrix C with

Q*C if side = 'L' and trans = 'N', or

Q'*C if side = 'L' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors), or

C*Q if side = 'R' and trans = 'N', or

C*Q' if side = 'R' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

Q = H(1) H(2) . . . H(k) or Q = H(1)' H(2)' . . . H(k)'

as returned by ?gerqf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

CHARACTER*1.side
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

CHARACTER*1.trans
= 'N': apply Q (no transpose)
= 'T': apply Q' (transpose, for real flavors)

1540

5 Intel® Math Kernel Library Reference Manual

= 'C': apply Q' (conjugate transpose, for complex flavors)

INTEGER. The number of rows of the matrix C. m ≥ 0.m

INTEGER. The number of columns of the matrix C. n ≥ 0.n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q.

k

If side = 'L', m ≥ k ≥ 0;

if side = 'r', n ≥ k ≥ 0.

REAL for sormr2a
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Array, DIMENSION
(lda, m) if side = 'L',
(lda, n) if side = 'r'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned
by ?gerqf in the last k rows of its array argument a. The
array a is modified by the routine but restored on exit.

INTEGER.lda

The leading dimension of the array a. lda ≥ max(1,k).

REAL for sormr2tau
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?gerqf.

REAL for sormr2c
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Array, DIMENSION (ldc, n).
On entry, the m-by-n matrix C.

1541

LAPACK Auxiliary and Utility Routines 5

INTEGER. The leading dimension of the array c. ldc ≥
max(1,m).

ldc

REAL for sormr2work
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'

Output Parameters

On exit, c is overwritten by QC, or Q'C, or CQ', or CQ.c

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

?ormr3/?unmr3
Multiplies a general matrix by the
orthogonal/unitary matrix from a RZ factorization
determined by ?tzrzf (unblocked algorithm).

Syntax

call sormr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

call dormr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

call cunmr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

call zunmr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

Description

The routine ?ormr3/?unmr3 overwrites the general real/complex m-by-n matrix C with

Q*C if side = 'L' and trans = 'N', or

Q'*C if side = 'L' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors), or

1542

5 Intel® Math Kernel Library Reference Manual

C*Q if side = 'R' and trans = 'N', or

C*Q' if side = 'R' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

Q = H(1) H(2) . . . H(k)

as returned by ?tzrzf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

CHARACTER*1.side
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

CHARACTER*1.trans
= 'N': apply Q (no transpose)
= 'T': apply Q' (transpose, for real flavors)
= 'C': apply Q' (conjugate transpose, for complex flavors)

INTEGER. The number of rows of the matrix C. m ≥ 0.m

INTEGER. The number of columns of the matrix C. n ≥ 0.n

INTEGER. The number of elementary reflectors whose
product defines the matrix Q.

k

If side = 'L', m ≥ k ≥ 0;

if side = 'r' , n ≥ k ≥ 0.

INTEGER. The number of columns of the matrix A containing
the meaningful part of the Householder reflectors.

l

If side = 'L', m ≥ l ≥ 0,

if side = 'R', n ≥ l ≥ 0.

REAL for sormr3a
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
COMPLEX*16 for zunmr3.
Array, DIMENSION
(lda, m) if side = 'L',

1543

LAPACK Auxiliary and Utility Routines 5

(lda, n) if side = 'r'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned
by ?tzrzf in the last k rows of its array argument a. The
array a is modified by the routine but restored on exit.

INTEGER.lda

The leading dimension of the array a. lda ≥ max(1,k).

REAL for sormr3tau
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
COMPLEX*16 for zunmr3.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?tzrzf.

REAL for sormr3c
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
COMPLEX*16 for zunmr3.
Array, DIMENSION (ldc, n).
On entry, the m-by-n matrix C.

INTEGER. The leading dimension of the array C. ldc ≥
max(1,m).

ldc

REAL for sormr3work
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
COMPLEX*16 for zunmr3.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'.

Output Parameters

On exit, c is overwritten by QC, or Q'C, or CQ', or CQ.c

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

1544

5 Intel® Math Kernel Library Reference Manual

?pbtf2
Computes the Cholesky factorization of a
symmetric/ Hermitian positive-definite band matrix
(unblocked algorithm).

Syntax

call spbtf2(uplo, n, kd, ab, ldab, info)

call dpbtf2(uplo, n, kd, ab, ldab, info)

call cpbtf2(uplo, n, kd, ab, ldab, info)

call zpbtf2(uplo, n, kd, ab, ldab, info)

Description

The routine computes the Cholesky factorization of a real symmetric or complex Hermitian
positive definite band matrix A.

The factorization has the form

A = U'*U , if uplo = 'U', or

A = L*L', if uplo = 'L',

where U is an upper triangular matrix, U' is the transpose of U, and L is lower triangular. This
is the unblocked version of the algorithm, calling BLAS Level 2 Routines.

Input Parameters

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix A is stored:
= 'U': upper triangular
= 'L': lower triangular

INTEGER. The order of the matrix A. n ≥ 0.n

INTEGER. The number of super-diagonals of the matrix A if
uplo = 'U' , or the number of sub-diagonals if uplo =
'L'.

kd

kd ≥ 0.

REAL for spbtf2ab

1545

LAPACK Auxiliary and Utility Routines 5

DOUBLE PRECISION for dpbtf2
COMPLEX for cpbtf2
COMPLEX*16 for zpbtf2.
Array, DIMENSION (ldab, n).
On entry, the upper or lower triangle of the symmetric/
Hermitian band matrix A, stored in the first kd+1 rows of
the array. The j-th column of A is stored in the j-th column
of the array ab as follows:
if uplo = 'U', ab(kd+1+i -j,j) = A(i, j for max(1,

j-kd) ≤ i ≤ j;

if uplo = 'L', ab(1+i -j,j) = A(i, j for j ≤ i ≤
min(n, j+kd).

INTEGER. The leading dimension of the array ab. ldab ≥
kd+1.

ldab

Output Parameters

On exit, If info = 0, the triangular factor U or L from the
Cholesky factorization A = U'*U or A = L*L' of the band
matrix A, in the same storage format as A.

ab

INTEGER.info
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, the leading minor of order k is not positive
definite, and the factorization could not be completed.

1546

5 Intel® Math Kernel Library Reference Manual

?potf2
Computes the Cholesky factorization of a
symmetric/Hermitian positive-definite matrix
(unblocked algorithm).

Syntax

call spotf2(uplo, n, a, lda, info)

call dpotf2(uplo, n, a, lda, info)

call cpotf2(uplo, n, a, lda, info)

call zpotf2(uplo, n, a, lda, info)

Description

The routine ?potf2 computes the Cholesky factorization of a real symmetric or complex
Hermitian positive definite matrix A. The factorization has the form

A = U'*U, if uplo = 'U', or

A = L*L', if uplo = 'L',

where U is an upper triangular matrix and L is lower triangular.

This is the unblocked version of the algorithm, calling BLAS Level 2 Routines

Input Parameters

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix A is stored.
= 'U': upper triangular
= 'L': lower triangular

INTEGER. The order of the matrix A. n ≥ 0.n

REAL for spotf2a
DOUBLE PRECISION or dpotf2
COMPLEX for cpotf2
COMPLEX*16 for zpotf2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix A.

1547

LAPACK Auxiliary and Utility Routines 5

If uplo = 'U', the leading n-by-n upper triangular part of
A contains the upper triangular part of the matrix A, and
the strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
A contains the lower triangular part of the matrix A, and the
strictly upper triangular part of A is not referenced.

INTEGER. The leading dimension of the array a.lda

lda ≥ max(1,n).

Output Parameters

On exit, If info = 0, the factor U or L from the Cholesky
factorization A = U'*U, or A = L*L'.

a

INTEGER.info
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, the leading minor of order k is not positive
definite, and the factorization could not be completed.

?ptts2
Solves a tridiagonal system of the form A*X=B
using the L*D*LH factorization computed by
?pttrf.

Syntax

call sptts2(n, nrhs, d, e, b, ldb)

call dptts2(n, nrhs, d, e, b, ldb)

call cptts2(iuplo, n, nrhs, d, e, b, ldb)

call zptts2(iuplo, n, nrhs, d, e, b, ldb)

Description

The routine ?ptts2 solves a tridiagonal system of the form

A*X = B

1548

5 Intel® Math Kernel Library Reference Manual

Real flavors sptts2/dptts2 use the L D L' factorization of A computed by spttrf/dpttrf,
and complex flavors cptts2/zptts2 use the U' D U or L D L' factorization of A computed by
cpttrf/zpttrf.

D is a diagonal matrix specified in the vector d, U (or L) is a unit bidiagonal matrix whose
superdiagonal (subdiagonal) is specified in the vector e, and X and B are n-by-nrhs matrices.

Input Parameters

INTEGER. Used with complex flavors only.iuplo
Specifies the form of the factorization and whether the
vector e is the superdiagonal of the upper bidiagonal factor
U or the subdiagonal of the lower bidiagonal factor L.
= 1: A = U'*D*U, e is the superdiagonal of U;
= 0: A = L*D*L', e is the subdiagonal of L

INTEGER. The order of the tridiagonal matrix A. n ≥ 0.n

INTEGER. The number of right hand sides, that is, the

number of columns of the matrix B. nrhs ≥ 0.

nrhs

REAL for sptts2/cptts2d
DOUBLE PRECISION for dptts2/zptts2.
Array, DIMENSION (n).
The n diagonal elements of the diagonal matrix D from the
factorization of A.

REAL for sptts2e
DOUBLE PRECISION for dptts2
COMPLEX for cptts2
COMPLEX*16 for zptts2.
Array, DIMENSION (n-1).
Contains the (n-1) subdiagonal elements of the unit
bidiagonal factor L from the LDL' factorization of A (for real
flavors, or for complex flavors when iuplo = 0).
For complex flavors when iuplo = 1, e contains the (n-1)
superdiagonal elements of the unit bidiagonal factor U from
the factorization A = U'*D*U.

REAL for sptts2/cptts2B
DOUBLE PRECISION for dptts2/zptts2.
Array, DIMENSION (ldb, nrhs).

1549

LAPACK Auxiliary and Utility Routines 5

On entry, the right hand side vectors B for the system of
linear equations.

INTEGER. The leading dimension of the array B. ldb ≥
max(1,n).

ldb

Output Parameters

On exit, the solution vectors, X.b

?rscl
Multiplies a vector by the reciprocal of a real scalar.

Syntax

call srscl(n, sa, sx, incx)

call drscl(n, sa, sx, incx)

call csrscl(n, sa, sx, incx)

call zdrscl(n, sa, sx, incx)

Description

The routine ?rscl multiplies an n-element real/complex vector x by the real scalar 1/a. This
is done without overflow or underflow as long as the final result x/a does not overflow or
underflow.

Input Parameters

INTEGER. The number of components of the vector x.n

REAL for srscl/csrsclsa
DOUBLE PRECISION for drscl/zdrscl.
The scalar a which is used to divide each component of the

vector x. sa must be ≥ 0, or the subroutine will divide by
zero.

REAL for srsclsx
DOUBLE PRECISION for drscl
COMPLEX for csrscl
COMPLEX*16 for zdrscl.

1550

5 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (1+(n-1)*abs(incx)).
The n-element vector x.

INTEGER. The increment between successive values of the
vector sx.

incx

If incx > 0, sx(1) = x(1) and sx(1+(i-1)*incx) = x

(i), 1< i ≤ n.

Output Parameters

On exit, the result x/a.sx

?sygs2/?hegs2
Reduces a symmetric/Hermitian definite
generalized eigenproblem to standard form, using
the factorization results obtained from ?potrf
(unblocked algorithm).

Syntax

call ssygs2(itype, uplo, n, a, lda, b, ldb, info)

call dsygs2(itype, uplo, n, a, lda, b, ldb, info)

call chegs2(itype, uplo, n, a, lda, b, ldb, info)

call zhegs2(itype, uplo, n, a, lda, b, ldb, info)

Description

The routine ?sygs2/?hegs2 reduces a real symmetric-definite or a complex Hermitian-definite
generalized eigenproblem to standard form.

If itype = 1, the problem is

A*x = λ*B*x,

and A is overwritten by inv(U')* A*inv(U) or inv(L)*A*inv(L').

If itype = 2 or 3, the problem is A*B*x = λ*x, or B*A*x = λ*x,

and A is overwritten by U*A*U' or L'*A*L. B must have been previously factorized as U'*U or
L*L' by ?potrf.

1551

LAPACK Auxiliary and Utility Routines 5

Input Parameters

INTEGER.itype
= 1: compute inv(U')*A*inv(U), or inv(L)*A*inv(L');
= 2 or 3: compute U*A*U', or L'*A*L.

CHARACTER*1. Specifies whether the upper or lower
triangular part of the symmetric/Hermitian matrix A is
stored, and how B has been factorized.

uplo

= 'U': upper triangular
= 'L': lower triangular

INTEGER. The order of the matrices A and B. n ≥ 0.n

REAL for ssygs2a
DOUBLE PRECISION for dsygs2
COMPLEX for chegs2
COMPLEX*16 for zhegs2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of
A contains the upper triangular part of the matrix A, and
the strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
A contains the lower triangular part of the matrix A, and the
strictly upper triangular part of A is not referenced.

INTEGER.lda

The leading dimension of the array a. lda ≥ max(1,n).

REAL for ssygs2b
DOUBLE PRECISION for dsygs2
COMPLEX for chegs2
COMPLEX*16 for zhegs2.
Array, DIMENSION (ldb, n).
The triangular factor from the Cholesky factorization of B
as returned by ?potrf.

INTEGER. The leading dimension of the array B. ldb ≥
max(1,n).

ldb

1552

5 Intel® Math Kernel Library Reference Manual

Output Parameters

On exit, If info = 0, the transformed matrix, stored in the
same format as A.

a

INTEGER.info
= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal value.

?sytd2/?hetd2
Reduces a symmetric/Hermitian matrix to real
symmetric tridiagonal form by an
orthogonal/unitary similarity
transformation(unblocked algorithm).

Syntax

call ssytd2(uplo, n, a, lda, d, e, tau, info)

call dsytd2(uplo, n, a, lda, d, e, tau, info)

call chetd2(uplo, n, a, lda, d, e, tau, info)

call zhetd2(uplo, n, a, lda, d, e, tau, info)

Description

The routine ?sytd2/?hetd2 reduces a real symmetric/complex Hermitian matrix A to real
symmetric tridiagonal form T by an orthogonal/unitary similarity transformation: Q'*A*Q =
T.

Input Parameters

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix A is stored:
= 'U': upper triangular
= 'L': lower triangular

INTEGER. The order of the matrix A. n ≥ 0.n

REAL for ssytd2a
DOUBLE PRECISION for dsytd2

1553

LAPACK Auxiliary and Utility Routines 5

COMPLEX for chetd2
COMPLEX*16 for zhetd2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of
A contains the upper triangular part of the matrix A, and
the strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
A contains the lower triangular part of the matrix A, and the
strictly upper triangular part of A is not referenced.

INTEGER. The leading dimension of the array a. lda ≥
max(1,n).

lda

Output Parameters

On exit, if uplo = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first

a

superdiagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors;
if uplo = 'L', the diagonal and first subdiagonal of A are
overwritten by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array tau, represent the orthogonal/unitary matrix Q as
a product of elementary reflectors.

REAL for ssytd2/chetd2d
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (n).
The diagonal elements of the tridiagonal matrix T:
d(i) = a(i,i).

REAL for ssytd2/chetd2e
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (n-1).
The off-diagonal elements of the tridiagonal matrix T:
e(i) = a(i,i+1) if uplo = 'U',
e(i) = a(i+1,i) if uplo = 'L'.

1554

5 Intel® Math Kernel Library Reference Manual

REAL for ssytd2tau
DOUBLE PRECISION for dsytd2
COMPLEX for chetd2
COMPLEX*16 for zhetd2.
Array, DIMENSION (n-1).
The scalar factors of the elementary reflectors .

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value.

?sytf2
Computes the factorization of a real/complex
symmetric indefinite matrix, using the diagonal
pivoting method (unblocked algorithm).

Syntax

call ssytf2(uplo, n, a, lda, ipiv, info)

call dsytf2(uplo, n, a, lda, ipiv, info)

call csytf2(uplo, n, a, lda, ipiv, info)

call zsytf2(uplo, n, a, lda, ipiv, info)

Description

The routine ?sytf2 computes the factorization of a real/complex symmetric matrix A using the
Bunch-Kaufman diagonal pivoting method:

A = U*D*U' or A = L*D*L'

where U (or L) is a product of permutation and unit upper (lower) triangular matrices, U' is the
transpose of U, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

This is the unblocked version of the algorithm, calling BLAS Level 2 Routines.

Input Parameters

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored
= 'U': upper triangular

1555

LAPACK Auxiliary and Utility Routines 5

= 'L': lower triangular

INTEGER. The order of the matrix A. n ≥ 0.n

REAL for ssytf2a
DOUBLE PRECISION for dsytf2
COMPLEX for csytf2
COMPLEX*16 for zsytf2.
Array, DIMENSION (lda, n).
On entry, the symmetric matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of
A contains the upper triangular part of the matrix A, and
the strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
A contains the lower triangular part of the matrix A, and the
strictly upper triangular part of A is not referenced.

INTEGER.lda

The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L.

a

INTEGER.ipiv
Array, DIMENSION (n).
Details of the interchanges and the block structure of D
If ipiv(k) > 0, then rows and columns k and ipiv(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows
and columns k-1 and -ipiv(k) were interchanged and D(k,k)
is a 2-by-2 diagonal block. If uplo = 'L' and ipiv(k) =
ipiv(k+1)< 0, then rows and columns k+1 and -ipiv(k)
were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal
block.

INTEGER.info
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

1556

5 Intel® Math Kernel Library Reference Manual

> 0: if info = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it is used
to solve a system of equations.

?hetf2
Computes the factorization of a complex Hermitian
matrix, using the diagonal pivoting method
(unblocked algorithm).

Syntax

call chetf2(uplo, n, a, lda, ipiv, info)

call zhetf2(uplo, n, a, lda, ipiv, info)

Description

The routine computes the factorization of a complex Hermitian matrix A using the Bunch-Kaufman
diagonal pivoting method:

A = U*D*U' or A = L*D*L'

where U (or L) is a product of permutation and unit upper (lower) triangular matrices, U' is the
conjugate transpose of U, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal
blocks.

This is the unblocked version of the algorithm, calling BLAS Level 2 Routines.

Input Parameters

CHARACTER*1.uplo
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

INTEGER. The order of the matrix A. n ≥ 0.n

COMPLEX for chetf2A
COMPLEX*16 for zhetf2.
Array, DIMENSION (lda, n).
On entry, the Hermitian matrix A.

1557

LAPACK Auxiliary and Utility Routines 5

If uplo = 'U', the leading n-by-n upper triangular part of
A contains the upper triangular part of the matrix A, and
the strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
A contains the lower triangular part of the matrix A, and the
strictly upper triangular part of A is not referenced.

INTEGER. The leading dimension of the array a. lda ≥
max(1,n).

lda

Output Parameters

On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L.

a

INTEGER. Array, DIMENSION (n).ipiv
Details of the interchanges and the block structure of D
If ipiv(k) > 0, then rows and columns k and ipiv(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then
rows and columns k-1 and -ipiv(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then
rows and columns k+1 and -ipiv(k) were interchanged and
D(k:k+1, k:k+1) is a 2-by-2 diagonal block.

INTEGER.info
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it is used
to solve a system of equations.

1558

5 Intel® Math Kernel Library Reference Manual

?tgex2
Swaps adjacent diagonal blocks in an upper (quasi)
triangular matrix pair by an orthogonal/unitary
equivalence transformation.

Syntax

call stgex2(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, n1, n2,
work, lwork, info)

call dtgex2(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, n1, n2,
work, lwork, info)

call ctgex2(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, info)

call ztgex2(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, info)

Description

The real routines stgex2/dtgex2 swap adjacent diagonal blocks (A11, B11) and (A22, B22) of
size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair (A, B) by an orthogonal
equivalence transformation. (A, B) must be in generalized real Schur canonical form (as returned
by sgges/dgges), that is, A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks.
B is upper triangular.

The complex routines ctgex2/ztgex2 swap adjacent diagonal 1-by-1 blocks (A11, B11) and
(A22, B22) in an upper triangular matrix pair (A, B) by an unitary equivalence transformation.

(A, B) must be in generalized Schur canonical form, that is, A and B are both upper triangular.

All routines optionally update the matrices Q and Z of generalized Schur vectors:

Q(in) *A(in)* Z(in)' = Q(out)*A(out)* Z(out)'

Q(in)* B(in)* Z(in)' = Q(out)* B(out)* Z(out)'

Input Parameters

LOGICAL.wantq
If wantq = .TRUE. : update the left transformation matrix
Q;
If wantq = .FALSE. : do not update Q.

LOGICAL.wantz

1559

LAPACK Auxiliary and Utility Routines 5

If wantz = .TRUE. : update the right transformation matrix
Z;
If wantz = .FALSE.: do not update Z.

INTEGER. The order of the matrices A and B. n ≥ 0.n

REAL for stgex2 DOUBLE PRECISION for dtgex2a, b
COMPLEX for ctgex2
COMPLEX*16 for ztgex2.
Arrays, DIMENSION (lda, n) and (ldb, n), respectively.
On entry, the matrices A and B in the pair (A, B).

INTEGER. The leading dimension of the array a. lda ≥
max(1,n).

lda

INTEGER. The leading dimension of the array b. ldb ≥
max(1,n).

ldb

REAL for stgex2 DOUBLE PRECISION for dtgex2Q, z
COMPLEX for ctgex2
COMPLEX*16 for ztgex2.
Arrays, DIMENSION (ldq, n) and (ldz, n), respectively.
On entry, if wantq = .TRUE., q contains the
orthogonal/unitary matrix Q, and if wantz = .TRUE., z
contains the orthogonal/unitary matrix Z.

INTEGER. The leading dimension of the array Q. ldq ≥ 1.ldq

If wantq = .TRUE., ldq ≥ n.

INTEGER. The leading dimension of the array z. ldz ≥ 1.ldz

If wantz = .TRUE., ldz ≥ n.

INTEGER.j1

The index to the first block (A11, B11). 1 ≤ j1 ≤ n.

INTEGER. Used with real flavors only. The order of the first
block (A11, B11). n1 = 0, 1 or 2.

n1

INTEGER. Used with real flavors only. The order of the
second block (A22, B22). n2 = 0, 1 or 2.

n2

REAL for stgex2work
DOUBLE PRECISION for dtgex2.

1560

5 Intel® Math Kernel Library Reference Manual

Workspace array, DIMENSION (max(1,lwork)). Used with
real flavors only.

INTEGER. The dimension of the array work.lwork

lwork ≥ max(n*(n2+n1), 2*(n2+n1)2)

Output Parameters

On exit, the updated matrix A.a

On exit, the updated matrix B.B

On exit, the updated matrix Q.Q
Not referenced if wantq = .FALSE..

On exit, the updated matrix Z.z
Not referenced if wantz = .FALSE..

INTEGER.info
=0: Successful exit For stgex2/dtgex2: If info = 1, the
transformed matrix (A, B) would be too far from generalized
Schur form; the blocks are not swapped and (A, B) and (Q,
Z) are unchanged. The problem of swapping is too
ill-conditioned. If info = -16: lwork is too small.
Appropriate value for lwork is returned in work(1).
For ctgex2/ztgex2:
If info = 1, the transformed matrix pair (A, B) would be
too far from generalized Schur form; the problem is
ill-conditioned.

1561

LAPACK Auxiliary and Utility Routines 5

?tgsy2
Solves the generalized Sylvester equation
(unblocked algorithm).

Syntax

call stgsy2(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f,
ldf, scale, rdsum, rdscal, iwork, pq, info)

call dtgsy2(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f,
ldf, scale, rdsum, rdscal, iwork, pq, info)

call ctgsy2(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f,
ldf, scale, rdsum, rdscal, iwork, pq, info)

call ztgsy2(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f,
ldf, scale, rdsum, rdscal, iwork, pq, info)

Description

The routine ?tgsy2 solves the generalized Sylvester equation:

using Level 1 and 2 BLAS, where R and L are unknown m-by-n matrices, (A, D), (B, E) and (C,
F) are given matrix pairs of size m-by -m, n-by-n and m-by-n, respectively. For stgsy2/dtgsy2,
pairs (A, D) and (B, E) must be in generalized Schur canonical form, that is, A, B are upper quasi
triangular and D, E are upper triangular. For ctgsy2/ztgsy2, matrices A, B, D and E are upper
triangular (that is, (A, D) and (B, E) in generalized Schur form).

The solution (r, L) overwrites (C, F). 0 ≤ scale ≤ 1 is an output scaling factor chosen to avoid
overflow.

In matrix notation, solving equation (1) corresponds to solve

Zx = scale* b,

where Z is defined as

1562

5 Intel® Math Kernel Library Reference Manual

Here Ik is the identity matrix of size k and X' is the transpose of X. kron(X, Y) denotes the
Kronecker product between the matrices X and Y.

If trans = 'T' , solve the transposed (conjugate transposed) system

Z'y = scale* b

for y, which is equivalent to solve for r and L in

This case is used to compute an estimate of Dif[(A, D), (B, E)] = sigma_min(Z) using
reverse communication with ?lacon.

?tgsy2 also (for ijob ≥ 1) contributes to the computation in ?tgsyl of an upper bound on
the separation between two matrix pairs. Then the input (A, D), (B, E) are sub-pencils of the
matrix pair (two matrix pairs) in ?tgsyl. See ?tgsyl for details.

Input Parameters

CHARACTER*1.trans
If trans = 'N', solve the generalized Sylvester equation
(1);
If trans = 'T': solve the 'transposed' system (3).

INTEGER. Specifies what kind of functionality is to be
performed.

ijob

If ijob = 0: solve (1) only.
If ijob = 1: a contribution from this subsystem to a
Frobenius norm-based estimate of the separation between
two matrix pairs is computed (look ahead strategy is used);

1563

LAPACK Auxiliary and Utility Routines 5

If ijob = 2: a contribution from this subsystem to a
Frobenius norm-based estimate of the separation between
two matrix pairs is computed (?gecon on sub-systems is
used).
Not referenced if trans = 'T'.

INTEGER. On entry, m specifies the order of A and D, and
the row dimension of C, F, r and L.

m

INTEGER. On entry, n specifies the order of B and E, and
the column dimension of C, F, r and L.

n

REAL for stgsy2a, b
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
COMPLEX*16 for ztgsy2.
Arrays, DIMENSION (lda, m) and (ldb, n), respectively. On
entry, a contains an upper (quasi) triangular matrix A and
B contains an upper (quasi) triangular matrix b.

INTEGER. The leading dimension of the array a. lda ≥
max(1, m).

lda

INTEGER.ldb

The leading dimension of the array b. ldb ≥ max(1, n).

REAL for stgsy2c, f
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
COMPLEX*16 for ztgsy2.
Arrays, DIMENSION (ldc, n) and (ldf, n), respectively. On
entry, c contains the right-hand-side of the first matrix
equation in (1) and f contains the right-hand-side of the
second matrix equation in (1).

INTEGER. The leading dimension of the array c. ldc ≥
max(1, m).

ldc

REAL for stgsy2d, e
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
COMPLEX*16 for ztgsy2.

1564

5 Intel® Math Kernel Library Reference Manual

Arrays, DIMENSION (ldd, m) and (lde, n), respectively. On
entry, d contains an upper triangular matrix D and e contains
an upper triangular matrix E.

INTEGER. The leading dimension of the array d. ldd ≥
max(1, m).

ldd

INTEGER. The leading dimension of the array e. lde ≥
max(1, n).

lde

INTEGER. The leading dimension of the array f. ldf ≥
max(1, m).

ldf

REAL for stgsy2/ctgsy2rdsum
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, the sum of squares of computed contributions to
the Dif-estimate under computation by ?tgsyL, where the
scaling factor rdscal has been factored out.

REAL for stgsy2/ctgsy2rdscal
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, scaling factor used to prevent overflow in rdsum.

INTEGER. Used with real flavors only.iwork
Workspace array, DIMENSION (m+n+2).

Output Parameters

On exit, if ijob = 0, c has been overwritten by the solution
R.

c

On exit, if ijob = 0, f has been overwritten by the solution
L.

f

REAL for stgsy2/ctgsy2scale
DOUBLE PRECISION for dtgsy2/ztgsy2.

On exit, 0 ≤ scale ≤ 1. If 0 < scale < 1, the solutions
R and L (C and F on entry) hold the solutions to a slightly
perturbed system, but the input matrices A, B, D and E have
not been changed. If scale = 0, r and L hold the solutions
to the homogeneous system with C = F = 0. Normally
scale = 1.

1565

LAPACK Auxiliary and Utility Routines 5

On exit, the corresponding sum of squares updated with
the contributions from the current sub-system.

rdsum

If trans = 'T', rdsum is not touched.
Note that rdsum only makes sense when ?tgsy2 is called
by ?tgsyl.

On exit, rdscal is updated with respect to the current
contributions in rdsum.

rdscal

If trans = 'T' , rdscal is not touched.
Note that rdscal only makes sense when ?tgsy2 is called
by ?tgsyl.

INTEGER. Used with real flavors only.pq
On exit, the number of subsystems (of size 2-by-2, 4-by-4
and 8-by-8) solved by the routine stgsy2/dtgsy2.

INTEGER. On exit, if info is set toinfo
= 0: Successful exit
< 0: If info = -i, the i-th argument had an illegal value.
> 0: The matrix pairs (A, D) and (B, E) have common or
very close eigenvalues.

?trti2
Computes the inverse of a triangular matrix
(unblocked algorithm).

Syntax

call strti2(uplo, diag, n, a, lda, info)

call dtrti2(uplo, diag, n, a, lda, info)

call ctrti2(uplo, diag, n, a, lda, info)

call ztrti2(uplo, diag, n, a, lda, info)

Description

The routine ?trti2 computes the inverse of a real/complex upper or lower triangular matrix.

This is the Level 2 BLAS version of the algorithm.

1566

5 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*1.uplo
Specifies whether the matrix A is upper or lower triangular.
= 'U': upper triangular
= 'L': lower triangular

CHARACTER*1.diag
Specifies whether or not the matrix A is unit triangular.
= 'N': non-unit triangular
= 'N': non-unit triangular

INTEGER. The order of the matrix A. n ≥ 0.n

REAL for strti2a
DOUBLE PRECISION for dtrti2
COMPLEX for ctrti2
COMPLEX*16 for ztrti2.
Array, DIMENSION (lda, n).
On entry, the triangular matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of
the array a contains the upper triangular matrix, and the
strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
the array a contains the lower triangular matrix, and the
strictly upper triangular part of A is not referenced.
If diag = 'U', the diagonal elements of A are also not
referenced and are assumed to be 1.

INTEGER. The leading dimension of the array a. lda ≥
max(1,n).

lda

Output Parameters

On exit, the (triangular) inverse of the original matrix, in
the same storage format.

a

INTEGER.info
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

1567

LAPACK Auxiliary and Utility Routines 5

clag2z
Converts a complex single precision matrix to a
complex double precision matrix.

Syntax

call clag2z(m, n, sa, ldsa, a, lda, info)

Description

The routine converts a complex single precision matrix SA to a complex double precision matrix
A.

Note that while it is possible to overflow while converting from double to single, it is not possible
to overflow when converting from single to double.

This is a helper routine so there is no argument checking.

Input Parameters

INTEGER. The number of lines of the matrix A (m ≥ 0).m

INTEGER. The number of columns in the matrix A (n ≥ 0).n

INTEGER. The leading dimension of the array sa; ldsa ≥
max(1, m).

ldsa

DOUBLE PRECISION array, DIMENSION (lda, n).a
On entry, contains the m-by-n coefficient matrix A.

INTEGER. The leading dimension of the array a; lda ≥
max(1, m).

lda

Output Parameters

REAL array, DIMENSION (ldsa, n).sa
On exit, contains the m-by-n coefficient matrix SA.

INTEGER.info
If info = 0, the execution is successful.

1568

5 Intel® Math Kernel Library Reference Manual

dlag2s
Converts a double precision matrix to a single
precision matrix.

Syntax

call dlag2s(m, n, a, lda, sa, ldsa, info)

Description

The routine converts a double precision matrix SA to a single precision matrix A.

RMAX is the overflow for the single precision arithmetic. dlag2s checks that all the entries of
A are between -RMAX and RMAX. If not, the convertion is aborted and a flag is raised.

This is a helper routine so there is no argument checking.

Input Parameters

INTEGER. The number of lines of the matrix A (m ≥ 0).m

INTEGER. The number of columns in the matrix A (n ≥ 0).n

DOUBLE PRECISION array, DIMENSION (lda, n).a
On entry, contains the m-by-n coefficient matrix A.

INTEGER. The leading dimension of the array a; lda ≥
max(1, m).

lda

INTEGER. The leading dimension of the array sa; ldsa ≥
max(1, m).

ldsa

Output Parameters

REAL array, DIMENSION (ldsa, n).sa
On exit, if info = 0, contains the m-by-n coefficient matrix
SA.

INTEGER.info
If info = 0, the execution is successful.
If info = k, the (i, j) entry of the matrix A has overflowed
when moving from double precision to single precision. k is
given by k = (i-1)*lda+j.

1569

LAPACK Auxiliary and Utility Routines 5

slag2d
Converts a single precision matrix to a double
precision matrix.

Syntax

call slag2d(m, n, sa, ldsa, a, lda, info)

Description

The routine converts a single precision matrix SA to a double precision matrix A.

Note that while it is possible to overflow while converting from double to single, it is not possible
to overflow when converting from single to double.

This is a helper routine so there is no argument checking.

Input Parameters

INTEGER. The number of lines of the matrix A (m ≥ 0).m

INTEGER. The number of columns in the matrix A (n ≥ 0).n

INTEGER. The leading dimension of the array sa; ldsa ≥
max(1, m).

ldsa

DOUBLE PRECISION array, DIMENSION (lda, n).a
On entry, contains the m-by-n coefficient matrix A.

INTEGER. The leading dimension of the array a; lda ≥
max(1, m).

lda

Output Parameters

REAL array, DIMENSION (ldsa, n).sa
On exit, if info = 0, contains the m-by-n coefficient matrix
SA.

INTEGER.info
If info = 0, the execution is successful.

1570

5 Intel® Math Kernel Library Reference Manual

zlag2c
Converts a complex double precision matrix to a
complex single precision matrix.

Syntax

call zlag2c(m, n, a, lda, sa, ldsa, info)

Description

The routine converts a double precision complex matrix SA to a single precision complex matrix
A.

RMAX is the overflow for the single precision arithmetic. zlag2c checks that all the entries of
A are between -RMAX and RMAX. If not, the convertion is aborted and a flag is raised.

This is a helper routine so there is no argument checking.

Input Parameters

INTEGER. The number of lines of the matrix A (m ≥ 0).m

INTEGER. The number of columns in the matrix A (n ≥ 0).n

DOUBLE PRECISION array, DIMENSION (lda, n).a
On entry, contains the m-by-n coefficient matrix A.

INTEGER. The leading dimension of the array a; lda ≥
max(1, m).

lda

INTEGER. The leading dimension of the array sa; ldsa ≥
max(1, m).

ldsa

Output Parameters

REAL array, DIMENSION (ldsa, n).sa
On exit, if info = 0, contains the m-by-n coefficient matrix
SA.

INTEGER.info
If info = 0, the execution is successful.
If info = k, the (i, j) entry of the matrix A has overflowed
when moving from double precision to single precision. k is
given by k = (i-1)*lda+j.

1571

LAPACK Auxiliary and Utility Routines 5

Utility Functions and Routines
This section describes LAPACK utility functions and routines. Summary information about these
routines is given in the following table:

Table 5-2 LAPACK Utility Routines

DescriptionData
Types

Routine Name

Returns the version of the Lapack library.ilaver

Environmental enquiry function which returns values for tuning
algorithmic performance.

ilaenv

Environmental enquiry function which returns values for tuning
algorithmic performance.

iparmq

Checks if the infinity and NaN arithmetic is safe. Called by
ilaenv.

ieeeck

Tests two characters for equality regardless of case.lsame

Tests two character strings for equality regardless of case.lsamen

Returns the square root of the underflow and overflow
thresholds if the exponent-range is very large.

s, d?labad

Determines machine parameters for floating-point arithmetic.s, d?lamch

Called from ?lamc2. Determines machine parameters given
by beta, t, rnd, ieee1.

s, d?lamc1

Used by ?lamch. Determines machine parameters specified
in its arguments list.

s, d?lamc2

Called from ?lamc1-?lamc5. Intended to force a and b to be
stored prior to doing the addition of a and b.

s, d?lamc3

This is a service routine for ?lamc2.s, d?lamc4

Called from ?lamc2. Attempts to compute the largest machine
floating-point number, without overflow.

s, d?lamc5

1572

5 Intel® Math Kernel Library Reference Manual

DescriptionData
Types

Routine Name

Return user time for a process.second/dsecnd

Error handling routine called by LAPACK routines.xerbla

ilaver
Returns the version of the Lapack library.

Syntax

call ilaver(vers_major, vers_minor, vers_patch)

Description

This routine returns the version of the Lapack library.

Output Parameters

INTEGER.vers_major
Returns the major version of the LAPACK library.

INTEGER.vers_minor
Returns the minor version from the major version of the
LAPACK library.

INTEGER.vers_patch
Returns the patch version from the minor version of the
LAPACK library.

ilaenv
Environmental enquiry function which returns
values for tuning algorithmic performance.

Syntax

value = ilaenv(ispec, name, opts, n1, n2, n3, n4)

1573

LAPACK Auxiliary and Utility Routines 5

Description

Enquiry function ilaenv is called from the LAPACK routines to choose problem-dependent
parameters for the local environment. See ispec below for a description of the parameters.

This version provides a set of parameters which should give good, but not optimal, performance
on many of the currently available computers. Users are encouraged to modify this subroutine
to set the tuning parameters for their particular machine using the option and problem size
information in the arguments.

This routine will not function correctly if it is converted to all lower case. Converting it to all
upper case is allowed.

Input Parameters

INTEGER.ispec
Specifies the parameter to be returned as the value of
ilaenv:
= 1: the optimal blocksize; if this value is 1, an unblocked
algorithm will give the best performance.
= 2: the minimum block size for which the block routine
should be used; if the usable block size is less than this
value, an unblocked routine should be used.
= 3: the crossover point (in a block routine, for n less than
this value, an unblocked routine should be used)
= 4: the number of shifts, used in the nonsymmetric
eigenvalue routines (deprecated)
= 5: the minimum column dimension for blocking to be
used; rectangular blocks must have dimension at least
k-by-m, where k is given by ilaenv(2,...) and m by
ilaenv(5,...)
= 6: the crossover point for the SVD (when reducing an
m-by-n matrix to bidiagonal form, if max(m,n)/min(m,n)
exceeds this value, a QR factorization is used first to reduce
the matrix to a triangular form.)
= 7: the number of processors
= 8: the crossover point for the multishift QR and QZ
methods for nonsymmetric eigenvalue problems
(deprecated).

1574

5 Intel® Math Kernel Library Reference Manual

= 9: maximum size of the subproblems at the bottom of
the computation tree in the divide-and-conquer algorithm
(used by ?gelsd and ?gesdd)
=10: ieee NaN arithmetic can be trusted not to trap
=11: infinity arithmetic can be trusted not to trap

12 ≤ ispec ≤ 16: ?hseqr or one of its subroutines, see
iparmq for detailed explanation.

CHARACTER*(*). The name of the calling subroutine, in
either upper case or lower case.

name

CHARACTER*(*). The character options to the subroutine
name, concatenated into a single character string. For
example, uplo = 'U', trans = 'T', and diag = 'N' for
a triangular routine would be specified as opts = 'UTN'.

opts

INTEGER. Problem dimensions for the subroutine name;
these may not all be required.

n1, n2, n3, n4

Output Parameters

INTEGER.value

If value ≥ 0: the value of the parameter specified by
ispec;
If value = -k < 0: the k-th argument had an illegal value.

Application Notes

The following conventions have been used when calling ilaenv from the LAPACK routines:

1. opts is a concatenation of all of the character options to subroutine name, in the same order
that they appear in the argument list for name, even if they are not used in determining the
value of the parameter specified by ispec.

2. The problem dimensions n1, n2, n3, n4 are specified in the order that they appear in the
argument list for name. n1 is used first, n2 second, and so on, and unused problem dimensions
are passed a value of -1.

3. The parameter value returned by ilaenv is checked for validity in the calling subroutine.
For example, ilaenv is used to retrieve the optimal blocksize for strtri as follows:

nb = ilaenv(1, 'strtri', uplo // diag, n, -1, -1, -1>)

if(nb.le.1) nb = max(1, n)

1575

LAPACK Auxiliary and Utility Routines 5

Below is an example of ilaenv usage in C language:

#include <stdio.h>

#include "mkl.h"

int main(void)

{

int size = 1000;

int ispec = 1;

int dummy = -1;

int blockSize1 = ilaenv(&ispec, "dsytrd", "U", &size, &dummy, &dummy,
&dummy);

int blockSize2 = ilaenv(&ispec, "dormtr", "LUN", &size, &size, &dummy,
&dummy);

printf("DSYTRD blocksize = %d\n", blockSize1);

printf("DORMTR blocksize = %d\n", blockSize2);

return 0;

}

iparmq
Environmental enquiry function which returns
values for tuning algorithmic performance.

Syntax

value = iparmq(ispec, name, opts, n, ilo, ihi, lwork)

Description

This function sets problem and machine dependent parameters useful for ?hseqr and its

subroutines. It is called whenever ilaenv is called with 12≤ispec≤16.

Input Parameters

INTEGER.ispec
Specifies the parameter to be returned as the value of
iparmq:

1576

5 Intel® Math Kernel Library Reference Manual

= 12: (inmin) Matrices of order nmin or less are sent
directly to ?lahqr, the implicit double shift QR algorithm.
nmin must be at least 11.
= 13: (inwin) Size of the deflation window. This is best set
greater than or equal to the number of simultaneous shifts
ns. Larger matrices benefit from larger deflation windows.
= 14: (inibl) Determines when to stop nibbling and invest
in an (expensive) multi-shift QR sweep. If the aggressive
early deflation subroutine finds ld converged eigenvalues
from an order nw deflation window and
ld>(nw*nibble)/100, then the next QR sweep is skipped
and early deflation is applied immediately to the remaining
active diagonal block. Setting iparmq(ispec=14)=0 causes
TTQRE to skip a multi-shift QR sweep whenever early
deflation finds a converged eigenvalue. Setting
iparmq(ispec=14) greater than or equal to 100 prevents
TTQRE from skipping a multi-shift QR sweep.
= 15: (nshfts) The number of simultaneous shifts in a
multi-shift QR iteration.
= 16: (iacc22) iparmq is set to 0, 1 or 2 with the following
meanings.
0: During the multi-shift QR sweep, ?laqr5 does not
accumulate reflections and does not use matrix-matrix
multiply to update the far-from-diagonal matrix entries.
1: During the multi-shift QR sweep, ?laqr5 and/or ?laqr3
accumulates reflections and uses matrix-matrix multiply to
update the far-from-diagonal matrix entries.
2: During the multi-shift QR sweep, ?laqr5 accumulates
reflections and takes advantage of 2-by-2 block structure
during matrix-matrix multiplies.
(If ?trrm is slower than ?gemm, then iparmq(ispec=16)=1
may be more efficient than iparmq(ispec=16)=2 despite
the greater level of arithmetic work implied by the latter
choice.)

CHARACTER*(*). The name of the calling subroutine.name

CHARACTER*(*). This is a concatenation of the string
arguments to TTQRE.

opts

INTEGER. n is the order of the Hessenberg matrix H.n

1577

LAPACK Auxiliary and Utility Routines 5

INTEGER.ilo, ihi
It is assumed that H is already upper triangular in rows and
columns 1:ilo-1 and ihi+1:n.

INTEGER.lwork
The amount of workspace available.

Output Parameters

INTEGER.value

If value ≥ 0: the value of the parameter specified by
iparmq;
If value = -k < 0: the k-th argument had an illegal value.

Application Notes

The following conventions have been used when calling ilaenv from the LAPACK routines:

1. opts is a concatenation of all of the character options to subroutine name, in the same order
that they appear in the argument list for name, even if they are not used in determining the
value of the parameter specified by ispec.

2. The problem dimensions n1, n2, n3, n4 are specified in the order that they appear in the
argument list for name. n1 is used first, n2 second, and so on, and unused problem dimensions
are passed a value of -1.

3. The parameter value returned by ilaenv is checked for validity in the calling subroutine.
For example, ilaenv is used to retrieve the optimal blocksize for strtri as follows:

nb = ilaenv(1, 'strtri', uplo // diag, n, -1, -1, -1>)

if(nb.le.1) nb = max(1, n)

ieeeck
Checks if the infinity and NaN arithmetic is safe.
Called by ilaenv.

Syntax

ival = ieeeck(ispec, zero, one)

1578

5 Intel® Math Kernel Library Reference Manual

Description

The function ieeeck is called from ilaenv to verify that infinity and possibly NaN arithmetic
is safe, that is, will not trap.

Input Parameters

INTEGER.ispec
Specifies whether to test just for inifinity arithmetic or both
for infinity and NaN arithmetic:
If ispec = 0: Verify infinity arithmetic only.
If ispec = 1: Verify infinity and NaN arithmetic.

REAL. Must contain the value 0.0zero
This is passed to prevent the compiler from optimizing away
this code.

REAL. Must contain the value 1.0one
This is passed to prevent the compiler from optimizing away
this code.

Output Parameters

INTEGER.ival
If ival = 0: Arithmetic failed to produce the correct
answers.
If ival = 1: Arithmetic produced the correct answers.

lsame
Tests two characters for equality regardless of
case.

Syntax

val = lsame(ca, cb)

Description

This logical function returns .TRUE. if ca is the same letter as cb regardless of case.

Input Parameters

CHARACTER*1. Specify the single characters to be compared.ca, cb

1579

LAPACK Auxiliary and Utility Routines 5

Output Parameters

LOGICAL. Result of the comparison.val

lsamen
Tests two character strings for equality regardless
of case.

Syntax

val = lsamen(n, ca, cb)

Description

This logical function tests if the first n letters of the string ca are the same as the first n letters
of cb, regardless of case. The function lsamen returns .TRUE. if ca and cb are equivalent
except for case and .FALSE. otherwise. lsamen also returns .FALSE. if len(ca) or len(cb)
is less than n.

Input Parameters

INTEGER. The number of characters in ca and cb to be
compared.

n

CHARACTER*(*). Specify two character strings of length at
least n to be compared. Only the first n characters of each
string will be accessed.

ca, cb

Output Parameters

LOGICAL. Result of the comparison.val

1580

5 Intel® Math Kernel Library Reference Manual

?labad
Returns the square root of the underflow and
overflow thresholds if the exponent-range is very
large.

Syntax

call slabad(small, large)

call dlabad(small, large)

Description

This routine takes as input the values computed by slamch/dlamch for underflow and overflow,
and returns the square root of each of these values if the log of large is sufficiently large. This
subroutine is intended to identify machines with a large exponent range, such as the Crays,
and redefine the underflow and overflow limits to be the square roots of the values computed
by ?lamch. This subroutine is needed because ?lamch does not compensate for poor arithmetic
in the upper half of the exponent range, as is found on a Cray.

Input Parameters

REAL for slabadsmall
DOUBLE PRECISION for dlabad.
The underflow threshold as computed by ?lamch.

REAL for slabadlarge
DOUBLE PRECISION for dlabad.
The overflow threshold as computed by ?lamch.

Output Parameters

On exit, if log10(large) is sufficiently large, the square
root of small, otherwise unchanged.

small

On exit, if log10(large) is sufficiently large, the square
root of large, otherwise unchanged.

large

1581

LAPACK Auxiliary and Utility Routines 5

?lamch
Determines machine parameters for floating-point
arithmetic.

Syntax

val = slamch(cmach)

val = dlamch(cmach)

Description

The function ?lamch determines single precision and double precision machine parameters.

Input Parameters

CHARACTER*1. Specifies the value to be returned by ?lamch:cmach
= 'E' or 'e', val = eps
= 'S' or 's , val = sfmin
= 'B' or 'b', val = base
= 'P' or 'p', val = eps*base
= 'n' or 'n', val = t
= 'R' or 'r', val = rnd
= 'm' or 'm', val = emin
= 'U' or 'u', val = rmin
= 'L' or 'l', val = emax
= 'O' or 'o', val = rmax
where
eps = relative machine precision;
sfmin = safe minimum, such that 1/sfmin does not
overflow;
base = base of the machine;
prec = eps*base;
t = number of (base) digits in the mantissa;
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise;
emin = minimum exponent before (gradual) underflow;
rmin = underflow_threshold - base**(emin-1);
emax = largest exponent before overflow;
rmax = overflow_threshold - (base**emax)*(1-eps).

1582

5 Intel® Math Kernel Library Reference Manual

Output Parameters

REAL for slamchval
DOUBLE PRECISION for dlamch
Value returned by the function.

?lamc1
Called from ?lamc2. Determines machine
parameters given by beta, t, rnd, ieee1.

Syntax

call slamc1(beta, t, rnd, ieee1)

call dlamc1(beta, t, rnd, ieee1)

Description

The routine ?lamc1 determines machine parameters given by beta, t, rnd, ieee1.

Output Parameters

INTEGER. The base of the machine.beta

INTEGER. The number of (beta) digits in the mantissa.t

LOGICAL.rnd
Specifies whether proper rounding (rnd = .TRUE.) or
chopping (rnd = .FALSE.) occurs in addition. This may
not be a reliable guide to the way in which the machine
performs its arithmetic.

LOGICAL.ieee1
Specifies whether rounding appears to be done in the ieee
'round to nearest' style.

1583

LAPACK Auxiliary and Utility Routines 5

?lamc2
Used by ?lamch. Determines machine parameters
specified in its arguments list.

Syntax

call slamc2(beta, t, rnd, eps, emin, rmin, emax, rmax)

call dlamc2(beta, t, rnd, eps, emin, rmin, emax, rmax)

Description

The routine ?lamc2 determines machine parameters specified in its arguments list.

Output Parameters

INTEGER. The base of the machine.beta

INTEGER. The number of (beta) digits in the mantissa.t

LOGICAL.rnd
Specifies whether proper rounding (rnd = .TRUE.) or
chopping (rnd = .FALSE.) occurs in addition. This may
not be a reliable guide to the way in which the machine
performs its arithmetic.

REAL for slamc2eps
DOUBLE PRECISION for dlamc2
The smallest positive number such that
fl(1.0 - eps) < 1.0,
where fl denotes the computed value.

INTEGER. The minimum exponent before (gradual) underflow
occurs.

emin

REAL for slamc2rmin
DOUBLE PRECISION for dlamc2
The smallest normalized number for the machine, given by
baseemin-1,
where base is the floating point value of beta.

INTEGER.The maximum exponent before overflow occurs.emax

REAL for slamc2rmax
DOUBLE PRECISION for dlamc2

1584

5 Intel® Math Kernel Library Reference Manual

The largest positive number for the machine, given by
baseemax(1 - eps), where base is the floating point value of
beta.

?lamc3
Called from ?lamc1-?lamc5. Intended to force a
and b to be stored prior to doing the addition of a
and b.

Syntax

val = slamc3(a, b)

val = dlamc3(a, b)

Description

The routine is intended to force A and B to be stored prior to doing the addition of A and B, for
use in situations where optimizers might hold one of these in a register.

Input Parameters

REAL for slamc3a, b
DOUBLE PRECISION for dlamc3
The values a and b.

Output Parameters

REAL for slamc3val
DOUBLE PRECISION for dlamc3
The result of adding values a and b.

?lamc4
This is a service routine for ?lamc2.

Syntax

call slamc4(emin, start, base)

call dlamc4(emin, start, base)

1585

LAPACK Auxiliary and Utility Routines 5

Description

This is a service routine for ?lamc2.

Input Parameters

REAL for slamc4start
DOUBLE PRECISION for dlamc4
The starting point for determining emin.

INTEGER. The base of the machine.base

Output Parameters

INTEGER. The minimum exponent before (gradual)
underflow, computed by setting a = start and dividing by
base until the previous a can not be recovered.

emin

?lamc5
Called from ?lamc2. Attempts to compute the
largest machine floating-point number, without
overflow.

Syntax

call slamc5(beta, p, emin, ieee, emax, rmax)

call dlamc5(beta, p, emin, ieee, emax, rmax)

Description

The routine ?lamc5 attempts to compute rmax, the largest machine floating-point number,
without overflow. It assumes that emax + abs(emin) sum approximately to a power of 2. It
will fail on machines where this assumption does not hold, for example, the Cyber 205 (emin
= -28625, emax = 28718). It will also fail if the value supplied for emin is too large (that is,
too close to zero), probably with overflow.

Input Parameters

INTEGER. The base of floating-point arithmetic.beta

INTEGER. The number of base beta digits in the mantissa
of a floating-point value.

p

1586

5 Intel® Math Kernel Library Reference Manual

INTEGER. The minimum exponent before (gradual)
underflow.

emin

LOGICAL. A logical flag specifying whether or not the
arithmetic system is thought to comply with the IEEE
standard.

ieee

Output Parameters

INTEGER. The largest exponent before overflow.emax

REAL for slamc5rmax
DOUBLE PRECISION for dlamc5
The largest machine floating-point number.

second/dsecnd
Return user time for a process.

Syntax

val = second()

val = dsecnd()

Description

The functions second/dsecnd return the user time for a process in seconds. These versions
get the time from the system function etime. The difference is that dsecnd returns the result
with double presision.

Output Parameters

REAL for secondval
DOUBLE PRECISION for dsecnd
User time for a process.

1587

LAPACK Auxiliary and Utility Routines 5

xerbla
Error handling routine called by BLAS, LAPACK,
VML routines.

Syntax

call xerbla(srname, info)

Description

The routine xerbla is an error handler for the BLAS, LAPACK, and VML routines. It is called by
a BLAS, LAPACK, or VML routine if an input parameter has an invalid value.

A message is printed and execution stops.

Installers may consider modifying the stop statement in order to call system-specific
exception-handling facilities.

Input Parameters

CHARACTER*6 The name of the routine which called xerbla.srname

INTEGER. The position of the invalid parameter in the
parameter list of the calling routine.

info

1588

5 Intel® Math Kernel Library Reference Manual

6ScaLAPACK Routines

This chapter describes the Intel® Math Kernel Library implementation of routines from the ScaLAPACK
package for distributed-memory architectures. Routines are supported for both real and complex dense
and band matrices to perform the tasks of solving systems of linear equations, solving linear least-squares
problems, eigenvalue and singular value problems, as well as performing a number of related computational
tasks. All routines are available in both single precision and double precision.

NOTE. ScaLAPACK routines are provided with Intel® Cluster MKL product only which is a
superset of Intel MKL.

Sections in this chapter include descriptions of ScaLAPACK computational routines that perform distinct
computational tasks, as well as driver routines for solving standard types of problems in one call.

Generally, ScaLAPACK runs on a network of computers using MPI as a message-passing layer and a set
of prebuilt communication subprograms (BLACS), as well as a set of BLAS optimized for the target
architecture. Intel® Cluster MKL version of ScaLAPACK is optimized for Intel® processors. For the detailed
system and environment requirements see Intel MKL Release Notes and Intel MKL User's Guide.

For full reference on ScaLAPACK routines and related information see [SLUG].

Overview
The model of the computing environment for ScaLAPACK is represented as a one-dimensional array
of processes (for operations on band or tridiagonal matrices) or also a two-dimensional process grid
(for operations on dense matrices). To use ScaLAPACK, all global matrices or vectors should be
distributed on this array or grid prior to calling the ScaLAPACK routines.

ScaLAPACK uses the two-dimensional block-cyclic data distribution as a layout for dense matrix
computations. This distribution provides good work balance between available processors, as well
as gives the opportunity to use BLAS Level 3 routines for optimal local computations. Information
about the data distribution that is required to establish the mapping between each global array and
its corresponding process and memory location is contained in the so called array descriptor
associated with each global array. An example of an array descriptor structure is given in Table 6-1.

Table 6-1 Content of the array descriptor for dense matrices

DefinitionNameArray Element #

Descriptor type (=1 for dense matrices)dtype1

BLACS context handle for the process gridctxt2

1589

DefinitionNameArray Element #

Number of rows in the global arraym3

Number of columns in the global arrayn4

Row blocking factormb5

Column blocking factornb6

Process row over which the first row of the global array is
distributed

rsrc7

Process column over which the first column of the global array
is distributed

csrc8

Leading dimension of the local arraylld9

The number of rows and columns of a global dense matrix that a particular process in a grid
receives after data distributing is denoted by LOCr() and LOCc(), respectively. To compute
these numbers, you can use the ScaLAPACK tool routine numroc.

After the block-cyclic distribution of global data is done, you may choose to perform an operation
on a submatrix of the global matrix A, which is contained in the global subarray sub(A), defined
by the following 6 values (for dense matrices):

The number of rows of sub(A)m

The number of columns of sub(A)n

A pointer to the local array containing the entire global array Aa

The row index of sub(A) in the global arrayia

The column index of sub(A) in the global arrayja

The array descriptor for the global arraydesca

Routine Naming Conventions
For each routine introduced in this chapter, you can use the ScaLAPACK name. The naming
convention for ScaLAPACK routines is similar to that used for LAPACK routines (see Routine
Naming Conventions in Chapter 4). A general rule is that each routine name in ScaLAPACK,
which has an LAPACK equivalent, is simply the LAPACK name prefixed by initial letter p.

ScaLAPACK names have the structure p?yyzzz or p?yyzz, which is described below.

The initial letter p is a distinctive prefix of ScaLAPACK routines and is present in each such
routine.

The second symbol ? indicates the data type:

real, single precisions

real, double precisiond

1590

6 Intel® Math Kernel Library Reference Manual

complex, single precisionc

complex, double precisionz

The second and third letters yy indicate the matrix type as:

generalge

general bandgb

a pair of general matrices (for a generalized problem)gg

general tridiagonal (diagonally dominant-like)dt

general band (diagonally dominant-like)db

symmetric or Hermitian positive-definitepo

symmetric or Hermitian positive-definite bandpb

symmetric or Hermitian positive-definite tridiagonalpt

symmetricsy

symmetric tridiagonal (real)st

Hermitianhe

orthogonalor

triangular (or quasi-triangular)tr

trapezoidaltz

unitaryun

For computational routines, the last three letters zzz indicate the computation performed and
have the same meaning as for LAPACK routines.

For driver routines, the last two letters zz or three letters zzz have the following meaning:

a simple driver for solving a linear systemsv

an expert driver for solving a linear systemsvx

a driver for solving a linear least squares problemls

a simple driver for solving a symmetric eigenvalue problemev

an expert driver for solving a symmetric eigenvalue problemevx

a driver for computing a singular value decompositionsvd

an expert driver for solving a generalized symmetric definite eigenvalue
problem

gvx

Simple driver here means that the driver just solves the general problem, whereas an expert
driver is more versatile and can also optionally perform some related computations (such, for
example, as refining the solution and computing error bounds after the linear system is solved).

1591

ScaLAPACK Routines 6

Computational Routines
In the sections that follow, the descriptions of ScaLAPACK computational routines are given.
These routines perform distinct computational tasks that can be used for:

• Solving Systems of Linear Equations

• Orthogonal Factorizations and LLS Problems

• Symmetric Eigenproblems

• Nonsymmetric Eigenproblems

• Singular Value Decomposition

• Generalized Symmetric-Definite Eigenproblems

See also the respective driver routines.

Linear Equations

ScaLAPACK supports routines for the systems of equations with the following types of matrices:

• general

• general banded

• general diagonally dominant-like banded (including general tridiagonal)

• symmetric or Hermitian positive-definite

• symmetric or Hermitian positive-definite banded

• symmetric or Hermitian positive-definite tridiagonal

A diagonally dominant-like matrix is defined as a matrix for which it is known in advance
that pivoting is not required in the LU factorization of this matrix.

For the above matrix types, the library includes routines for performing the following
computations: factoring the matrix; equilibrating the matrix; solving a system of linear
equations; estimating the condition number of a matrix; refining the solution of linear equations
and computing its error bounds; inverting the matrix. Note that for some of the listed matrix
types only part of the computational routines are provided (for example, routines that refine
the solution are not provided for band or tridiagonal matrices). See Table 6-2 for full list of
available routines.

To solve a particular problem, you can either call two or more computational routines or call a
corresponding driver routine that combines several tasks in one call. Thus, to solve a system
of linear equations with a general matrix, you can first call p?getrf(LU factorization) and then

1592

6 Intel® Math Kernel Library Reference Manual

p?getrs(computing the solution). Then, you might wish to call p?gerfs to refine the solution
and get the error bounds. Alternatively, you can just use the driver routine p?gesvx which
performs all these tasks in one call.

Table 6-2 lists the ScaLAPACK computational routines for factorizing, equilibrating, and inverting
matrices, estimating their condition numbers, solving systems of equations with real matrices,
refining the solution, and estimating its error.

Table 6-2 Computational Routines for Systems of Linear Equations

Invert
matrix

Estimate
error

Condition
number

Solve
system

Equilibrate
matrix

Factorize
matrix

Matrix type, storage
scheme

p?getrip?gerfsp?geconp?getrsp?geequp?getrfgeneral (partial
pivoting)

p?gbtrsp?gbtrfgeneral band (partial
pivoting)

p?dbtrsp?dbtrfgeneral band (no
pivoting)

p?dttrsp?dttrfgeneral tridiagonal (no
pivoting)

p?potrip?porfsp?poconp?potrsp?poequp?potrfsymmetric/Hermitian
positive-definite

p?pbtrsp?pbtrfsymmetric/Hermitian
positive-definite, band

p?pttrsp?pttrfsymmetric/Hermitian
positive-definite,
tridiagonal

p?trtrip?trrfsp?trconp?trtrstriangular

In this table ? stands for s (single precision real), d (double precision real), c (single precision
complex), or z (double precision complex).

Routines for Matrix Factorization

This section describes the ScaLAPACK routines for matrix factorization. The following
factorizations are supported:

• LU factorization of general matrices

• LU factorization of diagonally dominant-like matrices

• Cholesky factorization of real symmetric or complex Hermitian positive-definite matrices

You can compute the factorizations using full and band storage of matrices.

1593

ScaLAPACK Routines 6

p?getrf
Computes the LU factorization of a general m-by-n
distributed matrix.

Syntax

call psgetrf(m, n, a, ia, ja, desca, ipiv, info)

call pdgetrf(m, n, a, ia, ja, desca, ipiv, info)

call pcgetrf(m, n, a, ia, ja, desca, ipiv, info)

call pzgetrf(m, n, a, ia, ja, desca, ipiv, info)

Description

The routine forms the LU factorization of a general m-by-n distributed matrix sub(A) =
A(ia:ia+n-1, ja:ja+n-1) as

A = P*L*U

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower
trapezoidal if m > n) and U is upper triangular (upper trapezoidal if m < n). L and U are stored
in sub(A).

The routine uses partial pivoting, with row interchanges.

Input Parameters

(global) INTEGER. The number of rows in the distributed

submatrix sub(A); m≥0.

m

(global) INTEGER. The number of columns in the distributed

submatrix sub(A); n≥0.

n

(local)a
REAL for psgetrf
DOUBLE PRECISION for pdgetrf
COMPLEX for pcgetrf
DOUBLE COMPLEX for pzgetrf.
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).
Contains the local pieces of the distributed matrix sub(A)
to be factored.

1594

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix A(ia:ia+n-1, ja:ja+n-1), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

Output Parameters

Overwritten by local pieces of the factors L and U from the
factorization A = P*L*U. The unit diagonal elements of L are
not stored.

a

(local) INTEGER array.ipiv
The dimension of ipiv is (LOCr(m_a)+ mb_a).
This array contains the pivoting information: local row i
was interchanged with global row ipiv(i). This array is
tied to the distributed matrix A.

(global) INTEGER.info
If info=0, the execution is successful.
info < 0: if the i-th argument is an array and the j-th
entry had an illegal value, then info = -(i*100+j); if the
i-th argument is a scalar and had an illegal value, then
info = -i.
If info = i, uii is 0. The factorization has been completed,
but the factor U is exactly singular. Division by zero will
occur if you use the factor U for solving a system of linear
equations.

1595

ScaLAPACK Routines 6

p?gbtrf
Computes the LU factorization of a general n-by-n
banded distributed matrix.

Syntax

call psgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)

call pdgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)

call pcgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)

call pzgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)

Description

The routine computes the LU factorization of a general n-by-n real/complex banded distributed
matrix A(1:n, ja:ja+n-1) using partial pivoting with row interchanges.

The resulting factorization is not the same factorization as returned from the LAPACK routine
?gbtrf. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form

A(1:n, ja:ja+n-1) = P*L*U*Q

where P and Q are permutation matrices, and L and U are banded lower and upper triangular
matrices, respectively. The matrix Q represents reordering of columns for the sake of parallelism,
while P represents reordering of rows for numerical stability using classic partial pivoting.

Input Parameters

(global) INTEGER. The number of rows and columns in the

distributed submatrix A(1:n, ja:ja+n-1); n ≥ 0.

n

(global) INTEGER. The number of sub-diagonals within the
band of A

bwl

(0 ≤ bwl ≤ n-1).

(global) INTEGER. The number of super-diagonals within
the band of A

bwu

(0 ≤ bwu ≤ n-1).

(local)a
REAL for psgbtrf

1596

6 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for pdgbtrf
COMPLEX for pcgbtrf
DOUBLE COMPLEX for pzgbtrf.
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1) where

lld_a ≥ 2*bwl + 2*bwu +1.
Contains the local pieces of the n-by-n distributed banded
matrix A(1:n, ja:ja+n-1) to be factored.

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

If desca(dtype_) = 501, then dlen_ ≥ 7;

else if desca(dtype_) = 1, then dlen_ ≥ 9.

(local) INTEGER. The dimension of the array af.laf

Must be laf ≥
(NB+bwu)*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu).
If laf is not large enough, an error code will be returned
and the minimum acceptable size will be returned in af(1).

(local) Same type as a. Workspace array of dimension lwork
.

work

(local or global) INTEGER. The size of the work array (lwork

≥ 1). If lwork is too small, the minimal acceptable size will
be returned in work(1) and an error code is returned.

lwork

Output Parameters

On exit, this array contains details of the factorization. Note
that additional permutations are performed on the matrix,
so that the factors returned are different from those returned
by LAPACK.

a

(local) INTEGER array.ipiv

The dimension of ipiv must be ≥ desca(NB).

1597

ScaLAPACK Routines 6

Contains pivot indices for local factorizations. Note that you
should not alter the contents of this array between
factorization and solve.

(local)af
REAL for psgbtrf
DOUBLE PRECISION for pdgbtrf
COMPLEX for pcgbtrf
DOUBLE COMPLEX for pzgbtrf.
Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization
routine p?gbtrf and this is stored in af.
Note that if a linear system is to be solved using p?gbtrs
after the factorization routine, af must not be altered after
the factorization.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
If info=0, the execution is successful.
info < 0:
If the ith argument is an array and the jth entry had an
illegal value, then info = -(i*100+j); if the ith argument
is a scalar and had an illegal value, then info = -i.
info > 0:

If info = k ≤ NPROCS, the submatrix stored on processor
info and factored locally was not nonsingular, and the
factorization was not completed. If info = k > NPROCS,
the submatrix stored on processor info-NPROCS
representing interactions with other processors was not
nonsingular, and the factorization was not completed.

1598

6 Intel® Math Kernel Library Reference Manual

p?dbtrf
Computes the LU factorization of a n-by-n
diagonally dominant-like banded distributed matrix.

Syntax

call psdbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)

call pddbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)

call pcdbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)

call pzdbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)

Description

The routine computes the LU factorization of a n-by-n real/complex diagonally dominant-like
banded distributed matrix A(1:n, ja:ja+n-1) without pivoting.

Note that the resulting factorization is not the same factorization as returned from LAPACK.
Additional permutations are performed on the matrix for the sake of parallelism.

Input Parameters

(global) INTEGER. The number of rows and columns in the

distributed submatrix A(1:n, ja:ja+n-1); n ≥ 0.

n

(global) INTEGER. The number of sub-diagonals within the
band of A

bwl

(0 ≤ bwl ≤ n-1).

(global) INTEGER. The number of super-diagonals within
the band of A

bwu

(0 ≤ bwu ≤ n-1).

(local)a
REAL for psdbtrf
DOUBLE PRECISION for pddbtrf
COMPLEX for pcdbtrf
DOUBLE COMPLEX for pzdbtrf.
Pointer into the local memory to an array of local dimension
(lld_a,LOCc(ja+n-1)).

1599

ScaLAPACK Routines 6

Contains the local pieces of the n-by-n distributed banded
matrix A(1:n, ja:ja+n-1) to be factored.

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

If desca(dtype_) = 501, then dlen_ ≥ 7;

else if desca(dtype_) = 1, then dlen_ ≥ 9.

(local) INTEGER. The dimension of the array af.laf

Must be laf ≥ NB*(bwl+bwu)+*(max(bwl,bwu))2 .
If laf is not large enough, an error code will be returned
and the minimum acceptable size will be returned in af(1).

(local) Same type as a. Workspace array of dimension lwork
.

work

(local or global) INTEGER. The size of the work array, must

be lwork ≥ (max(bwl,bwu))2. If lwork is too small, the
minimal acceptable size will be returned in work(1) and an
error code is returned.

lwork

Output Parameters

On exit, this array contains details of the factorization. Note
that additional permutations are performed on the matrix,
so that the factors returned are different from those returned
by LAPACK.

a

(local)af
REAL for psdbtrf
DOUBLE PRECISION for pddbtrf
COMPLEX for pcdbtrf
DOUBLE COMPLEX for pzdbtrf.
Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization
routine p?dbtrf and this is stored in af.

1600

6 Intel® Math Kernel Library Reference Manual

Note that if a linear system is to be solved using p?dbtrs
after the factorization routine, af must not be altered after
the factorization.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
If info=0, the execution is successful.
info < 0:
If the ith argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i. info > 0:

If info = k ≤ NPROCS, the submatrix stored on processor
info and factored locally was not diagonally dominant-like,
and the factorization was not completed. If info = k >
NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not
nonsingular, and the factorization was not completed.

p?potrf
Computes the Cholesky factorization of a
symmetric (Hermitian) positive-definite distributed
matrix.

Syntax

call pspotrf(uplo, n, a, ia, ja, desca, info)

call pdpotrf(uplo, n, a, ia, ja, desca, info)

call pcpotrf(uplo, n, a, ia, ja, desca, info)

call pzpotrf(uplo, n, a, ia, ja, desca, info)

Description

This routine computes the Cholesky factorization of a real symmetric or complex Hermitian
positive-definite distributed n-by-n matrix A(ia:ia+n-1, ja:ja+n-1), denoted below as
sub(A).

1601

ScaLAPACK Routines 6

The factorization has the form

sub(A) = UH*U if uplo='U', or

sub(A) = L*LH if uplo='L'

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

(global) CHARACTER*1.uplo
Indicates whether the upper or lower triangular part of
sub(A) is stored. Must be 'U' or 'L'.
If uplo = 'U', the array a stores the upper triangular part
of the matrix sub(A) that is factored as UH*U.
If uplo = 'L', the array a stores the lower triangular part
of the matrix sub(A) that is factored as L*LH.

(global) INTEGER. The order of the distributed submatrix

sub(A) (n≥0).

n

(local)a
REAL for pspotrf
DOUBLE PRECISON for pdpotrf
COMPLEX for pcpotrf
DOUBLE COMPLEX for pzpotrf.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the n-by-n
symmetric/Hermitian distributed matrix sub(A) to be
factored.
Depending on uplo, the array a contains either the upper
or the lower triangular part of the matrix sub(A) (see uplo).

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

1602

6 Intel® Math Kernel Library Reference Manual

Output Parameters

The upper or lower triangular part of a is overwritten by the
Cholesky factor U or L, as specified by uplo.

a

(global) INTEGER.info
If info=0, the execution is successful;
info < 0: if the i-th argument is an array, and the j-th
entry had an illegal value, then info = -(i*100+j); if the
i-th argument is a scalar and had an illegal value, then
info = -i.
If info = k >0, the leading minor of order k,
A(ia:ia+k-1, ja:ja+k-1), is not positive-definite, and
the factorization could not be completed.

p?pbtrf
Computes the Cholesky factorization of a
symmetric (Hermitian) positive-definite banded
distributed matrix.

Syntax

call pspbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)

call pdpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)

call pcpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)

call pzpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)

Description

This routine computes the Cholesky factorization of an n-by-n real symmetric or complex
Hermitian positive-definite banded distributed matrix A(1:n, ja:ja+n-1).

The resulting factorization is not the same factorization as returned from LAPACK. Additional
permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:

A(1:n, ja:ja+n-1) = P*UH*PT, if uplo='U', or

A(1:n, ja:ja+n-1) = P*L*LH*PT, if uplo='L',

1603

ScaLAPACK Routines 6

where P is a permutation matrix and U and L are banded upper and lower triangular matrices,
respectively.

Input Parameters

(global) CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', upper triangle of A(1:n, ja:ja+n-1) is
stored;
If uplo = 'L', lower triangle of A(1:n, ja:ja+n-1) is
stored.

(global) INTEGER. The order of the distributed submatrix
A(1:n, ja:ja+n-1).

n

(n≥0).

(global) INTEGER.bw
The number of superdiagonals of the distributed matrix if
uplo = 'U', or the number of subdiagonals if uplo = 'U'

(bw≥0).

(local)a
REAL for pspbtrf
DOUBLE PRECISON for pdpbtrf
COMPLEX for pcpbtrf
DOUBLE COMPLEX for pzpbtrf.
Pointer into the local memory to an array of dimension
(lld_a,LOCc(ja+n-1)).
On entry, this array contains the local pieces of the upper
or lower triangle of the symmetric/Hermitian band
distributed matrix A(1:n, ja:ja+n-1) to be factored.

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

If desca(dtype_) = 501, then dlen_ ≥ 7;

else if desca(dtype_) = 1, then dlen_ ≥ 9.

(local) INTEGER. The dimension of the array af.laf

Must be laf ≥ (NB+2*bw)*bw.

1604

6 Intel® Math Kernel Library Reference Manual

If laf is not large enough, an error code will be returned
and the minimum acceptable size will be returned in af(1).

(local) Same type as a. Workspace array of dimension lwork
.

work

(local or global) INTEGER. The size of the work array, must

be lwork ≥ bw2.

lwork

Output Parameters

On exit, if info=0, contains the permuted triangular factor
U or L from the Cholesky factorization of the band matrix
A(1:n, ja:ja+n-1), as specified by uplo.

a

(local)af
REAL for pspbtrf
DOUBLE PRECISON for pdpbtrf
COMPLEX for pcpbtrf
DOUBLE COMPLEX for pzpbtrf.
Array, dimension (laf). Auxiliary Fillin space. Fillin is created
during the factorization routine p?pbtrf and this is stored
in af. Note that if a linear system is to be solved using
p?pbtrs after the factorization routine, af must not be
altered.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
If info=0, the execution is successful.
info < 0:
If the ith argument is an array and the jth entry had an
illegal value, then info = -(i*100+j); if the ith argument
is a scalar and had an illegal value, then info = -i.
info>0:

If info = k ≤ NPROCS, the submatrix stored on processor
info and factored locally was not positive definite, and the
factorization was not completed.

1605

ScaLAPACK Routines 6

If info = k > NPROCS, the submatrix stored on processor
info-NPROCS representing interactions with other
processors was not nonsingular, and the factorization was
not completed.

p?pttrf
Computes the Cholesky factorization of a
symmetric (Hermitian) positive-definite tridiagonal
distributed matrix.

Syntax

call pspttrf(n, d, e, ja, desca, af, laf, work, lwork, info)

call pdpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)

call pcpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)

call pzpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)

Description

This routine computes the Cholesky factorization of an n-by-n real symmetric or complex
hermitian positive-definite tridiagonal distributed matrix A(1:n, ja:ja+n-1).

The resulting factorization is not the same factorization as returned from LAPACK. Additional
permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:

A(1:n, ja:ja+n-1) = P*L*D*LH*PT, or

A(1:n, ja:ja+n-1) = P*UH*D*U*PT,

where P is a permutation matrix, and U and L are tridiagonal upper and lower triangular matrices,
respectively.

Input Parameters

(global) INTEGER. The order of the distributed submatrix
A(1:n, ja:ja+n-1)

n

(n ≥ 0).

(local)d, e

1606

6 Intel® Math Kernel Library Reference Manual

REAL for pspttrf
DOUBLE PRECISON for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.
Pointers into the local memory to arrays of dimension
(desca(nb_)) each.
On entry, the array d contains the local part of the global
vector storing the main diagonal of the distributed matrix
A.
On entry, the array e contains the local part of the global
vector storing the upper diagonal of the distributed matrix
A.

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

If desca(dtype_) = 501, then dlen_ ≥ 7;

else if desca(dtype_) = 1, then dlen_ ≥ 9.

(local) INTEGER. The dimension of the array af.laf

Must be laf ≥ NB+2.
If laf is not large enough, an error code will be returned
and the minimum acceptable size will be returned in af(1).

(local) Same type as d and e. Workspace array of dimension
lwork .

work

(local or global) INTEGER. The size of the work array, must
be at least

lwork

lwork ≥ 8*NPCOL.

Output Parameters

On exit, overwritten by the details of the factorization.d, e

(local)af
REAL for pspttrf
DOUBLE PRECISION for pdpttrf
COMPLEX for pcpttrf

1607

ScaLAPACK Routines 6

DOUBLE COMPLEX for pzpttrf.
Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization
routine p?pttrf and this is stored in af.
Note that if a linear system is to be solved using p?pttrs
after the factorization routine, af must not be altered.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
If info=0, the execution is successful.
info < 0:
If the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.
info > 0:

If info = k ≤ NPROCS, the submatrix stored on processor
info and factored locally was not positive definite, and the
factorization was not completed.
If info = k > NPROCS, the submatrix stored on processor
info-NPROCS representing interactions with other
processors was not nonsingular, and the factorization was
not completed.

p?dttrf
Computes the LU factorization of a diagonally
dominant-like tridiagonal distributed matrix.

Syntax

call psdttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)

call pddttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)

call pcdttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)

call pzdttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)

1608

6 Intel® Math Kernel Library Reference Manual

Description

This routine computes the LU factorization of an n-by-n real/complex diagonally dominant-like
tridiagonal distributed matrix A(1:n, ja:ja+n-1) without pivoting for stability.

The resulting factorization is not the same factorization as returned from LAPACK. Additional
permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:

A(1:n, ja:ja+n-1) = P*L*U*PT,

where P is a permutation matrix, and L and U are banded lower and upper triangular matrices,
respectively.

Input Parameters

(global) INTEGER. The number of rows and columns to be
operated on, that is, the order of the distributed submatrix

A(1:n, ja:ja+n-1) (n ≥ 0).

n

(local)dl, d, du
REAL for pspttrf
DOUBLE PRECISON for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.
Pointers to the local arrays of dimension (desca(nb_))
each.
On entry, the array dl contains the local part of the global
vector storing the subdiagonal elements of the matrix.
Globally, dl(1) is not referenced, and dl must be aligned
with d.
On entry, the array d contains the local part of the global
vector storing the diagonal elements of the matrix.
On entry, the array du contains the local part of the global
vector storing the super-diagonal elements of the matrix.
du(n) is not referenced, and du must be aligned with d.

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

1609

ScaLAPACK Routines 6

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A. If

desca(dtype_) = 501, then dlen_ ≥ 7;

desca

else if desca(dtype_) = 1, then dlen_ ≥ 9.

(local) INTEGER. The dimension of the array af.laf

Must be laf ≥ 2*(NB+2) .
If laf is not large enough, an error code will be returned
and the minimum acceptable size will be returned in af(1).

(local) Same type as d. Workspace array of dimension lwork
.

work

(local or global) INTEGER. The size of the work array, must

be at least lwork ≥ 8*NPCOL.

lwork

Output Parameters

On exit, overwritten by the information containing the
factors of the matrix.

dl, d, du

(local)af
REAL for psdttrf
DOUBLE PRECISION for pddttrf
COMPLEX for pcdttrf
DOUBLE COMPLEX for pzdttrf.
Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization
routine p?dttrf and this is stored in af.
Note that if a linear system is to be solved using p?dttrs
after the factorization routine, af must not be altered.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
If info=0, the execution is successful.
info < 0:
If the ith argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1610

6 Intel® Math Kernel Library Reference Manual

info > 0:

If info = k ≤ NPROCS, the submatrix stored on processor
info and factored locally was not diagonally dominant-like,
and the factorization was not completed. If info = k >
NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not
nonsingular, and the factorization was not completed.

Routines for Solving Systems of Linear Equations

This section describes the ScaLAPACK routines for solving systems of linear equations. Before
calling most of these routines, you need to factorize the matrix of your system of equations
(see Routines for Matrix Factorization in this chapter). However, the factorization is not necessary
if your system of equations has a triangular matrix.

p?getrs
Solves a system of distributed linear equations with
a general square matrix, using the LU factorization
computed by p?getrf.

Syntax

call psgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

call pdgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

call pcgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

call pzgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

Description

This routine solves a system of distributed linear equations with a general n-by-n distributed
matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1) using the LU factorization computed by p?getrf.

The system has one of the following forms specified by trans:

sub(A)*X = sub(B) (no transpose),

sub(A)T*X = sub(B) (transpose),

sub(A)H*X = sub(B) (conjugate transpose),

1611

ScaLAPACK Routines 6

where sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1).

Before calling this routine, you must call p?getrf to compute the LU factorization of sub(A).

Input Parameters

(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', then sub(A)*X = sub(B) is solved for X.
If trans = 'T', then sub(A)T*X = sub(B) is solved for
X.
If trans = 'C', then sub(A)H *X = sub(B) is solved for
X.

(global) INTEGER. The number of linear equations; the order

of the submatrix sub(A) (n≥0).

n

(global) INTEGER. The number of right hand sides; the
number of columns of the distributed submatrix sub(B)

(nrhs≥0).

nrhs

(global)a, b
REAL for psgetrs
DOUBLE PRECISION for pdgetrs
COMPLEX for pcgetrs
DOUBLE COMPLEX for pzgetrs.
Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)) and b(lld_b,
LOCc(jb+nrhs-1)), respectively.
On entry, the array a contains the local pieces of the factors
L and U from the factorization sub(A) = P*L*U; the unit
diagonal elements of L are not stored. On entry, the array
b contains the right hand sides sub(B).

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local) INTEGER array.ipiv

1612

6 Intel® Math Kernel Library Reference Manual

The dimension of ipiv is (LOCr(m_a) + mb_a). This array
contains the pivoting information: local row i of the matrix
was interchanged with the global row ipiv(i).
This array is tied to the distributed matrix A.

(global) INTEGER. The row and column indices in the global
array B indicating the first row and the first column of the
submatrix sub(B), respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

Output Parameters

On exit, overwritten by the solution distributed matrix X.b

INTEGER. If info=0, the execution is successful. info <
0:

info

If the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?gbtrs
Solves a system of distributed linear equations with
a general band matrix, using the LU factorization
computed by p?gbtrf.

Syntax

call psgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, af,
laf, work, lwork, info)

call pdgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, af,
laf, work, lwork, info)

call pcgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, af,
laf, work, lwork, info)

call pzgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, af,
laf, work, lwork, info)

1613

ScaLAPACK Routines 6

Description

This routine solves a system of distributed linear equations with a general band distributed
matrix sub(A) = A(1:n, ja:ja+n-1) using the LU factorization computed by p?gbtrf.

The system has one of the following forms specified by trans:

sub(A)*X = sub(B) (no transpose),

sub(A)T*X = sub(B) (transpose),

sub(A)H*X = sub(B) (conjugate transpose),

where sub(B) = B(ib:ib+n-1, 1:nrhs) .

Before calling this routine, you must call p?gbtrf to compute the LU factorization of sub(A).

Input Parameters

(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', then sub(A)*X = sub(B) is solved for X.
If trans = 'T', then sub(A)T*X = sub(B) is solved for
X.
If trans = 'C', then sub(A)H *X = sub(B) is solved for
X.

(global) INTEGER. The number of linear equations; the order

of the distributed submatrix sub(A) (n ≥ 0).

n

(global) INTEGER. The number of sub-diagonals within the

band of A (0 ≤ bwl ≤ n-1).

bwl

(global) INTEGER. The number of super-diagonals within

the band of A (0 ≤ bwu ≤ n-1).

bwu

(global) INTEGER. The number of right hand sides; the
number of columns of the distributed submatrix sub(B)

(nrhs ≥ 0).

nrhs

(global)a, b
REAL for psgbtrs
DOUBLE PRECISION for pdgbtrs
COMPLEX for pcgbtrs
DOUBLE COMPLEX for pzgbtrs.

1614

6 Intel® Math Kernel Library Reference Manual

Pointers into the local memory to arrays of local dimension
a(lld_a,LOCc(ja+n-1)) and b(lld_b,LOCc(nrhs)),
respectively.
The array a contains details of the LU factorization of the
distributed band matrix A.
On entry, the array b contains the local pieces of the right
hand sides B(ib:ib+n-1, 1:nrhs).

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

If desca(dtype_) = 501, then dlen_ ≥ 7;

else if desca(dtype_) = 1, then dlen_ ≥ 9.

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ib

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

descb

If desca(dtype_) = 501, then dlen_ ≥ 7;

else if desca(dtype_) = 1, then dlen_ ≥ 9.

(local) INTEGER. The dimension of the array af.laf

Must be laf ≥ NB*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu)
.
If laf is not large enough, an error code will be returned
and the minimum acceptable size will be returned in af(1).

(local) Same type as a. Workspace array of dimension lwork
.

work

(local or global) INTEGER. The size of the work array, must

be at least lwork ≥ nrhs*(NB+2*bwl+4*bwu).

lwork

Output Parameters

(local) INTEGER array.ipiv

The dimension of ipiv must be ≥ desca(NB).

1615

ScaLAPACK Routines 6

Contains pivot indices for local factorizations. Note that you
should not alter the contents of this array between
factorization and solve.

On exit, overwritten by the local pieces of the solution
distributed matrix X.

b

(local)af
REAL for psgbtrs
DOUBLE PRECISION for pdgbtrs
COMPLEX for pcgbtrs
DOUBLE COMPLEX for pzgbtrs.
Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization
routine p?gbtrf and this is stored in af.
Note that if a linear system is to be solved using p?gbtrs
after the factorization routine, af must not be altered after
the factorization.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

INTEGER. If info=0, the execution is successful.info
info < 0:
If the i-th argument is an array and the jth entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?potrs
Solves a system of linear equations with a
Cholesky-factored symmetric/Hermitian distributed
positive-definite matrix.

Syntax

call pspotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pdpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pcpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pzpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

1616

6 Intel® Math Kernel Library Reference Manual

Description

The routine p?potrs solves for X a system of distributed linear equations in the form:

sub(A)*X = sub(B) ,

where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is an n-by-n real symmetric or complex Hermitian
positive definite distributed matrix, and sub(B) denotes the distributed matrix B(ib:ib+n-1,
jb:jb+nrhs-1).

This routine uses Cholesky factorization

sub(A) = UH*U, or sub(A) = L*LH

computed by p?potrf.

Input Parameters

(global) CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', upper triangle of sub(A) is stored;
If uplo = 'L', lower triangle of sub(A) is stored.

(global) INTEGER. The order of the distributed submatrix

sub(A) (n≥0).

n

(global) INTEGER. The number of right hand sides; the
number of columns of the distributed submatrix sub(B)

(nrhs≥0).

nrhs

(local)a, b
REAL for pspotrs
DOUBLE PRECISION for pdpotrs
COMPLEX for pcpotrs
DOUBLE COMPLEX for pzpotrs.
Pointers into the local memory to arrays of local dimension
a(lld_a,LOCc(ja+n-1)) and
b(lld_b,LOCc(jb+nrhs-1)), respectively.
The array a contains the factors L or U from the Cholesky
factorization sub(A) = L*LH or sub(A) = UH*U, as computed
by p?potrf.
On entry, the array b contains the local pieces of the right
hand sides sub(B).

1617

ScaLAPACK Routines 6

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. The row and column indices in the global
array B indicating the first row and the first column of the
submatrix sub(B), respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

Output Parameters

Overwritten by the local pieces of the solution matrix X.b

INTEGER. If info=0, the execution is successful.info
info < 0: if the i-th argument is an array and the j-th
entry had an illegal value, then info = -(i*100+j); if the
i-th argument is a scalar and had an illegal value, then
info = -i.

p?pbtrs
Solves a system of linear equations with a
Cholesky-factored symmetric/Hermitian
positive-definite band matrix.

Syntax

call pspbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

call pdpbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

call pcpbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

call pzpbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

1618

6 Intel® Math Kernel Library Reference Manual

Description

The routine p?pbtrs solves for X a system of distributed linear equations in the form:

sub(A)*X = sub(B) ,

where sub(A) = A(1:n, ja:ja+n-1) is an n-by-n real symmetric or complex Hermitian
positive definite distributed band matrix, and sub(B) denotes the distributed matrix
B(ib:ib+n-1, 1:nrhs).

This routine uses Cholesky factorization

sub(A) = P*UH*U*PT, or sub(A) = P*L*LH*PT

computed by p?pbtrf.

Input Parameters

(global) CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', upper triangle of sub(A) is stored;
If uplo = 'L', lower triangle of sub(A) is stored.

(global) INTEGER. The order of the distributed submatrix

sub(A) (n≥0).

n

(global) INTEGER. The number of superdiagonals of the
distributed matrix if uplo = 'U', or the number of

subdiagonals if uplo = 'L' (bw≥0).

bw

(global) INTEGER. The number of right hand sides; the
number of columns of the distributed submatrix sub(B)

(nrhs≥0).

nrhs

(local)a, b
REAL for pspbtrs
DOUBLE PRECISION for pdpbtrs
COMPLEX for pcpbtrs
DOUBLE COMPLEX for pzpbtrs.
Pointers into the local memory to arrays of local dimension
a(lld_a,LOCc(ja+n-1)) and b(lld_b,LOCc(nrhs-1)),
respectively.

1619

ScaLAPACK Routines 6

The array a contains the permuted triangular factor U or L
from the Cholesky factorization sub(A) = P*UH*U*PT, or
sub(A) = P*L*LH*PT of the band matrix A, as returned by
p?pbtrf.
On entry, the array b contains the local pieces of the
n-by-nrhs right hand side distributed matrix sub(B).

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

If desca(dtype_) = 501, then dlen_ ≥ 7;

else if desca(dtype_) = 1, then dlen_ ≥ 9.

(global) INTEGER. The row index in the global array B
indicating the first row of the submatrix sub(B).

ib

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

If descb(dtype_) = 502, then dlen_ ≥ 7;

else if descb(dtype_) = 1, then dlen_ ≥ 9.

(local) Arrays, same type as a.af, work
The array af is of dimension (laf). It contains auxiliary
Fillin space. Fillin is created during the factorization routine
p?dbtrf and this is stored in af.
The array work is a workspace array of dimension lwork.

(local) INTEGER. The dimension of the array af.laf

Must be laf ≥ nrhs*bw.
If laf is not large enough, an error code will be returned
and the minimum acceptable size will be returned in af(1).

(local or global) INTEGER. The size of the array work, must

be at least lwork ≥ bw2.

lwork

Output Parameters

On exit, if info=0, this array contains the local pieces of
the n-by-nrhs solution distributed matrix X.

b

1620

6 Intel® Math Kernel Library Reference Manual

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

INTEGER. If info=0, the execution is successful.info
info < 0:
If the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?pttrs
Solves a system of linear equations with a
symmetric (Hermitian) positive-definite tridiagonal
distributed matrix using the factorization computed
by p?pttrf.

Syntax

call pspttrs(n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork,
info)

call pdpttrs(n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork,
info)

call pcpttrs(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

call pzpttrs(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

Description

The routine p?pttrs solves for X a system of distributed linear equations in the form:

sub(A)*X = sub(B) ,

where sub(A) = A(1:n, ja:ja+n-1) is an n-by-n real symmetric or complex Hermitian
positive definite tridiagonal distributed matrix, and sub(B) denotes the distributed matrix
B(ib:ib+n-1, 1:nrhs).

This routine uses the factorization

sub(A) = P*L*D*LH*PT, or sub(A) = P*UH*D*U*PT

1621

ScaLAPACK Routines 6

computed by p?pttrf.

Input Parameters

(global, used in complex flavors only)uplo
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', upper triangle of sub(A) is stored;
If uplo = 'L', lower triangle of sub(A) is stored.

(global) INTEGER. The order of the distributed submatrix

sub(A) (n≥0).

n

(global) INTEGER. The number of right hand sides; the
number of columns of the distributed submatrix sub(B)

(nrhs≥0).

nrhs

(local)d, e
REAL for pspttrs
DOUBLE PRECISON for pdpttrs
COMPLEX for pcpttrs
DOUBLE COMPLEX for pzpttrs.
Pointers into the local memory to arrays of dimension
(desca(nb_)) each.
These arrays contain details of the factorization as returned
by p?pttrf

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

If desca(dtype_) = 501 or 502, then dlen_ ≥ 7;

else if desca(dtype_) = 1, then dlen_ ≥ 9.

(local) Same type as d, e.b
Pointer into the local memory to an array of local dimension
b(lld_b, LOCc(nrhs)).
On entry, the array b contains the local pieces of the
n-by-nrhs right hand side distributed matrix sub(B).

1622

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The row index in the global array B that
points to the first row of the matrix to be operated on (which
may be either all of B or a submatrix of B).

ib

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

If descb(dtype_) = 502, then dlen_ ≥ 7;

else if descb(dtype_) = 1, then dlen_ ≥ 9.

(local) REAL for pspttrsaf, work
DOUBLE PRECISION for pdpttrs
COMPLEX for pcpttrs
DOUBLE COMPLEX for pzpttrs.
Arrays of dimension (laf) and (lwork), respectively The
array af contains auxiliary Fillin space. Fillin is created
during the factorization routine p?pttrf and this is stored
in af.
The array work is a workspace array.

(local) INTEGER. The dimension of the array af.laf

Must be laf ≥ NB+2.
If laf is not large enough, an error code is returned and
the minimum acceptable size will be returned in af(1).

(local or global) INTEGER. The size of the array work, must
be at least

lwork

lwork ≥ (10+2*min(100,nrhs))*NPCOL+4*nrhs.

Output Parameters

On exit, this array contains the local pieces of the solution
distributed matrix X.

b

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

INTEGER. If info=0, the execution is successful. info <
0:

info

if the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the ith argument
is a scalar and had an illegal value, then info = -i.

1623

ScaLAPACK Routines 6

p?dttrs
Solves a system of linear equations with a
diagonally dominant-like tridiagonal distributed
matrix using the factorization computed by
p?dttrf.

Syntax

call psdttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pddttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pcdttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pzdttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

Description

The routine p?dttrs solves for X one of the systems of equations:

sub(A)*X = sub(B),

(sub(A))T*X = sub(B), or

(sub(A))H*X = sub(B),

where sub(A) = A(1:n, ja:ja+n-1) is a diagonally dominant-like tridiagonal distributed
matrix, and sub(B) denotes the distributed matrix B(ib:ib+n-1, 1:nrhs).

This routine uses the LU factorization computed by p?dttrf.

Input Parameters

(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', then sub(A)*X = sub(B) is solved for X.
If trans = 'T', then (sub(A))T*X = sub(B) is solved
for X.
If trans = 'C', then (sub(A))H*X = sub(B) is solved
for X.

1624

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The order of the distributed submatrix

sub(A) (n ≥ 0).

n

(global) INTEGER. The number of right hand sides; the
number of columns of the distributed submatrix sub(B)

(nrhs ≥ 0).

nrhs

(local)dl, d, du
REAL for psdttrs
DOUBLE PRECISON for pddttrs
COMPLEX for pcdttrs
DOUBLE COMPLEX for pzdttrs.
Pointers to the local arrays of dimension (desca(nb_))
each.
On entry, these arrays contain details of the factorization.
Globally, dl(1) and du(n) are not referenced; dl and du
must be aligned with d.

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A. If

desca(dtype_) = 501 or 502, then dlen_ ≥ 7;

desca

else if desca(dtype_) = 1, then dlen_ ≥ 9.

(local) Same type as d.b
Pointer into the local memory to an array of local dimension
b(lld_b,LOCc(nrhs)).
On entry, the array b contains the local pieces of the
n-by-nrhs right hand side distributed matrix sub(B).

(global) INTEGER. The row index in the global array B that
points to the first row of the matrix to be operated on (which
may be either all of B or a submatrix of B).

ib

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

If descb(dtype_) = 502, then dlen_ ≥ 7;

else if descb(dtype_) = 1, then dlen_ ≥ 9.

1625

ScaLAPACK Routines 6

(local) REAL for psdttrsaf, work
DOUBLE PRECISION for pddttrs
COMPLEX for pcdttrs
DOUBLE COMPLEX for pzdttrs.
Arrays of dimension (laf) and (lwork), respectively.
The array af contains auxiliary Fillin space. Fillin is created
during the factorization routine p?dttrf and this is stored
in af. If a linear system is to be solved using p?dttrsafter
the factorization routine, af must not be altered.
The array work is a workspace array.

(local) INTEGER. The dimension of the array af.laf

Must be laf ≥ NB*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu)
.

If laf is not large enough, an error code will be returned
and the minimum acceptable size will be returned in af(1).

(local or global) INTEGER. The size of the array work, must

be at least lwork ≥ 10*NPCOL+4*nrhs.

lwork

Output Parameters

On exit, this array contains the local pieces of the solution
distributed matrix X.

b

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

INTEGER. If info=0, the execution is successful. info <
0:

info

if the ith argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1626

6 Intel® Math Kernel Library Reference Manual

p?dbtrs
Solves a system of linear equations with a
diagonally dominant-like banded distributed matrix
using the factorization computed by p?dbtrf.

Syntax

call psdbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pddbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pcdbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pzdbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

Description

The routine p?dbtrs solves for X one of the systems of equations:

sub(A)*X = sub(B),

(sub(A))T*X = sub(B), or

(sub(A))H*X = sub(B),

where sub(A) = A(1:n, ja:ja+n-1) is a diagonally dominant-like banded distributed matrix,
and sub(B) denotes the distributed matrix B(ib:ib+n-1, 1:nrhs).

This routine uses the LU factorization computed by p?dbtrf.

Input Parameters

(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', then sub(A)*X = sub(B) is solved for X.
If trans = 'T', then (sub(A))T*X = sub(B) is solved
for X.
If trans = 'C', then (sub(A))H*X = sub(B) is solved
for X.

1627

ScaLAPACK Routines 6

(global) INTEGER. The order of the distributed submatrix

sub(A) (n ≥ 0).

n

(global) INTEGER. The number of subdiagonals within the
band of A

bwl

(0 ≤ bwl ≤ n-1).

(global) INTEGER. The number of superdiagonals within the
band of A

bwu

(0 ≤ bwu ≤ n-1).

(global) INTEGER. The number of right hand sides; the
number of columns of the distributed submatrix sub(B)

(nrhs ≥ 0).

nrhs

(local)a, b
REAL for psdbtrs
DOUBLE PRECISON for pddbtrs
COMPLEX for pcdbtrs
DOUBLE COMPLEX for pzdbtrs.
Pointers into the local memory to arrays of local dimension
a(lld_a,LOCc(ja+n-1)) and b(lld_b,LOCc(nrhs)),
respectively.
On entry, the array a contains details of the LU factorization
of the band matrix A, as computed by p?dbtrf.
On entry, the array b contains the local pieces of the right
hand side distributed matrix sub(B).

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

If desca(dtype_) = 501, then dlen_ ≥ 7;

else if desca(dtype_) = 1, then dlen_ ≥ 9.

(global) INTEGER. The row index in the global array B that
points to the first row of the matrix to be operated on (which
may be either all of B or a submatrix of B).

ib

1628

6 Intel® Math Kernel Library Reference Manual

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

If descb(dtype_) = 502, then dlen_ ≥ 7;

else if descb(dtype_) = 1, then dlen_ ≥ 9.

(local)af, work
REAL for psdbtrs
DOUBLE PRECISION for pddbtrs
COMPLEX for pcdbtrs
DOUBLE COMPLEX for pzdbtrs.
Arrays of dimension (laf) and (lwork), respectively The
array af contains auxiliary Fillin space. Fillin is created
during the factorization routine p?dbtrf and this is stored
in af.
The array work is a workspace array.

(local) INTEGER. The dimension of the array af.laf

Must be laf ≥ NB*(bwl+bwu)+6*(max(bwl,bwu))2 .

If laf is not large enough, an error code will be returned
and the minimum acceptable size will be returned in af(1).

(local or global) INTEGER. The size of the array work, must
be at least

lwork

lwork ≥ (max(bwl,bwu))2.

Output Parameters

On exit, this array contains the local pieces of the solution
distributed matrix X.

b

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

INTEGER. If info=0, the execution is successful. info <
0:

info

if the ith argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1629

ScaLAPACK Routines 6

p?trtrs
Solves a system of linear equations with a
triangular distributed matrix.

Syntax

call pstrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
info)

call pdtrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
info)

call pctrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
info)

call pztrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
info)

Description

This routine solves for X one of the following systems of linear equations:

sub(A)*X = sub(B),

(sub(A))T*X = sub(B), or

(sub(A))H*X = sub(B),

where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is a triangular distributed matrix of order n,
and sub(B) denotes the distributed matrix B(ib:ib+n-1, jb:jb+nrhs-1).

A check is made to verify that sub(A) is nonsingular.

Input Parameters

(global) CHARACTER*1. Must be 'U' or 'L'.uplo
Indicates whether sub(A) is upper or lower triangular:
If uplo = 'U', then sub(A) is upper triangular.
If uplo = 'L', then sub(A) is lower triangular.

(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Indicates the form of the equations:
If trans = 'N', then sub(A)*X = sub(B) is solved for X.

1630

6 Intel® Math Kernel Library Reference Manual

If trans = 'T', then sub(A)T*X = sub(B) is solved for
X.
If trans = 'C', then sub(A)H*X = sub(B) is solved for
X.

(global) CHARACTER*1. Must be 'N' or 'U'.diag
If diag = 'N', then sub(A) is not a unit triangular matrix.
If diag = 'U', then sub(A) is unit triangular.

(global) INTEGER. The order of the distributed submatrix

sub(A) (n≥0).

n

(global) INTEGER. The number of right-hand sides; i.e., the
number of columns of the distributed matrix sub(B)

(nrhs≥0).

nrhs

(local)a, b
REAL for pstrtrs
DOUBLE PRECISION for pdtrtrs
COMPLEX for pctrtrs
DOUBLE COMPLEX for pztrtrs.
Pointers into the local memory to arrays of local dimension
a(lld_a,LOCc(ja+n-1)) and
b(lld_b,LOCc(jb+nrhs-1)), respectively.
The array a contains the local pieces of the distributed
triangular matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular matrix, and the strictly
lower triangular part of sub(A) is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular matrix, and the strictly
upper triangular part of sub(A) is not referenced.
If diag = 'U', the diagonal elements of sub(A) are also
not referenced and are assumed to be 1.
On entry, the array b contains the local pieces of the right
hand side distributed matrix sub(B).

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

1631

ScaLAPACK Routines 6

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. The row and column indices in the global
array B indicating the first row and the first column of the
submatrix sub(B), respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

Output Parameters

On exit, if info=0, sub(B) is overwritten by the solution
matrix X.

b

INTEGER. If info=0, the execution is successful.info
info < 0:
if the ith argument is an array and the jth entry had an
illegal value, then info = -(i*100+j); if the ith argument
is a scalar and had an illegal value, then info = -i;
info > 0:
if info = i, the i-th diagonal element of sub(A) is zero,
indicating that the submatrix is singular and the solutions
X have not been computed.

Routines for Estimating the Condition Number

This section describes the ScaLAPACK routines for estimating the condition number of a matrix.
The condition number is used for analyzing the errors in the solution of a system of linear
equations. Since the condition number may be arbitrarily large when the matrix is nearly
singular, the routines actually compute the reciprocal condition number.

1632

6 Intel® Math Kernel Library Reference Manual

p?gecon
Estimates the reciprocal of the condition number
of a general distributed matrix in either the 1-norm
or the infinity-norm.

Syntax

call psgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, iwork,
liwork, info)

call pdgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, iwork,
liwork, info)

call pcgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork,
lrwork, info)

call pzgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork,
lrwork, info)

Description

This routine estimates the reciprocal of the condition number of a general distributed
real/complex matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1) in either the 1-norm or
infinity-norm, using the LU factorization computed by p?getrf.

An estimate is obtained for ||(sub(A))-1||, and the reciprocal of the condition number is
computed as

Input Parameters

(global) CHARACTER*1. Must be '1' or 'O' or 'I'.norm
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required.
If norm = '1' or 'O', then the 1-norm is used;
If norm = 'I', then the infinity-norm is used.

1633

ScaLAPACK Routines 6

(global) INTEGER. The order of the distributed submatrix

sub(A) (n ≥ 0).

n

(local)a
REAL for psgecon
DOUBLE PRECISION for pdgecon
COMPLEX for pcgecon
DOUBLE COMPLEX for pzgecon.
Pointer into the local memory to an array of dimension
a(lld_a,LOCc(ja+n-1)).
The array a contains the local pieces of the factors L and U
from the factorization sub(A) = P*L*U; the unit diagonal
elements of L are not stored.

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) REAL for single precision flavors, DOUBLE
PRECISION for double precision flavors.

anorm

If norm = '1' or 'O', the 1-norm of the original distributed
matrix sub(A);
If norm = 'I', the infinity-norm of the original distributed
matrix sub(A).

(local)work
REAL for psgecon
DOUBLE PRECISION for pdgecon
COMPLEX for pcgecon
DOUBLE COMPLEX for pzgecon.
The array work of dimension (lwork) is a workspace array.

(local or global) INTEGER. The dimension of the array work.lwork
For real flavors:
lwork must be at least

1634

6 Intel® Math Kernel Library Reference Manual

lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))+
2*LOCc(n+mod(ja-1,nb_a))+ max(2, max(nb_a*max(1,
ceil(NPROW-1, NPCOL)),
LOCc(n+mod(ja-1,nb_a))+nb_a*max(1, ceil(NPCOL-1,
NPROW))).
For complex flavors:
lwork must be at least

lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))+ max(2,
max(nb_a*ceil(NPROW-1, NPCOL),
LOCc(n+mod(ja-1,nb_a))+ nb_a*ceil(NPCOL-1,
NPROW))).
LOCr and LOCc values can be computed using the ScaLAPACK
tool function numroc; NPROW and NPCOL can be determined
by calling the subroutine blacs_gridinfo.

(local) INTEGER. Workspace array, DIMENSION (liwork).
Used in real flavors only.

iwork

(local or global) INTEGER. The dimension of the array iwork;
used in real flavors only. Must be at least

liwork

liwork ≥ LOCr(n+mod(ia-1,mb_a)).

(local) REAL for pcgeconrwork
DOUBLE PRECISION for pzgecon
Workspace array, DIMENSION (lrwork). Used in complex
flavors only.

(local or global) INTEGER. The dimension of the array rwork;
used in complex flavors only. Must be at least

lrwork

lrwork ≥ 2*LOCc(n+mod(ja-1,nb_a)).

Output Parameters

(global) REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.
The reciprocal of the condition number of the distributed
matrix sub(A). See Description.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

1635

ScaLAPACK Routines 6

On exit, iwork(1) contains the minimum value of liwork
required for optimum performance (for real flavors).

iwork(1)

On exit, rwork(1) contains the minimum value of lrwork
required for optimum performance (for complex flavors).

rwork(1)

(global) INTEGER. If info=0, the execution is successful.info
info < 0:
If the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?pocon
Estimates the reciprocal of the condition number
(in the 1 - norm) of a symmetric / Hermitian
positive-definite distributed matrix.

Syntax

call pspocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork, iwork,
liwork, info)

call pdpocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork, iwork,
liwork, info)

call pcpocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork,
lrwork, info)

call pzpocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork,
lrwork, info)

Description

This routine estimates the reciprocal of the condition number (in the 1 - norm) of a real
symmetric or complex Hermitian positive definite distributed matrix sub(A) = A(ia:ia+n-1,
ja:ja+n-1), using the Cholesky factorization sub(A) = UH*U or sub(A) = L*LH computed
by p?potrf.

An estimate is obtained for ||(sub(A))-1||, and the reciprocal of the condition number is
computed as

1636

6 Intel® Math Kernel Library Reference Manual

Input Parameters

(global) CHARACTER*1. Must be 'U' or 'L'.uplo
Specifies whether the factor stored in sub(A) is upper or
lower triangular.
If uplo = 'U', sub(A) stores the upper triangular factor U
of the Cholesky factorization sub(A) = UH*U.
If uplo = 'L', sub(A) stores the lower triangular factor L
of the Cholesky factorization sub(A) = L*LH.

(global) INTEGER. The order of the distributed submatrix

sub(A) (n≥0).

n

(local)a
REAL for pspocon
DOUBLE PRECISION for pdpocon
COMPLEX for pcpocon
DOUBLE COMPLEX for pzpocon.
Pointer into the local memory to an array of dimension
a(lld_a,LOCc(ja+n-1)).
The array a contains the local pieces of the factors L or U
from the Cholesky factorization sub(A) = UH*U, or sub(A)
= L*LH, as computed by p?potrf.

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) REAL for single precision flavors,anorm
DOUBLE PRECISION for double precision flavors.
The 1-norm of the symmetric/Hermitian distributed matrix
sub(A).

(local)work

1637

ScaLAPACK Routines 6

REAL for pspocon
DOUBLE PRECISION for pdpocon
COMPLEX for pcpocon
DOUBLE COMPLEX for pzpocon.
The array work of dimension (lwork) is a workspace array.

(local or global) INTEGER. The dimension of the array work.lwork
For real flavors:
lwork must be at least

lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))+
2*LOCc(n+mod(ja-1,nb_a))+ max(2,
max(nb_a*ceil(NPROW-1, NPCOL),
LOCc(n+mod(ja-1,nb_a))+
nb_a*ceil(NPCOL-1, NPROW))).
For complex flavors:
lwork must be at least

lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))+ max(2,
max(nb_a*max(1,ceil(NPROW-1, NPCOL)),
LOCc(n+mod(ja-1,nb_a))+ nb_a*max(1,ceil(NPCOL-1,
NPROW)))).

(local) INTEGER. Workspace array, DIMENSION (liwork).
Used in real flavors only.

iwork

(local or global) INTEGER. The dimension of the array iwork;

used in real flavors only. Must be at least liwork ≥
LOCr(n+mod(ia-1,mb_a)).

liwork

(local) REAL for pcpoconrwork
DOUBLE PRECISION for pzpocon
Workspace array, DIMENSION (lrwork). Used in complex
flavors only.

(local or global) INTEGER. The dimension of the array rwork;

used in complex flavors only. Must be at least lrwork ≥
2*LOCc(n+mod(ja-1,nb_a)).

lrwork

Output Parameters

(global) REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.

1638

6 Intel® Math Kernel Library Reference Manual

The reciprocal of the condition number of the distributed
matrix sub(A).

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

On exit, iwork(1) contains the minimum value of liwork
required for optimum performance (for real flavors).

iwork(1)

On exit, rwork(1) contains the minimum value of lrwork
required for optimum performance (for complex flavors).

rwork(1)

(global) INTEGER. If info=0, the execution is successful.info
info < 0:
If the ith argument is an array and the jth entry had an
illegal value, then info = -(i*100+j); if the ith argument
is a scalar and had an illegal value, then info = -i.

p?trcon
Estimates the reciprocal of the condition number
of a triangular distributed matrix in either 1-norm
or infinity-norm.

Syntax

call pstrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork,
iwork, liwork, info)

call pdtrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork,
iwork, liwork, info)

call pctrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork,
rwork, lrwork, info)

call pztrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork,
rwork, lrwork, info)

Description

This routine estimates the reciprocal of the condition number of a triangular distributed matrix
sub(A) = A(ia:ia+n-1, ja:ja+n-1), in either the 1-norm or the infinity-norm.

The norm of sub(A) is computed and an estimate is obtained for ||(sub(A))-1||, then the
reciprocal of the condition number is computed as

1639

ScaLAPACK Routines 6

Input Parameters

(global) CHARACTER*1. Must be '1' or 'O' or 'I'.norm
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required.
If norm = '1' or 'O', then the 1-norm is used;
If norm = 'I', then the infinity-norm is used.

(global) CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', sub(A) is upper triangular. If uplo = 'L',
sub(A) is lower triangular.

(global) CHARACTER*1. Must be 'N' or 'U'.diag
If diag = 'N', sub(A) is non-unit triangular. If diag =
'U', sub(A) is unit triangular.

(global) INTEGER. The order of the distributed submatrix

sub(A), (n≥0).

n

(local)a
REAL for pstrcon
DOUBLE PRECISION for pdtrcon
COMPLEX for pctrcon
DOUBLE COMPLEX for pztrcon.
Pointer into the local memory to an array of dimension
a(lld_a,LOCc(ja+n-1)).
The array a contains the local pieces of the triangular
distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
this distributed matrix contains the upper triangular matrix,
and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
this distributed matrix contains the lower triangular matrix,
and its strictly upper triangular part is not referenced.

1640

6 Intel® Math Kernel Library Reference Manual

If diag = 'U', the diagonal elements of sub(A) are also
not referenced and are assumed to be 1.

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)work
REAL for pstrcon
DOUBLE PRECISION for pdtrcon
COMPLEX for pctrcon
DOUBLE COMPLEX for pztrcon.
The array work of dimension (lwork) is a workspace array.

(local or global) INTEGER. The dimension of the array work.lwork
For real flavors:
lwork must be at least

lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))+
LOCc(n+mod(ja-1,nb_a))+ max(2,
max(nb_a*max(1,ceil(NPROW-1, NPCOL)),
LOCc(n+mod(ja-1,nb_a))+ nb_a*max(1,ceil(NPCOL-1,
NPROW))).
For complex flavors:
lwork must be at least

lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))+ max(2,
max(nb_a*ceil(NPROW-1, NPCOL),
LOCc(n+mod(ja-1,nb_a))+ nb_a*ceil(NPCOL-1,
NPROW))).

(local) INTEGER. Workspace array, DIMENSION (liwork).
Used in real flavors only.

iwork

(local or global) INTEGER. The dimension of the array iwork;
used in real flavors only. Must be at least

liwork

liwork ≥ LOCr(n+mod(ia-1,mb_a)).

(local) REAL for pcpoconrwork
DOUBLE PRECISION for pzpocon
Workspace array, DIMENSION (lrwork). Used in complex
flavors only.

1641

ScaLAPACK Routines 6

(local or global) INTEGER. The dimension of the array rwork;
used in complex flavors only. Must be at least

lrwork

lrwork ≥ LOCc(n+mod(ja-1,nb_a)).

Output Parameters

(global) REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.
The reciprocal of the condition number of the distributed
matrix sub(A).

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

On exit, iwork(1) contains the minimum value of liwork
required for optimum performance (for real flavors).

iwork(1)

On exit, rwork(1) contains the minimum value of lrwork
required for optimum performance (for complex flavors).

rwork(1)

(global) INTEGER. If info=0, the execution is successful.info
info < 0:
If the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Refining the Solution and Estimating Its Error

This section describes the ScaLAPACK routines for refining the computed solution of a system
of linear equations and estimating the solution error. You can call these routines after factorizing
the matrix of the system of equations and computing the solution (see Routines for Matrix
Factorization and Solving Systems of Linear Equations).

1642

6 Intel® Math Kernel Library Reference Manual

p?gerfs
Improves the computed solution to a system of
linear equations and provides error bounds and
backward error estimates for the solution.

Syntax

call psgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv,
b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork,
info)

call pdgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv,
b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork,
info)

call pcgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv,
b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork,
info)

call pzgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv,
b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork,
info)

Description

This routine improves the computed solution to one of the systems of linear equations

sub(A)*sub(X) = sub(B),

sub(A)T*sub(X) = sub(B), or

sub(A)T*sub(X) = sub(B) and provides error bounds and backward error estimates for the
solution.

Here sub(A) = A(ia:ia+n-1, ja:ja+n-1), sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1),
and sub(X) = X(ix:ix+n-1, jx:jx+nrhs-1).

Input Parameters

(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Specifies the form of the system of equations:
If trans = 'N', the system has the form sub(A)*sub(X)
= sub(B) (No transpose);

1643

ScaLAPACK Routines 6

If trans = 'T', the system has the form sub(A)T*sub(X)
= sub(B) (Transpose);
If trans = 'C', the system has the form sub(A)H*sub(X)
= sub(B) (Conjugate transpose).

(global) INTEGER. The order of the distributed submatrix

sub(A) (n ≥ 0).

n

(global) INTEGER. The number of right-hand sides, i.e., the
number of columns of the matrices sub(B) and sub(X) (nrhs

≥ 0).

nrhs

(local)a, af, b, x
REAL for psgerfs
DOUBLE PRECISION for pdgerfs
COMPLEX for pcgerfs
DOUBLE COMPLEX for pzgerfs.
Pointers into the local memory to arrays of local dimension
a(lld_a,
LOCc(ja+n-1)), af(lld_af,LOCc(jaf+n-1)),
b(lld_b,LOCc(jb+nrhs-1)), and
x(lld_x,LOCc(jx+nrhs-1)), respectively.
The array a contains the local pieces of the distributed
matrix sub(A).
The array af contains the local pieces of the distributed
factors of the matrix sub(A) = P*L*U as computed by
p?getrf.
The array b contains the local pieces of the distributed
matrix of right hand sides sub(B).
On entry, the array x contains the local pieces of the
distributed solution matrix sub(X).

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. The row and column indices in the global
array AF indicating the first row and the first column of the
submatrix sub(AF), respectively.

iaf, jaf

1644

6 Intel® Math Kernel Library Reference Manual

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix AF.

descaf

(global) INTEGER. The row and column indices in the global
array B indicating the first row and the first column of the
submatrix sub(B), respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

(global) INTEGER. The row and column indices in the global
array X indicating the first row and the first column of the
submatrix sub(X), respectively.

ix, jx

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix X.

descx

(local) INTEGER.ipiv
Array, dimension LOCr(m_af + mb_af.
This array contains pivoting information as computed by
p?getrf. If ipiv(i)=j, then the local row i was swapped
with the global row j.
This array is tied to the distributed matrix A.

(local)work
REAL for psgerfs
DOUBLE PRECISION for pdgerfs
COMPLEX for pcgerfs
DOUBLE COMPLEX for pzgerfs.
The array work of dimension (lwork) is a workspace array.

(local or global) INTEGER. The dimension of the array work.lwork
For real flavors:
lwork must be at least

lwork ≥ 3*LOCr(n+mod(ia-1,mb_a))
For complex flavors:
lwork must be at least

lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))

(local) INTEGER. Workspace array, DIMENSION (liwork).
Used in real flavors only.

iwork

(local or global) INTEGER. The dimension of the array iwork;
used in real flavors only. Must be at least

liwork

1645

ScaLAPACK Routines 6

liwork ≥ LOCr(n+mod(ib-1,mb_b)).

(local) REAL for pcgerfsrwork
DOUBLE PRECISION for pzgerfs
Workspace array, DIMENSION (lrwork). Used in complex
flavors only.

(local or global) INTEGER. The dimension of the array rwork;

used in complex flavors only. Must be at least lrwork ≥
LOCr(n+mod(ib-1,mb_b))).

lrwork

Output Parameters

On exit, contains the improved solution vectors.x

REAL for single precision flavors.ferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCc(jb+nrhs-1) each.
The array ferr contains the estimated forward error bound
for each solution vector of sub(X).
If XTRUE is the true solution corresponding to sub(X), ferr
is an estimated upper bound for the magnitude of the largest
element in (sub(X) - XTRUE) divided by the magnitude
of the largest element in sub(X). The estimate is as reliable
as the estimate for rcond, and is almost always a slight
overestimate of the true error.
This array is tied to the distributed matrix X.
The array berr contains the component-wise relative
backward error of each solution vector (that is, the smallest
relative change in any entry of sub(A) or sub(B) that makes
sub(X) an exact solution). This array is tied to the distributed
matrix X.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

On exit, iwork(1) contains the minimum value of liwork
required for optimum performance (for real flavors).

iwork(1)

On exit, rwork(1) contains the minimum value of lrwork
required for optimum performance (for complex flavors).

rwork(1)

(global) INTEGER. If info=0, the execution is successful.info

1646

6 Intel® Math Kernel Library Reference Manual

info < 0:
If the ith argument is an array and the jth entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?porfs
Improves the computed solution to a system of
linear equations with symmetric/Hermitian positive
definite distributed matrix and provides error
bounds and backward error estimates for the
solution.

Syntax

call psporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b, ib,
jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)

call pdporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b, ib,
jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)

call pcporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b, ib,
jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)

call pzporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b, ib,
jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)

Description

The routine p?porfs improves the computed solution to the system of linear equations

sub(A)*sub(X) = sub(B),

where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is a real symmetric or complex Hermitian positive
definite distributed matrix and

sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1),

sub(X) = X(ix:ix+n-1, jx:jx+nrhs-1)

are right-hand side and solution submatrices, respectively. This routine also provides error
bounds and backward error estimates for the solution.

1647

ScaLAPACK Routines 6

Input Parameters

(global) CHARACTER*1. Must be 'U' or 'L'.uplo
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix sub(A) is stored.
If uplo = 'U', sub(A) is upper triangular. If uplo = 'L',
sub(A) is lower triangular.

(global) INTEGER. The order of the distributed matrix sub(A)

(n≥0).

n

(global) INTEGER. The number of right-hand sides, i.e., the
number of columns of the matrices sub(B) and sub(X)

(nrhs≥0).

nrhs

(local)a, af, b, x
REAL for psporfs
DOUBLE PRECISION for pdporfs
COMPLEX for pcporfs
DOUBLE COMPLEX for pzporfs.
Pointers into the local memory to arrays of local dimension
a(lld_a,LOCc(ja+n-1)), af(lld_af,LOCc(ja+n-1)),
b(lld_b,LOCc(jb+nrhs-1)), and
x(lld_x,LOCc(jx+nrhs-1)), respectively.
The array a contains the local pieces of the n-by-n
symmetric/Hermitian distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular part of the matrix, and
its strictly lower triangular part is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular part of the distributed
matrix, and its strictly upper triangular part is not
referenced.
The array af contains the factors L or U from the Cholesky
factorization sub(A) = L*LH or sub(A) = UH*U, as
computed by p?potrf.
On entry, the array b contains the local pieces of the
distributed matrix of right hand sides sub(B).
On entry, the array x contains the local pieces of the solution
vectors sub(X).

1648

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. The row and column indices in the global
array AF indicating the first row and the first column of the
submatrix sub(AF), respectively.

iaf, jaf

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix AF.

descaf

(global) INTEGER. The row and column indices in the global
array B indicating the first row and the first column of the
submatrix sub(B), respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

(global) INTEGER. The row and column indices in the global
array X indicating the first row and the first column of the
submatrix sub(X), respectively.

ix, jx

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix X.

descx

(local)work
REAL for psporfs
DOUBLE PRECISION for pdporfs
COMPLEX for pcporfs
DOUBLE COMPLEX for pzporfs.
The array work of dimension (lwork) is a workspace array.

(local) INTEGER. The dimension of the array work.lwork
For real flavors:
lwork must be at least

lwork ≥ 3*LOCr(n+mod(ia-1,mb_a))
For complex flavors:
lwork must be at least

lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))

(local) INTEGER. Workspace array, DIMENSION (liwork).
Used in real flavors only.

iwork

1649

ScaLAPACK Routines 6

(local or global) INTEGER. The dimension of the array iwork;
used in real flavors only. Must be at least

liwork

liwork ≥ LOCr(n+mod(ib-1,mb_b)).

(local) REAL for pcporfsrwork
DOUBLE PRECISION for pzporfs
Workspace array, DIMENSION (lrwork). Used in complex
flavors only.

(local or global) INTEGER. The dimension of the array rwork;

used in complex flavors only. Must be at least lrwork ≥
LOCr(n+mod(ib-1,mb_b))).

lrwork

Output Parameters

On exit, contains the improved solution vectors.x

REAL for single precision flavors.ferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCc(jb+nrhs-1) each.
The array ferr contains the estimated forward error bound
for each solution vector of sub(X).
If XTRUE is the true solution corresponding to sub(X), ferr
is an estimated upper bound for the magnitude of the largest
element in (sub(X) - XTRUE)divided by the magnitude of
the largest element in sub(X). The estimate is as reliable
as the estimate for rcond, and is almost always a slight
overestimate of the true error.
This array is tied to the distributed matrix X.
The array berr contains the component-wise relative
backward error of each solution vector (that is, the smallest
relative change in any entry of sub(A) or sub(B) that makes
sub(X) an exact solution). This array is tied to the distributed
matrix X.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

On exit, iwork(1) contains the minimum value of liwork
required for optimum performance (for real flavors).

iwork(1)

On exit, rwork(1) contains the minimum value of lrwork
required for optimum performance (for complex flavors).

rwork(1)

1650

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER. If info=0, the execution is successful.info
info < 0:
If the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?trrfs
Provides error bounds and backward error
estimates for the solution to a system of linear
equations with a distributed triangular coefficient
matrix.

Syntax

call pstrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)

call pdtrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)

call pctrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)

call pztrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)

Description

The routine p?trrfs provides error bounds and backward error estimates for the solution to
one of the systems of linear equations

sub(A)*sub(X) = sub(B),

sub(A)T*sub(X) = sub(B), or

sub(A)H*sub(X) = sub(B) ,

where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is a triangular matrix,

sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1), and

sub(X) = X(ix:ix+n-1, jx:jx+nrhs-1).

1651

ScaLAPACK Routines 6

The solution matrix X must be computed by p?trtrs or some other means before entering
this routine. The routine p?trrfs does not do iterative refinement because doing so cannot
improve the backward error.

Input Parameters

(global) CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', sub(A) is upper triangular. If uplo = 'L',
sub(A) is lower triangular.

(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.trans
Specifies the form of the system of equations:
If trans = 'N', the system has the form sub(A)*sub(X)
= sub(B) (No transpose);
If trans = 'T', the system has the form sub((A)T*sub(X)
= sub(B) (Transpose);
If trans = 'C', the system has the form sub(A)H*sub(X)
= sub(B) (Conjugate transpose).

CHARACTER*1. Must be 'N' or 'U'.diag
If diag = 'N', then sub(A) is non-unit triangular.
If diag = 'U', then sub(A) is unit triangular.

(global) INTEGER. The order of the distributed matrix sub(A)

(n≥0).

n

(global) INTEGER. The number of right-hand sides, that is,
the number of columns of the matrices sub(B) and sub(X)

(nrhs≥0).

nrhs

(local)a, b, x
REAL for pstrrfs
DOUBLE PRECISION for pdtrrfs
COMPLEX for pctrrfs
DOUBLE COMPLEX for pztrrfs.
Pointers into the local memory to arrays of local dimension
a(lld_a,LOCc(ja+n-1)), b(lld_b,LOCc(jb+nrhs-1)),
and x(lld_x,LOCc(jx+nrhs-1)), respectively.
The array a contains the local pieces of the original triangular
distributed matrix sub(A).

1652

6 Intel® Math Kernel Library Reference Manual

If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular part of the matrix, and
its strictly lower triangular part is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular part of the distributed
matrix, and its strictly upper triangular part is not
referenced.
If diag = 'U', the diagonal elements of sub(A) are also
not referenced and are assumed to be 1.
On entry, the array b contains the local pieces of the
distributed matrix of right hand sides sub(B).
On entry, the array x contains the local pieces of the solution
vectors sub(X).

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. The row and column indices in the global
array B indicating the first row and the first column of the
submatrix sub(B), respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

(global) INTEGER. The row and column indices in the global
array X indicating the first row and the first column of the
submatrix sub(X), respectively.

ix, jx

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix X.

descx

(local)work
REAL for pstrrfs
DOUBLE PRECISION for pdtrrfs
COMPLEX for pctrrfs
DOUBLE COMPLEX for pztrrfs.
The array work of dimension (lwork) is a workspace array.

(local) INTEGER. The dimension of the array work.lwork
For real flavors:

1653

ScaLAPACK Routines 6

lwork must be at least lwork ≥
3*LOCr(n+mod(ia-1,mb_a))
For complex flavors:
lwork must be at least

lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))

(local) INTEGER. Workspace array, DIMENSION (liwork).
Used in real flavors only.

iwork

(local or global) INTEGER. The dimension of the array iwork;
used in real flavors only. Must be at least

liwork

liwork ≥ LOCr(n+mod(ib-1,mb_b)).

(local) REAL for pctrrfsrwork
DOUBLE PRECISION for pztrrfs
Workspace array, DIMENSION (lrwork). Used in complex
flavors only.

(local or global) INTEGER. The dimension of the array rwork;

used in complex flavors only. Must be at least lrwork ≥
LOCr(n+mod(ib-1,mb_b))).

lrwork

Output Parameters

REAL for single precision flavors.ferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCc(jb+nrhs-1) each.
The array ferr contains the estimated forward error bound
for each solution vector of sub(X).
If XTRUE is the true solution corresponding to sub(X), ferr
is an estimated upper bound for the magnitude of the largest
element in (sub(X) - XTRUE) divided by the magnitude of
the largest element in sub(X). The estimate is as reliable as
the estimate for rcond, and is almost always a slight
overestimate of the true error.
This array is tied to the distributed matrix X.

1654

6 Intel® Math Kernel Library Reference Manual

The array berr contains the component-wise relative
backward error of each solution vector (that is, the smallest
relative change in any entry of sub(A) or sub(B) that makes
sub(X) an exact solution). This array is tied to the distributed
matrix X.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

On exit, iwork(1) contains the minimum value of liwork
required for optimum performance (for real flavors).

iwork(1)

On exit, rwork(1) contains the minimum value of lrwork
required for optimum performance (for complex flavors).

rwork(1)

(global) INTEGER. If info=0, the execution is successful.info
info < 0:
If the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Routines for Matrix Inversion

This sections describes ScaLAPACK routines that compute the inverse of a matrix based on the
previously obtained factorization. Note that it is not recommended to solve a system of equations
Ax = b by first computing A-1 and then forming the matrix-vector product x = A-1b. Call a
solver routine instead (see Solving Systems of Linear Equations); this is more efficient and
more accurate.

p?getri
Computes the inverse of a LU-factored distributed
matrix.

Syntax

call psgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)

call pdgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)

call pcgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)

call pzgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)

1655

ScaLAPACK Routines 6

Description

This routine computes the inverse of a general distributed matrix sub(A) = A(ia:ia+n-1,
ja:ja+n-1) using the LU factorization computed by p?getrf. This method inverts U and then
computes the inverse of sub(A) by solving the system

inv(sub(A))*L = inv(U)

for inv(sub(A).

Input Parameters

(global) INTEGER. The number of rows and columns to be
operated on, that is, the order of the distributed submatrix

sub(A) (n≥0).

n

(local)a
REAL for psgetri
DOUBLE PRECISION for pdgetri
COMPLEX for pcgetri
DOUBLE COMPLEX for pzgetri.
Pointer into the local memory to an array of local dimension
a(lld_a,LOCc(ja+n-1)).
On entry, the array a contains the local pieces of the L and
U obtained by the factorization sub(A) = P*L*U computed
by p?getrf.

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)work
REAL for psgetri
DOUBLE PRECISION for pdgetri
COMPLEX for pcgetri
DOUBLE COMPLEX for pzgetri.
The array work of dimension (lwork) is a workspace array.

(local) INTEGER. The dimension of the array work. lwork
must be at least

lwork

lwork≥LOCr(n+mod(ia-1,mb_a))*nb_a.

1656

6 Intel® Math Kernel Library Reference Manual

The array work is used to keep at most an entire column
block of sub(A).

(local) INTEGER. Workspace array used for physically
transposing the pivots, DIMENSION (liwork).

iwork

(local or global) INTEGER. The dimension of the array iwork.liwork
The minimal value liwork of is determined by the following
code:

if NPROW == NPCOL then

liwork = LOCc(n_a + mod(ja-1,nb_a))+ nb_a

else

liwork = LOCc(n_a + mod(ja-1,nb_a)) +

max(ceil(ceil(LOCr(m_a)/mb_a)/(lcm/NPROW)),nb_a)

end if

where lcm is the least common multiple of process rows
and columns (NPROW and NPCOL).

Output Parameters

(local) INTEGER.ipiv
Array, dimension (LOCr(m_a)+ mb_a).
This array contains the pivoting information.
If ipiv(i)=j, then the local row i was swapped with the
global row j.
This array is tied to the distributed matrix A.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

On exit, iwork(1) contains the minimum value of liwork
required for optimum performance.

iwork(1)

(global) INTEGER. If info=0, the execution is successful.info
info < 0:

1657

ScaLAPACK Routines 6

If the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.
info > 0:
If info = i, U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly singular, and
division by zero will occur if it is used to solve a system of
equations.

p?potri
Computes the inverse of a symmetric/Hermitian
positive definite distributed matrix.

Syntax

call pspotri(uplo, n, a, ia, ja, desca, info)

call pdpotri(uplo, n, a, ia, ja, desca, info)

call pcpotri(uplo, n, a, ia, ja, desca, info)

call pzpotri(uplo, n, a, ia, ja, desca, info)

Description

This routine computes the inverse of a real symmetric or complex Hermitian positive definite
distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1) using the Cholesky factorization
sub(A) = UH*U or sub(A) = L*LH computed by p?potrf.

Input Parameters

(global) CHARACTER*1. Must be 'U' or 'L'.uplo
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix sub(A) is stored.
If uplo = 'U', upper triangle of sub(A) is stored. If uplo
= 'L', lower triangle of sub(A) is stored.

(global) INTEGER. The number of rows and columns to be
operated on, that is, the order of the distributed submatrix

sub(A) (n≥0).

n

1658

6 Intel® Math Kernel Library Reference Manual

(local)a
REAL for pspotri
DOUBLE PRECISION for pdpotri
COMPLEX for pcpotri
DOUBLE COMPLEX for pzpotri.
Pointer into the local memory to an array of local dimension
a(lld_a,LOCc(ja+n-1)).
On entry, the array a contains the local pieces of the
triangular factor U or L from the Cholesky factorization
sub(A) = UH*U, or sub(A) = L*LH, as computed by
p?potrf.

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

Output Parameters

On exit, overwritten by the local pieces of the upper or lower
triangle of the (symmetric/Hermitian) inverse of sub(A).

a

(global) INTEGER. If info=0, the execution is successful.info
info < 0:
If the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.
info > 0:
If info = i, the (i, i) element of the factor U or L is zero,
and the inverse could not be computed.

1659

ScaLAPACK Routines 6

p?trtri
Computes the inverse of a triangular distributed
matrix.

Syntax

call pstrtri(uplo, diag, n, a, ia, ja, desca, info)

call pdtrtri(uplo, diag, n, a, ia, ja, desca, info)

call pctrtri(uplo, diag, n, a, ia, ja, desca, info)

call pztrtri(uplo, diag, n, a, ia, ja, desca, info)

Description

This routine computes the inverse of a real or complex upper or lower triangular distributed
matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1).

Input Parameters

(global) CHARACTER*1. Must be 'U' or 'L'.uplo
Specifies whether the distributed matrix sub(A) is upper or
lower triangular.
If uplo = 'U', sub(A) is upper triangular.
If uplo = 'L', sub(A) is lower triangular.

CHARACTER*1. Must be 'N' or 'U'.diag
Specifies whether or not the distributed matrix sub(A) is
unit triangular.
If diag = 'N', then sub(A) is non-unit triangular.
If diag = 'U', then sub(A) is unit triangular.

(global) INTEGER. The number of rows and columns to be
operated on, that is, the order of the distributed submatrix

sub(A) (n≥0).

n

(local)a
REAL for pstrtri
DOUBLE PRECISION for pdtrtri
COMPLEX for pctrtri
DOUBLE COMPLEX for pztrtri.

1660

6 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of local dimension
a(lld_a,LOCc(ja+n-1)).
The array a contains the local pieces of the triangular
distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular matrix to be inverted,
and the strictly lower triangular part of sub(A) is not
referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular matrix, and the strictly
upper triangular part of sub(A) is not referenced.

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

Output Parameters

On exit, overwritten by the (triangular) inverse of the
original matrix.

a

(global) INTEGER. If info=0, the execution is successful.info
info < 0:
If the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.
info > 0:
If info = k, A(ia+k-1, ja+k-1) is exactly zero. The
triangular matrix sub(A) is singular and its inverse can not
be computed.

Routines for Matrix Equilibration

ScaLAPACK routines described in this section are used to compute scaling factors needed to
equilibrate a matrix. Note that these routines do not actually scale the matrices.

1661

ScaLAPACK Routines 6

p?geequ
Computes row and column scaling factors intended
to equilibrate a general rectangular distributed
matrix and reduce its condition number.

Syntax

call psgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

call pdgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

call pcgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

call pzgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

Description

This routine computes row and column scalings intended to equilibrate an m-by-n distributed
matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1) and reduce its condition number. The output
array r returns the row scale factors and the array c the column scale factors. These factors
are chosen to try to make the largest element in each row and column of the matrix B with
elements bij=r(i)*aij*c(j) have absolute value 1.

r(i) and c(j) are restricted to be between SMLNUM = smallest safe number and BIGNUM = largest
safe number. Use of these scaling factors is not guaranteed to reduce the condition number of
sub(A) but works well in practice.

The auxiliary function p?laqge uses scaling factors computed by p?geequ to scale a general
rectangular matrix.

Input Parameters

(global) INTEGER. The number of rows to be operated on,
that is, the number of rows of the distributed submatrix

sub(A) (m ≥ 0).

m

(global) INTEGER. The number of columns to be operated
on, that is, the number of columns of the distributed

submatrix sub(A) (n ≥ 0).

n

(local)a
REAL for psgeequ
DOUBLE PRECISION for pdgeequ

1662

6 Intel® Math Kernel Library Reference Manual

COMPLEX for pcgeequ
DOUBLE COMPLEX for pzgeequ .
Pointer into the local memory to an array of local dimension
a(lld_a,LOCc(ja+n-1)).
The array a contains the local pieces of the m-by-n
distributed matrix whose equilibration factors are to be
computed.

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

Output Parameters

(local) REAL for single precision flavors;r, c
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCr(m_a) and LOCc(n_a), respectively.
If info = 0, or info > ia+m-1, the array r (ia:ia+m-1)
contains the row scale factors for sub(A). r is aligned with
the distributed matrix A, and replicated across every process
column. r is tied to the distributed matrix A.
If info = 0, the array c (ja:ja+n-1) contains the column
scale factors for sub(A). c is aligned with the distributed
matrix A, and replicated down every process row. c is tied
to the distributed matrix A.

(global) REAL for single precision flavors;rowcnd, colcnd
DOUBLE PRECISION for double precision flavors.
If info = 0 or info > ia+m-1, rowcnd contains the ratio

of the smallest r(i) to the largest r(i) (ia ≤ i ≤

ia+m-1). If rowcnd ≥ 0.1 and amax is neither too large
nor too small, it is not worth scaling by r (ia:ia+m-1).
If info = 0, colcnd contains the ratio of the smallest c(j)

to the largest c(j) (ja ≤ j ≤ ja+n-1).

If colcnd ≥ 0.1, it is not worth scaling by c(ja:ja+n-1).

(global) REAL for single precision flavors;amax

1663

ScaLAPACK Routines 6

DOUBLE PRECISION for double precision flavors.
Absolute value of the largest matrix element. If amax is very
close to overflow or very close to underflow, the matrix
should be scaled.

(global) INTEGER. If info=0, the execution is successful.info
info < 0:
If the ith argument is an array and the jth entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.
info > 0:
If info = i and

i≤ m, the ith row of the distributed matrix
sub(A) is exactly zero;
i > m, the (i-m)th column of the distributed
matrix sub(A) is exactly zero.

p?poequ
Computes row and column scaling factors intended
to equilibrate a symmetric (Hermitian) positive
definite distributed matrix and reduce its condition
number.

Syntax

call pspoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)

call pdpoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)

call pcpoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)

call pzpoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)

Description

This routine computes row and column scalings intended to equilibrate a real symmetric or
complex Hermitian positive definite distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1)
and reduce its condition number (with respect to the two-norm). The output arrays sr and sc
return the row and column scale factors

1664

6 Intel® Math Kernel Library Reference Manual

These factors are chosen so that the scaled distributed matrix B with elements
bij=s(i)*aij*s(j) has ones on the diagonal.

This choice of sr and sc puts the condition number of B within a factor n of the smallest possible
condition number over all possible diagonal scalings.

The auxiliary function p?laqsy uses scaling factors computed by p?geequ to scale a general
rectangular mtrix.

Input Parameters

(global) INTEGER. The number of rows and columns to be
operated on, that is, the order of the distributed submatrix

sub(A) (n≥0).

n

(local)a
REAL for pspoequ
DOUBLE PRECISION for pdpoequ
COMPLEX for pcpoequ
DOUBLE COMPLEX for pzpoequ.
Pointer into the local memory to an array of local dimension
a(lld_a,LOCc(ja+n-1)).
The array a contains the n-by-n symmetric/Hermitian
positive definite distributed matrix sub(A) whose scaling
factors are to be computed. Only the diagonal elements of
sub(A) are referenced.

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

Output Parameters

(local)sr, sc

1665

ScaLAPACK Routines 6

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCr(m_a) and LOCc(n_a), respectively.
If info = 0, the array sr(ia:ia+n-1) contains the row
scale factors for sub(A). sr is aligned with the distributed
matrix A, and replicated across every process column. sr
is tied to the distributed matrix A.
If info = 0, the array sc (ja:ja+n-1) contains the
column scale factors for sub(A). sc is aligned with the
distributed matrix A, and replicated down every process
row. sc is tied to the distributed matrix A.

(global)scond
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0, scond contains the ratio of the smallest sr(i)
(or sc(j)) to the largest sr(i) (or sc(j)), with

ia≤i≤ia+n-1 and ja≤j≤ja+n-1.

If scond ≥ 0.1 and amax is neither too large nor too small,
it is not worth scaling by sr (or sc).

(global)amax
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest matrix element. If amax is very
close to overflow or very close to underflow, the matrix
should be scaled.

(global) INTEGER.info
If info=0, the execution is successful.
info < 0:
If the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.
info > 0:
If info = k, the k-th diagonal entry of sub(A) is nonpositive.

1666

6 Intel® Math Kernel Library Reference Manual

Orthogonal Factorizations

This section describes the ScaLAPACK routines for the QR (RQ) and LQ (QL) factorization of
matrices. Routines for the RZ factorization as well as for generalized QR and RQ factorizations
are also included. For the mathematical definition of the factorizations, see the respective
LAPACK sections or refer to [SLUG].

Table 6-3 lists ScaLAPACK routines that perform orthogonal factorization of matrices.

Table 6-3 Computational Routines for Orthogonal Factorizations

Apply matrix QGenerate
matrix Q

Factorize with
pivoting

Factorize without
pivoting

Matrix type,
factorization

p?ormqrp?unmqrp?orgqr
p?ungqr

p?geqpfp?geqrfgeneral matrices, QR
factorization

p?ormrqp?unmrqp?orgrqp?ungrqp?gerqfgeneral matrices, RQ
factorization

p?ormlqp?unmlqp?orglqp?unglqp?gelqfgeneral matrices, LQ
factorization

p?ormqlp?unmqlp?orgqlp?ungqlp?geqlfgeneral matrices, QL
factorization

p?ormrzp?unmrzp?tzrzftrapezoidal matrices, RZ
factorization

p?ggqrfpair of matrices,
generalized QR
factorization

p?ggrqfpair of matrices,
generalized RQ
factorization

p?geqrf
Computes the QR factorization of a general m-by-n
matrix.

Syntax

call psgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pcgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pzgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)

1667

ScaLAPACK Routines 6

Description

The routine forms the QR factorization of a general m-by-n distributed matrix sub(A)=
A(ia:ia+m-1,ja:ja+n-1) as

A=Q*R

Input Parameters

(global) INTEGER. The number of rows in the distributed

submatrix sub(A); (m ≥ 0).

m

(global) INTEGER. The number of columns in the distributed

submatrix sub(A); (n ≥ 0).

n

(local)a
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).
Contains the local pieces of the distributed matrix sub(A)
to be factored.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A(ia:ia+m-1,ja:ja+n-1), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A

desca

(local).work
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf.
COMPLEX for pcgeqrf.
DOUBLE COMPLEX for pzgeqrf
Workspace array of dimension lwork.

(local or global) INTEGER, dimension of work, must be at

least lwork ≥ nb_a * (mp0+nq0+nb_a), where

lwork

iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

1668

6 Intel® Math Kernel Library Reference Manual

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mp0 = numroc(m+iroff, mb_a, MYROW, iarow, NPROW),
nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL),
and numroc, indxg2p are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

The elements on and above the diagonal of sub(A) contain
the min(m,n)-by-n upper trapezoidal matrix R (R is upper

triangular if m ≥ n); the elements below the diagonal, with

a

the array tau, represent the orthogonal/unitary matrix Q as
a product of elementary reflectors (see Application Notes
below).

(local)tau
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Array, DIMENSION LOCc(ja+min(m,n)-1).
Contains the scalar factor tau of elementary reflectors. tau
is tied to the distributed matrix A.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0, the execution is successful.
< 0, if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1669

ScaLAPACK Routines 6

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ja) H(ja+1)... H(ja+k-1),

where k = min(m,n).

Each H(i) has the form

H(j) = I - tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:m) is stored on exit in A(ia+i:ia+m-1, ja+i-1), and tau in tau(ja+i-1).

p?geqpf
Computes the QR factorization of a general m-by-n
matrix with pivoting.

Syntax

call psgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)

call pdgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)

call pcgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)

call pzgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)

Description

The routine forms the QR factorization with column pivoting of a general m-by-n distributed
matrix sub(A)= A(ia:ia+m-1,ja:ja+n-1) as

sub(A)*P=Q*R

Input Parameters

(global) INTEGER. The number of rows in the submatrix

sub(A) (m ≥ 0).

m

(global) INTEGER. The number of columns in the submatrix

sub(A) (n ≥ 0).

n

(local)a
REAL for psgeqpf

1670

6 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for pdgeqpf
COMPLEX for pcgeqpf
DOUBLE COMPLEX for pzgeqpf.
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).
Contains the local pieces of the distributed matrix sub(A)
to be factored.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A(ia:ia+m-1,ja:ja+n-1), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).work
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf.
COMPLEX for pcgeqpf.
DOUBLE COMPLEX for pzgeqpf
Workspace array of dimension lwork.

(local or global) INTEGER, dimension of work, must be at
least

lwork

For real flavors:

lwork ≥ max(3,mp0+nq0) + LOCc (ja+n-1) + nq0.
For complex flavors:

lwork ≥ max(3,mp0+nq0) .
Here
iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mp0 = numroc(m+iroff, mb_a, MYROW, iarow, NPROW
),
nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL),
LOCc (ja+n-1) = numroc(ja+n-1, nb_a,
MYCOL,csrc_a, NPCOL), and numroc, indxg2p are
ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL
can be determined by calling the subroutine
blacs_gridinfo.

1671

ScaLAPACK Routines 6

If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

The elements on and above the diagonal of sub(A)contain
the min(m, n)-by-n upper trapezoidal matrix R (R is upper

triangular if m ≥ n); the elements below the diagonal, with

a

the array tau, represent the orthogonal/unitary matrix Q as
a product of elementary reflectors (see Application Notes
below)

(local) INTEGER. Array, DIMENSION LOCc(ja+n-1).ipiv
ipiv(i) = k, the local i-th column of sub(A)*P was the
global k-th column of sub(A). ipiv is tied to the distributed
matrix A.

(local)tau
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf
COMPLEX for pcgeqpf
DOUBLE COMPLEX for pzgeqpf.
Array, DIMENSION LOCc(ja+min(m, n)-1)).
Contains the scalar factor tau of elementary reflectors. tau
is tied to the distributed matrix A.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0, the execution is successful.
< 0, if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

1672

6 Intel® Math Kernel Library Reference Manual

Q = H(1) H(2)... H(n),

Each H(i) has the form

H = I - tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:m) is stored on exit in A(ia+i-1:ia+m-1,ja+i-1).

The matrix P is represented in jpvt as follows: if jpvt(j)= i then the j-th column of P is the
i-th canonical unit vector.

p?orgqr
Generates the orthogonal matrix Q of the QR
factorization formed by p?geqrf.

Syntax

call psorgqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorgqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n real distributed matrix Q denoting
A(ia:ia+m-1, ja:ja+n-1) with orthonormal columns, which is defined as the first n columns
of a product of k elementary reflectors of order m

Q= H(1) H(2)...H(k)

as returned by p?geqrf.

Input Parameters

(global) INTEGER. The number of rows in the submatrix

sub(Q) (m ≥ 0).

m

(global) INTEGER. The number of columns in the submatrix

sub(Q) (m ≥ n ≥ 0).

n

(global) INTEGER. The number of elementary reflectors

whose product defines the matrix Q (n ≥ k ≥ 0).

k

(local)a
REAL for psorgqr

1673

ScaLAPACK Routines 6

DOUBLE PRECISION for pdorgqr
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)). The j-th column must contain
the vector which defines the elementary reflector H(j),

ja≤j≤ja +k-1, as returned by p?geqrf in the k columns
of its distributed matrix argument A(ia:*, ja:ja+k-1).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A(ia:ia+m-1,ja:ja+n-1), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psorgqr
DOUBLE PRECISION for pdorgqr
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (j) of elementary reflectors
H(j) as returned by p?geqrf. tau is tied to the distributed
matrix A.

(local)work
REAL for psorgqr
DOUBLE PRECISION for pdorgqr
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work.lwork

Must be at least lwork ≥ nb_a*(nqa0 + mpa0 + nb_a),
where
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1,
nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow,
NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol,
NPCOL);
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.

1674

6 Intel® Math Kernel Library Reference Manual

If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Contains the local pieces of the m-by-n distributed matrix
Q.

a

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?ungqr
Generates the complex unitary matrix Q of the QR
factorization formed by p?geqrf.

Syntax

call pcungqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzungqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n complex distributed matrix Q denoting
A(ia:ia+m-1, ja:ja+n-1) with orthonormal columns, which is defined as the first n columns
of a product of k elementary reflectors of order m

Q = H(1) H(2)... H(k)

as returned by p?geqrf.

1675

ScaLAPACK Routines 6

Input Parameters

(global) INTEGER. The number of rows in the submatrix

sub(Q); (m≥0).

m

(global) INTEGER. The number of columns in the submatrix

sub(Q) (m≥n≥0).

n

(global) INTEGER. The number of elementary reflectors

whose product defines the matrix Q (n≥k≥0).

k

(local)a
COMPLEX for pcungqr
DOUBLE COMPLEX for pzungqr
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)).The j-th column must contain the

vector which defines the elementary reflector H(j), ja≤ j≤
ja +k-1, as returned by p?geqrf in the k columns of its
distributed matrix argument A(ia:*, ja:ja+k-1).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
COMPLEX for pcungqr
DOUBLE COMPLEX for pzungqr
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (j) of elementary reflectors
H(j) as returned by p?geqrf. tau is tied to the distributed
matrix A.

(local)work
COMPLEX for pcungqr
DOUBLE COMPLEX for pzungqr
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at

least lwork ≥ nb_a*(nqa0 + mpa0 + nb_a), where

lwork

iroffa = mod(ia-1, mb_a),

1676

6 Intel® Math Kernel Library Reference Manual

icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Contains the local pieces of the m-by-n distributed matrix
Q.

a

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?ormqr
Multiplies a general matrix by the orthogonal matrix
Q of the QR factorization formed by p?geqrf.

Syntax

call psormqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pdormqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

1677

ScaLAPACK Routines 6

Description

The routine overwrites the general real m-by-n distributed matrix sub(C) =
C(ic:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QTQT*sub(C)trans = 'T':

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(1) H(2)... H(k)

as returned by p?geqrf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

(global) CHARACTERside
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

(global) INTEGER. The number of rows in the distributed

matrix sub(C) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(C) (n≥0).

n

(global) INTEGER. The number of elementary reflectors
whose product defines the matrix Q. Constraints:

k

If side = 'L', m≥k≥0

If side = 'R', n≥k≥0.

(local)a
REAL for psormqr
DOUBLE PRECISION for pdormqr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+k-1)). The j-th column must contain
the vector which defines the elementary reflector H(j),

ja≤j≤ja+k-1, as returned by p?geqrf in the k columns of

1678

6 Intel® Math Kernel Library Reference Manual

its distributed matrix argument A(ia:*, ja:ja+k-1).
A(ia:*, ja:ja+k-1) is modified by the routine but
restored on exit.

If side = 'L', lld_a ≥ max(1, LOCr(ia+m-1)

If side ='R', lld_a ≥ max(1, LOCr(ia+n-1)

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psormqr
DOUBLE PRECISION for pdormqr
Array, DIMENSION LOCc(ja+k-1).
Contains the scalar factor tau (j) of elementary reflectors
H(j) as returned by p?geqrf. tau is tied to the distributed
matrix A.

(local)c
REAL for psormqr
DOUBLE PRECISION for pdormqr
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C)
to be factored.

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
REAL for psormqr
DOUBLE PRECISION for pdormqr.
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

if side = 'L',

1679

ScaLAPACK Routines 6

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0+mpc0)*nb_a)
+ nb_a*nb_a
else if side = 'R',

lwork ≥ max((nb_a*(nb_a-1))/2,
(nqc0+max(npa0+numroc(numroc(n+icoffc, nb_a, 0,
0, NPCOL), nb_a, 0, 0, lcmq), mpc0))*nb_a) +
nb_a*nb_a
end if
where
lcmq = lcm/NPCOL with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npa0= numroc(n+iroffa, mb_a, MYROW, iarow,
NPROW),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0= numroc(m+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0= numroc(n+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product Q*sub(C), or QT*sub(C), or
sub(C)*QT, or sub(C)*Q.

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

1680

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?unmqr
Multiplies a complex matrix by the unitary matrix
Q of the QR factorization formed by p?geqrf.

Syntax

call pcunmqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunmqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine overwrites the general complex m-by-n distributed matrix sub (C) =
C(ic:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QHQH*sub(C)trans = 'T':

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(1) H(2)... H(k) as returned by p?geqrf. Q is of order m if side = 'L' and of order
n if side ='R'.

Input Parameters

(global) CHARACTERside
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.

1681

ScaLAPACK Routines 6

='C', conjugate transpose, QH is applied.

(global) INTEGER. The number of rows in the distributed

matrix sub(C) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(C) (n≥0).

n

(global) INTEGER. The number of elementary reflectors
whose product defines the matrix Q. Constraints:

k

If side = 'L', m≥k≥0

If side = 'R', n≥k≥0.

(local)a
COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+k-1)). The j-th column must contain
the vector which defines the elementary reflector H(j),

ja≤j≤ja +k-1, as returned by p?geqrf in the k columns
of its distributed matrix argument A(ia:*, ja:ja+k-1).
A(ia:*, ja:ja+k-1) is modified by the routine but
restored on exit.

If side= 'L', lld_a≥ max(1, LOCr(ia+m-1)

If side = 'R', lld_a≥ max(1, LOCr(ia+n-1)

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (j) of elementary reflectors
H(j) as returned by p?geqrf. tau is tied to the distributed
matrix A.

(local)c

1682

6 Intel® Math Kernel Library Reference Manual

COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr.
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C)
to be factored.

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr.
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

If side = 'L',

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0 +
mpc0)*nb_a) + nb_a*nb_a
else if side = 'R',

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0
+ numroc(numroc(n+icoffc, nb_a, 0, 0, NPCOL),
nb_a, 0, 0, lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
where
lcmq = lcm/NPCOL with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(n+iroffa, mb_a, MYROW, iarow,
NPROW),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

1683

ScaLAPACK Routines 6

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product Q*sub(C), or QH*sub(C), or
sub(C)*QH, or sub(C)*Q .

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?gelqf
Computes the LQ factorization of a general
rectangular matrix.

Syntax

call psgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pcgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pzgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

1684

6 Intel® Math Kernel Library Reference Manual

Description

The routine computes the LQ factorization of a real/complex distributed m-by-n matrix sub(A)=
A(ia:ia+m-1, ia:ia+n-1) = L*Q.

Input Parameters

(global) INTEGER. The number of rows in the submatrix

sub(Q) (m ≥ 0).

m

(global) INTEGER. The number of columns in the submatrix

sub(Q) (n ≥ 0).

n

(global) INTEGER. The number of elementary reflectors

whose product defines the matrix Q (n ≥ k ≥ 0).

k

(local)a
REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).
Contains the local pieces of the distributed matrix sub(A)
to be factored.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A((ia:ia+m-1, ia:ia+n-1), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)work
REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at

least lwork ≥ mb_a*(mp0 + nq0 + mb_a), where

lwork

iroff = mod(ia-1, mb_a),

1685

ScaLAPACK Routines 6

icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mp0 = numroc(m+iroff, mb_a, MYROW, iarow, NPROW),
nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

The elements on and below the diagonal of sub(A) contain
the m by min(m,n) lower trapezoidal matrix L (L is lower

trapezoidal if m ≤ n); the elements above the diagonal, with

a

the array tau, represent the orthogonal/unitary matrix Q as
a product of elementary reflectors (see Application Notes
below)

(local)tau
REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Array, DIMENSION LOCr(ia+min(m, n)-1)).
Contains the scalar factors of elementary reflectors. tau is
tied to the distributed matrix A.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1686

6 Intel® Math Kernel Library Reference Manual

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ia+k-1) H(ia+k-2)... H(ia),

where k = min(m,n)

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:n) is stored on exit in A(ia+i-1:ia+i-1,ja+n-1), and tau in tau
(ia+i-1).

p?orglq
Generates the real orthogonal matrix Q of the LQ
factorization formed by p?gelqf.

Syntax

call psorglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n real distributed matrix Q denoting A(ia:ia+m-1,
ja:ja+n-1) with orthonormal rows, which is defined as the first m rows of a product of k
elementary reflectors of order n

Q = H(k)... H(2) H(1)

as returned by p?gelqf.

Input Parameters

(global) INTEGER. The number of rows in the submatrix

sub(Q); (m≥0).

m

(global) INTEGER. The number of columns in the submatrix

sub(Q) (n≥m≥0).

n

1687

ScaLAPACK Routines 6

(global) INTEGER. The number of elementary reflectors

whose product defines the matrix Q (m≥k≥0).

k

(local)a
REAL for psorglq
DOUBLE PRECISION for pdorglq
Pointer into the local memory to an array of local dimension
(lld_a, LOCc (ja+n-1)). On entry, the i-th row must
contain the vector which defines the elementary reflector

H(i), ia≤i≤ia+k-1, as returned by p?gelqf in the k rows
of its distributed matrix argument A(ia:ia+k -1, ja:*).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A((ia:ia+m-1, ja:ja+n-1), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)work
REAL for psorglq
DOUBLE PRECISION for pdorglq
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at

least lwork ≥ mb_a*(mpa0 + nqa0 + mb_a), where

lwork

iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow,
NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

1688

6 Intel® Math Kernel Library Reference Manual

Output Parameters

Contains the local pieces of the m-by-n distributed matrix Q
to be factored.

a

(local)tau
REAL for psorglq
DOUBLE PRECISION for pdorglq
Array, DIMENSION LOCr(ia+k-1).
Contains the scalar factors tau of elementary reflectors H(i).
tau is tied to the distributed matrix A.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?unglq
Generates the unitary matrix Q of the LQ
factorization formed by p?gelqf.

Syntax

call pcunglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzunglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n complex distributed matrix Q denoting
A(ia:ia+m-1, ja:ja+n-1) with orthonormal rows, which is defined as the first m rows of a
product of k elementary reflectors of order n

Q = H(k)... H(2)' H(1)'

as returned by p?gelqf.

1689

ScaLAPACK Routines 6

Input Parameters

(global) INTEGER. The number of rows in the submatrix

sub(Q) (m≥0).

m

(global) INTEGER. The number of columns in the submatrix

sub(Q) (n≥m≥0).

n

(global) INTEGER. The number of elementary reflectors

whose product defines the matrix Q (m≥k≥0).

k

(local)a
COMPLEX for pcunglq
DOUBLE COMPLEX for pzunglq
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)). On entry, the i-th row must
contain the vector which defines the elementary reflector

H(i), ia≤i≤ia+k-1, as returned by p?gelqf in the k rows
of its distributed matrix argument A(ia:ia+k-1, ja:*).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A(ia:ia+m-1,ja:ja+n-1), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
COMPLEX for pcunglq
DOUBLE COMPLEX for pzunglq
Array, DIMENSION LOCr(ia+k-1)).
Contains the scalar factors tau of elementary reflectors H(i).
tau is tied to the distributed matrix A.

(local)work
COMPLEX for pcunglq
DOUBLE COMPLEX for pzunglq
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at

least lwork ≥ mb_a*(mpa0 + nqa0 + mb_a), where

lwork

iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),

1690

6 Intel® Math Kernel Library Reference Manual

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow,
NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol,
NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Contains the local pieces of the m-by-n distributed matrix Q
to be factored.

a

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?ormlq
Multiplies a general matrix by the orthogonal matrix
Q of the LQ factorization formed by p?gelqf.

Syntax

call psormlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, work,
lwork, info)

call pdormlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, work,
lwork, info)

1691

ScaLAPACK Routines 6

Description

The routine overwrites the general real m-by-n distributed matrix sub(C) =
C(ic:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QTQT*sub(C)trans = 'T':

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(k)...H(2) H(1)

as returned by p?gelqf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

(global) CHARACTERside
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

(global) INTEGER. The number of rows in the distributed

matrix sub(C) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(C) (n≥0).

n

(global) INTEGER. The number of elementary reflectors
whose product defines the matrix Q. Constraints:

k

If side = 'L', m≥k≥0

If side = 'R', n≥k≥0.

(local)a
REAL for psormlq
DOUBLE PRECISION for pdormlq.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)), if side = 'L' and (lld_a,
LOCc(ja+n-1)), if side = 'R'.The i-th row must contain

1692

6 Intel® Math Kernel Library Reference Manual

the vector which defines the elementary reflector H(i),

ia≤i≤ia+k-1, as returned by p?gelqf in the k rows of its
distributed matrix argument A(ia:ia+k-1, ja:*).
A(ia:ia+k-1, ja:*) is modified by the routine but
restored on exit.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psormlq
DOUBLE PRECISION for pdormlq
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (i) of elementary reflectors
H(i) as returned by p?gelqf. tau is tied to the distributed
matrix A.

(local)c
REAL for psormlq
DOUBLE PRECISION for pdormlq
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C)
to be factored.

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
REAL for psormlq
DOUBLE PRECISION for pdormlq.
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of the array work;
must be at least:

lwork

If side = 'L',

1693

ScaLAPACK Routines 6

lwork ≥ max((mb_a*(mb_a-1))/2, (mpc0+max mqa0)+
numroc(numroc(m + iroffc, mb_a, 0, 0, NPROW),
mb_a, 0, 0, lcmp), nqc0))* mb_a) + mb_a*mb_a
else if side = 'R',

lwork ≥ max((mb_a* (mb_a-1))/2, (mpc0+nqc0)*mb_a
+ mb_a*mb_a
end if
where
lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol,
NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product Q*sub(C), or Q' *sub (C), or
sub(C)*Q', or sub(C)*Q

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info

1694

6 Intel® Math Kernel Library Reference Manual

= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?unmlq
Multiplies a general matrix by the unitary matrix
Q of the LQ factorization formed by p?gelqf.

Syntax

call pcunmlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunmlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine overwrites the general complex m-by-n distributed matrix sub (C) = C
(ic:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QHQH*sub(C)trans = 'T':

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(k)' ... H(2)' H(1)'

as returned by p?gelqf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

(global) CHARACTERside
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

1695

ScaLAPACK Routines 6

(global) INTEGER. The number of rows in the distributed

matrix sub(C) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(C) (n≥0).

n

(global) INTEGER. The number of elementary reflectors
whose product defines the matrix Q. Constraints:

k

If side = 'L', m≥k≥0

If side = 'R', n≥k≥0.

(local)a
COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)), if side = 'L', and (lld_a,

LOCc(ja+n-1)), if side = 'R', where lld_a ≥ max(1,
LOCr (ia+k-1)). The i-th column must contain the vector

which defines the elementary reflector H(i), ia≤i≤ia+k-1,
as returned by p?gelqf in the k rows of its distributed
matrix argument A(ia:ia+k-1, ja:*). A(ia:ia+k-1,
ja:*) is modified by the routine but restored on exit.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq
Array, DIMENSION LOCc(ia+k-1)).
Contains the scalar factor tau (i) of elementary reflectors
H(i) as returned by p?gelqf. tau is tied to the distributed
matrix A.

(local)c
COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq.

1696

6 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C)
to be factored.

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq.
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of the array work;
must be at least:

lwork

If side = 'L',

lwork ≥ max((mb_a*(mb_a-1))/2, (mpc0 + max mqa0)+
numroc(numroc(m + iroffc, mb_a, 0, 0, NPROW),
mb_a, 0, 0, lcmp), nqc0))*mb_a) + mb_a*mb_a
else if side = 'R',

lwork ≥ max((mb_a* (mb_a-1))/2, (mpc0 +
nqc0)*mb_a + mb_a*mb_a
end if
where
lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(m + icoffa, nb_a, MYCOL, iacol,
NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow,
NPROW),

1697

ScaLAPACK Routines 6

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product Q*sub(C), or Q'*sub (C), or
sub(C)*Q', or sub(C)*Q

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?geqlf
Computes the QL factorization of a general matrix.

Syntax

call psgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pcgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pzgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)

1698

6 Intel® Math Kernel Library Reference Manual

Description

The routine forms the QL factorization of a real/complex distributed m-by-n matrix sub(A) =
A(ia:ia+m-1, ja:ja+n-1) = Q*L.

Input Parameters

(global) INTEGER. The number of rows in the submatrix

sub(Q); (m ≥ 0).

m

(global) INTEGER. The number of columns in the submatrix

sub(Q) (n ≥ 0).

n

(local)a
REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)). Contains the local pieces of the
distributed matrix sub(A) to be factored.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A((ia:ia+m-1, ia:ia+n-1), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)work
REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at

least lwork ≥ nb_a*(mp0 + nq0 + nb_a), where

lwork

iroff = mod(ia-1, mb_a),
icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mp0 = numroc(m+iroff, mb_a, MYROW, iarow, NPROW),

1699

ScaLAPACK Routines 6

nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL)
numroc and indxg2p are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, if m≥n, the lower triangle of the distributed
submatrix A(ia+m-n:ia+m-1, ja:ja+n-1) contains the

n-by-n lower triangular matrix L; if m≤n, the elements on

a

and below the (n-m)-th superdiagonal contain the m-by-n
lower trapezoidal matrix L; the remaining elements, with
the array tau, represent the orthogonal/unitary matrix Q as
a product of elementary reflectors (see Application Notes
below)

(local)tau
REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Array, DIMENSION LOCc(ja+n-1)).
Contains the scalar factors of elementary reflectors. tau is
tied to the distributed matrix A.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1700

6 Intel® Math Kernel Library Reference Manual

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ja+k-1)... H(ja+1) H(ja),

where k = min(m,n)

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with v(m-k+i+1:m) = 0
and v(m-k+i) = 1; v(m-k+i-1) is stored on exit in A(ia+ia+m-k+i-2, ja+n-k+i-1), and
tau in tau (ja+n-k+i-1).

p?orgql
Generates the orthogonal matrix Q of the QL
factorization formed by p?geqlf.

Syntax

call psorgql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorgql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n real distributed matrix Q denoting
A(ia:ia+m-1, ja:ja+n-1) with orthonormal rows, which is defined as the first m rows of a
product of k elementary reflectors of order n

Q = H(k)... H(2) H(1)

as returned by p?geqlf.

Input Parameters

(global) INTEGER. The number of rows in the submatrix

sub(Q); (m≥0).

m

(global) INTEGER. The number of columns in the submatrix

sub(Q)(m≥n≥0).

n

1701

ScaLAPACK Routines 6

(global) INTEGER. The number of elementary reflectors

whose product defines the matrix Q (n≥k≥0).

k

(local)a
REAL for psorgql
DOUBLE PRECISION for pdorgql
Pointer into the local memory to an array of local dimension
(lld_a, LOCc (ja+n-1)). On entry, the j-th column must
contain the vector which defines the elementary reflector

H(j),ja+n-k≤j≤ja+n-1, as returned by p?geqlf in the k

columns of its distributed matrix argument
A(ia:*ja+n-k:ja+n-1).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A((ia:ia+m-1, ja:ja+n-1), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psorgql
DOUBLE PRECISION for pdorgql
Array, DIMENSION LOCc(ja+n-1)).
Contains the scalar factors tau(j) of elementary reflectors
H(j). tau is tied to the distributed matrix A.

(local)work
REAL for psorgql
DOUBLE PRECISION for pdorgql
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at

least lwork ≥ nb_a* (nqa0 + mpa0 + nb_a), where

lwork

iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow,
NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol,
NPCOL)

1702

6 Intel® Math Kernel Library Reference Manual

indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Contains the local pieces of the m-by-n distributed matrix Q
to be factored.

a

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?ungql
Generates the unitary matrix Q of the QL
factorization formed by p?geqlf.

Syntax

call pcungql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzungql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n complex distributed matrix Q denoting
A(ia:ia+m-1, ja:ja+n-1) with orthonormal rows, which is defined as the first n columns of
a product of k elementary reflectors of order m

Q = H(k)... H(2)' H(1)'

1703

ScaLAPACK Routines 6

as returned by p?geqlf.

Input Parameters

(global) INTEGER. The number of rows in the submatrix

sub(Q) (m≥0).

m

(global) INTEGER. The number of columns in the submatrix

sub(Q) (m≥n≥0).

n

(global) INTEGER. The number of elementary reflectors

whose product defines the matrix Q (n≥k≥0).

k

(local)a
COMPLEX for pcungql
DOUBLE COMPLEX for pzungql Pointer into the local memory
to an array of local dimension (lld_a, LOCc(ja+n-1)).
On entry, the j-th column must contain the vector which

defines the elementary reflector H(j), ja+n-k≤ j≤ ja+n-1,
as returned by p?geqlf in the k columns of its distributed
matrix argument A(ia:*, ja+n-k: ja+n-1).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A(ia:ia+m-1,ja:ja+n-1), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
COMPLEX for pcungql
DOUBLE COMPLEX for pzungql
Array, DIMENSION LOCr(ia+n-1)).
Contains the scalar factors tau (j) of elementary reflectors
H(j). tau is tied to the distributed matrix A.

(local)work
COMPLEX for pcungql
DOUBLE COMPLEX for pzungql
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at

least lwork ≥ nb_a*(nqa0 + mpa0 + nb_a), where

lwork

1704

6 Intel® Math Kernel Library Reference Manual

iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow,
NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Contains the local pieces of the m-by-n distributed matrix Q
to be factored.

a

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1705

ScaLAPACK Routines 6

p?ormql
Multiplies a general matrix by the orthogonal matrix
Q of the QL factorization formed by p?geqlf.

Syntax

call psormql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pdormql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine overwrites the general real m-by-n distributed matrix sub(C) = C
(ic:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QTQT*sub(C)trans = 'T':

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(k)' ... H(2)' H(1)'

as returned by p?geqlf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

(global) CHARACTERside
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

(global) INTEGER. The number of rows in the distributed

matrix sub(C) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(C) (n≥0).

n

1706

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The number of elementary reflectors
whose product defines the matrix Q. Constraints:

k

If side = 'L', m≥k≥0

If side = 'R', n≥k≥0.

(local)a
REAL for psormql
DOUBLE PRECISION for pdormql.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+k-1)). The j-th column must contain
the vector which defines the elementary reflector H(j),

ja≤j≤ja+k-1, as returned by p?gelqf in the k columns of
its distributed matrix argument A(ia:*,
ja:ja+k-1).A(ia:*, ja:ja+k-1) is modified by the
routine but restored on exit.

If side = 'L',lld_a ≥ max(1, LOCr(ia+m-1)),

If side = 'R', lld_a ≥ max(1, LOCr(ia+n-1)).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psormql
DOUBLE PRECISION for pdormql.
Array, DIMENSION LOCc(ja+n-1)).
Contains the scalar factor tau (j) of elementary reflectors
H(j) as returned by p?geqlf. tau is tied to the distributed
matrix A.

(local)c
REAL for psormql
DOUBLE PRECISION for pdormql.
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C)
to be factored.

1707

ScaLAPACK Routines 6

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
REAL for psormql
DOUBLE PRECISION for pdormql.
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

If side = 'L',

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0+mpc0)*nb_a
+ nb_a*nb_a
else if side ='R',

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0+max npa0)+
numroc(numroc(n+icoffc, nb_a, 0, 0, NPCOL),
nb_a, 0, 0, lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
where
lcmp = lcm/NPCOL with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npa0= numroc(n + iroffa, mb_a, MYROW, iarow,
NPROW),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.

1708

6 Intel® Math Kernel Library Reference Manual

If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product Q* sub(C), or Q'*sub (C), or
sub(C)* Q', or sub(C)* Q

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?unmql
Multiplies a general matrix by the unitary matrix
Q of the QL factorization formed by p?geqlf.

Syntax

call pcunmql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunmql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine overwrites the general complex m-by-n distributed matrix sub(C) = C
(ic:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QHQH*sub(C)trans = 'C':

1709

ScaLAPACK Routines 6

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(k)' ... H(2)' H(1)'

as returned by p?geqlf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

(global) CHARACTERside
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

(global) INTEGER. The number of rows in the distributed

matrix sub(C) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(C) (n≥0).

n

(global) INTEGER. The number of elementary reflectors
whose product defines the matrix Q. Constraints:

k

If side = 'L', m≥k≥0

If side = 'R', n≥k≥0.

(local)a
COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+k-1)). The j-th column must contain
the vector which defines the elementary reflector H(j),

ja≤j≤ja+k-1, as returned by p?geqlf in the k columns of
its distributed matrix argument A(ia:*,
ja:ja+k-1).A(ia:*, ja:ja+k-1) is modified by the
routine but restored on exit.

If side = 'L',lld_a ≥ max(1, LOCr(ia+m-1)),

If side = 'R', lld_a ≥ max(1, LOCr(ia+n-1)).

1710

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql
Array, DIMENSION LOCc(ia+n-1)).
Contains the scalar factor tau (j) of elementary reflectors
H(j) as returned by p?geqlf. tau is tied to the distributed
matrix A.

(local)c
COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql.
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C)
to be factored.

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql.
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

If side = 'L',

lwork ≥ max((nb_a* (nb_a-1))/2, (nqc0+mpc0)*nb_a
+ nb_a*nb_a
else if side ='R',

1711

ScaLAPACK Routines 6

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0+max npa0)+
numroc(numroc(n+icoffc, nb_a, 0, 0, NPCOL),
nb_a, 0, 0, lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
where
lcmp = lcm/NPCOL with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc (n + iroffa, mb_a, MYROW, iarow,
NPROW),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product Q* sub(C), or Q' sub (C), or
sub(C)* Q', or sub(C)* Q

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.

1712

6 Intel® Math Kernel Library Reference Manual

< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?gerqf
Computes the RQ factorization of a general
rectangular matrix.

Syntax

call psgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pcgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pzgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine forms the QR factorization of a general m-by-n distributed matrix sub(A)=
A(ia:ia+m-1,ja:ja+n-1) as

A= R*Q

Input Parameters

(global) INTEGER. The number of rows in the distributed

submatrix sub(A); (m≥0).

m

(global) INTEGER. The number of columns in the distributed

submatrix sub(A); (n≥0).

n

(local)a
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).

1713

ScaLAPACK Routines 6

Contains the local pieces of the distributed matrix sub(A)
to be factored.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A(ia:ia+m-1,ja:ja+n-1), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A

desca

(local).work
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf.
COMPLEX for pcgeqrf.
DOUBLE COMPLEX for pzgeqrf
Workspace array of dimension lwork.

(local or global) INTEGER, dimension of work, must be at

least lwork ≥ mb_a*(mp0+nq0+mb_a), where

lwork

iroff = mod(ia-1, mb_a),
icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mp0 = numroc(m+iroff, mb_a, MYROW, iarow, NPROW),
nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL)
and numroc, indxg2p are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, if m≤n, the upper triangle of A(ia:ia+m-1,
ja:ja+n-1) contains the m-by-m upper triangular matrix R;

if m≥n, the elements on and above the (m - n)-th subdiagonal

a

contain the m-by-n upper trapezoidal matrix R; the remaining

1714

6 Intel® Math Kernel Library Reference Manual

elements, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors (see Application Notes below)

(local)tau
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Array, DIMENSION LOCr(ia+m-1).
Contains the scalar factor tau of elementary reflectors. tau
is tied to the distributed matrix A.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0, the execution is successful.
< 0, if the i-th argument is an array and the j-entry had
an illegal value, then info = -(i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ia) H(ia+1)... H(ia+k-1),

where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with v(n-k+i+1:n) = 0
and v(n-k+i) = 1; v(1:n-k+i-1)/conjg (v(1:n-k+i-1)) is stored on exit in
A(ia+m-k+i-1,ja:ja+n-k+i-2), and tau in tau(ia+m-k+i-1).

1715

ScaLAPACK Routines 6

p?orgrq
Generates the orthogonal matrix Q of the RQ
factorization formed by p?gerqf.

Syntax

call psorgrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorgrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n real distributed matrix Q denoting
A(ia:ia+m-1, ja:ja+n-1) with orthonormal columns, which is defined as the last m rows of
a product of k elementary reflectors of order m

Q= H(1) H(2)...H(k)

as returned by p?gerqf.

Input Parameters

(global) INTEGER. The number of rows in the submatrix

sub(Q); (m≥0).

m

(global) INTEGER. The number of columns in the submatrix

sub(Q) (n≥m≥0).

n

(global) INTEGER. The number of elementary reflectors

whose product defines the matrix Q (m≥k≥0).

k

(local)a
REAL for psorgrq
DOUBLE PRECISION for pdorgrq
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)). The i-th column must contain
the vector which defines the elementary reflector H(i),

ja≤j≤ja+k-1, as returned by p?geqrf in the k columns of
its distributed matrix argument A(ia:*, ja:ja+k-1).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A(ia:ia+m-1,ja:ja+n-1), respectively.

ia, ja

1716

6 Intel® Math Kernel Library Reference Manual

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psorgrq
DOUBLE PRECISION for pdorgrq
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (i) of elementary reflectors
H(i) as returned by p?gerqf. tau is tied to the distributed
matrix A.

(local)work
REAL for psorgrq
DOUBLE PRECISION for pdorgrq
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at

least lwork≥mb_a*(mpa0 + nqa0 + mb_a), where

lwork

iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow,
NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol,
NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Contains the local pieces of the m-by-n distributed matrix
Q.

a

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

1717

ScaLAPACK Routines 6

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?ungrq
Generates the unitary matrix Q of the RQ
factorization formed by p?gerqf.

Syntax

call pcungrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzungrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the m-by-n complex distributed matrix Q denoting
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the last m rows of a
product of k elementary reflectors of order n

Q = H(1)' H(2)'... H(k)'

as returned by p?gerqf.

Input Parameters

(global) INTEGER. The number of rows in the submatrix

sub(Q); (m≥0).

m

(global) INTEGER. The number of columns in the submatrix

sub(Q) (n≥m≥0).

n

(global) INTEGER. The number of elementary reflectors

whose product defines the matrix Q (m≥k≥0).

k

(local)a
COMPLEX for pcungrq
DOUBLE COMPLEX for pzungrqc

1718

6 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). The i-th row must contain the
vector which defines the elementary reflector H(i),

ia+m-k≤i≤ia+m-1, as returned by p?gerqf in the k rows
of its distributed matrix argument A(ia+m-k:ia+m-1,
ja:*).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
COMPLEX for pcungrq
DOUBLE COMPLEX for pzungrq
Array, DIMENSION LOCr(ia+m-1)).
Contains the scalar factor tau (i) of elementary reflectors
H(i) as returned by p?gerqf. tau is tied to the distributed
matrix A.

(local)work
COMPLEX for pcungrq
DOUBLE COMPLEX for pzungrq
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at

least lwork ≥ mb_a*(mpa0 +nqa0+mb_a), where

lwork

iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow,
NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.

1719

ScaLAPACK Routines 6

If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Contains the local pieces of the m-by-n distributed matrix
Q.

a

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?ormrq
Multiplies a general matrix by the orthogonal matrix
Q of the RQ factorization formed by p?gerqf.

Syntax

call psormrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pdormrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine overwrites the general real m-by-n distributed matrix sub(C) =
C(ic:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QTQT*sub(C)trans = 'T':

1720

6 Intel® Math Kernel Library Reference Manual

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(1) H(2)... H(k)

as returned by p?gerqf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

(global) CHARACTERside
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

(global) INTEGER. The number of rows in the distributed

matrix sub(C) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(C) (n≥0).

n

(global) INTEGER. The number of elementary reflectors
whose product defines the matrix Q. Constraints:

k

If side = 'L', m≥k≥0

If side = 'R', n≥k≥0.

(local)a
REAL for psormqr
DOUBLE PRECISION for pdormqr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side = 'L', and (lld_a,
LOCc(ja+n-1)) if side = 'R'.
The i-th row must contain the vector which defines the

elementary reflector H(i), ia≤i≤ia+k-1, as returned by
p?gerqf in the k rows of its distributed matrix argument
A(ia:ia+k-1, ja:*).A(ia:ia+k-1, ja:*) is modified
by the routine but restored on exit.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

1721

ScaLAPACK Routines 6

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psormqr
DOUBLE PRECISION for pdormqr
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (i) of elementary reflectors
H(i) as returned by p?gerqf. tau is tied to the distributed
matrix A.

(local)c
REAL for psormrq
DOUBLE PRECISION for pdormrq
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C)
to be factored.

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
REAL for psormrq
DOUBLE PRECISION for pdormrq.
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

If side = 'L',

lwork ≥ max((mb_a*(mb_a-1))/2, (mpc0 + max(mqa0
+ numroc(numroc(n+iroffc, mb_a, 0, 0, NPROW),
mb_a, 0, 0, lcmp), nqc0))*mb_a) + mb_a*mb_a
else if side ='R',

lwork ≥ max((mb_a*(mb_a-1))/2, (mpc0 +
nqc0)*mb_a) + mb_a*mb_a
end if
where

1722

6 Intel® Math Kernel Library Reference Manual

lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol,
NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product Q* sub(C), or Q'*sub (C), or
sub(C)* Q', or sub(C)* Q

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1723

ScaLAPACK Routines 6

p?unmrq
Multiplies a general matrix by the unitary matrix
Q of the RQ factorization formed by p?gerqf.

Syntax

call pcunmrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunmrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine overwrites the general complex m-by-n distributed matrix sub (C)=
C(ic:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QHQH*sub(C)trans = 'C':

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(1)' H(2)'... H(k)'

as returned by p?gerqf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

(global) CHARACTERside
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

(global) INTEGER. The number of rows in the distributed

matrix sub(C) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(C) (n≥0).

n

1724

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The number of elementary reflectors
whose product defines the matrix Q. Constraints:

k

If side = 'L', m≥k≥0

If side = 'R', n≥k≥0.

(local)a
COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side = 'L', and (lld_a,
LOCc(ja+n-1)) if side = 'R'. The i-th row must contain
the vector which defines the elementary reflector H(i),

ia≤i≤ia+k-1, as returned by p?gerqf in the k rows of its
distributed matrix argument A(ia:ia +k-1,
ja*).A(ia:ia +k-1, ja*) is modified by the routine but
restored on exit.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (i) of elementary reflectors
H(i) as returned by p?gerqf. tau is tied to the distributed
matrix A.

(local)c
COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq.
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C)
to be factored.

1725

ScaLAPACK Routines 6

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq.
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

If side = 'L',

lwork ≥ max((mb_a*(mb_a-1))/2, (mpc0 +
max(mqa0+numroc(numroc(n+iroffc, mb_a, 0, 0,
NPROW), mb_a, 0, 0, lcmp), nqc0))*mb_a) +
mb_a*mb_a
else if side = 'R',

lwork ≥ max((mb_a*(mb_a-1))/2, (mpc0 +
nqc0)*mb_a) + mb_a*mb_a
end if
where
lcmp = lcm/NPROW with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol,
NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol,
NPCOL),

1726

6 Intel® Math Kernel Library Reference Manual

ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product Q* sub(C) or Q'*sub (C), or
sub(C)* Q', or sub(C)* Q

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?tzrzf
Reduces the upper trapezoidal matrix A to upper
triangular form.

Syntax

call pstzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdtzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pctzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pztzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)

1727

ScaLAPACK Routines 6

Description

This routine reduces the m-by-n (m ≤ n) real/complex upper trapezoidal matrix
sub(A)=(ia:ia+m-1,ja:ja+n-1) to upper triangular form by means of orthogonal/unitary
transformations. The upper trapezoidal matrix A is factored as

A = (R 0)*Z,

where Z is an n-by-n orthogonal/unitary matrix and R is an m-by-m upper triangular matrix.

Input Parameters

(global) INTEGER. The number of rows in the submatrix

sub(A); (m≥0).

m

(global) INTEGER. The number of columns in the submatrix

sub(A) (n≥0).

n

(local)a
REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf.
DOUBLE COMPLEX for pztzrzf.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). Contains the local pieces of the
m-by-n distributed matrix sub (A) to be factored.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)work
REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf.
DOUBLE COMPLEX for pztzrzf.
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at

least lwork ≥ mb_a*(mp0+nq0+mb_a), where

lwork

iroff = mod(ia-1, mb_a),

1728

6 Intel® Math Kernel Library Reference Manual

icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mp0 = numroc (m+iroff, mb_a, MYROW, iarow,
NPROW),
nq0 = numroc (n+icoff, nb_a, MYCOL, iacol,
NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, the leading m-by-m upper triangular part of sub(A)
contains the upper triangular matrix R, and elements m+1
to n of the first m rows of sub (A), with the array tau,
represent the orthogonal/unitary matrix Z as a product of
m elementary reflectors.

a

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(local)tau
REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf.
DOUBLE COMPLEX for pztzrzf.
Array, DIMENSION LOCr(ia+m-1)).
Contains the scalar factor of elementary reflectors. tau is
tied to the distributed matrix A.

(global) INTEGER.info
= 0: the execution is successful.

1729

ScaLAPACK Routines 6

< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Application Notes

The factorization is obtained by the Householder's method. The k-th transformation matrix,
Z(k), which is or whose conjugate transpose is used to introduce zeros into the (m - k +1)-th
row of sub(A), is given in the form

where

T(k) = i - tau*u(k)*u(k)',

tau is a scalar and Z(k) is an (n - m) element vector. tau and Z(k) are chosen to annihilate the
elements of the k-th row of sub(A). The scalar tau is returned in the k-th element of tau and
the vector u(k) in the k-th row of sub(A), such that the elements of Z(k) are in a(k, m +
1),..., a(k, n). The elements of R are returned in the upper triangular part of sub(A). Z is
given by

Z = Z(1) * Z(2) *... * Z(m).

1730

6 Intel® Math Kernel Library Reference Manual

p?ormrz
Multiplies a general matrix by the orthogonal matrix
from a reduction to upper triangular form formed
by p?tzrzf.

Syntax

call psormrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pdormrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine overwrites the general real m-by-n distributed matrix sub(C) = C(ic:ic+m-1,
jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QTQT*sub(C)trans = 'T':

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(1) H(2)... H(k)

as returned by p?tzrzf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

(global) CHARACTERside
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

(global) INTEGER. The number of rows in the distributed

matrix sub(C) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(C) (n≥0).

n

1731

ScaLAPACK Routines 6

(global) INTEGER. The number of elementary reflectors
whose product defines the matrix Q. Constraints:

k

If side = 'L', m ≥ k ≥0

If side = 'R', n ≥ k ≥0.

(global)l
The columns of the distributed submatrix sub(A) containing
the meaningful part of the Householder reflectors.

If side = 'L', m ≥ l ≥0

If side = 'R', n ≥ l ≥0.

(local)a
REAL for psormrz
DOUBLE PRECISION for pdormrz.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side = 'L', and (lld_a,

LOCc(ja+n-1)) if side = 'R', where lld_a ≥
max(1,LOCr(ia+k-1).
The i-th row must contain the vector which defines the

elementary reflector H(i), ia≤i≤ia+k-1, as returned by
p?tzrzf in the k rows of its distributed matrix argument
A(ia:ia+k-1, ja:*).A(ia:ia+k-1, ja:*) is modified
by the routine but restored on exit.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psormrz
DOUBLE PRECISION for pdormrz
Array, DIMENSION LOCc(ia+k-1)).
Contains the scalar factor tau (i) of elementary reflectors
H(i) as returned by p?tzrzf. tau is tied to the distributed
matrix A.

(local)c
REAL for psormrz

1732

6 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for pdormrz
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C)
to be factored.

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
REAL for psormrz
DOUBLE PRECISION for pdormrz.
Workspace array of dimension of lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

If side = 'L',

lwork ≥ max((mb_a*(mb_a-1))/2, (mpc0 + max(mqa0
+ numroc(numroc(n+iroffc, mb_a, 0, 0, NPROW),
mb_a, 0, 0, lcmp), nqc0))*mb_a) + mb_a*mb_a
else if side ='R',

lwork ≥ max((mb_a*(mb_a-1))/2, (mpc0 +
nqc0)*mb_a) + mb_a*mb_a
end if
where
lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1,
nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol,
NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow,
NPROW),

1733

ScaLAPACK Routines 6

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product Q*sub(C), or Q'*sub (C), or
sub(C)*Q', or sub(C)*Q

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?unmrz
Multiplies a general matrix by the unitary
transformation matrix from a reduction to upper
triangular form determined by p?tzrzf.

Syntax

call pcunmrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunmrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

1734

6 Intel® Math Kernel Library Reference Manual

Description

The routine overwrites the general complex m-by-n distributed matrix sub(C) =
C(ic:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QHQH*sub(C)trans = 'C':

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(1)' H(2)'... H(k)'

as returned by pctzrzf/pztzrzf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

(global) CHARACTERside
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

(global) INTEGER. The number of rows in the distributed

matrix sub(C), (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(C), (n≥0).

n

(global) INTEGER. The number of elementary reflectors
whose product defines the matrix Q. Constraints:

k

If side = 'L', m≥k≥0

If side = 'R', n≥k≥0.

(global) INTEGER. The columns of the distributed submatrix
sub(A) containing the meaningful part of the Householder
reflectors.

l

If side = 'L', m≥l≥0

If side = 'R', n≥l≥0.

(local)a

1735

ScaLAPACK Routines 6

COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side = 'L', and (lld_a,

LOCc(ja+n-1)) if side = 'R', where lld_a≥max(1, LOCr
(ja+k-1). The i-th row must contain the vector which

defines the elementary reflector H(i), ia≤i≤ia+k-1, as
returned by p?gerqf in the k rows of its distributed matrix
argument A(ia:ia +k-1, ja*). A(ia:ia +k-1, ja*)
is modified by the routine but restored on exit.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz
Array, DIMENSION LOCc(ia+k-1)).
Contains the scalar factor tau (i) of elementary reflectors
H(i) as returned by p?gerqf. tau is tied to the distributed
matrix A.

(local)c
COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz.
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C)
to be factored.

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
COMPLEX for pcunmrz

1736

6 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX for pzunmrz.
Workspace array of dimension lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

If side = 'L',

lwork ≥ max((mb_a*(mb_a-1))/2,
(mpc0+max(mqa0+numroc(numroc(n+iroffc, mb_a, 0,
0, NPROW), mb_a, 0, 0, lcmp), nqc0))*mb_a) +
mb_a*mb_a
else if side ='R',

lwork ≥ max((mb_a*(mb_a-1))/2, (mpc0+nqc0)*mb_a)
+ mb_a*mb_a
end if
where
lcmp = lcm/NPROW with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol,
NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

1737

ScaLAPACK Routines 6

Output Parameters

Overwritten by the product Q* sub(C), or Q'*sub (C), or
sub(C)*Q', or sub(C)*Q

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?ggqrf
Computes the generalized QR factorization.

Syntax

call psggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work,
lwork, info)

call pdggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work,
lwork, info)

call pcggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work,
lwork, info)

call pzggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work,
lwork, info)

Description

The routine forms the generalized QR factorization of an n-by-m matrix

sub(A) = A(ia:ia+n-1, ja:ja+m-1)

and an n-by-p matrix

sub(B) = B(ib:ib+n-1, jb:jb+p-1):

as

sub(A) = Q*R, sub(B) = Q*T*Z,

1738

6 Intel® Math Kernel Library Reference Manual

where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p orthogonal/unitary matrix, and
R and T assume one of the forms:

If n ≥ m

or if n <m

where R11 is upper triangular, and

where T12 or T21 is an upper triangular matrix.

In particular, if sub(B) is square and nonsingular, the GQR factorization of sub(A) and sub(B)
implicitly gives the QR factorization of inv (sub(B))* sub (A):

inv(sub(B))*sub(A) = ZH*(inv(T)*R

1739

ScaLAPACK Routines 6

Input Parameters

(global) INTEGER. The number of rows in the distributed

matrices sub (A) and sub(B) (n≥0).

n

(global) INTEGER. The number of columns in the distributed

matrix sub(A) (m≥0).

m

INTEGER. The number of columns in the distributed matrix

sub(B) (p≥0).

p

(local)a
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)). Contains the local pieces of the
n-by-m matrix sub(A) to be factored.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)b
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Pointer into the local memory to an array of dimension
(lld_b, LOCc(jb+p-1)). Contains the local pieces of the
n-by-p matrix sub(B) to be factored.

(global) INTEGER. The row and column indices in the global
array b indicating the first row and the first column of the
submatrix B, respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

(local)work

1740

6 Intel® Math Kernel Library Reference Manual

REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Workspace array of dimension of lwork.

(local or global) INTEGER. Dimension of work, must be at
least

lwork

lwork ≥ max(nb_a*(npa0+mqa0+nb_a),
max((nb_a*(nb_a-1))/2,
(pqb0+npb0)*nb_a)+nb_a*nb_a,
mb_b*(npb0+pqb0+mb_b)),
where
iroffa = mod(ia-1, mb_A),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
npa0 = numroc (n+iroffa, mb_a, MYROW, iarow,
NPROW),
mqa0 = numroc (m+icoffa, nb_a, MYCOL, iacol,
NPCOL)
iroffb = mod(ib-1, mb_b),
icoffb = mod(jb-1, nb_b),
ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW),
ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL),
npb0 = numroc (n+iroffa, mb_b, MYROW, Ibrow,
NPROW),
pqb0 = numroc(m+icoffb, nb_b, MYCOL, ibcol,
NPCOL)
and numroc, indxg2p are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

1741

ScaLAPACK Routines 6

Output Parameters

On exit, the elements on and above the diagonal of sub (A)
contain the min(n, m)-by-m upper trapezoidal matrix R (R is

upper triangular if n ≥ m); the elements below the diagonal,

a

with the array taua, represent the orthogonal/unitary matrix
Q as a product of min(n,m) elementary reflectors. (See
Application Notes below).

(local)taua, taub
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Arrays, DIMENSION LOCc(ja+min(n,m)-1)for taua and
LOCr(ib+n-1) for taub.
The array taua contains the scalar factors of the elementary
reflectors which represent the orthogonal/unitary matrix Q.
taua is tied to the distributed matrix A. (See Application
Notes below).
The array taub contains the scalar factors of the elementary
reflectors which represent the orthogonal/unitary matrix Z.
taub is tied to the distributed matrix B. (See Application
Notes below).

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ja) H(ja+1)... H(ja+k-1),

where k = min(n,m).

1742

6 Intel® Math Kernel Library Reference Manual

Each H(i) has the form

H(i) = i - taua * v * v'

where taua is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:n) is stored on exit in A(ia+i:ia+n-1,ja+i-1), and taua in
taua(ja+i-1).To form Q explicitly, use ScaLAPACK subroutine p?orgqr/p?ungqr. To use Q
to update another matrix, use ScaLAPACK subroutine p?ormqr/p?unmqr.

The matrix Z is represented as a product of elementary reflectors

Z = H(ib) H(ib+1) . . . H(ib+k-1), where k = min(n,p).

Each H(i) has the form

H(i) = i - taub * v * v'

where taub is a real/complex scalar, and v is a real/complex vector with v(p-k+i+1:p) = 0
and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in B(ib+n-k+i-1,jb:jb+p-k+i-2),
and taub in taub(ib+n-k+i-1). To form Z explicitly, use ScaLAPACK subroutine
p?orgrq/p?ungrq. To use Z to update another matrix, use ScaLAPACK subroutine
p?ormrq/p?unmrq.

p?ggrqf
Computes the generalized RQ factorization.

Syntax

call psggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work,
lwork, info)

call pdggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work,
lwork, info)

call pcggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work,
lwork, info)

call pzggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work,
lwork, info)

Description

The routine forms the generalized RQ factorization of an m-by-n matrix sub(A)=(ia:ia+m-1,
ja:ja+n-1) and a p-by-n matrix sub(B)=(ib:ib+p-1, ja:ja+n-1):

1743

ScaLAPACK Routines 6

sub(A) = R*Q, sub(B) = Z*T*Q,

where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p orthogonal/unitary matrix, and
R and T assume one of the forms:

or

where R11 or R21 is upper triangular, and

or

where T11 is upper triangular.

1744

6 Intel® Math Kernel Library Reference Manual

In particular, if sub(B) is square and nonsingular, the GRQ factorization of sub(A) and sub(B)
implicitly gives the RQ factorization of sub (A)*inv(sub(B)):

sub(A)*inv(sub(B))= (R*inv(T))*Z'

where inv(sub(B)) denotes the inverse of the matrix sub(B), and Z' denotes the transpose of
matrix Z.

Input Parameters

(global) INTEGER. The number of rows in the distributed

matrices sub (A) (m≥0).

m

INTEGER. The number of rows in the distributed matrix

sub(B) (p≥0).

p

(global) INTEGER. The number of columns in the distributed

matrices sub(A) and sub(B) (n≥0).

n

(local)a
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). Contains the local pieces of the
m-by-n distributed matrix sub(A) to be factored.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)b
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.
Pointer into the local memory to an array of dimension
(lld_b, LOCc(jb+n-1)).
Contains the local pieces of the p-by-n matrix sub(B) to be
factored.

1745

ScaLAPACK Routines 6

(global) INTEGER. The row and column indices in the global
array b indicating the first row and the first column of the
submatrix B, respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

(local)work
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.
Workspace array of dimension of lwork.

(local or global) INTEGER.lwork

Dimension of work, must be at least lwork ≥
max(mb_a*(mpa0+nqa0+mb_a),
max((mb_a*(mb_a-1))/2, (ppb0+nqb0)*mb_a) +
mb_a*mb_a, nb_b*(ppb0+nqb0+nb_b)), where
iroffa = mod(ia-1, mb_A),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc (m+iroffa, mb_a, MYROW, iarow,
NPROW),
nqa0 = numroc (m+icoffa, nb_a, MYCOL, iacol,
NPCOL)
iroffb = mod(ib-1, mb_b),
icoffb = mod(jb-1, nb_b),
ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW
),
ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL
),
ppb0 = numroc (p+iroffb, mb_b, MYROW, ibrow,
NPROW),
nqb0 = numroc (n+icoffb, nb_b, MYCOL, ibcol,
NPCOL)
and numroc, indxg2p are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.

1746

6 Intel® Math Kernel Library Reference Manual

If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, if m≤n, the upper triangle of A(ia:ia+m-1,
ja+n-m:ja+n-1) contains the m-by-m upper triangular

matrix R; if m≥n, the elements on and above the (m-n)-th

a

subdiagonal contain the m-by-n upper trapezoidal matrix R;
the remaining elements, with the array taua, represent the
orthogonal/unitary matrix Q as a product of min(n, m)
elementary reflectors. (See Application Notes below).

(local)taua, taub
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Arrays, DIMENSION LOCr(ia+m-1)for taua and
LOCc(jb+min(p,n)-1) for taub.
The array taua contains the scalar factors of the elementary
reflectors which represent the orthogonal/unitary matrix Q.
taua is tied to the distributed matrix A.(See Application
Notes below).
The array taub contains the scalar factors of the elementary
reflectors which represent the orthogonal/unitary matrix Z.
taub is tied to the distributed matrix B. (See Application
Notes below).

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1747

ScaLAPACK Routines 6

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ia) H(ia+1)... H(ia+k-1),

where k = min(m,n).

Each H(i) has the form

H(i) = i - taua * v * v'

where taua is a real/complex scalar, and v is a real/complex vector with v(n-k+i+1:n) = 0
and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in A(ia+m-k+i-1, ja:ja+n-k+i-2),
and taua in taua(ia+m-k+i-1). To form Q explicitly, use ScaLAPACK subroutine
p?orgrq/p?ungrq. To use Q to update another matrix, use ScaLAPACK subroutine
p?ormrq/p?unmrq.

The matrix Z is represented as a product of elementary reflectors

Z = H(jb) H(jb+1)... H(jb+k-1), where k = min(p,n).

Each H(i) has the form

H(i) = i - taub * v * v'

where taub is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and
v(i)= 1; v(i+1:p) is stored on exit in B(ib+i:ib+p-1,jb+i-1), and taub in taub(jb+i-1).
To form Z explicitly, use ScaLAPACK subroutine p?orgqr/p?ungqr. To use Z to update another
matrix, use ScaLAPACK subroutine p?ormqr/p?unmqr.

Symmetric Eigenproblems

To solve a symmetric eigenproblem with ScaLAPACK, you usually need to reduce the matrix to
real tridiagonal form T and then find the eigenvalues and eigenvectors of the tridiagonal matrix
T. ScaLAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal
(or unitary) similarity transformation A = QTQH as well as for solving tridiagonal symmetric
eigenvalue problems. These routines are listed in Table 6-4 .

There are different routines for symmetric eigenproblems, depending on whether you need
eigenvalues only or eigenvectors as well, and on the algorithm used (either the QTQ algorithm,
or bisection followed by inverse iteration).

1748

6 Intel® Math Kernel Library Reference Manual

Table 6-4 Computational Routines for Solving Symmetric Eigenproblems

Symmetric
tridiagonal
matrix

Orthogonal/unitary
matrix

Dense
symmetric/Hermitian
matrix

Operation

p?sytrd/p?hetrdReduce to tridiagonal form A =
QTQH

p?ormtr/p?unmtrMultiply matrix after reduction

steqr2*)Find all eigenvalues and
eigenvectors of a tridiagonal
matrix T by a QTQ method

p?stebzFind selected eigenvalues of a
tridiagonal matrix T via bisection

p?steinFind selected eigenvectors of a
tridiagonal matrix T by inverse
iteration

*) This routine is described as part of auxiliary ScaLAPACK routines.

p?sytrd
Reduces a symmetric matrix to real symmetric
tridiagonal form by an orthogonal similarity
transformation.

Syntax

call pssytrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pdsytrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

Description

This routine reduces a real symmetric matrix sub(A) to symmetric tridiagonal form T by an
orthogonal similarity transformation:

Q'*sub(A)*Q = T,

where sub(A) = A(ia:ia+n-1,ja:ja+n-1).

Input Parameters

(global) CHARACTER.uplo
Specifies whether the upper or lower triangular part of the
symmetric matrix sub(A) is stored:
If uplo = 'U', upper triangular

1749

ScaLAPACK Routines 6

If uplo = 'L', lower triangular

(global) INTEGER. The order of the distributed matrix sub(A)

(n≥0).

n

(local)a
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains
the local pieces of the symmetric distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular part of the matrix, and
its strictly lower triangular part is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular part of the matrix, and
its strictly upper triangular part is not referenced. See
Application Notes below.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)work
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Workspace array of dimension lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

lwork ≥ max(NB*(np +1), 3*NB),
where NB = mb_a = nb_a,
np = numroc(n, NB, MYROW, iarow, NPROW),
iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW).
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.

1750

6 Intel® Math Kernel Library Reference Manual

If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, if uplo = 'U', the diagonal and first superdiagonal
of sub(A) are overwritten by the corresponding elements of
the tridiagonal matrix T, and the elements above the first

a

superdiagonal, with the array tau, represent the orthogonal
matrix Q as a product of elementary reflectors; if uplo =
'L', the diagonal and first subdiagonal of sub(A) are
overwritten by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array tau, represent the orthogonal matrix Q as a
product of elementary reflectors. See Application Notes
below.

(local)d
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION LOCc(ja+n-1) .The diagonal elements
of the tridiagonal matrix T:
d(i)= A(i,i).
d is tied to the distributed matrix A.

(local)e
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION LOCc(ja+n-1) if uplo = 'U',
LOCc(ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix T:
e(i)= A(i,i+1) if uplo = 'U',
e(i) = A(i+1,i) if uplo = 'L'.
e is tied to the distributed matrix A.

(local)tau
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.

1751

ScaLAPACK Routines 6

Arrays, DIMENSION LOCc(ja+n-1). This array contains the
scalar factors tau of the elementary reflectors. tau is tied
to the distributed matrix A.

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

Q = H(n-1)... H(2) H(1).

Each H(i) has the form

H(i) = i - tau * v * v',

where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1)
is stored on exit in A(ia:ia+i-2, ja+i), and tau in tau (ja+i-1).

If uplo = 'L', the matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2)... H(n-1).

Each H(i) has the form

H(i) = i - tau * v * v',

where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n)
is stored on exit in A(ia+i+1:ia+n-1,ja+i-1), and tau in tau(ja+i-1).

The contents of sub(A) on exit are illustrated by the following examples with n = 5:

If uplo = 'U':

1752

6 Intel® Math Kernel Library Reference Manual

If uplo = 'L':

where d and e denote diagonal and off-diagonal elements of T, and v i denotes an element of
the vector defining H(i).

p?ormtr
Multiplies a general matrix by the orthogonal
transformation matrix from a reduction to
tridiagonal form determined by p?sytrd.

Syntax

call psormtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pdormtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

1753

ScaLAPACK Routines 6

Description

The routine overwrites the general real distributed m-by-n matrix sub(C) =
C(ic:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QTQT*sub(C)trans = 'T':

where Q is a real orthogonal distributed matrix of order nq, with nq = m if side = 'L' and nq
= n if side = 'R'.

Q is defined as the product of nq elementary reflectors, as returned by p?sytrd.

If uplo = 'U', Q = H(nq-1)... H(2) H(1);

If uplo = 'L', Q = H(1) H(2)... H(nq-1).

Input Parameters

(global) CHARACTERside
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

(global) CHARACTER.uplo
= 'U': Upper triangle of A(ia:*, ja:*) contains
elementary reflectors from p?sytrd;
= 'L': Lower triangle of A(ia:*,ja:*) contains elementary
reflectors from p?sytrd

(global) INTEGER. The number of rows in the distributed

matrix sub(C) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(C) (n≥0).

n

(local)a
REAL for psormtr
DOUBLE PRECISION for pdormtr.

1754

6 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side='L', or (lld_a,
LOCc(ja+n-1)) if side = 'R'.
Contains the vectors which define the elementary reflectors,
as returned by p?sytrd.

If side='L', lld_a ≥ max(1,LOCr(ia+m-1));

If side ='R', lld_a ≥ max(1, LOCr(ia+n-1)).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psormtr
DOUBLE PRECISION for pdormtr.
Array, DIMENSION of ltau where
if side = 'L' and uplo = 'U', ltau = LOCc(m_a),
if side = 'L' and uplo = 'L', ltau = LOCc(ja+m-2),
if side = 'R' and uplo = 'U', ltau = LOCc(n_a),
if side = 'R' and uplo = 'L', ltau = LOCc(ja+n-2).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by p?sytrd. tau is tied to the
distributed matrix A.

(local) REAL for psormtrc
DOUBLE PRECISION for pdormtr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc (ja+n-1)). Contains the local pieces of
the distributed matrix sub (C).

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
REAL for psormtr
DOUBLE PRECISION for pdormtr.

1755

ScaLAPACK Routines 6

Workspace array of dimension lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

if uplo = 'U',
iaa= ia; jaa= ja+1, icc= ic; jcc= jc;
else uplo = 'L',
iaa= ia+1, jaa= ja;
If side = 'L',
icc= ic+1; jcc= jc;
else icc= ic; jcc= jc+1;
end if
end if
If side = 'L',
mi= m-1; ni= n

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0 +
mpc0)*nb_a) + nb_a*nb_a
else
If side = 'R',
mi= m; mi = n-1;

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0 +
max(npa0+numroc(numroc(ni+icoffc, nb_a, 0, 0,
NPCOL), nb_a, 0, 0, lcmq), mpc0))*nb_a)+
nb_a*nb_a
end if
where lcmq = lcm/NPCOL with lcm = ilcm(NPROW,
NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow,
NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow,
NPROW),

1756

6 Intel® Math Kernel Library Reference Manual

nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo. If lwork = -1,
then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and
optimal size for all work arrays. Each of these values is
returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product Q*sub(C), or Q'*sub(C), or
sub(C)*Q', or sub(C)*Q.

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?hetrd
Reduces a Hermitian matrix to Hermitian
tridiagonal form by a unitary similarity
transformation.

Syntax

call pchetrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pzhetrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

Description

This routine reduces a complex Hermitian matrix sub(A) to Hermitian tridiagonal form T by a
unitary similarity transformation:

1757

ScaLAPACK Routines 6

Q'*sub(A)*Q = T

where sub(A) = A(ia:ia+n-1,ja:ja+n-1).

Input Parameters

(global) CHARACTER.uplo
Specifies whether the upper or lower triangular part of the
Hermitian matrix sub(A) is stored:
If uplo = 'U', upper triangular
If uplo = 'L', lower triangular

(global) INTEGER. The order of the distributed matrix sub(A)

(n≥0).

n

(local)a
COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains
the local pieces of the Hermitian distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular part of the matrix, and
its strictly lower triangular part is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular part of the matrix, and
its strictly upper triangular part is not referenced.(See
Application Notes below).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)work
COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.
Workspace array of dimension lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

lwork≥max(NB*(np +1), 3*NB)

1758

6 Intel® Math Kernel Library Reference Manual

where NB = mb_a = nb_a,
np = numroc(n, NB, MYROW, iarow, NPROW),
iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW).
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit,a
If uplo = 'U', the diagonal and first superdiagonal of
sub(A) are overwritten by the corresponding elements of
the tridiagonal matrix T, and the elements above the first
superdiagonal, with the array tau, represent the unitary
matrix Q as a product of elementary reflectors;if uplo =
'L', the diagonal and first subdiagonal of sub(A) are
overwritten by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array tau, represent the unitary matrix Q as a product
of elementary reflectors. (See Application Notes below).

(local)d
REAL for pchetrd
DOUBLE PRECISION for pzhetrd.
Arrays, DIMENSION LOCc(ja+n-1). The diagonal elements
of the tridiagonal matrix T:
d(i)= A(i,i).
d is tied to the distributed matrix A.

(local)e
REAL for pchetrd
DOUBLE PRECISION for pzhetrd.
Arrays, DIMENSION LOCc(ja+n-1) if uplo = 'U';
LOCc(ja+n-2) - otherwise.
The off-diagonal elements of the tridiagonal matrix T:

1759

ScaLAPACK Routines 6

e(i)= A(i,i+1) if uplo = 'U',
e(i)= A(i+1,i) if uplo = 'L'.
e is tied to the distributed matrix A.

(local) COMPLEX for pchetrdtau
DOUBLE COMPLEX for pzhetrd.
Arrays, DIMENSION LOCc(ja+n-1). This array contains the
scalar factors tau of the elementary reflectors. tau is tied
to the distributed matrix A.

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

Q = H(n-1)... H(2) H(1).

Each H(i) has the form

H(i) = i - tau * v * v',

where tau is a complex scalar, and v is a complex vector with v(i+1:n) = 0 and v(i) = 1;
v(1:i-1) is stored on exit in A(ia:ia+i-2, ja+i), and tau in tau (ja+i-1).

If uplo = 'L', the matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2)... H(n-1).

Each H(i) has the form

H(i) = i - tau * v * v',

where tau is a complex scalar, and v is a complex vector with v(1:i) = 0 and v(i+1) = 1;
v(i+2:n) is stored on exit in A(ia+i+1:ia+n-1,ja+i-1), and tau in tau(ja+i-1).

The contents of sub(A) on exit are illustrated by the following examples with n = 5:

If uplo = 'U':

1760

6 Intel® Math Kernel Library Reference Manual

If uplo = 'L':

where d and e denote diagonal and off-diagonal elements of T, and v i denotes an element of
the vector defining H(i).

1761

ScaLAPACK Routines 6

p?unmtr
Multiplies a general matrix by the unitary
transformation matrix from a reduction to
tridiagonal form determined by p?hetrd.

Syntax

call pcunmtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunmtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine overwrites the general complex distributed m-by-n matrix sub(C) =
C(ic:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QHQH*sub(C)trans = 'C':

where Q is a complex unitary distributed matrix of order nq, with nq = m if side = 'L' and
nq = n if side = 'R'.

Q is defined as the product of nq-1 elementary reflectors, as returned by p?hetrd.

If uplo = 'U', Q = H(nq-1)... H(2) H(1);

If uplo = 'L', Q = H(1) H(2)... H(nq-1).

Input Parameters

(global) CHARACTERside
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

(global) CHARACTER.uplo

1762

6 Intel® Math Kernel Library Reference Manual

= 'U': Upper triangle of A(ia:*, ja:*) contains
elementary reflectors from p?hetrd;
= 'L': Lower triangle of A(ia:*,ja:*) contains elementary
reflectors from p?hetrd

(global) INTEGER. The number of rows in the distributed

matrix sub(C) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(C) (n≥0).

n

(local)a
REAL for pcunmtr
DOUBLE PRECISION for pzunmtr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side='L', or (lld_a,
LOCc(ja+n-1)) if side = 'R'.
Contains the vectors which define the elementary reflectors,
as returned by p?hetrd.

If side='L', lld_a ≥ max(1,LOCr(ia+m-1));

If side ='R', lld_a ≥ max(1, LOCr(ia+n-1)).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
COMPLEX for pcunmtr
DOUBLE COMPLEX for pzunmtr.
Array, DIMENSION of ltau where
If side = 'L' and uplo = 'U', ltau = LOCc(m_a),
if side = 'L' and uplo = 'L', ltau = LOCc(ja+m-2),
if side = 'R' and uplo = 'U', ltau = LOCc(n_a),
if side = 'R' and uplo = 'L', ltau = LOCc(ja+n-2).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by p?hetrd. tau is tied to the
distributed matrix A.

(local) COMPLEX for pcunmtrc

1763

ScaLAPACK Routines 6

DOUBLE COMPLEX for pzunmtr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc (ja+n-1)). Contains the local pieces of
the distributed matrix sub (C).

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
COMPLEX for pcunmtr
DOUBLE COMPLEX for pzunmtr.
Workspace array of dimension lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

If uplo = 'U',
iaa= ia; jaa= ja+1, icc= ic; jcc= jc;
else uplo = 'L',
iaa= ia+1, jaa= ja;
If side = 'L',
icc= ic+1; jcc= jc;
else icc= ic; jcc= jc+1;
end if
end if
If side = 'L',
mi= m-1; ni= n

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0 +
mpc0)*nb_a) + nb_a*nb_a
else
If side = 'R',
mi= m; mi = n-1;

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0 +
max(npa0+numroc(numroc(ni+icoffc, nb_a, 0, 0,
NPCOL), nb_a, 0, 0, lcmq), mpc0))*nb_a) +
nb_a*nb_a
end if

1764

6 Intel® Math Kernel Library Reference Manual

where lcmq = lcm/NPCOL with lcm = ilcm(NPROW,
NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo. If lwork = -1,
then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and
optimal size for all work arrays. Each of these values is
returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product Q*sub(C), or Q'*sub(C), or
sub(C)*Q', or sub(C)*Q.

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - i

1765

ScaLAPACK Routines 6

p?stebz
Computes the eigenvalues of a symmetric
tridiagonal matrix by bisection.

Syntax

call psstebz(ictxt, range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit,
w, iblock, isplit, work, iwork, liwork, info)

call pdstebz(ictxt, range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit,
w, iblock, isplit, work, iwork, liwork, info)

Description

This routine computes the eigenvalues of a symmetric tridiagonal matrix in parallel. These may
be all eigenvalues, all eigenvalues in the interval [v1 vu], or the eigenvalues indexed il
through iu. A static partitioning of work is done at the beginning of p?stebz which results in
all processes finding an (almost) equal number of eigenvalues.

Input Parameters

(global) INTEGER. The BLACS context handle.ictxt

(global) CHARACTER. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues in the
interval [v1 vu].
If range ='I', the routine computes eigenvalues with
indices il to iu.

(global) CHARACTER. Must be 'B' or 'E'.order
If order = 'B', the eigenvalues are to be ordered from
smallest to largest within each split-off block.
If order = 'E', the eigenvalues for the entire matrix are
to be ordered from smallest to largest.

(global) INTEGER. The order of the tridiagonal matrix T

(n≥0).

n

(global)vl, vu
REAL for psstebz
DOUBLE PRECISION for pdstebz.

1766

6 Intel® Math Kernel Library Reference Manual

If range = 'V', the routine computes the lower and the
upper bounds for the eigenvalues on the interval [1, vu].
If range = 'A' or 'I', vl and vu are not referenced.

(global)il, iu
INTEGER. Constraint: 1≤il≤iu≤n.
If range = 'I', the index of the smallest eigenvalue is
returned for il and of the largest eigenvalue for iu
(assuming that the eigenvalues are in ascending order)
must be returned. il must be at least 1. iu must be at least
il and no greater than n.
If range = 'A' or 'V', il and iu are not referenced.

(global)abstol
REAL for psstebz
DOUBLE PRECISION for pdstebz.
The absolute tolerance to which each eigenvalue is required.
An eigenvalue (or cluster) is considered to have converged

if it lies in an interval of width abstol. If abstol≤0, then
the tolerance is taken as ulp||T||, where ulp is the
machine precision, and ||T|| means the 1-norm of T
Eigenvalues will be computed most accurately when abstol
is set to the underflow threshold slamch('U'), not 0. Note
that if eigenvectors are desired later by inverse iteration
(p?stein), abstol should be set to 2*p?lamch('S').

(global)d
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array, DIMENSION (n).
Contains n diagonal elements of the tridiagonal matrix T.
To avoid overflow, the matrix must be scaled so that its
largest entry is no greater than the overflow(1/2) *
underflow(1/4) in absolute value, and for greatest accuracy,
it should not be much smaller than that.

(global)e
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array, DIMENSION (n - 1).

1767

ScaLAPACK Routines 6

Contains (n-1) off-diagonal elements of the tridiagonal
matrix T. To avoid overflow, the matrix must be scaled so
that its largest entry is no greater than overflow(1/2) *
underflow(1/4) in absolute value, and for greatest accuracy,
it should not be much smaller than that.

(local)work
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array, DIMENSION max(5n, 7). This is a workspace array.

(local) INTEGER. The size of the work array must be ≥
max(5n, 7).

lwork

If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

(local) INTEGER. Array, DIMENSION max(4n, 14). This is
a workspace array.

iwork

(local) INTEGER. the size of the iwork array must ≥
max(4n, 14, NPROCS).

liwork

If liwork = -1, then liwork is global input and a
workspace query is assumed; the routine only calculates
the minimum and optimal size for all work arrays. Each of
these values is returned in the first entry of the
corresponding work array, and no error message is issued
by pxerbla.

Output Parameters

(global) INTEGER. The actual number of eigenvalues found.

0≤m≤n

m

(global) INTEGER. The number of diagonal blocks detected

in T. 1≤nsplit≤n

nsplit

(global)w
REAL for psstebz
DOUBLE PRECISION for pdstebz.

1768

6 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (n). On exit, the first m elements of w
contain the eigenvalues on all processes.

(global) INTEGER.iblock
Array, DIMENSION (n). At each row/column j where e(j) is
zero or small, the matrix T is considered to split into a block
diagonal matrix. On exit iblock(i) specifies which block
(from 1 to the number of blocks) the eigenvalue w(i)
belongs to.

NOTE. In the (theoretically impossible) event that
bisection does not converge for some or all
eigenvalues, info is set to 1 and the ones for which
it did not are identified by a negative block number.

(global) INTEGER.isplit
Array, DIMENSION (n).
Contains the splitting points, at which T breaks up into
submatrices. The first submatrix consists of rows/columns
1 to isplit(1), the second of rows/columns isplit(1)+1
through isplit(2), etc., and the nsplit-th consists of
rows/columns isplit(nsplit-1)+1 through
isplit(nsplit)=n. (Only the first nsplit elements are
used, but since the nsplit values are not known, n words
must be reserved for isplit.)

(global) INTEGER.info
If info = 0, the execution is successful.
If info < 0, if info = -i, the i-th argument has an illegal
value.
If info > 0, some or all of the eigenvalues fail to converge
or not computed.
If info = 1, bisection fails to converge for some
eigenvalues; these eigenvalues are flagged by a negative
block number. The effect is that the eigenvalues may not
be as accurate as the absolute and relative tolerances.
If info = 2, mismatch between the number of eigenvalues
output and the number desired.

1769

ScaLAPACK Routines 6

If info = 3: range='i', and the Gershgorin interval
initially used is incorrect. No eigenvalues are computed.
Probable cause: the machine has a sloppy floating point
arithmetic. Increase the fudge parameter, recompile, and
try again.

p?stein
Computes the eigenvectors of a tridiagonal matrix
using inverse iteration.

Syntax

call psstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz, work,
lwork, iwork, liwork, ifail, iclustr, gap, info)

call pdstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz, work,
lwork, iwork, liwork, ifail, iclustr, gap, info)

call pcstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz, work,
lwork, iwork, liwork, ifail, iclustr, gap, info)

call pzstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz, work,
lwork, iwork, liwork, ifail, iclustr, gap, info)

Description

This routine computes the eigenvectors of a symmetric tridiagonal matrix T corresponding to
specified eigenvalues, by inverse iteration. p?stein does not orthogonalize vectors that are
on different processes. The extent of orthogonalization is controlled by the input parameter
lwork. Eigenvectors that are to be orthogonalized are computed by the same process. p?stein
decides on the allocation of work among the processes and then calls ?stein2 (modified LAPACK
routine) on each individual process. If insufficient workspace is allocated, the expected
orthogonalization may not be done.

NOTE. If the eigenvectors obtained are not orthogonal, increase lwork and run the code
again.

p = NPROW * NPCOL is the total number of processes.

1770

6 Intel® Math Kernel Library Reference Manual

Input Parameters

(global) INTEGER. The order of the matrix T (n ≥ 0).n

(global) INTEGER. The number of eigenvectors to be
returned.

m

(global)d, e, w
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays: d(*) contains the diagonal elements of T.
DIMENSION (n).
e(*) contains the off-diagonal elements of T.
DIMENSION (n-1).
w(*) contains all the eigenvalues grouped by split-off
block.The eigenvalues are supplied from smallest to largest
within the block. (Here the output array w from p?stebz
with order = 'B' is expected. The array should be replicated
in all processes.)
DIMENSION(m)

(global) INTEGER.iblock
Array, DIMENSION (n). The submatrix indices associated
with the corresponding eigenvalues in w--1 for eigenvalues
belonging to the first submatrix from the top, 2 for those
belonging to the second submatrix, etc. (The output array
iblock from p?stebz is expected here).

(global) INTEGER.isplit
Array, DIMENSION (n). The splitting points, at which T breaks
up into submatrices. The first submatrix consists of
rows/columns 1 to isplit(1), the second of rows/columns
isplit(1)+1 through isplit(2), etc., and the nsplit-th
consists of rows/columns isplit(nsplit-1)+1 through
isplit(nsplit)=n . (The output array isplit from
p?stebz is expected here.)

(global)orfac
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

1771

ScaLAPACK Routines 6

orfac specifies which eigenvectors should be orthogonalized.
Eigenvectors that correspond to eigenvalues within
orfac*||T|| of each other are to be orthogonalized.
However, if the workspace is insufficient (see lwork), this
tolerance may be decreased until all eigenvectors can be
stored in one process. No orthogonalization is done if orfac
is equal to zero. A default value of 1000 is used if orfac is
negative. orfac should be identical on all processes

(global) INTEGER. The row and column indices in the global
array z indicating the first row and the first column of the
submatrix Z, respectively.

iz, jz

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix Z.

descz

(local). REAL for single-precision flavorswork
DOUBLE PRECISION for double-precision flavors.
Workspace array, DIMENSION (lwork).

(local) INTEGER.lwork
lwork controls the extent of orthogonalization which can be
done. The number of eigenvectors for which storage is
allocated on each process is nvec =
floor((lwork-max(5*n,np00*mq00))/n). Eigenvectors
corresponding to eigenvalue clusters of size nvec -
ceil(m/p) + 1 are guaranteed to be orthogonal (the
orthogonality is similar to that obtained from ?stein2).

NOTE. lwork must be no smaller than
max(5*n,np00*mq00) + ceil(m/p)*n and should
have the same input value on all processes.

It is the minimum value of lwork input on different
processes that is significant.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

1772

6 Intel® Math Kernel Library Reference Manual

(local) INTEGER.iwork
Workspace array, DIMENSION (3n+p+1).

(local) INTEGER. The size of the array iwork. It must be ≥
3*n + p + 1.

liwork

If liwork = -1, then liwork is global input and a
workspace query is assumed; the routine only calculates
the minimum and optimal size for all work arrays. Each of
these values is returned in the first entry of the
corresponding work array, and no error message is issued
by pxerbla.

Output Parameters

(local)z
REAL for psstein
DOUBLE PRECISION for pdstein
COMPLEX for pcstein
DOUBLE COMPLEX for pzstein.
Array, DIMENSION (descz(dlen_), n/NPCOL + NB). z
contains the computed eigenvectors associated with the
specified eigenvalues. Any vector which fails to converge is
set to its current iterate after MAXIT iterations (See
?stein2). On output, z is distributed across the p processes
in block cyclic format.

On exit, work(1) gives a lower bound on the workspace
(lwork) that guarantees the user desired orthogonalization
(see orfac). Note that this may overestimate the minimum
workspace needed.

work(1)

On exit, iwork(1) contains the amount of integer workspace
required.

iwork

On exit, the iwork(2) through iwork(p+2) indicate the
eigenvectors computed by each process. Process i computes
eigenvectors indexed iwork(i+2)+1 through iwork(i+3).

(global). INTEGER. Array, DIMENSION (m). On normal exit,
all elements of ifail are zero. If one or more eigenvectors
fail to converge after MAXIT iterations (as in ?stein), then

ifail

info > 0 is returned. If mod(info, m+1)>0, then for i=1

1773

ScaLAPACK Routines 6

to mod(info,m+1), the eigenvector corresponding to the
eigenvalue w(ifail(i)) failed to converge (w refers to the
array of eigenvalues on output).

(global) INTEGER. Array, DIMENSION (2*p)iclustr
This output array contains indices of eigenvectors
corresponding to a cluster of eigenvalues that could not be
orthogonalized due to insufficient workspace (see lwork,
orfac and info). Eigenvectors corresponding to clusters of
eigenvalues indexed iclustr(2*I-1) to iclustr(2*I),
i = 1 to info/(m+1), could not be orthogonalized due to
lack of workspace. Hence the eigenvectors corresponding
to these * clusters may not be orthogonal. iclustr is a
zero terminated array
---(iclustr(2*k).ne.0.and.iclustr(2*k+1).eq.0)
if and only if k is the number of clusters.

(global)gap
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
This output array contains the gap between eigenvalues
whose eigenvectors could not be orthogonalized. The info/m
output values in this array correspond to the info/(m+1)
clusters indicated by the array iclustr. As a result, the dot
product between eigenvectors corresponding to the i-th
cluster may be as high as (O(n)*macheps)/gap(i).

(global) INTEGER.info
If info = 0, the execution is successful.
If info < 0: If the i-th argument is an array and the
j-entry had an illegal value, then info = -(i*100+j),
If the i-th argument is a scalar and had an illegal value,
then info = -i.
If info < 0: if info = -i, the i-th argument had an illegal
value.
If info > 0: if mod(info, m+1) = i, then i eigenvectors
failed to converge in MAXIT iterations. Their indices are
stored in the array ifail. If info/(m+1) = i, then
eigenvectors corresponding to i clusters of eigenvalues
could not be orthogonalized due to insufficient workspace.
The indices of the clusters are stored in the array iclustr.

1774

6 Intel® Math Kernel Library Reference Manual

Nonsymmetric Eigenvalue Problems

This section describes ScaLAPACK routines for solving nonsymmetric eigenvalue problems,
computing the Schur factorization of general matrices, as well as performing a number of related
computational tasks.

To solve a nonsymmetric eigenvalue problem with ScaLAPACK, you usually need to reduce the
matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg
matrix obtained.

Table 6-5 lists ScaLAPACK routines for reducing the matrix to the upper Hessenberg form by
an orthogonal (or unitary) similarity transformation A = QHQH, as well as routines for solving
eigenproblems with Hessenberg matrices, and multiplying the matrix after reduction.

Table 6-5 Computational Routines for Solving Nonsymmetric Eigenproblems

HessenbergmatrixOrthogonal/Unitary
matrix

General matrixOperation performed

p?gehrdReduce to Hessenberg form A =
QHQH

p?ormhr/p?unmhrMultiply the matrix after reduction

p?lahqrFind eigenvalues and Schur
factorization

p?gehrd
Reduces a general matrix to upper Hessenberg
form.

Syntax

call psgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

call pdgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

call pcgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

call pzgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine reduces a real/complex general distributed matrix sub (A) to upper Hessenberg
form H by an orthogonal or unitary similarity transformation

Q'*sub(A)*Q = H,

1775

ScaLAPACK Routines 6

where sub(A) = A(ia+n-1:ia+n-1, ja+n-1:ja+n-1).

Input Parameters

(global) INTEGER. The order of the distributed matrix sub(A)

(n≥0).

n

(global) INTEGER.ilo, ihi
It is assumed that sub(A) is already upper triangular in rows
ia:ia+ilo-2 and ia+ihi:ia+n-1 and columns
ja:ja+ilo-2 and ja+ihi:ja+n-1. (See Application Notes
below).

If n > 0, 1≤ilo≤ihi≤n; otherwise set ilo = 1, ihi =
n.

(local) REAL for psgehrda
DOUBLE PRECISION for pdgehrd
COMPLEX for pcgehrd
DOUBLE COMPLEX for pzgehrd.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains
the local pieces of the n-by-n general distributed matrix
sub(A) to be reduced.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)work
REAL for psgehrd
DOUBLE PRECISION for pdgehrd
COMPLEX for pcgehrd
DOUBLE COMPLEX for pzgehrd.
Workspace array of dimension lwork.

(local or global) INTEGER, dimension of the array work.
lwork is local input and must be at least

lwork

lwork≥NB*NB + NB*max(ihip+1, ihlp+inlq)
where NB = mb_a = nb_a,
iroffa = mod(ia-1, NB),

1776

6 Intel® Math Kernel Library Reference Manual

icoffa = mod(ja-1, NB),
ioff = mod(ia+ilo-2, NB), iarow = indxg2p(ia,
NB, MYROW, rsrc_a, NPROW), ihip =
numroc(ihi+iroffa, NB, MYROW, iarow, NPROW),
ilrow = indxg2p(ia+ilo-1, NB, MYROW, rsrc_a,
NPROW),
ihlp = numroc(ihi-ilo+ioff+1, NB, MYROW, ilrow,
NPROW),
ilcol = indxg2p(ja+ilo-1, NB, MYCOL, csrc_a,
NPCOL),
inlq = numroc(n-ilo+ioff+1, NB, MYCOL, ilcol,
NPCOL),
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, the upper triangle and the first subdiagonal of
sub(A)are overwritten with the upper Hessenberg matrix H,
and the elements below the first subdiagonal, with the array
tau, represent the orthogonal/unitary matrix Q as a product
of elementary reflectors. (See Application Notes below).

a

(local). REAL for psgehrdtau
DOUBLE PRECISION for pdgehrd
COMPLEX for pcgehrd
DOUBLE COMPLEX for pzgehrd.
Array, DIMENSION at least max(ja+n-2).
The scalar factors of the elementary reflectors (see
Application Notes below). Elements ja:ja+ilo-2 and
ja+ihi:ja+n-2 of tau are set to zero. tau is tied to the
distributed matrix A.

1777

ScaLAPACK Routines 6

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Application Notes

The matrix Q is represented as a product of (ihi-ilo) elementary reflectors

Q = H(ilo) H(ilo+1)... H(ihi-1).

Each H(i) has the form

H(i)= i - tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i)= 0, v(i+1)=
1 and v(ihi+1:n)= 0; v(i+2:ihi) is stored on exit in a(ia+ilo+i:ia+ihi-1,ja+ilo+i-2),
and tau in tau(ja+ilo+i-2). The contents of a(ia:ia+n-1,ja:ja+n-1) are illustrated by
the following example, with n = 7, ilo = 2 and ihi = 6:

on entry

on exit

1778

6 Intel® Math Kernel Library Reference Manual

where a denotes an element of the original matrix sub(A), H denotes a modified element of the
upper Hessenberg matrix H, and vi denotes an element of the vector defining H(ja+ilo+i-2).

p?ormhr
Multiplies a general matrix by the orthogonal
transformation matrix from a reduction to
Hessenberg form determined by p?gehrd.

Syntax

call psormhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

call pdormhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

Description

The routine overwrites the general real distributed m-by-n matrix sub(C)= C(ic:ic+m-1,
jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QTQT*sub(C)trans = 'T':

1779

ScaLAPACK Routines 6

where Q is a real orthogonal distributed matrix of order nq, with nq = m if side = 'L' and nq
= n if side = 'R'.

Q is defined as the product of ihi-ilo elementary reflectors, as returned by p?gehrd.

Q = H(ilo) H(ilo+1)... H(ihi-1).

Input Parameters

(global) CHARACTERside
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

(global) CHARACTERtrans
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

(global) INTEGER. The number of rows in the distributed

matrix sub (C) (m≥0).

m

(global) INTEGER. The number of columns in he distributed

matrix sub (C) (n≥0).

n

(global) INTEGER.ilo, ihi
ilo and ihi must have the same values as in the previous
call of p?gehrd. Q is equal to the unit matrix except for the
distributed submatrix
Q(ia+ilo:ia+ihi-1,ia+ilo:ja+ihi-1).

If side = 'L', 1≤ilo≤ihi≤max(1,m);

If side = 'R', 1≤ilo≤ihi≤max(1,n);
ilo and ihi are relative indexes.

(local)a
REAL for psormhr
DOUBLE PRECISION for pdormhr
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side='L', and (lld_a,
LOCc(ja+n-1)) if side = 'R'.
Contains the vectors which define the elementary reflectors,
as returned by p?gehrd.

1780

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psormhr
DOUBLE PRECISION for pdormhr
Array, DIMENSION LOCc(ja+m-2), if side = 'L', and
LOCc(ja+n-2) if side = 'R'.
This array contains the scalar factors tau(j) of the
elementary reflectors H(j) as returned by p?gehrd. tau is
tied to the distributed matrix A.

(local)c
REAL for psormhr
DOUBLE PRECISION for pdormhr
Pointer into the local memory to an array of dimension
(lld_c,LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C).

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
REAL for psormhr
DOUBLE PRECISION for pdormhr
Workspace array with dimension lwork.

(local or global) INTEGER.lwork
The dimension of the array work.
lwork must be at least iaa = ia + ilo; jaa =
ja+ilo-1;
If side = 'L',
mi = ihi-ilo; ni = n; icc = ic + ilo; jcc = jc;

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0+mpc0)*nb_a)
+ nb_a*nb_a

1781

ScaLAPACK Routines 6

else if side = 'R',
mi = m; ni = ihi-ilo; icc = ic; jcc = jc + ilo;

lwork ≥ max((nb_a*(nb_a-1))/2,
(nqc0+max(npa0+numroc(numroc(ni+icoffc, nb_a,
0, 0, NPCOL), nb_a, 0, 0, lcmq), mpc0))*nb_a) +
nb_a*nb_a
end if
where lcmq = lcm/NPCOL with lcm = ilcm(NPROW,
NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow,
NPROW),
iroffc = mod(icc-1, mb_c), icoffc = mod(jcc-1,
nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

sub(C) is overwritten by Q*sub(C), or Q'*sub(C), or
sub(C)*Q', or sub(C)*Q.

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info

1782

6 Intel® Math Kernel Library Reference Manual

= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

p?unmhr
Multiplies a general matrix by the unitary
transformation matrix from a reduction to
Hessenberg form determined by p?gehrd.

Syntax

call pcunmhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

call pzunmhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

Description

The routine overwrites the general complex distributed m-by-n matrix sub(C) =
C(ic:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QHQH*sub(C)trans = 'H':

where Q is a complex unitary distributed matrix of order nq, with nq = m if side = 'L' and
nq = n if side = 'R'.

Q is defined as the product of ihi-ilo elementary reflectors, as returned by p?gehrd.

Q = H(ilo) H(ilo+1)... H(ihi-1).

Input Parameters

(global) CHARACTERside
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

(global) CHARACTERtrans

1783

ScaLAPACK Routines 6

='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

(global) INTEGER. The number of rows in the distributed

submatrix sub (C) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

submatrix sub (C) (n≥0).

n

(global) INTEGERilo, ihi
These must be the same parameters ilo and ihi,
respectively, as supplied to p?gehrd. Q is equal to the unit
matrix except in the distributed submatrix Q
(ia+ilo:ia+ihi-1,ia+ilo:ja+ihi-1).

If side ='L', then 1≤ilo≤ihi≤max(1,m).

If side = 'R', then 1≤ilo≤ihi≤max(1,n)
ilo and ihi are relative indexes.

(local)a
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Pointer into the local memory to an array of dimension
(lld_a, LOC c(ja+m-1)) if side='L', and (lld_a,
LOCc(ja+n-1)) if side = 'R'.
Contains the vectors which define the elementary reflectors,
as returned by p?gehrd.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Array, DIMENSION LOCc(ja+m-2), if side = 'L', and
LOCc(ja+n-2) if side = 'R'.
This array contains the scalar factors tau(j) of the
elementary reflectors H(j) as returned by p?gehrd. tau is
tied to the distributed matrix A.

1784

6 Intel® Math Kernel Library Reference Manual

(local)c
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Pointer into the local memory to an array of dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C).

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Workspace array with dimension lwork.

(local or global)lwork
The dimension of the array work.
lwork must be at least iaa = ia + ilo; jaa =
ja+ilo-1;
If side = 'L', mi = ihi-ilo; ni = n; icc = ic + ilo;

jcc = jc; lwork ≥ max((nb_a*(nb_a-1))/2,
(nqc0+mpc0)*nb_a) + nb_a*nb_a
else if side = 'R',
mi = m; ni = ihi-ilo; icc = ic; jcc = jc + ilo;

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0 +
max(npa0+numroc(numroc(ni+icoffc, nb_a, 0, 0,
NPCOL), nb_a, 0, 0, lcmq), mpc0))*nb_a) +
nb_a*nb_a
end if
where lcmq = lcm/NPCOL with lcm = ilcm(NPROW,
NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow,
NPROW),
iroffc = mod(icc-1, mb_c),

1785

ScaLAPACK Routines 6

icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

C is overwritten by Q* sub(C) or Q'*sub(C) or sub(C)*Q' or
sub(C)*Q.

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1786

6 Intel® Math Kernel Library Reference Manual

p?lahqr
Computes the Schur decomposition and/or
eigenvalues of a matrix already in Hessenberg
form.

Syntax

call pslahqr(wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z,
descz, work, lwork, iwork, ilwork, info)

call pdlahqr(wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z,
descz, work, lwork, iwork, ilwork, info)

Description

This is an auxiliary routine used to find the Schur decomposition and/or eigenvalues of a matrix
already in Hessenberg form from columns ilo to ihi.

Input Parameters

(global) LOGICALwantt
If wantt = .TRUE., the full Schur form T is required;
If wantt = .FALSE., only eigenvalues are required.

(global) LOGICAL.wantz
If wantz = .TRUE., the matrix of Schur vectors z is
required;
If wantz = .FALSE., Schur vectors are not required.

(global) INTEGER. The order of the Hessenberg matrix A

(and z if wantz). (n≥0).

n

(global) INTEGER.ilo, ihi
It is assumed that A is already upper quasi-triangular in
rows and columns ihi+1:n, and that A(ilo, ilo-1) = 0
(unless ilo = 1). p?lahqr works primarily with the
Hessenberg submatrix in rows and columns ilo to ihi, but
applies transformations to all of h if wantt is .TRUE..

1≤ilo≤max(1,ihi); ihi ≤ n.

(global)a
REAL for pslahqr

1787

ScaLAPACK Routines 6

DOUBLE PRECISION for pdlahqr
Array, DIMENSION (desca(lld_),*). On entry, the upper
Hessenberg matrix A.

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. Specify the rows of z to which
transformations must be applied if wantz is .TRUE..

1≤iloz≤ilo; ihi≤ihiz≤n.

iloz, ihiz

(global) REAL for pslahqrz
DOUBLE PRECISION for pdlahqr
Array. If wantz is .TRUE., on entry z must contain the
current matrix Z of transformations accumulated by
pdhseqr. If wantz is .FALSE., z is not referenced.

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix Z.

descz

(local)work
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Workspace array with dimension lwork.

(local) INTEGER. The dimension of work. lwork is assumed

big enough so that lwork≥3*n +
max(2*max(descz(lld_),desca(lld_)) + 2*LOCq(n),
7*ceil(n/hbl)/lcm(NPROW,NPCOL))).

lwork

If lwork = -1, then work(1)gets set to the above number
and the code returns immediately.

(global and local) INTEGER array of size ilwork.iwork

(local) INTEGER This holds some of the iblk integer arrays.ilwork

Output Parameters

On exit, if wantt is .TRUE., A is upper quasi-triangular in
rows and columns ilo:ihi, with any 2-by-2 or larger
diagonal blocks not yet in standard form. If wantt is
.FALSE., the contents of A are unspecified on exit.

a

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

1788

6 Intel® Math Kernel Library Reference Manual

(global replicated output)wr, wi
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Arrays, DIMENSION(n) each. The real and imaginary parts,
respectively, of the computed eigenvalues ilo to ihi are
stored in the corresponding elements of wr and wi. If two
eigenvalues are computed as a complex conjugate pair,
they are stored in consecutive elements of wr and wi, say
the i-th and (i+1)-th, with wi(i)> 0 and wi(i+1) < 0. If
wantt is .TRUE. , the eigenvalues are stored in the same
order as on the diagonal of the Schur form returned in A. A
may be returned with larger diagonal blocks until the next
release.

On exit z has been updated; transformations are applied
only to the submatrix z(iloz:ihiz, ilo:ihi).

z

(global) INTEGER.info
= 0: the execution is successful.
< 0: parameter number -info incorrect or inconsistent
> 0: p?lahqr failed to compute all the eigenvalues ilo to
ihi in a total of 30*(ihi-ilo+1) iterations; if info = i,
elements i+1:ihi of wr and wi contain those eigenvalues
which have been successfully computed.

Singular Value Decomposition

This section describes ScaLAPACK routines for computing the singular value decomposition
(SVD) of a general m-by-n matrix A (see “Singular Value Decomposition” in LAPACK chapter).

To find the SVD of a general matrix A, this matrix is first reduced to a bidiagonal matrix B by
a unitary (orthogonal) transformation, and then SVD of the bidiagonal matrix is computed.
Note that the SVD of B is computed using the LAPACK routine ?bdsqr .

Table 6-6 lists ScaLAPACK computational routines for performing this decomposition.

Table 6-6 Computational Routines for Singular Value Decomposition (SVD)

Orthogonal/unitary matrixGeneral matrixOperation

p?gebrdReduce A to a bidiagonal matrix

p?ormbr/p?unmbrMultiply matrix after reduction

1789

ScaLAPACK Routines 6

p?gebrd
Reduces a general matrix to bidiagonal form.

Syntax

call psgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pdgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pcgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pzgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

Description

The routine reduces a real/complex general m-by-n distributed matrix sub(A)=
A(ia:ia+m-1,ja:ja+n-1) to upper or lower bidiagonal form B by an orthogonal/unitary
transformation:

Q'*sub(A)*P = B.

If m≥ n, B is upper bidiagonal; if m < n, B is lower bidiagonal.

Input Parameters

(global) INTEGER. The number of rows in the distributed

matrix sub(A) (m≥0).

m

(global) INTEGER. The number of columns in the distributed

matrix sub(A) (n≥0).

n

(local)a
REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd.
Real pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains
the distributed matrix sub (A).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

1790

6 Intel® Math Kernel Library Reference Manual

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)work
REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd. Workspace array of
dimension lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

lwork ≥ nb*(mpa0 + nqa0+1)+ nqa0
where nb = mb_a = nb_a,
iroffa = mod(ia-1, nb),
icoffa = mod(ja-1, nb),
iarow = indxg2p(ia, nb, MYROW, rsrc_a, NPROW),
iacol = indxg2p (ja, nb, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m +iroffa, nb, MYROW, iarow,
NPROW),
nqa0 = numroc(n +icoffa, nb, MYCOL, iacol,
NPCOL),
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, if m≥n, the diagonal and the first superdiagonal of
sub(A) are overwritten with the upper bidiagonal matrix B;
the elements below the diagonal, with the array tauq,

a

represent the orthogonal/unitary matrix Q as a product of
elementary reflectors, and the elements above the first
superdiagonal, with the array taup, represent the orthogonal
matrix P as a product of elementary reflectors. If m < n,

1791

ScaLAPACK Routines 6

the diagonal and the first subdiagonal are overwritten with
the lower bidiagonal matrix B; the elements below the first
subdiagonal, with the array tauq, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors, and the elements above the diagonal, with the
array taup, represent the orthogonal matrix P as a product
of elementary reflectors. (See Application Notes below)

(local)d
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array,

DIMENSION LOCc(ja+min(m,n)-1) if m≥n;
LOCr(ia+min(m,n)-1) otherwise. The distributed diagonal
elements of the bidiagonal matrix B: d(i) = a(i,i).
d is tied to the distributed matrix A.

(local)e
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array,

DIMENSION LOCr(ia+min(m,n)-1) if m≥n;
LOCc(ja+min(m,n)-2) otherwise. The distributed
off-diagonal elements of the bidiagonal distributed matrix
B:

If m≥n, e(i) = a(i,i+1) for i = 1,2,..., n-1; if m
< n, e(i) = a(i+1, i) for i = 1,2,...,m-1. e is tied
to the distributed matrix A.

(local)tauq, taup
REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd.
Arrays, DIMENSION LOCc(ja+min(m,n)-1) for tauq and
LOCr(ia+min(m,n)-1) for taup. Contain the scalar factors
of the elementary reflectors which represent the
orthogonal/unitary matrices Q and P, respectively. tauq and
taup are tied to the distributed matrix A. (See Application
Notes below)

1792

6 Intel® Math Kernel Library Reference Manual

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Application Notes

The matrices Q and P are represented as products of elementary reflectors:

If m ≥ n,

Q = H(1) H(2)... H(n) and P = G(1) G(2)... G(n-1).

Each H(i) and G(i) has the form:

H(i)= i - tauq * v * v' and G(i) = i - taup * u * u'

where tauq and taup are real/complex scalars, and v and u are real/complex vectors;

v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(ia+i:ia+m-1,ja+i-1);

u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A (ia+i-1,ja+i+1:ja+n-1);

tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).

If m < n,

Q = H(1) H(2)... H (m-1) and P = G (1) G(2)... G (m)

Each H (i) and G(i) has the form:

H(i)= i - tauq * v * v' and G(i)= i - taup * u * u'

here tauq and taup are real/complex scalars, and v and u are real/complex vectors;

v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A (ia+i:ia+m-1,ja+i-1);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(ia+i-1,ja+i+1:ja+n-1);

tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).

The contents of sub(A) on exit are illustrated by the following examples:

m = 6 and n = 5 (m > n):

1793

ScaLAPACK Routines 6

m = 5 and n = 6 (m < n):

where d and e denote diagonal and off-diagonal elements of B, vi denotes an element of the
vector defining H(i), and ui an element of the vector defining G(i).

1794

6 Intel® Math Kernel Library Reference Manual

p?ormbr
Multiplies a general matrix by one of the orthogonal
matrices from a reduction to bidiagonal form
determined by p?gebrd.

Syntax

call psormbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

call pdormbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

Description

If vect = 'Q', the routine overwrites the general real distributed m-by-n matrix sub(C) =
C(c:ic+m-1,jc:jc+n-1) with

side ='R'side ='L'

sub(C) QQ sub(C)trans = 'N':

sub(C) QTQT sub(C)trans = 'T':

If vect = 'P', the routine overwrites sub(C) with

side ='R'side ='L'

sub(C) PP sub(C)trans = 'N':

sub(C) PTPT sub(C)trans = 'T':

Here Q and PT are the orthogonal distributed matrices determined by p?gebrd when reducing
a real distributed matrix A(ia:*, ja:*) to bidiagonal form: A(ia:*,ja:*) = Q*B*PT. Q and
PT are defined as products of elementary reflectors H(i) and G(i) respectively.

Let nq = m if side = 'L' and nq = n if side = 'R'. Thus nq is the order of the orthogonal
matrix Q or PT that is applied.

If vect = 'Q', A(ia:*, ja:*) is assumed to have been an nq-by-k matrix:

If nq ≥ k, Q = H(1) H(2)...H(k);

If nq < k, Q = H(1) H(2)...H(nq-1).

If vect = 'P', A(ia:*, ja:*) is assumed to have been a k-by-nq matrix:

1795

ScaLAPACK Routines 6

If k < nq, P = G(1) G(2)...G(k);

If k ≥ nq, P = G(1) G(2)...G(nq-1).

Input Parameters

(global) CHARACTER.vect
If vect ='Q', then Q or QT is applied.
If vect ='P', then P or PT is applied.

(global) CHARACTER.side
If side ='L', then Q or QT, P or PT is applied from the left.
If side ='R', then Q or QT, P or PT is applied from the right.

(global) CHARACTER.trans
If trans = 'N', no transpose, Q or P is applied.
If trans = 'T', then QT or PT is applied.

(global) INTEGER. The number of rows in the distributed
matrix sub (C).

m

(global) INTEGER. The number of columns in the distributed
matrix sub (C).

n

(global) INTEGER.k
If vect = 'Q', the number of columns in the original
distributed matrix reduced by p?gebrd;
If vect = 'P', the number of rows in the original
distributed matrix reduced by p?gebrd.

Constraints: k ≥ 0.

(local)a
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+min(nq,k)-1))
If vect='Q', and (lld_a, LOCc(ja+nq-1))
If vect = 'P'.
nq = m if side = 'L', and nq = n otherwise.
The vectors which define the elementary reflectors H(i) and
G(i), whose products determine the matrices Q and P, as
returned by p?gebrd.

If vect = 'Q', lld_a≥max(1, LOCr(ia+nq-1));

1796

6 Intel® Math Kernel Library Reference Manual

If vect = 'P', lld_a≥max(1, LOCr(ia+min(nq, k)-1)).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Array, DIMENSION LOCc(ja+min(nq, k)-1), if vect =
'Q', and LOCr(ia+min(nq, k)-1), if vect = 'P'.
tau(i) must contain the scalar factor of the elementary
reflector H(i) or G(i), which determines Q or P, as returned
by pdgebrd in its array argument tauq or taup. tau is tied
to the distributed matrix A.

(local) REAL for psormbrc
DOUBLE PRECISION for pdormbr
Pointer into the local memory to an array of dimension
(lld_a, LOCc (jc+n-1)).
Contains the local pieces of the distributed matrix sub (C).

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Workspace array of dimension lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

If side = 'L'
nq = m;

if ((vect = 'Q' and nq≥k) or (vect is not equal to 'Q'
and nq>k)), iaa=ia; jaa=ja; mi=m; ni=n; icc=ic;
jcc=jc;

1797

ScaLAPACK Routines 6

else
iaa= ia+1; jaa=ja; mi=m-1; ni=n; icc=ic+1; jcc= jc;
end if
else
If side = 'R', nq = n;

if((vect = 'Q' and nq≥k) or (vect is not equal
to 'Q' and nq>k)),
iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
else
iaa= ia; jaa= ja+1; mi= m; ni= n-1; icc= ic; jcc=
jc+1;
end if
end if
If vect = 'Q',

If side = 'L', lwork≥max((nb_a*(nb_a-1))/2, (nqc0 +
mpc0)*nb_a) + nb_a * nb_a
else if side = 'R',

lwork≥max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 +
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL),
nb_a, 0, 0, lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
else if vect is not equal to 'Q', if side = 'L',

lwork≥max((mb_a*(mb_a-1))/2, (mpc0 + max(mqa0 +
numroc(numroc(mi+iroffc, mb_a, 0, 0, NPROW),
mb_a, 0, 0, lcmp), nqc0))*mb_a) + mb_a*mb_a
else if side = 'R',

lwork≥max((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a)
+ mb_a*mb_a
end if
end if
where lcmp = lcm/NPROW, lcmq = lcm/NPCOL, with
lcm = ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(jaa, nb_a, MYCOL, csrc_a, NPCOL),

1798

6 Intel® Math Kernel Library Reference Manual

mqa0 = numroc(mi+icoffa, nb_a, MYCOL, iacol,
NPCOL),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow,
NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol,
NPCOL),
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, if vect='Q', sub(C) is overwritten by Q*sub(C), or
Q'*sub(C), or sub(C)*Q', or sub(C)*Q; if vect='P', sub(C)
is overwritten by P*sub(C), or P'*sub(C), or sub(C)*P, or
sub(C)*P'.

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1799

ScaLAPACK Routines 6

p?unmbr
Multiplies a general matrix by one of the unitary
transformation matrices from a reduction to
bidiagonal form determined by p?gebrd.

Syntax

call pcunmbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

call pzunmbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

Description

If vect = 'Q', the routine overwrites the general complex distributed m-by-n matrix sub(C)
= C(ic:ic+m-1, jc:jc+n-1) with

side ='R'side ='L'

sub(C)*QQ*sub(C)trans = 'N':

sub(C)*QHQH*sub(C)trans = 'C':

If vect = 'P', the routine overwrites sub(C) with

side ='R'side ='L'

sub(C)*PP*sub(C)trans = 'N':

sub(C)*PHPH*sub(C)trans = 'C':

Here Q and PH are the unitary distributed matrices determined by p?gebrd when reducing a
complex distributed matrix A(ia:*, ja:*) to bidiagonal form: A(ia:*,ja:*) = Q*B*PH.

Q and PH are defined as products of elementary reflectors H(i) and G(i) respectively.

Let nq = m if side = 'L' and nq = n if side = 'R'. Thus nq is the order of the unitary
matrix Q or PH that is applied.

If vect = 'Q', A(ia:*, ja:*) is assumed to have been an nq-by-k matrix:

If nq ≥ k, Q = H(1) H(2)... H(k);

If nq < k, Q = H(1) H(2)... H(nq-1).

If vect = 'P', A(ia:*, ja:*) is assumed to have been a k-by-nq matrix:

1800

6 Intel® Math Kernel Library Reference Manual

If k < nq, P = G(1) G(2)... G(k);

If k ≥ nq, P = G(1) G(2)... G(nq-1).

Input Parameters

(global) CHARACTER.vect
If vect ='Q', then Q or QH is applied.
If vect ='P', then P or PH is applied.

(global) CHARACTER.side
If side ='L', then Q or QH, P or PH is applied from the left.
If side ='R', then Q or QH, P or PH is applied from the right.

(global) CHARACTER.trans
If trans = 'N', no transpose, Q or P is applied.
If trans = 'C', conjugate transpose, QH or PH is applied.

(global) INTEGER. The number of rows in the distributed

matrix sub (C) m≥0.

m

(global) INTEGER. The number of columns in the distributed

matrix sub (C) n≥0.

n

(global) INTEGER.k
If vect = 'Q', the number of columns in the original
distributed matrix reduced by p?gebrd;
If vect = 'P', the number of rows in the original
distributed matrix reduced by p?gebrd.

Constraints: k ≥ 0.

(local)a
COMPLEX for psormbr
DOUBLE COMPLEX for pdormbr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+min(nq,k)-1)) if vect='Q', and
(lld_a, LOCc(ja+nq-1)) if vect = 'P'.
nq = m if side = 'L', and nq = n otherwise.
The vectors which define the elementary reflectors H(i) and
G(i), whose products determine the matrices Q and P, as
returned by p?gebrd.

If vect = 'Q', lld_a ≥ max(1, LOCr(ia+nq-1));

1801

ScaLAPACK Routines 6

If vect = 'P', lld_a ≥ max(1, LOCr(ia+min(nq,
k)-1)).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)tau
COMPLEX for pcunmbr
DOUBLE COMPLEX for pzunmbr.
Array, DIMENSION LOCc(ja+min(nq, k)-1), if vect =
'Q', and LOCr(ia+min(nq, k)-1), if vect = 'P'.
tau(i) must contain the scalar factor of the elementary
reflector H(i) or G(i), which determines Q or P, as returned
by p?gebrd in its array argument tauq or taup. tau is tied
to the distributed matrix A.

(local) COMPLEX for pcunmbrc
DOUBLE COMPLEX for pzunmbr
Pointer into the local memory to an array of dimension
(lld_a, LOCc (jc+n-1)).
Contains the local pieces of the distributed matrix sub (C).

(global) INTEGER. The row and column indices in the global
array c indicating the first row and the first column of the
submatrix C, respectively.

ic, jc

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix C.

descc

(local)work
COMPLEX for pcunmbr
DOUBLE COMPLEX for pzunmbr.
Workspace array of dimension lwork.

(local or global) INTEGER, dimension of work, must be at
least:

lwork

If side = 'L'
nq = m;

1802

6 Intel® Math Kernel Library Reference Manual

if ((vect = 'Q' and nq ≥ k) or (vect is not equal
to 'Q' and nq > k)), iaa= ia; jaa= ja; mi= m; ni=
n; icc= ic; jcc= jc;
else
iaa= ia+1; jaa= ja; mi= m-1; ni= n; icc= ic+1; jcc=
jc;
end if
else
If side = 'R', nq = n;

if ((vect = 'Q' and nq ≥ k) or (vect is not equal

to 'Q' and nq ≥ k)),
iaa= ia; jaa= ja; mi= m; ni= n; icc= ic; jcc= jc;
else
iaa= ia; jaa= ja+1; mi= m; ni= n-1; icc= ic; jcc=
jc+1;
end if
end if
If vect = 'Q',

If side = 'L', lwork ≥ max((nb_a*(nb_a-1))/2,
(nqc0+mpc0)*nb_a) + nb_a*nb_a
else if side = 'R',

lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0 +
max(npa0+numroc(numroc(ni+icoffc, nb_a, 0, 0,
NPCOL), nb_a, 0, 0, lcmq), mpc0))*nb_a) +
nb_a*nb_a
end if
else if vect is not equal to 'Q',
if side = 'L',

lwork ≥ max((mb_a*(mb_a-1))/2, (mpc0 +
max(mqa0+numroc(numroc(mi+iroffc, mb_a, 0, 0,
NPROW), mb_a, 0, 0, lcmp), nqc0))*mb_a) +
mb_a*mb_a
else if side = 'R',

lwork ≥ max((mb_a*(mb_a-1))/2, (mpc0 +
nqc0)*mb_a) + mb_a*mb_a
end if

1803

ScaLAPACK Routines 6

end if
where lcmp = lcm/NPROW, lcmq = lcm/NPCOL, with lcm
= ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(jaa, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(mi+icoffa, nb_a, MYCOL, iacol, NPCOL),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow,
NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol,
NPCOL),
indxg2p and numroc are ScaLAPACK tool functions; MYROW,
MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, if vect='Q', sub(C) is overwritten by Q*sub(C),
or Q'*sub(C), or sub(C)*Q', or sub(C)*Q; if vect='P',
sub(C) is overwritten by P*sub(C), or P'*sub(C), or
sub(C)*P, or sub(C)*P'.

c

On exit work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.

1804

6 Intel® Math Kernel Library Reference Manual

< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Generalized Symmetric-Definite Eigen Problems

This section describes ScaLAPACK routines that allow you to reduce the generalized
symmetric-definite eigenvalue problems (see Generalized Symmetric-Definite Eigenvalue

Problems in LAPACK chapters) to standard symmetric eigenvalue problem Cy = λy, which you
can solve by calling ScaLAPACK routines described earlier in this chapter (see Symmetric
Eigenproblems).

Table 6-7 lists these routines.

Table 6-7 Computational Routines for Reducing Generalized Eigenproblems to Standard
Problems

Complex Hermitian matricesReal symmetric matricesOperation

p?hegstp?sygstReduce to standard problems

p?sygst
Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form.

Syntax

call pssygst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale,
info)

call pdsygst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale,
info)

Description

This routine reduces real symmetric-definite generalized eigenproblems to the standard form.

In the following sub(A) denotes A(ia:ia+n-1, ja:ja+n-1) and sub(B) denotes
B(ib:ib+n-1, jb:jb+n-1).

If ibtype = 1, the problem is

sub(A)*x = λ*sub(B)*x,

1805

ScaLAPACK Routines 6

and sub(A) is overwritten by inv(UT)*sub(A)*inv(U), or inv(L)*sub(A)*inv(LT).

If ibtype = 2 or 3, the problem is

sub(A)*sub(B)*x = λ*x, or sub(B)*sub(A)*x = λ*x,

and sub(A) is overwritten by U*sub(A)*UT, or LT*sub(A)*L.

sub(B) must have been previously factorized as UT*U or L*LT by p?potrf.

Input Parameters

(global) INTEGER. Must be 1 or 2 or 3.ibtype
If itype = 1, compute inv(UT)*sub(A)*inv(U), or
inv(L)*sub(A)*inv(LT);
If itype = 2 or 3, compute U*sub(A)*UT, or
LT*sub(A)*L.

(global) CHARACTER. Must be 'U' or 'L'.uplo
If uplo = 'U', the upper triangle of sub(A) is stored and
sub (B) is factored as UT*U.
If uplo = 'L', the lower triangle of sub(A) is stored and
sub (B) is factored as L*LT.

(global) INTEGER. The order of the matrices sub (A) and

sub (B) (n ≥ 0).

n

(local)a
REAL for pssygst
DOUBLE PRECISION for pdsygst.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, the array contains the
local pieces of the n-by-n symmetric distributed matrix
sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular part of the matrix, and
its strictly lower triangular part is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular part of the matrix, and
its strictly upper triangular part is not referenced.

1806

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)b
REAL for pssygst
DOUBLE PRECISION for pdsygst.
Pointer into the local memory to an array of dimension
(lld_b, LOCc(jb+n-1)). On entry, the array contains the
local pieces of the triangular factor from the Cholesky
factorization of sub (B) as returned by p?potrf.

(global) INTEGER. The row and column indices in the global
array b indicating the first row and the first column of the
submatrix B, respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

Output Parameters

On exit, if info = 0, the transformed matrix, stored in the
same format as sub(A).

a

(global)scale
REAL for pssygst
DOUBLE PRECISION for pdsygst.
Amount by which the eigenvalues should be scaled to
compensate for the scaling performed in this routine. At
present, scale is always returned as 1.0, it is returned here
to allow for future enhancement.

(global) INTEGER.info
If info = 0, the execution is successful. If info < 0, if the
i-th argument is an array and the j-entry had an illegal
value, then info = -(i*100+j), if the i-th argument is
a scalar and had an illegal value, then info = -i.

1807

ScaLAPACK Routines 6

p?hegst
Reduces a Hermitian-definite generalized
eigenvalue problem to the standard form.

Syntax

call pchegst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale,
info)

call pzhegst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale,
info)

Description

This routine reduces complex Hermitian-definite generalized eigenproblems to the standard
form.

In the following sub(A) denotes A(ia:ia+n-1, ja:ja+n-1) and sub(B) denotes
B(ib:ib+n-1, jb:jb+n-1).

If ibtype = 1, the problem is

sub(A)*x = λ*sub(B)*x,

and sub(A) is overwritten by inv(UH)*sub(A)*inv(U), or inv(L)*sub(A)*inv(LH).

If ibtype = 2 or 3, the problem is

sub(A)*sub(B)*x = λ*x, or sub(B)*sub(A)*x = λ*x,

and sub(A) is overwritten by U*sub(A)*UH, or LH*sub(A)*L.

sub(B) must have been previously factorized as UH*U or L*LH by p?potrf.

Input Parameters

(global) INTEGER. Must be 1 or 2 or 3.ibtype
If itype = 1, compute inv(UH)*sub(A)*inv(U), or
inv(L)*sub(A)*inv(LH);
If itype = 2 or 3, compute U*sub(A)*UH, or LH*sub(A)*L.

(global) CHARACTER. Must be 'U' or 'L'.uplo
If uplo = 'U', the upper triangle of sub(A) is stored and
sub (B) is factored as UH*U.

1808

6 Intel® Math Kernel Library Reference Manual

If uplo = 'L', the lower triangle of sub(A) is stored and
sub (B) is factored as L*LH.

(global) INTEGER. The order of the matrices sub (A) and

sub (B) (n≥0).

n

(local)a
COMPLEX for pchegst
DOUBLE COMPLEX for pzhegst.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, the array contains the
local pieces of the n-by-n Hermitian distributed matrix
sub(A). If uplo = 'U', the leading n-by-n upper triangular
part of sub(A) contains the upper triangular part of the
matrix, and its strictly lower triangular part is not
referenced. If uplo = 'L', the leading n-by-n lower
triangular part of sub(A) contains the lower triangular part
of the matrix, and its strictly upper triangular part is not
referenced.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)b
COMPLEX for pchegst
DOUBLE COMPLEX for pzhegst.
Pointer into the local memory to an array of dimension
(lld_b, LOCc(jb+n-1)). On entry, the array contains the
local pieces of the triangular factor from the Cholesky
factorization of sub (B) as returned by p?potrf.

(global) INTEGER. The row and column indices in the global
array b indicating the first row and the first column of the
submatrix B, respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

1809

ScaLAPACK Routines 6

Output Parameters

On exit, if info = 0, the transformed matrix, stored in the
same format as sub(A).

a

(global)scale
REAL for pchegst
DOUBLE PRECISION for pzhegst.
Amount by which the eigenvalues should be scaled to
compensate for the scaling performed in this routine. At
present, scale is always returned as 1.0, it is returned here
to allow for future enhancement.

(global) INTEGER.info
If info = 0, the execution is successful. If info <0, if the
i-th argument is an array and the j-entry had an illegal
value, then info = -(i100+j), if the i-th argument is a
scalar and had an illegal value, then info = -i.

Driver Routines
Table 6-8 lists ScaLAPACK driver routines available for solving systems of linear equations,
linear least-squares problems, standard eigenvalue and singular value problems, and generalized
symmetric definite eigenproblems.

Table 6-8 ScaLAPACK Driver Routines

DriverMatrix type, storage schemeType of Problem

p?gesv (simple driver)p?gesvx
(expert driver)

general (partial pivoting)Linear equations

p?gbsv (simple driver)general band (partial pivoting)

p?dbsv (simple driver)general band (no pivoting)

p?dtsv (simple driver)general tridiagonal (no pivoting)

p?posv (simple driver)p?posvx
(expert driver)

symmetric/Hermitian
positive-definite

p?pbsv (simple driver)symmetric/Hermitian
positive-definite, band

p?ptsv (simple driver)symmetric/Hermitian
positive-definite, tridiagonal

p?gelsgeneral m-by-nLinear least squares problem

p?syev (simple driver) p?syevx /
p?heevx (expert driver)

symmetric/HermitianSymmetric eigenvalue
problem

1810

6 Intel® Math Kernel Library Reference Manual

DriverMatrix type, storage schemeType of Problem

p?gesvdgeneral m-by-nSingular value decomposition

p?sygvx / p?hegvx (expert driver)symmetric/Hermitian, one matrix
also positive-definite

Generalized symmetric
definite eigenvalue problem

p?gesv
Computes the solution to the system of linear
equations with a square distributed matrix and
multiple right-hand sides.

Syntax

call psgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

call pdgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

call pcgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

call pzgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

Description

The routine p?gesv computes the solution to a real or complex system of linear equations
sub(A)*X = sub(B), where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is an n-by-n distributed
matrix and X and sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1) are n-by-nrhs distributed matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor sub(A) as
sub(A) = P*L*U, where P is a permutation matrix, L is unit lower triangular, and U is upper
triangular. L and U are stored in sub(A). The factored form of sub(A) is then used to solve the
system of equations sub(A)*X = sub(B).

Input Parameters

(global) INTEGER. The number of rows and columns to be
operated on, that is, the order of the distributed submatrix

sub(A) (n ≥ 0).

n

(global) INTEGER. The number of right hand sides, that is,
the number of columns of the distributed submatrices B and

X (nrhs ≥ 0).

nrhs

(local)a, b
REAL for psgesv

1811

ScaLAPACK Routines 6

DOUBLE PRECISION for pdgesv
COMPLEX for pcgesv
DOUBLE COMPLEX for pzgesv.
Pointers into the local memory to arrays of local dimension
a(lld_a,LOCc(ja+n-1)) and
b(lld_b,LOCc(jb+nrhs-1)), respectively.
On entry, the array a contains the local pieces of the n-by-n
distributed matrix sub(A) to be factored.
On entry, the array b contains the right hand side distributed
matrix sub(B).

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of
sub(A), respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. The row and column indices in the global
array B indicating the first row and the first column of
sub(B), respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

Output Parameters

Overwritten by the factors L and U from the factorization
sub(A) = P*L*U; the unit diagonal elements of L are not
stored .

a

Overwritten by the solution distributed matrix X.b

(local) INTEGER array.ipiv
The dimension of ipiv is (LOCr(m_a)+mb_a). This array
contains the pivoting information. The (local) row i of the
matrix was interchanged with the (global) row ipiv(i).
This array is tied to the distributed matrix A.

(global) INTEGER. If info=0, the execution is successful.info
info < 0:

1812

6 Intel® Math Kernel Library Reference Manual

If the i-th argument is an array and the j-th entry had an
illegal value, then info = -(i*100+j); if the i-th
argument is a scalar and had an illegal value, then info =
-i.
info > 0:
If info = k, U(ia+k-1,ja+k-1) is exactly zero. The
factorization has been completed, but the factor U is exactly
singular, so the solution could not be computed.

p?gesvx
Uses the LU factorization to compute the solution
to the system of linear equations with a square
matrix A and multiple right-hand sides, and
provides error bounds on the solution.

Syntax

call psgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr,
work, lwork, iwork, liwork, info)

call pdgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr,
work, lwork, iwork, liwork, info)

call pcgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr,
work, lwork, rwork, lrwork, info)

call pzgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr,
work, lwork, rwork, lrwork, info)

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations AX = B, where A denotes the n-by-n submatrix A(ia:ia+n-1, ja:ja+n-1),
B denotes the n-by-nrhs submatrix B(ib:ib+n-1, jb:jb+nrhs-1) and X denotes the n-by-nrhs
submatrix X(ix:ix+n-1, jx:jx+nrhs-1).

Error bounds on the solution and a condition estimate are also provided.

1813

ScaLAPACK Routines 6

In the following description, af stands for the subarray af(iaf:iaf+n-1, jaf:jaf+n-1).

The routine p?gesvx performs the following steps:

1. If fact = 'E', real scaling factors R and C are computed to equilibrate the system:

trans = 'N': diag(R)*A*diag(C) *diag(C)-1*X = diag(R)*B

trans = 'T': (diag(R)*A*diag(C))T *diag(R)-1*X = diag(C)*B

trans = 'C': (diag(R)*A*diag(C))H *diag(R)-1*X = diag(C)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but
if equilibration is used, A is overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if
trans='N') or diag(c)*B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', the LU decomposition is used to factor the matrix A (after equilibration
if fact = 'E') as A = P L U, where P is a permutation matrix, L is a unit lower triangular
matrix, and U is upper triangular.

3. The factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than relative machine precision, steps 4 - 6 are
skipped.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(C) (if trans = 'N') or
diag(R) (if trans = 'T' or 'C') so that it solves the original system before equilibration.

Input Parameters

(global) CHARACTER*1. Must be 'F', 'N', or 'E'.fact
Specifies whether or not the factored form of the matrix A
is supplied on entry, and if not, whether the matrix A should
be equilibrated before it is factored.
If fact = 'F' then, on entry, af and ipiv contain the
factored form of A. If equed is not 'N', the matrix A has
been equilibrated with scaling factors given by r and c.
Arrays a, af, and ipiv are not modified.
If fact = 'N', the matrix A is copied to af and factored.
If fact = 'E', the matrix A is equilibrated if necessary,
then copied to af and factored.

1814

6 Intel® Math Kernel Library Reference Manual

(global) CHARACTER*1. Must be 'N', 'T', or 'C'.trans
Specifies the form of the system of equations:
If trans = 'N', the system has the form A*X = B (No
transpose);
If trans = 'T', the system has the form AT*X = B

(Transpose);
If trans = 'C', the system has the form AH*X = B

(Conjugate transpose);

(global) INTEGER. The number of linear equations; the order

of the submatrix A (n ≥ 0).

n

(global) INTEGER. The number of right hand sides; the
number of columns of the distributed submatrices B and X

(nrhs ≥ 0).

nrhs

(local)a, af, b, work
REAL for psgesvx
DOUBLE PRECISION for pdgesvx
COMPLEX for pcgesvx
DOUBLE COMPLEX for pzgesvx.
Pointers into the local memory to arrays of local dimension
a(lld_a,LOCc(ja+n-1)), af(lld_af,LOCc(ja+n-1)),
b(lld_b,LOCc(jb+nrhs-1)), work(lwork), respectively.
The array a contains the matrix A. If fact = 'F' and equed
is not 'N', then A must have been equilibrated by the scaling
factors in r and/or c.
The array af is an input argument if fact = 'F'. In this
case it contains on entry the factored form of the matrix A,
that is, the factors L and U from the factorization A = P*L*U
as computed by p?getrf. If equed is not 'N', then af is
the factored form of the equilibrated matrix A.
The array b contains on entry the matrix B whose columns
are the right-hand sides for the systems of equations.
work(*) is a workspace array. The dimension of work is
(lwork).

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix A(ia:ia+n-1, ja:ja+n-1), respectively.

ia, ja

1815

ScaLAPACK Routines 6

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. The row and column indices in the global
array af indicating the first row and the first column of the
subarray af(iaf:iaf+n-1, jaf:jaf+n-1), respectively.

iaf, jaf

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix AF.

descaf

(global) INTEGER. The row and column indices in the global
array B indicating the first row and the first column of the
submatrix B(ib:ib+n-1, jb:jb+nrhs-1), respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

(local) INTEGER array.ipiv
The dimension of ipiv is (LOCr(m_a)+mb_a).
The array ipiv is an input argument if fact = 'F' .
On entry, it contains the pivot indices from the factorization
A = P*L*U as computed by p?getrf; (local) row i of the
matrix was interchanged with the (global) row ipiv(i).
This array must be aligned with A(ia:ia+n-1, *).

(global) CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact = 'F' . It specifies the
form of equilibration that was done:

equed

If equed = 'N', no equilibration was done (always true if
fact = 'N');
If equed = 'R', row equilibration was done, that is, A has
been premultiplied by diag(r);
If equed = 'C', column equilibration was done, that is, A
has been postmultiplied by diag(c);
If equed = 'B', both row and column equilibration was
done; A has been replaced by diag(r)*A*diag(c).

(local) REAL for single precision flavors;r, c
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCr(m_a) and LOCc(n_a), respectively.
The array r contains the row scale factors for A, and the
array c contains the column scale factors for A. These arrays
are input arguments if fact = 'F' only; otherwise they

1816

6 Intel® Math Kernel Library Reference Manual

are output arguments. If equed = 'R' or 'B', A is
multiplied on the left by diag(r); if equed = 'N' or 'C', r
is not accessed.
If fact = 'F' and equed = 'R' or 'B', each element of
r must be positive.
If equed = 'C' or 'B', A is multiplied on the right by
diag(c); if equed = 'N' or 'R', c is not accessed.
If fact = 'F' and equed = 'C' or 'B', each element of
c must be positive. Array r is replicated in every process
column, and is aligned with the distributed matrix A. Array
c is replicated in every process row, and is aligned with the
distributed matrix A.

(global) INTEGER. The row and column indices in the global
array X indicating the first row and the first column of the
submatrix X(ix:ix+n-1, jx:jx+nrhs-1), respectively.

ix, jx

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix X.

descx

(local or global) INTEGER. The dimension of the array work
; must be at least max(p?gecon(lwork),
p?gerfs(lwork))+LOCr(n_a) .

lwork

(local, psgesvx/pdgesvx only) INTEGER. Workspace array.
The dimension of iwork is (liwork).

iwork

(local, psgesvx/pdgesvx only) INTEGER. The dimension of
the array iwork , must be at least LOCr(n_a) .

liwork

(local) REAL for pcgesvxrwork
DOUBLE PRECISION for pzgesvx.
Workspace array, used in complex flavors only.
The dimension of rwork is (lrwork).

(local or global, pcgesvx/pzgesvx only) INTEGER. The
dimension of the array rwork;must be at least 2*LOCc(n_a)
.

lrwork

Output Parameters

(local)x
REAL for psgesvx
DOUBLE PRECISION for pdgesvx

1817

ScaLAPACK Routines 6

COMPLEX for pcgesvx
DOUBLE COMPLEX for pzgesvx.
Pointer into the local memory to an array of local dimension
x(lld_x,LOCc(jx+nrhs-1)).
If info = 0, the array x contains the solution matrix X to
the original system of equations. Note that A and B are

modified on exit if equed ≠ 'N', and the solution to the
equilibrated system is:
diag(C)-1*X, if trans = 'N' and equed = 'C' or 'B';
and diag(R)-1*X, if trans = 'T' or 'C' and equed =
'R' or 'B'.

Array a is not modified on exit if fact = 'F' or 'N', or if
fact = 'E' and equed = 'N'.

a

If equed ≠ 'N', A is scaled on exit as follows:
equed = 'R': A = diag(R)*A
equed = 'C': A = A*diag(c)
equed = 'B': A = diag(R)*A*diag(c)

If fact = 'N' or 'E', then af is an output argument and
on exit returns the factors L and U from the factorization A
= P*L*U of the original matrix A (if fact = 'N') or of the
equilibrated matrix A (if fact = 'E'). See the description
of a for the form of the equilibrated matrix.

af

Overwritten by diag(R)*B if trans = 'N' and equed =
'R' or 'B';

b

overwritten by diag(c)*B if trans = 'T' and equed =
'C' or 'B'; not changed if equed = 'N'.

These arrays are output arguments if fact ≠ 'F'.r, c

See the description of r, c in Input Arguments section.

(global) REAL for single precision flavors.rcond
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix
A after equilibration (if done). The routine sets rcond =0 if
the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small
compared to 1.0, for the working precision, the matrix may
be poorly conditioned or even singular.

1818

6 Intel® Math Kernel Library Reference Manual

(local) REAL for single precision flavorsferr, berr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION LOCc(n_b) each. Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.
Arrays ferr and berr are both replicated in every process
row, and are aligned with the matrices B and X.

If fact = 'N' or 'E', then ipiv is an output argument
and on exit contains the pivot indices from the factorization
A = P*L*U of the original matrix A (if fact = 'N') or of
the equilibrated matrix A (if fact = 'E').

ipiv

If fact ≠ 'F' , then equed is an output argument. It
specifies the form of equilibration that was done (see the
description of equed in Input Arguments section).

equed

If info=0, on exit work(1) returns the minimum value of
lwork required for optimum performance.

work(1)

If info=0, on exit iwork(1) returns the minimum value of
liwork required for optimum performance.

iwork(1)

If info=0, on exit rwork(1) returns the minimum value of
lrwork required for optimum performance.

rwork(1)

INTEGER. If info=0, the execution is successful.info
info < 0: if the ith argument is an array and the jth entry
had an illegal value, then info = -(i*100+j); if the ith
argument is a scalar and had an illegal value, then info =

-i. If info = i, and i ≤ n, then U(i,i) is exactly zero.
The factorization has been completed, but the factor U is
exactly singular, so the solution and error bounds could not
be computed. If info = i, and i = n +1, then U is
nonsingular, but rcond is less than machine precision. The
factorization has been completed, but the matrix is singular
to working precision and the solution and error bounds have
not been computed.

1819

ScaLAPACK Routines 6

p?gbsv
Computes the solution to the system of linear
equations with a general banded distributed matrix
and multiple right-hand sides.

Syntax

call psgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork,
info)

call pdgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork,
info)

call pcgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork,
info)

call pzgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork,
info)

Description

The routine p?gbsv computes the solution to a real or complex system of linear equations

sub(A)*X = sub(B),

where sub(A) = A(1:n, ja:ja+n-1) is an n-by-n real/complex general banded distributed
matrix with bwl subdiagonals and bwu superdiagonals, and X and sub(B)= B(ib:ib+n-1,
1:rhs) are n-by-nrhs distributed matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor sub(A) as
sub(A) = P*L*U*Q, where P and Q are permutation matrices, and L and U are banded lower
and upper triangular matrices, respectively. The matrix Q represents reordering of columns for
the sake of parallelism, while P represents reordering of rows for numerical stability using classic
partial pivoting.

Input Parameters

(global) INTEGER. The number of rows and columns to be
operated on, that is, the order of the distributed submatrix

sub(A) (n ≥ 0).

n

(global) INTEGER. The number of subdiagonals within the

band of A (0≤ bwl ≤ n-1).

bwl

1820

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The number of superdiagonals within the

band of A (0≤ bwu ≤ n-1).

bwu

(global) INTEGER. The number of right hand sides; the
number of columns of the distributed submatrix sub(B)

(nrhs ≥ 0).

nrhs

(local)a, b
REAL for psgbsv
DOUBLE PRECISON for pdgbsv
COMPLEX for pcgbsv
DOUBLE COMPLEX for pzgbsv.
Pointers into the local memory to arrays of local dimension
a(lld_a,LOCc(ja+n-1)) and b(lld_b,LOCc(nrhs)),
respectively.
On entry, the array a contains the local pieces of the global
array A.
On entry, the array b contains the right hand side distributed
matrix sub(B).

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

If desca(dtype_) = 501, then dlen_ ≥ 7;

else if desca(dtype_) = 1, then dlen_ ≥ 9.

(global) INTEGER. The row index in the global array B that
points to the first row of the matrix to be operated on (which
may be either all of B or a submatrix of B).

ib

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

If descb(dtype_) = 502, then dlen_ ≥ 7;

else if descb(dtype_) = 1, then dlen_ ≥ 9.

(local)work
REAL for psgbsv
DOUBLE PRECISON for pdgbsv
COMPLEX for pcgbsv

1821

ScaLAPACK Routines 6

DOUBLE COMPLEX for pzgbsv.
Workspace array of dimension (lwork).

(local or global) INTEGER. The size of the array work, must

be at least lwork ≥
(NB+bwu)*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu) +

lwork

+ max(nrhs *(NB+2*bwl+4*bwu), 1).

Output Parameters

On exit, contains details of the factorization. Note that the
resulting factorization is not the same factorization as
returned from LAPACK. Additional permutations are
performed on the matrix for the sake of parallelism.

a

On exit, this array contains the local pieces of the solution
distributed matrix X.

b

(local) INTEGER array.ipiv
The dimension of ipiv must be at least desca(NB). This
array contains pivot indices for local factorizations. You
should not alter the contents between factorization and
solve.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

INTEGER. If info=0, the execution is successful. info <
0:

info

If the ith argument is an array and the jth entry had an
illegal value, then info = -(i*100+j); if the ith argument
is a scalar and had an illegal value, then info = -i.
info > 0:

If info = k ≤ NPROCS, the submatrix stored on processor
info and factored locally was not nonsingular, and the
factorization was not completed. If info = k > NPROCS,
the submatrix stored on processor info-NPROCS
representing interactions with other processors was not
nonsingular, and the factorization was not completed.

1822

6 Intel® Math Kernel Library Reference Manual

p?dbsv
Solves a general band system of linear equations.

Syntax

call psdbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

call pddbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

call pcdbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

call pzdbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

Description

This routine solves the system of linear equations

A(1:n, ja:ja+n-1)* X = B(ib:ib+n-1, 1:nrhs),

where A(1:n, ja:ja+n-1) is an n-by-n real/complex banded diagonally dominant-like
distributed matrix with bandwidth bwl, bwu.

Gaussian elimination without pivoting is used to factor a reordering of the matrix into LU.

Input Parameters

(global) INTEGER. The order of the distributed submatrix A,

(n ≥ 0).

n

(global) INTEGER. Number of subdiagonals. 0 ≤ bwl ≤
n-1.

bwl

(global) INTEGER. Number of subdiagonals. 0 ≤ bwu ≤
n-1.

bwu

(global) INTEGER. The number of right-hand sides; the
number of columns of the distributed submatrix B, (nrhs

≥ 0).

nrhs

(local). REAL for psdbsva
DOUBLE PRECISION for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.

1823

ScaLAPACK Routines 6

Pointer into the local memory to an array with first

dimension lld_a ≥ (bwl+bwu+1) (stored in desca). On
entry, this array contains the local pieces of the distributed
matrix.

(global) INTEGER. The index in the global array a that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array of dimension dlen.desca

If 1d type (dtype_a=501 or 502), dlen ≥ 7;

If 2d type (dtype_a=1), dlen ≥ 9.
The array descriptor for the distributed matrix A.
Contains information of mapping of A to memory.

(local)b
REAL for psdbsv
DOUBLE PRECISON for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Pointer into the local memory to an array of local lead

dimension lld_b ≥ nb. On entry, this array contains the
local pieces of the right hand sides B(ib:ib+n-1, 1:nrhs).

(global) INTEGER. The row index in the global array b that
points to the first row of the matrix to be operated on (which
may be either all of b or a submatrix of B).

ib

(global and local) INTEGER array of dimension dlen.descb

If 1d type (dtype_b =502), dlen ≥ 7;

If 2d type (dtype_b =1), dlen ≥ 9.
The array descriptor for the distributed matrix B.
Contains information of mapping of B to memory.

(local).work
REAL for psdbsv
DOUBLE PRECISON for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.

1824

6 Intel® Math Kernel Library Reference Manual

Temporary workspace. This space may be overwritten in
between calls to routines. work must be the size given in
lwork.

(local or global) INTEGER. Size of user-input workspace
work. If lwork is too small, the minimal acceptable size will
be returned in work(1) and an error code is returned.

lwork

lwork ≥
nb(bwl+bwu)+6max(bwl,bwu)*max(bwl,bwu)+max((max(bwl,bwu)nrhs),
max(bwl,bwu)*max(bwl,bwu))

Output Parameters

On exit, this array contains information containing details
of the factorization.

a

Note that permutations are performed on the matrix, so
that the factors returned are different from those returned
by LAPACK.

On exit, this contains the local piece of the solutions
distributed matrix X.

b

On exit, work(1) contains the minimal lwork.work

(local) INTEGER. If info=0, the execution is successful.info
< 0: If the i-th argument is an array and the j-entry had
an illegal value, then info = -(i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.
> 0: If info = k < NPROCS, the submatrix stored on
processor info and factored locally was not positive definite,
and the factorization was not completed.
If info = k > NPROCS, the submatrix stored on processor
info-NPROCS representing interactions with other
processors was not positive definite, and the factorization
was not completed.

1825

ScaLAPACK Routines 6

p?dtsv
Solves a general tridiagonal system of linear
equations.

Syntax

call psdtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork, info)

call pddtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork, info)

call pcdtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork, info)

call pzdtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork, info)

Description

This routine solves a system of linear equations

A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs),

where A(1:n, ja:ja+n-1) is an n-by-n complex tridiagonal diagonally dominant-like distributed
matrix.

Gaussian elimination without pivoting is used to factor a reordering of the matrix into L U.

Input Parameters

(global) INTEGER. The order of the distributed submatrix A

(n ≥ 0).

n

INTEGER. The number of right hand sides; the number of

columns of the distributed matrix B (nrhs ≥ 0).

nrhs

(local). REAL for psdtsvdl
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the lower
diagonal of the matrix. Globally, dl(1)is not referenced, and
dl must be aligned with d. Must be of size > desca(nb_).

(local). REAL for psdtsvd
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv

1826

6 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the main
diagonal of the matrix.

(local). REAL for psdtsvdu
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the upper
diagonal of the matrix. Globally, du(n) is not referenced,
and du must be aligned with d.

(global) INTEGER. The index in the global array a that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array of dimension dlen.desca

If 1d type (dtype_a=501 or 502), dlen ≥ 7;

If 2d type (dtype_a=1), dlen ≥ 9.
The array descriptor for the distributed matrix A.
Contains information of mapping of A to memory.

(local)b
REAL for psdtsv
DOUBLE PRECISONfor pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer into the local memory to an array of local lead
dimension lld_b > nb. On entry, this array contains the
local pieces of the right hand sides B(ib:ib+n-1, 1:nrhs).

(global) INTEGER. The row index in the global array b that
points to the first row of the matrix to be operated on (which
may be either all of b or a submatrix of B).

ib

(global and local) INTEGER array of dimension dlen.descb

If 1d type (dtype_b =502), dlen ≥ 7;

If 2d type (dtype_b =1), dlen ≥ 9.
The array descriptor for the distributed matrix B.
Contains information of mapping of B to memory.

(local).work

1827

ScaLAPACK Routines 6

REAL for psdtsv
DOUBLE PRECISON for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv. Temporary workspace. This
space may be overwritten in between calls to routines. work
must be the size given in lwork.

(local or global) INTEGER. Size of user-input workspace
work. If lwork is too small, the minimal acceptable size will
be returned in work(1) and an error code is returned. lwork
> (12*NPCOL+3*nb)+max((10+2*min(100,
nrhs))*NPCOL+4*nrhs, 8*NPCOL)

lwork

Output Parameters

On exit, this array contains information containing the *
factors of the matrix.

dl

On exit, this array contains information containing the *
factors of the matrix. Must be of size > desca(nb_).

d

On exit, this array contains information containing the *
factors of the matrix. Must be of size > desca(nb_).

du

On exit, this contains the local piece of the solutions
distributed matrix X.

b

On exit, work(1) contains the minimal lwork.work

(local) INTEGER. If info=0, the execution is successful.info
< 0: If the i-th argument is an array and the j-entry had
an illegal value, then info = -(i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.
> 0: If info = k < NPROCS, the submatrix stored on
processor info and factored locally was not positive definite,
and the factorization was not completed.
If info = k > NPROCS, the submatrix stored on processor
info-NPROCS representing interactions with other
processors was not positive definite, and the factorization
was not completed.

1828

6 Intel® Math Kernel Library Reference Manual

p?posv
Solves a symmetric positive definite system of
linear equations.

Syntax

call psposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pdposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pcposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pzposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

Description

This routine computes the solution to a real/complex system of linear equations

sub(A)*X = sub(B),

where sub(A) denotes A(ia:ia+n-1,ja:ja+n-1) and is an n-by-n symmetric/Hermitian
distributed positive definite matrix and X and sub(B) denoting B(ib:ib+n-1,jb:jb+nrhs-1)
are n-by-nrhs distributed matrices. The Cholesky decomposition is used to factor sub(A) as

sub(A) = UT*U, if uplo = 'U', or

sub(A) = L*LT, if uplo = 'L',

where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of
sub(A) is then used to solve the system of equations.

Input Parameters

(global). CHARACTER. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of
sub(A) is stored.

(global) INTEGER. The order of the distributed submatrix

sub(A) (n ≥ 0).

n

INTEGER. The number of right-hand sides; the number of

columns of the distributed submatrix sub(B) (nrhs ≥ 0).

nrhs

(local)a
REAL for psposv

1829

ScaLAPACK Routines 6

DOUBLE PRECISION for pdposv
COMPLEX for pcposv
COMPLEX*16 for pzposv.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains
the local pieces of the n-by-n symmetric distributed matrix
sub(A) to be factored.
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular part of the matrix, and
its strictly lower triangular part is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular part of the distributed
matrix, and its strictly upper triangular part is not
referenced.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)b
REAL for psposv
DOUBLE PRECISON for pdposv
COMPLEX for pcposv
COMPLEX*16 for pzposv.
Pointer into the local memory to an array of dimension
(lld_b,LOC(jb+nrhs-1)). On entry, the local pieces of
the right hand sides distributed matrix sub(B).

(global) INTEGER. The row and column indices in the global
array b indicating the first row and the first column of the
submatrix B, respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

1830

6 Intel® Math Kernel Library Reference Manual

Output Parameters

On exit, if info = 0, this array contains the local pieces of
the factor U or L from the Cholesky factorization sub(A) =
UH*U, or L*LH.

a

On exit, if info = 0, sub(B) is overwritten by the solution
distributed matrix X.

b

(global) INTEGER.info
If info =0, the execution is successful.
If info < 0: If the i-th argument is an array and the
j-entry had an illegal value, then info = -(i*100+j), if
the i-th argument is a scalar and had an illegal value, then
info = -i.
If info > 0: If info = k, the leading minor of order k,
A(ia:ia+k-1, ja:ja+k-1) is not positive definite, and
the factorization could not be completed, and the solution
has not been computed.

p?posvx
Solves a symmetric or Hermitian positive definite
system of linear equations.

Syntax

call psposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work,
lwork, iwork, liwork, info)

call pdposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work,
lwork, iwork, liwork, info)

call pcposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work,
lwork, iwork, liwork, info)

call pzposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work,
lwork, iwork, liwork, info)

1831

ScaLAPACK Routines 6

Description

This routine uses the Cholesky factorization A=UT*U or A=L*LT to compute the solution to a
real or complex system of linear equations

A(ia:ia+n-1, ja:ja+n-1)*X = B(ib:ib+n-1, jb:jb+nrhs-1),

where A(ia:ia+n-1, ja:ja+n-1) is a n-by-n matrix and X and B(ib:ib+n-1,jb:jb+nrhs-1)
are n-by-nrhs matrices.

Error bounds on the solution and a condition estimate are also provided.

In the following comments y denotes Y(iy:iy+m-1, jy:jy+k-1) a m-by-k matrix where y
can be a, af, b and x.

The routine p?posvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate the system:

diag(sr)*A*diag(sc)*inv(diag(sc))*X = diag(sr)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but
if equilibration is used, A is overwritten by diag(sr)*A*diag(sc) and B by diag(sr)*B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the matrix A (after
equilibration if fact = 'E') as

A = UT*U, if uplo = 'U', or

A = L*LT, if uplo = 'L',

where U is an upper triangular matrix and L is a lower triangular matrix.

3. The factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, steps 4-6 are skipped

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(sr) so that it solves the
original system before equilibration.

Input Parameters

(global) CHARACTER. Must be 'F', 'N', or 'E'.fact

1832

6 Intel® Math Kernel Library Reference Manual

Specifies whether or not the factored form of the matrix A
is supplied on entry, and if not, whether the matrix A should
be equilibrated before it is factored.
If fact = 'F': on entry, af contains the factored form of
A. If equed = 'Y', the matrix A has been equilibrated with
scaling factors given by s. a and af will not be modified.
If fact = 'N', the matrix A will be copied to af and
factored.
If fact = 'E', the matrix A will be equilibrated if necessary,
then copied to af and factored.

(global) CHARACTER. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular part of A is
stored.

(global) INTEGER. The order of the distributed submatrix

sub(A) (n ≥ 0).

n

(global) INTEGER. The number of right-hand sides; the
number of columns of the distributed submatrices B and X.

(nrhs ≥ 0).

nrhs

(local)a
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)). On entry, the
symmetric/Hermitian matrix A, except if fact = 'F' and
equed = 'Y', then A must contain the equilibrated matrix
diag(sr)*A*diag(sc).
If uplo = 'U', the leading n-by-n upper triangular part of
A contains the upper triangular part of the matrix A, and
the strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
A contains the lower triangular part of the matrix A, and the
strictly upper triangular part of A is not referenced. A is not
modified if fact = 'F' or 'N', or if fact = 'E' and equed
= 'N' on exit.

1833

ScaLAPACK Routines 6

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)af
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension
(lld_af, LOCc(ja+n-1)).
If fact = 'F', then af is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = UT*U or A = L*LT, in the same storage

format as A. If equed ≠ 'N', then af is the factored form
of the equilibrated matrix diag(sr)*A*diag(sc).

(global) INTEGER. The row and column indices in the global
array af indicating the first row and the first column of the
submatrix AF, respectively.

iaf, jaf

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix AF.

descaf

(global). CHARACTER. Must be 'N' or 'Y'.equed
equed is an input argument if fact = 'F'. It specifies the
form of equilibration that was done:
If equed = 'N', no equilibration was done (always true if
fact = 'N');
If equed = 'Y', equilibration was done and A has been
replaced by diag(sr)*A*diag(sc).

(local)sr
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Array, DIMENSION (lld_a).

1834

6 Intel® Math Kernel Library Reference Manual

The array s contains the scale factors for A. This array is an
input argument if fact = 'F' only; otherwise it is an output
argument.
If equed = 'N', s is not accessed.
If fact = 'F' and equed = 'Y', each element of s must
be positive.

(local)b
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension
(lld_b, LOCc(jb+nrhs-1)). On entry, the n-by-nrhs
right-hand side matrix B.

(global) INTEGER. The row and column indices in the global
array b indicating the first row and the first column of the
submatrix B, respectively.

ib, jb

(global and local) INTEGER. Array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

(local)x
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension
(lld_x, LOCc(jx+nrhs-1)).

(global) INTEGER. The row and column indices in the global
array x indicating the first row and the first column of the
submatrix X, respectively.

ix, jx

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix X.

descx

(local)work
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Workspace array, DIMENSION (lwork).

1835

ScaLAPACK Routines 6

(local or global) INTEGER.lwork
The dimension of the array work. lwork is local input and
must be at least lwork = max(p?pocon(lwork),
p?porfs(lwork)) + LOCr(n_a).
lwork = 3*desca(lld_).
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

(local) INTEGER. Workspace array, dimension (liwork).iwork

(local or global)liwork
INTEGER. The dimension of the array iwork. liwork is local
input and must be at least liwork = desca(lld_) liwork
= LOCr(n_a).
If liwork = -1, then liwork is global input and a
workspace query is assumed; the routine only calculates
the minimum and optimal size for all work arrays. Each of
these values is returned in the first entry of the
corresponding work array, and no error message is issued
by pxerbla.

Output Parameters

On exit, if fact = 'E' and equed = 'Y', a is overwritten
by diag(sr)*a*diag(sc).

a

If fact = 'N', then af is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = UT*U or A = L*LT of the original matrix
A.

af

If fact = 'E', then af is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = UT*U or A = L*LT of the equilibrated
matrix A (see the description of A for the form of the
equilibrated matrix).

If fact ≠ 'F' , then equed is an output argument. It
specifies the form of equilibration that was done (see the
description of equed in Input Arguments section).

equed

1836

6 Intel® Math Kernel Library Reference Manual

This array is an output argument if fact ≠ 'F'.sr

See the description of sr in Input Arguments section.

This array is an output argument if fact ≠ 'F'.sc

See the description of sc in Input Arguments section.

On exit, if equed = 'N', b is not modified; if trans = 'N'
and equed = 'R' or 'B', b is overwritten by diag(r)*b;
if trans = 'T' or 'C' and equed = 'C' or 'B', b is
overwritten by diag(c)*b.

b

(local)x
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
If info = 0 the n-by-nrhs solution matrix X to the original
system of equations.

Note that A and B are modified on exit if equed ≠ 'N', and
the solution to the equilibrated system is
inv(diag(sc))*X if trans = 'N' and equed = 'C' or
'B', or
inv(diag(sr))*X if trans = 'T' or 'C' and equed =
'R' or 'B'.

(global)rcond
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If rcond is less than the
machine precision (in particular, if rcond=0), the matrix is
singular to working precision. This condition is indicated by
a return code of info > 0.

REAL for single precision flavors.ferr
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(LOC,n_b). The estimated
forward error bounds for each solution vector X(j) (the j-th
column of the solution matrix X). If xtrue is the true
solution, ferr(j) bounds the magnitude of the largest entry
in (X(j) - xtrue) divided by the magnitude of the largest

1837

ScaLAPACK Routines 6

entry in X(j). The quality of the error bound depends on
the quality of the estimate of norm(inv(A)) computed in
the code; if the estimate of norm(inv(A)) is accurate, the
error bound is guaranteed.

(local)berr
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(LOC,n_b). The
componentwise relative backward error of each solution
vector X(j) (the smallest relative change in any entry of A
or B that makes X(j) an exact solution).

(local) On exit, work(1) returns the minimal and optimal
liwork.

work(1)

(global) INTEGER.info
If info=0, the execution is successful.
< 0: if info = -i, the i-th argument had an illegal value

> 0: if info = i, and i is ≤ n: if info = i, the leading
minor of order i of a is not positive definite, so the
factorization could not be completed, and the solution and
error bounds could not be computed.
= n+1: rcond is less than machine precision. The
factorization has been completed, but the matrix is singular
to working precision, and the solution and error bounds
have not been computed.

p?pbsv
Solves a symmetric/Hermitian positive definite
banded system of linear equations.

Syntax

call pspbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

call pdpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

call pcpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

call pzpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

1838

6 Intel® Math Kernel Library Reference Manual

Description

This routine solves a system of linear equations

A(1:n, ja:ja+n-1)*X = B(ib:ib+n-1, 1:nrhs),

where A(1:n, ja:ja+n-1) is an n-by-n real/complex banded symmetric positive definite
distributed matrix with bandwidth bw.

Cholesky factorization is used to factor a reordering of the matrix into L*L'.

Input Parameters

(global) CHARACTER. Must be 'U' or 'L'.uplo
Indicates whether the upper or lower triangular of A is
stored.
If uplo = 'U', the upper triangular A is stored
If uplo = 'L', the lower triangular of A is stored.

(global) INTEGER. The order of the distributed matrix A (n

≥ 0).

n

(global) INTEGER. The number of subdiagonals in L or U. 0

≤ bw ≤ n-1.

bw

(global) INTEGER. The number of right-hand sides; the

number of columns in B (nrhs ≥ 0).

nrhs

(local). REAL for pspbsva
DOUBLE PRECISON for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Pointer into the local memory to an array with first

dimension lld_a ≥ (bw+1) (stored in desca). On entry,
this array contains the local pieces of the distributed matrix
sub(A) to be factored.

(global) INTEGER. The index in the global array a that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)b

1839

ScaLAPACK Routines 6

REAL for pspbsv
DOUBLE PRECISON for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Pointer into the local memory to an array of local lead

dimension lld_b ≥ nb. On entry, this array contains the
local pieces of the right hand sides B(ib:ib+n-1, 1:nrhs).

(global) INTEGER. The row index in the global array b that
points to the first row of the matrix to be operated on (which
may be either all of b or a submatrix of B).

ib

(global and local) INTEGER array of dimension dlen.descb

If 1D type (dtype_b =502), dlen ≥ 7;

If 2D type (dtype_b =1), dlen ≥ 9.
The array descriptor for the distributed matrix B.
Contains information of mapping of B to memory.

(local).work
REAL for pspbsv
DOUBLE PRECISON for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Temporary workspace. This space may be overwritten in
between calls to routines. work must be the size given in
lwork.

(local or global) INTEGER. Size of user-input workspace
work. If lwork is too small, the minimal acceptable size will
be returned in work(1)and an error code is returned. lwork

≥ (nb+2*bw)*bw +max((bw*nrhs), bw*bw)

lwork

Output Parameters

On exit, this array contains information containing details
of the factorization. Note that permutations are performed
on the matrix, so that the factors returned are different
from those returned by LAPACK.

a

On exit, contains the local piece of the solutions distributed
matrix X.

b

1840

6 Intel® Math Kernel Library Reference Manual

On exit, work(1) contains the minimal lwork.work

(global). INTEGER. If info=0, the execution is successful.info
< 0: If the i-th argument is an array and the j-entry had
an illegal value, then info = -(i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

> 0: If info = k ≤ NPROCS, the submatrix stored on
processor info and factored locally was not positive definite,
and the factorization was not completed.
If info = k > NPROCS, the submatrix stored on processor
info-NPROCS representing interactions with other
processors was not positive definite, and the factorization
was not completed.

p?ptsv
Solves a symmetric or Hermitian positive definite
tridiagonal system of linear equations.

Syntax

call psptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

call pdptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

call pcptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

call pzptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

Description

This routine solves a system of linear equations

A(1:n, ja:ja+n-1)*X = B(ib:ib+n-1, 1:nrhs),

where A(1:n, ja:ja+n-1) is an n-by-n real tridiagonal symmetric positive definite distributed
matrix.

Cholesky factorization is used to factor a reordering of the matrix into L*L'.

Input Parameters

(global) INTEGER. The order of matrix A (n ≥ 0).n

1841

ScaLAPACK Routines 6

(global) INTEGER. The number of right-hand sides; the

number of columns of the distributed submatrix B (nrhs ≥
0).

nrhs

(local)d
REAL for psptsv
DOUBLE PRECISON for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer to local part of global vector storing the main
diagonal of the matrix.

(local)e
REAL for psptsv
DOUBLE PRECISON for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer to local part of global vector storing the upper
diagonal of the matrix. Globally, du(n) is not referenced,
and du must be aligned with d.

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array of dimension dlen.desca

If 1d type (dtype_a=501 or 502), dlen ≥ 7;

If 2d type (dtype_a=1), dlen ≥ 9.
The array descriptor for the distributed matrix A.
Contains information of mapping of A to memory.

(local)b
REAL for psptsv
DOUBLE PRECISON for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer into the local memory to an array of local lead

dimension lld_b ≥ nb.
On entry, this array contains the local pieces of the right
hand sides B(ib:ib+n-1, 1:nrhs).

1842

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The row index in the global array b that
points to the first row of the matrix to be operated on (which
may be either all of b or a submatrix of B).

ib

(global and local) INTEGER array of dimension dlen.descb

If 1d type (dtype_b = 502), dlen ≥ 7;

If 2d type (dtype_b = 1), dlen ≥ 9.
The array descriptor for the distributed matrix B.
Contains information of mapping of B to memory.

(local).work
REAL for psptsv
DOUBLE PRECISON for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Temporary workspace. This space may be overwritten in
between calls to routines. work must be the size given in
lwork.

(local or global) INTEGER. Size of user-input workspace
work. If lwork is too small, the minimal acceptable size will
be returned in work(1) and an error code is returned. lwork
> (12*NPCOL+3*nb)+max((10+2*min(100,
nrhs))*NPCOL+4*nrhs, 8*NPCOL).

lwork

Output Parameters

On exit, this array contains information containing the
factors of the matrix. Must be of size greater than or equal
to desca(nb_).

d

On exit, this array contains information containing the
factors of the matrix. Must be of size greater than or equal
to desca(nb_).

e

On exit, this contains the local piece of the solutions
distributed matrix X.

b

On exit, work(1) contains the minimal lwork.work

(local) INTEGER. If info=0, the execution is successful.info

1843

ScaLAPACK Routines 6

< 0: If the i-th argument is an array and the j-entry had
an illegal value, then info = -(i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

> 0: If info = k ≤ NPROCS, the submatrix stored on
processor info and factored locally was not positive definite,
and the factorization was not completed.
If info = k > NPROCS, the submatrix stored on processor
info-NPROCS representing interactions with other
processors was not positive definite, and the factorization
was not completed.

p?gels
Solves overdetermined or underdetermined linear
systems involving a matrix of full rank.

Syntax

call psgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, work, lwork,
info)

call pdgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, work, lwork,
info)

call pcgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, work, lwork,
info)

call pzgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, work, lwork,
info)

Description

This routine solves overdetermined or underdetermined real/ complex linear systems involving
an m-by-n matrix sub(A) = A(ia:ia+m-1,ja:ja+n-1), or its transpose/ conjugate-transpose,
using a QTQ or LQ factorization of sub(A). It is assumed that sub(A) has full rank.

The following options are provided:

1. If trans = 'N' and m ≥ n: find the least squares solution of an overdetermined system,
that is, solve the least squares problem

minimize ||sub(B) - sub(A)*X||

1844

6 Intel® Math Kernel Library Reference Manual

2. If trans = 'N' and m < n: find the minimum norm solution of an underdetermined system
sub(A)*X = sub(B).

3. If trans = 'T' and m ≥ n: find the minimum norm solution of an undetermined system
sub(A)T*X = sub(B).

4. If trans = 'T' and m < n: find the least squares solution of an overdetermined system,
that is, solve the least squares problem

minimize ||sub(B) - sub(A)T*X||,

where sub(B) denotes B(ib:ib+m-1, jb:jb+nrhs-1) when trans = 'N' and
B(ib:ib+n-1, jb:jb+nrhs-1) otherwise. Several right hand side vectors b and solution
vectors x can be handled in a single call; when trans = 'N', the solution vectors are stored
as the columns of the n-by-nrhs right hand side matrix sub(B) and the m-by-nrhs right hand
side matrix sub(B) otherwise.

Input Parameters

(global) CHARACTER. Must be 'N', or 'T'.trans
If trans = 'N', the linear system involves matrix sub(A);
If trans = 'T', the linear system involves the transposed
matrix AT (for real flavors only).

(global) INTEGER. The number of rows in the distributed

submatrix sub (A) (m ≥ 0).

m

(global) INTEGER. The number of columns in the distributed

submatrix sub (A) (n ≥ 0).

n

(global) INTEGER. The number of right-hand sides; the
number of columns in the distributed submatrices sub(B)

and X. (nrhs ≥ 0).

nrhs

(local)a
REAL for psgels
DOUBLE PRECISION for pdgels
COMPLEX for pcgels
DOUBLE COMPLEX for pzgels.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, contains the m-by-n
matrix A.

1845

ScaLAPACK Routines 6

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)b
REAL for psgels
DOUBLE PRECISION for pdgels
COMPLEX for pcgels
DOUBLE COMPLEX for pzgels.
Pointer into the local memory to an array of local dimension
(lld_b, LOCc(jb+nrhs-1)). On entry, this array contains
the local pieces of the distributed matrix B of right-hand
side vectors, stored columnwise; sub(B) is m-by-nrhs if
trans='N', and n-by-nrhs otherwise.

(global) INTEGER. The row and column indices in the global
array b indicating the first row and the first column of the
submatrix B, respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B.

descb

(local)work
REAL for psgels
DOUBLE PRECISION for pdgels
COMPLEX for pcgels
DOUBLE COMPLEX for pzgels.
Workspace array with dimension lwork.

(local or global) INTEGER.lwork
The dimension of the array work lwork is local input and

must be at least lwork ≥ ltau + max(lwf, lws), where
if m > n, then
ltau = numroc(ja+min(m,n)-1, nb_a, MYCOL,
csrc_a, NPCOL),
lwf = nb_a*(mpa0 + nqa0 + nb_a)
lws = max((nb_a*(nb_a-1))/2, (nrhsqb0 +
mpb0)*nb_a) + nb_a*nb_a
else

1846

6 Intel® Math Kernel Library Reference Manual

ltau = numroc(ia+min(m,n)-1, mb_a, MYROW,
rsrc_a, NPROW),
lwf = mb_a * (mpa0 + nqa0 + mb_a)
lws = max((mb_a*(mb_a-1))/2, (npb0 + max(nqa0 +
numroc(numroc(n+iroffb, mb_a, 0, 0, NPROW),
mb_a, 0, 0, lcmp), nrhsqb0))*mb_a) + mb_a*mb_a
end if,
where lcmp = lcm/NPROW with lcm = ilcm(NPROW,
NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol= indxg2p(ja, nb_a, MYROW, rsrc_a, NPROW)
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow,
NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol,
NPCOL),
iroffb = mod(ib-1, mb_b),
icoffb = mod(jb-1, nb_b),
ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW),
ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL),
mpb0 = numroc(m+iroffb, mb_b, MYROW, icrow,
NPROW),
nqb0 = numroc(n+icoffb, nb_b, MYCOL, ibcol,
NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW, and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

1847

ScaLAPACK Routines 6

Output Parameters

On exit, If m ≥ n, sub(A) is overwritten by the details of its
QR factorization as returned by p?geqrf; if m < n, sub(A)
is overwritten by details of its LQ factorization as returned
by p?gelqf.

a

On exit, sub(B) is overwritten by the solution vectors, stored

columnwise: if trans = 'N' and m ≥ n, rows 1 to n of
sub(B) contain the least squares solution vectors; the

b

residual sum of squares for the solution in each column is
given by the sum of squares of elements n+1 to m in that
column;
If trans = 'N' and m < n, rows 1 to n of sub(B) contain
the minimum norm solution vectors;

If trans = 'T' and m ≥ n, rows 1 to m of sub(B) contain
the minimum norm solution vectors; if trans = 'T' and
m < n, rows 1 to m of sub(B) contain the least squares
solution vectors; the residual sum of squares for the solution
in each column is given by the sum of squares of elements
m+1 to n in that column.

On exit, work(1) contains the minimum value of lwork
required for optimum performance.

work(1)

(global) INTEGER.info
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had
an illegal value, then info = - (i* 100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1848

6 Intel® Math Kernel Library Reference Manual

p?syev
Computes selected eigenvalues and eigenvectors
of a symmetric matrix.

Syntax

call pssyev(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork,
info)

call pdsyev(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork,
info)

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix
A by calling the recommended sequence of ScaLAPACK routines.

In its present form, the routine assumes a homogeneous system and makes no checks for
consistency of the eigenvalues or eigenvectors across the different processes. Because of this,
it is possible that a heterogeneous system may return incorrect results without any error
messages.

Input Parameters

np = the number of rows local to a given process.

nq = the number of columns local to a given process.

(global). CHARACTER. Must be 'N' or 'V'. Specifies if it is
necessary to compute the eigenvectors:

jobz

If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are
computed.

(global). CHARACTER. Must be 'U' or 'L'. Specifies whether
the upper or lower triangular part of the symmetric matrix
A is stored:

uplo

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

(global) INTEGER. The number of rows and columns of the

matrix A (n ≥ 0).

n

(local)a

1849

ScaLAPACK Routines 6

REAL for pssyev.
DOUBLE PRECISION for pdsyev.
Block cyclic array of global dimension (n, n) and local
dimension (lld_a, LOC c(ja+n-1)). On entry, the
symmetric matrix A.
If uplo = 'U', only the upper triangular part of A is used
to define the elements of the symmetric matrix.
If uplo = 'L', only the lower triangular part of A is used
to define the elements of the symmetric matrix.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. The row and column indices in the global
array z indicating the first row and the first column of the
submatrix Z, respectively.

iz, jz

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix Z.

descz

(local)work
REAL for pssyev.
DOUBLE PRECISION for pdsyev.
Array, DIMENSION (lwork).

(local) INTEGER. See below for definitions of variables used
to define lwork.

lwork

If no eigenvectors are requested (jobz = 'N'), then lwork

≥ 5*n + sizesytrd + 1,
where sizesytrd is the workspace for p?sytrd and is
max(NB*(np +1), 3*NB).
If eigenvectors are requested (jobz = 'V') then the
amount of workspace required to guarantee that all
eigenvectors are computed is:
qrmem = 2*n-2
lwmin = 5*n + n*ldc + max(sizemqrleft, qrmem) +
1
Variable definitions:

1850

6 Intel® Math Kernel Library Reference Manual

nb = desca(mb_) = desca(nb_) = descz(mb_) =
descz(nb_);
nn = max(n, nb, 2);
desca(rsrc_) = desca(rsrc_) = descz(rsrc_) =
descz(csrc_) = 0
np = numroc(nn, nb, 0, 0, NPROW)
nq = numroc(max(n, nb, 2), nb, 0, 0, NPCOL)
nrc = numroc(n, nb, myprowc, 0, NPROCS)
ldc = max(1, nrc)
sizemqrleft is the workspace for p?ormtr when its side
argument is 'L'.
myprowc is defined when a new context is created as follows:
call blacs_get(desca(ctxt_), 0, contextc)
call blacs_gridinit(contextc, 'R', NPROCS, 1)
call blacs_gridinfo(contextc, nprowc, npcolc,
myprowc, mypcolc)
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, the lower triangle (if uplo='L') or the upper
triangle (if uplo='U') of A, including the diagonal, is
destroyed.

a

(global). REAL for pssyevw
DOUBLE PRECISION for pdsyev
Array, DIMENSION (n).
On normal exit, the first m entries contain the selected
eigenvalues in ascending order.

(local). REAL for pssyevz
DOUBLE PRECISION for pdsyev
Array, global dimension (n, n), local dimension (lld_z,
LOCc(jz+n-1)). If jobz = 'V', then on normal exit the
first m columns of z contain the orthonormal eigenvectors
of the matrix corresponding to the selected eigenvalues.

1851

ScaLAPACK Routines 6

If jobz = 'N', then z is not referenced.

On output, work(1) returns the workspace needed to
guarantee completion. If the input parameters are incorrect,
work(1) may also be incorrect.

work(1)

If jobz = 'N' work(1) = minimal (optimal) amount of
workspace
If jobz = 'V' work(1) = minimal workspace required to
generate all the eigenvectors.

(global) INTEGER.info
If info = 0, the execution is successful.
If info < 0: If the i-th argument is an array and the
j-entry had an illegal value, then info = -(i*100+j), if
the i-th argument is a scalar and had an illegal value, then
info = -i.
If info > 0:
If info= 1 through n, the i-th eigenvalue did not converge
in ?steqr2 after a total of 30n iterations.
If info= n+1, then p?syev has detected heterogeneity by
finding that eigenvalues were not identical across the
process grid. In this case, the accuracy of the results from
p?syev cannot be guaranteed.

p?syevx
Computes selected eigenvalues and, optionally,
eigenvectors of a symmetric matrix.

Syntax

call pssyevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, abstol,
m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork, ifail, iclustr,
gap, info)

call pdsyevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, abstol,
m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork, ifail, iclustr,
gap, info)

1852

6 Intel® Math Kernel Library Reference Manual

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
matrix A by calling the recommended sequence of ScaLAPACK routines. Eigenvalues and
eigenvectors can be selected by specifying either a range of values or a range of indices for
the desired eigenvalues.

Input Parameters

np = the number of rows local to a given process.

nq = the number of columns local to a given process.

(global). CHARACTER*1. Must be 'N' or 'V'. Specifies if it
is necessary to compute the eigenvectors:

jobz

If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are
computed.

(global). CHARACTER*1. Must be 'A', 'V', or 'I'.range
If range = 'A', all eigenvalues will be found.
If range = 'V', all eigenvalues in the half-open interval
[vl, vu] will be found.
If range = 'I', the eigenvalues with indices il through
iu will be found.

(global). CHARACTER*1. Must be 'U' or 'L'.uplo
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

(global) INTEGER. The number of rows and columns of the

matrix A (n ≥ 0).

n

(local). REAL for pssyevxa
DOUBLE PRECISION for pdsyevx.
Block cyclic array of global dimension (n, n) and local
dimension (lld_a, LOCc(ja+n-1)). On entry, the
symmetric matrix A.
If uplo = 'U', only the upper triangular part of A is used
to define the elements of the symmetric matrix.
If uplo = 'L', only the lower triangular part of A is used
to define the elements of the symmetric matrix.

1853

ScaLAPACK Routines 6

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global)vl, vu
REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
If range = 'V', the lower and upper bounds of the interval

to be searched for eigenvalues; vl ≤ vu. Not referenced if
range = 'A' or 'I'.

(global) INTEGER.il, iu
If range ='I', the indices of the smallest and largest
eigenvalues to be returned.

Constraints: il ≥ 1

min(il,n) ≤ iu ≤ n
Not referenced if range = 'A' or 'V'.

(global). REAL for pssyevxabstol
DOUBLE PRECISION for pdsyevx.
If jobz='V', setting abstol to p?lamch(context, 'U')
yields the most orthogonal eigenvectors.
The absolute error tolerance for the eigenvalues. An
approximate eigenvalue is accepted as converged when it
is determined to lie in an interval [a, b] of width less than
or equal to
abstol + eps * max(|a|,|b|),
where eps is the machine precision. If abstol is less than
or equal to zero, then eps*norm(T) will be used in its place,
where norm(T) is the 1-norm of the tridiagonal matrix
obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol
is set to twice the underflow threshold 2*p?lamch('S')
not zero. If this routine returns with
((mod(info,2).ne.0).or. * (mod(info/8,2).ne.0)),
indicating that some eigenvalues or eigenvectors did not
converge, try setting abstol to 2*p?lamch('S').

1854

6 Intel® Math Kernel Library Reference Manual

(global). REAL for pssyevxorfac
DOUBLE PRECISION for pdsyevx.
Specifies which eigenvectors should be reorthogonalized.
Eigenvectors that correspond to eigenvalues which are within
tol=orfac*norm(A)of each other are to be
reorthogonalized. However, if the workspace is insufficient
(see lwork), tol may be decreased until all eigenvectors
to be reorthogonalized can be stored in one process. No
reorthogonalization will be done if orfac equals zero. A
default value of 1.0e-3 is used if orfac is negative. orfac
should be identical on all processes.

(global) INTEGER. The row and column indices in the global
array z indicating the first row and the first column of the
submatrix Z, respectively.

iz, jz

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix Z.descz(ctxt_)
must equal desca(ctxt_).

descz

(local)work
REAL for pssyevx.
DOUBLE PRECISION for pdsyevx.
Array, DIMENSION (lwork).

(local) INTEGER. The dimension of the array work.lwork
See below for definitions of variables used to define lwork.
If no eigenvectors are requested (jobz = 'N'), then lwork

≥ 5*n + max(5*nn, NB*(np0 + 1)).
If eigenvectors are requested (jobz = 'V'), then the
amount of workspace required to guarantee that all
eigenvectors are computed is:

lwork ≥ 5*n + max(5*nn, np0*mq0 + 2*NB*NB) +
iceil(neig, NPROW*NPCOL)*nn
The computed eigenvectors may not be orthogonal if the
minimal workspace is supplied and orfac is too small. If
you want to guarantee orthogonality (at the cost of
potentially poor performance) you should add the following
to lwork:
(clustersize-1)*n,

1855

ScaLAPACK Routines 6

where clustersize is the number of eigenvalues in the
largest cluster, where a cluster is defined as a set of close
eigenvalues:

{w(k),..., w(k+clustersize-1)| w(j+1) ≤ w(j)) +
orfac*2*norm(A)},
where
neig = number of eigenvectors requested
nb = desca(mb_) = desca(nb_) = descz(mb_) =
descz(nb_);
nn = max(n, nb, 2);
desca(rsrc_) = desca(nb_) = descz(rsrc_) =
descz(csrc_) = 0;
np0 = numroc(nn, nb, 0, 0, NPROW);
mq0 = numroc(max(neig, nb, 2), nb, 0, 0, NPCOL)
iceil(x, y) is a ScaLAPACK function returning ceiling(x/y)
If lwork is too small to guarantee orthogonality, p?syevx
attempts to maintain orthogonality in the clusters with the
smallest spacing between the eigenvalues.
If lwork is too small to compute all the eigenvectors
requested, no computation is performed and info= -23 is
returned.
Note that when range='V', number of requested
eigenvectors are not known until the eigenvalues are
computed. In this case and if lwork is large enough to
compute the eigenvalues, p?sygvx computes the
eigenvalues and as many eigenvectors as possible.
Relationship between workspace, orthogonality &
performance:
Greater performance can be achieved if adequate workspace
is provided. In some situations, performance can decrease
as the provided workspace increases above the workspace
amount shown below:

lwork ≥ max(lwork, 5*n + nsytrd_lwopt),
where lwork, as defined previously, depends upon the
number of eigenvectors requested, and
nsytrd_lwopt = n + 2*(anb+1)*(4*nps+2) + (nps +
3)*nps;

1856

6 Intel® Math Kernel Library Reference Manual

anb = pjlaenv(desca(ctxt_), 3, 'p?syttrd', 'L',
0, 0, 0, 0);
sqnpc = int(sqrt(dble(NPROW * NPCOL)));
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb);
numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
For large n, no extra workspace is needed, however the
biggest boost in performance comes for small n, so it is wise
to provide the extra workspace (typically less than a
megabyte per process).
If clustersize > n/sqrt(NPROW*NPCOL), then providing
enough space to compute all the eigenvectors orthogonally
will cause serious degradation in performance. At the limit
(that is, clustersize = n-1) p?stein will perform no
better than ?stein on single processor.
For clustersize = n/sqrt(NPROW*NPCOL)
reorthogonalizing all eigenvectors will increase the total
execution time by a factor of 2 or more.
For clustersize > n/sqrt(NPROW*NPCOL) execution time
will grow as the square of the cluster size, all other factors
remaining equal and assuming enough workspace. Less
workspace means less reorthogonalization but faster
execution.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the size
required for optimal performance for all work arrays. Each
of these values is returned in the first entry of the
corresponding work arrays, and no error message is issued
by pxerbla.

(local) INTEGER. Workspace array.iwork

(local) INTEGER, dimension of iwork. liwork ≥ 6*nnpliwork

Where: nnp = max(n, NPROW*NPCOL + 1, 4)
If liwork = -1, then liwork is global input and a
workspace query is assumed; the routine only calculates
the minimum and optimal size for all work arrays. Each of

1857

ScaLAPACK Routines 6

these values is returned in the first entry of the
corresponding work array, and no error message is issued
by pxerbla.

Output Parameters

On exit, the lower triangle (if uplo = 'L') or the upper
triangle (if uplo = 'U')of A, including the diagonal, is
overwritten.

a

(global) INTEGER. The total number of eigenvalues found;

0 ≤ m ≤ n.

m

(global) INTEGER. Total number of eigenvectors computed.

0 ≤ nz ≤ m.

nz

The number of columns of z that are filled.

If jobz ≠ 'V', nz is not referenced.
If jobz = 'V', nz = m unless the user supplies insufficient
space and p?syevx is not able to detect this before
beginning computation. To get all the eigenvectors
requested, the user must supply both sufficient space to
hold the eigenvectors in z (m.le.descz(n_)) and sufficient
workspace to compute them. (See lwork). p?syevx is
always able to detect insufficient space without computation
unless range.eq.'V'.

(global). REAL for pssyevxw
DOUBLE PRECISION for pdsyevx.
Array, DIMENSION (n). The first m elements contain the
selected eigenvalues in ascending order.

(local). REAL for pssyevxz
DOUBLE PRECISION for pdsyevx.
Array, global dimension (n, n), local dimension (lld_z,
LOCc(jz+n-1)).
If jobz = 'V', then on normal exit the first m columns of
z contain the orthonormal eigenvectors of the matrix
corresponding to the selected eigenvalues. If an eigenvector
fails to converge, then that column of z contains the latest
approximation to the eigenvector, and the index of the
eigenvector is returned in ifail.

1858

6 Intel® Math Kernel Library Reference Manual

If jobz = 'N', then z is not referenced.

On exit, returns workspace adequate workspace to allow
optimal performance.

work(1)

On return, iwork(1) contains the amount of integer
workspace required.

iwork(1)

(global) INTEGER.ifail
Array, DIMENSION (n).
If jobz = 'V', then on normal exit, the first m elements of
ifail are zero. If (mod(info,2). ne.0) on exit, then
ifail contains the indices of the eigenvectors that failed
to converge.
If jobz = 'N', then ifail is not referenced.

(global) INTEGER. Array, DIMENSION (2*NPROW*NPCOL)iclustr
This array contains indices of eigenvectors corresponding
to a cluster of eigenvalues that could not be reorthogonalized
due to insufficient workspace (see lwork, orfac and info).
Eigenvectors corresponding to clusters of eigenvalues
indexed iclustr(2*i-1) to iclustr(2*i), could not
be reorthogonalized due to lack of workspace. Hence the
eigenvectors corresponding to these clusters may not be
orthogonal. iclustr() is a zero terminated array.
(iclustr(2*k).ne.0. and. iclustr(2*k+1).eq.0)
if and only if k is the number of clusters.
iclustr is not referenced if jobz = 'N'.

(global)gap
REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
Array, DIMENSION (NPROW*NPCOL)
This array contains the gap between eigenvalues whose
eigenvectors could not be reorthogonalized. The output
values in this array correspond to the clusters indicated by
the array iclustr. As a result, the dot product between
eigenvectors corresponding to the ith cluster may be as
high as (C*n)/gap(i) where C is a small constant.

(global) INTEGER.info
If info = 0, the execution is successful.
If info < 0:

1859

ScaLAPACK Routines 6

If the i-th argument is an array and the j-entry had an
illegal value, then info = -(i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.
If info > 0: if (mod(info,2).ne.0), then one or more
eigenvectors failed to converge. Their indices are stored in
ifail. Ensure abstol=2.0*p?lamch('U').
If (mod(info/2,2).ne.0), then eigenvectors corresponding
to one or more clusters of eigenvalues could not be
reorthogonalized because of insufficient workspace.The
indices of the clusters are stored in the array iclustr.
If (mod(info/4,2).ne.0), then space limit prevented
p?syevxf rom computing all of the eigenvectors between
vl and vu. The number of eigenvectors computed is returned
in nz.
If (mod(info/8,2).ne.0), then p?stebz failed to compute
eigenvalues. Ensure abstol=2.0*p?lamch('U').

p?heevx
Computes selected eigenvalues and, optionally,
eigenvectors of a Hermitian matrix.

Syntax

call pcheevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, abstol,
m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork, iwork, liwork,
ifail, iclustr, gap, info)

call pzheevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, abstol,
m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork, iwork, liwork,
ifail, iclustr, gap, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix A by calling the recommended sequence of ScaLAPACK routines. Eigenvalues and
eigenvectors can be selected by specifying either a range of values or a range of indices for
the desired eigenvalues.

1860

6 Intel® Math Kernel Library Reference Manual

Input Parameters

np = the number of rows local to a given process.

nq = the number of columns local to a given process.

(global). CHARACTER*1. Must be 'N' or 'V'.jobz
Specifies if it is necessary to compute the eigenvectors:
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are
computed.

(global). CHARACTER*1. Must be 'A', 'V', or 'I'.range
If range = 'A', all eigenvalues will be found.
If range = 'V', all eigenvalues in the half-open interval
[vl, vu] will be found.
If range = 'I', the eigenvalues with indices il through
iu will be found.

(global). CHARACTER*1. Must be 'U' or 'L'.uplo
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored:
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

(global) INTEGER. The number of rows and columns of the

matrix A (n ≥ 0).

n

(local).a
COMPLEX for pcheevx
DOUBLE COMPLEX for pzheevx.
Block cyclic array of global dimension (n, n) and local
dimension (lld_a, LOC c(ja+n-1)). On entry, the
Hermitian matrix A.
If uplo = 'U', only the upper triangular part of A is used
to define the elements of the symmetric matrix.
If uplo = 'L', only the lower triangular part of A is used
to define the elements of the Hermitian matrix.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

1861

ScaLAPACK Routines 6

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A. If
desca(ctxt_) is incorrect, p?heevx cannot guarantee
correct error reporting

desca

(global)vl, vu
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues; not referenced if range =
'A' or 'I'.

(global)il, iu
INTEGER. If range ='I', the indices of the smallest and
largest eigenvalues to be returned.
Constraints:

il ≥ 1; min(il,n) ≤ iu ≤ n.
Not referenced if range = 'A' or 'V'.

(global).abstol
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
If jobz='V', setting abstol to p?lamch(context, 'U')
yields the most orthogonal eigenvectors.
The absolute error tolerance for the eigenvalues. An
approximate eigenvalue is accepted as converged when it
is determined to lie in an interval [a, b] of width less than
or equal to abstol+eps*max(|a|,|b|), where eps is the
machine precision. If abstol is less than or equal to zero,
then eps*norm(T) will be used in its place, where norm(T)
is the 1-norm of the tridiagonal matrix obtained by reducing
A to tridiagonal form.
Eigenvalues are computed most accurately when abstol is
set to twice the underflow threshold 2*p?lamch('S'), not
zero. If this routine returns with
((mod(info,2).ne.0).or.(mod(info/8,2).ne.0)),
indicating that some eigenvalues or eigenvectors did not
converge, try setting abstol to 2*p?lamch('S').

(global). REAL for pcheevxorfac
DOUBLE PRECISION for pzheevx.

1862

6 Intel® Math Kernel Library Reference Manual

Specifies which eigenvectors should be reorthogonalized.
Eigenvectors that correspond to eigenvalues which are within
tol=orfac*norm(A) of each other are to be
reorthogonalized. However, if the workspace is insufficient
(see lwork), tol may be decreased until all eigenvectors
to be reorthogonalized can be stored in one process. No
reorthogonalization will be done if orfac equals zero. A
default value of 1.0e-3 is used if orfac is negative.
orfac should be identical on all processes.

(global) INTEGER. The row and column indices in the global
array z indicating the first row and the first column of the
submatrix Z, respectively.

iz, jz

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix Z.descz(ctxt_
) must equal desca(ctxt_).

descz

(local)work
COMPLEX for pcheevx
DOUBLE COMPLEX for pzheevx.
Array, DIMENSION (lwork).

(local). INTEGER. The dimension of the array work.lwork
If only eigenvalues are requested:

lwork ≥ n + max(nb*(np0 + 1), 3)
If eigenvectors are requested:

lwork ≥ n + (np0+mq0+nb)*nb
with nq0 = numroc(nn, nb, 0, 0, NPCOL).

lwork ≥ 5*n + max(5*nn, np0*mq0+2*nb*nb) +
iceil(neig, NPROW*NPCOL)*nn
For optimal performance, greater workspace is needed, that
is

lwork ≥ max(lwork, nhetrd_lwork)
where lwork is as defined above, and nhetrd_lwork = n
+ 2*(anb+1)*(4*nps+2) + (nps+1)*nps
ictxt = desca(ctxt_)
anb = pjlaenv(ictxt, 3, 'pchettrd', 'L', 0, 0,
0, 0)
sqnpc = sqrt(dble(NPROW * NPCOL))

1863

ScaLAPACK Routines 6

nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the size
required for optimal performance for all work arrays. Each
of these values is returned in the first entry of the
corresponding work arrays, and no error message is issued
by pxerbla.

(local)rwork
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Workspace array, DIMENSION (lrwork).

(local) INTEGER. The dimension of the array work.lrwork
See below for definitions of variables used to define lwork.
If no eigenvectors are requested (jobz = 'N'), then

lrwork ≥ 5*nn+4*n.
If eigenvectors are requested (jobz = 'V'), then the
amount of workspace required to guarantee that all
eigenvectors are computed is:

lrwork ≥ 4*n + max(5*nn, np0*mq0+2*nb*nb) +
iceil(neig, NPROW*NPCOL)*nn
The computed eigenvectors may not be orthogonal if the
minimal workspace is supplied and orfac is too small. If
you want to guarantee orthogonality (at the cost of
potentially poor performance) you should add the following
values to lrwork:
(clustersize-1)*n,
where clustersize is the number of eigenvalues in the
largest cluster, where a cluster is defined as a set of close
eigenvalues:

{w(k),..., w(k+clustersize-1)|w(j+1) ≤
w(j)+orfac*2*norm(A)}.
Variable definitions:
neig = number of eigenvectors requested;
nb = desca(mb_) = desca(nb_) = descz(mb_) =
descz(nb_);
nn = max(n, NB, 2);

1864

6 Intel® Math Kernel Library Reference Manual

desca(rsrc_) = desca(nb_) = descz(rsrc_) =
descz(csrc_) = 0;
np0 = numroc(nn, nb, 0, 0, NPROW);
mq0 = numroc(max(neig, nb, 2), nb, 0, 0, NPCOL);
iceil(x, y) is a ScaLAPACK function returning ceiling(x/y)
When lrwork is too small:
If lwork is too small to guarantee orthogonality, p?heevx
attempts to maintain orthogonality in the clusters with the
smallest spacing between the eigenvalues. If lwork is too
small to compute all the eigenvectors requested, no
computation is performed and info= -23 is returned. Note
that when range='V', p?heevx does not know how many
eigenvectors are requested until the eigenvalues are
computed. Therefore, when range='V' and as long as lwork
is large enough to allow p?heevx to compute the
eigenvalues, p?heevx will compute the eigenvalues and as
many eigenvectors as it can.
Relationship between workspace, orthogonality and
performance:

If clustersize ≥ n/sqrt(NPROW*NPCOL), then providing
enough space to compute all the eigenvectors orthogonally
will cause serious degradation in performance. In the limit
(that is, clustersize = n-1) p?stein will perform no
better than ?stein on 1 processor.
For clustersize = n/sqrt(NPROW*NPCOL)
reorthogonalizing all eigenvectors will increase the total
execution time by a factor of 2 or more.
For clustersize > n/sqrt(NPROW*NPCOL) execution time
will grow as the square of the cluster size, all other factors
remaining equal and assuming enough workspace. Less
workspace means less reorthogonalization but faster
execution.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the size
required for optimal performance for all work arrays. Each
of these values is returned in the first entry of the
corresponding work arrays, and no error message is issued
by pxerbla.

1865

ScaLAPACK Routines 6

(local) INTEGER. Workspace array.iwork

(local) INTEGER, dimension of iwork.liwork

liwork ≥ 6*nnp
Where: nnp = max(n, NPROW*NPCOL+1, 4)
If liwork = -1, then liwork is global input and a
workspace query is assumed; the routine only calculates
the minimum and optimal size for all work arrays. Each of
these values is returned in the first entry of the
corresponding work array, and no error message is issued
by pxerbla.

Output Parameters

On exit, the lower triangle (if uplo = 'L'), or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

a

(global) INTEGER. The total number of eigenvalues found;

0 ≤ m ≤ n.

m

(global) INTEGER. Total number of eigenvectors computed.

0 ≤ nz ≤ m.

nz

The number of columns of z that are filled.

If jobz ≠ 'V', nz is not referenced.
If jobz = 'V', nz = m unless the user supplies insufficient
space and p?heevx is not able to detect this before
beginning computation. To get all the eigenvectors
requested, the user must supply both sufficient space to
hold the eigenvectors in z (m.le.descz(n_)) and sufficient
workspace to compute them. (See lwork). p?heevx is
always able to detect insufficient space without computation
unless range.eq.'V'.

(global).w
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Array, DIMENSION (n). The first m elements contain the
selected eigenvalues in ascending order.

(local).z

1866

6 Intel® Math Kernel Library Reference Manual

COMPLEX for pcheevx
DOUBLE COMPLEX for pzheevx.
Array, global dimension (n, n), local dimension (lld_z,
LOCc(jz+n-1)).
If jobz ='V', then on normal exit the first m columns of z
contain the orthonormal eigenvectors of the matrix
corresponding to the selected eigenvalues. If an eigenvector
fails to converge, then that column of z contains the latest
approximation to the eigenvector, and the index of the
eigenvector is returned in ifail.
If jobz = 'N', then z is not referenced.

On exit, returns workspace adequate workspace to allow
optimal performance.

work(1)

(local).rwork
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Array, DIMENSION (lrwork). On return, rwork(1) contains
the optimal amount of workspace required for efficient
execution.
If jobz='N' rwork(1) = optimal amount of workspace
required to compute eigenvalues efficiently.
If jobz='V' rwork(1) = optimal amount of workspace
required to compute eigenvalues and eigenvectors efficiently
with no guarantee on orthogonality.
If range='V', it is assumed that all eigenvectors may be
required.

(local)iwork(1)
On return, iwork(1) contains the amount of integer
workspace required.

(global) INTEGER.ifail
Array, DIMENSION (n).
If jobz ='V', then on normal exit, the first m elements of
ifail are zero. If (mod(info,2).ne.0) on exit, then ifail
contains the indices of the eigenvectors that failed to
converge.
If jobz = 'N', then ifail is not referenced.

(global) INTEGER.iclustr
Array, DIMENSION (2*NPROW*NPCOL).

1867

ScaLAPACK Routines 6

This array contains indices of eigenvectors corresponding
to a cluster of eigenvalues that could not be reorthogonalized
due to insufficient workspace (see lwork, orfac and info).
Eigenvectors corresponding to clusters of eigenvalues
indexed iclustr(2*i-1) to iclustr(2*i), could not be
reorthogonalized due to lack of workspace. Hence the
eigenvectors corresponding to these clusters may not be
orthogonal. iclustr() is a zero terminated array.
(iclustr(2*k).ne.0. and. iclustr(2*k+1).eq.0) if
and only if k is the number of clusters. iclustr is not
referenced if jobz = 'N'.

(global)gap
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Array, DIMENSION (NPROW*NPCOL)
This array contains the gap between eigenvalues whose
eigenvectors could not be reorthogonalized. The output
values in this array correspond to the clusters indicated by
the array iclustr. As a result, the dot product between
eigenvectors corresponding to the i-th cluster may be as
high as (C*n)/gap(i) where C is a small constant.

(global) INTEGER.info
If info = 0, the execution is successful.
If info < 0:
If the i-th argument is an array and the j-entry had an
illegal value, then info = -(i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.
If info > 0:
If (mod(info,2).ne.0), then one or more eigenvectors
failed to converge. Their indices are stored in ifail. Ensure
abstol=2.0*p?lamch('U')
If (mod(info/2,2).ne.0), then eigenvectors corresponding
to one or more clusters of eigenvalues could not be
reorthogonalized because of insufficient workspace.The
indices of the clusters are stored in the array iclustr.

1868

6 Intel® Math Kernel Library Reference Manual

If (mod(info/4,2).ne.0), then space limit prevented
p?syevx from computing all of the eigenvectors between
vl and vu. The number of eigenvectors computed is returned
in nz.
If (mod(info/8,2).ne.0), then p?stebz failed to compute
eigenvalues. Ensure abstol=2.0*p?lamch('U').

p?gesvd
Computes the singular value decomposition of a
general matrix, optionally computing the left and/or
right singular vectors.

Syntax

call psgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu, vt,
ivt, jvt, descvt, work, lwork, info)

call pdgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu, vt,
ivt, jvt, descvt, work, lwork, info)

call pcgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu, vt,
ivt, jvt, descvt, work, lwork, rwork, info)

call pzgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu, vt,
ivt, jvt, descvt, work, lwork, rwork, info)

Description

This routine computes the singular value decomposition (SVD) of an m-by-n matrix A, optionally
computing the left and/or right singular vectors. The SVD is written

A = U*Σ*VT,

where Σ is an m-by-n matrix that is zero except for its min(m, n) diagonal elements, U is an

m-by-m orthogonal matrix, and V is an n-by-n orthogonal matrix. The diagonal elements of Σ
are the singular values of A and the columns of U and V are the corresponding right and left
singular vectors, respectively. The singular values are returned in array s in decreasing order
and only the first min(m,n) columns of U and rows of vt = VT are computed.

Input Parameters

mp = number of local rows in A and U

1869

ScaLAPACK Routines 6

nq = number of local columns in A and VT

size = min(m, n)

sizeq = number of local columns in U

sizep = number of local rows in VT

(global). CHARACTER*1. Specifies options for computing all
or part of the matrix U.

jobu

If jobu = 'V', the first size columns of U (the left singular
vectors) are returned in the array u;
If jobu ='N', no columns of U (no left singular vectors)are
computed.

(global) CHARACTER*1.jobvt
Specifies options for computing all or part of the matrix VT.
If jobvt = 'V', the first size rows of VT (the right singular
vectors) are returned in the array vt;
If jobvt = 'N', no rows of VT(no right singular vectors)
are computed.

(global) INTEGER. The number of rows of the matrix A (m

≥ 0).

m

(global) INTEGER. The number of columns in A (n ≥ 0).n

(local). REAL for psgesvda
DOUBLE PRECISION for pdgesvd
COMPLEX for pcgesvd
COMPLEX*16 for pzgesvd
Block cyclic array, global dimension (m, n), local dimension
(mp, nq).
work(lwork) is a workspace array.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix U, respectively.

iu, ju

1870

6 Intel® Math Kernel Library Reference Manual

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix U.

descu

(global) INTEGER. The row and column indices in the global
array vt indicating the first row and the first column of the
submatrix VT, respectively.

ivt, jvt

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix VT.

descvt

(local). REAL for psgesvdwork
DOUBLE PRECISION for pdgesvd
COMPLEX for pcgesvd
COMPLEX*16 for pzgesvd
Workspace array, dimension (lwork)

(local) INTEGER. The dimension of the array work;lwork
lwork > 2 + 6*sizeb + max(watobd, wbdtosvd),
where sizeb = max(m, n), and watobd and wbdtosvd
refer, respectively, to the workspace required to
bidiagonalize the matrix A and to go from the bidiagonal
matrix to the singular value decomposition U S VT.
For watobd, the following holds:
watobd = max(max(wp?lange,wp?gebrd),
max(wp?lared2d, wp?lared1d)),
where wp?lange, wp?lared1d, wp?lared2d, wp?gebrd are
the workspaces required respectively for the subprograms
p?lange, p?lared1d, p?lared2d, p?gebrd. Using the
standard notation
mp = numroc(m, mb, MYROW, desca(ctxt_), NPROW),
nq = numroc(n, nb, MYCOL, desca(lld_), NPCOL),
the workspaces required for the above subprograms are
wp?lange = mp,
wp?lared1d = nq0,
wp?lared2d = mp0,
wp?gebrd = nb*(mp + nq + 1) + nq,
where nq0 and mp0 refer, respectively, to the values
obtained at MYCOL = 0 and MYROW = 0. In general, the
upper limit for the workspace is given by a workspace
required on processor (0,0):

watobd ≤ nb*(mp0 + nq0 + 1) + nq0.

1871

ScaLAPACK Routines 6

In case of a homogeneous process grid this upper limit can
be used as an estimate of the minimum workspace for every
processor.
For wbdtosvd, the following holds:
wbdtosvd = size*(wantu*nru + wantvt*ncvt) +
max(w?bdsqr, max(wantu*wp?ormbrqln,
wantvt*wp?ormbrprt)),
where
wantu(wantvt) = 1, if left/right singular vectors are wanted,
and wantu(wantvt) = 0, otherwise. w?bdsqr,
wp?ormbrqln, and wp?ormbrprt refer respectively to the
workspace required for the subprograms ?bdsqr,
p?ormbr(qln), and p?ormbr(prt), where qln and prt are
the values of the arguments vect, side, and trans in the
call to p?ormbr. nru is equal to the local number of rows
of the matrix U when distributed 1-dimensional "column" of
processes. Analogously, ncvt is equal to the local number
of columns of the matrix VT when distributed across
1-dimensional "row" of processes. Calling the LAPACK
procedure ?bdsqr requires
w?bdsqr = max(1, 2*size + (2*size - 4)*
max(wantu, wantvt))
on every processor. Finally,
wp?ormbrqln = max((nb*(nb-1))/2,
(sizeq+mp)*nb)+nb*nb,
wp?ormbrprt = max((mb*(mb-1))/2,
(sizep+nq)*mb)+mb*mb,
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
size for the work array. The required workspace is returned
as the first element of work and no error message is issued
by pxerbla.

REAL for psgesvdrwork
DOUBLE PRECISION for pdgesvd
COMPLEX for pcgesvd
COMPLEX*16 for pzgesvd
Workspace array, dimension (1 + 4*sizeb)

1872

6 Intel® Math Kernel Library Reference Manual

Output Parameters

On exit, the contents of a are destroyed.a

(global). REAL for psgesvds
DOUBLE PRECISION for pdgesvd
COMPLEX for pcgesvd
COMPLEX*16 for pzgesvd
Array, DIMENSION (size).

Contains the singular values of A sorted so that s(i) ≥
s(i+1).

(local). REAL for psgesvdu
DOUBLE PRECISION for pdgesvd
COMPLEX for pcgesvd
COMPLEX*16 for pzgesvd
local dimension (mp, sizeq), global dimension (m, size)
If jobu = 'V', u contains the first min(m, n) columns of U.
If jobu = 'N' or 'O', u is not referenced.

(local). REAL for psgesvdvt
DOUBLE PRECISION for pdgesvd
COMPLEX for pcgesvd
COMPLEX*16 for pzgesvd
local dimension (sizep, nq), global dimension (size, n)
If jobvt = 'V', vt contains the first size rows of VTif jobu
= 'N', vt is not referenced.

On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

work

On exit, if info = 0, then rwork(1) returns the required
size of rwork.

rwork

(global) INTEGER.info
If info = 0, the execution is successful.
If info < 0, If info = -i, the ith parameter had an illegal
value.
If info > 0 i, then if ?bdsqr did not converge,
If info = min(m,n) + 1, then p?gesvd has detected
heterogeneity by finding that eigenvalues were not identical
across the process grid. In this case, the accuracy of the
results from p?gesvd cannot be guaranteed.

1873

ScaLAPACK Routines 6

p?sygvx
Computes selected eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem.

Syntax

call pssygvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb,
vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork,
liwork, ifail, iclustr, gap, info)

call pdsygvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb,
vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork,
liwork, ifail, iclustr, gap, info)

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form

sub(A)*x = λ*sub(B)*x, sub(A) sub(B)*x = λ*x, or sub(B)*sub(A)*x = λ*x.

Here x denotes eigen vectors, λ (lambda) denotes eigenvalues, sub(A) denoting A(ia:ia+n-1,
ja:ja+n-1) is assumed to symmetric, and sub(B) denoting B(ib:ib+n-1, jb:jb+n-1) is
also positive definite.

Input Parameters

(global) INTEGER. Must be 1 or 2 or 3.ibtype
Specifies the problem type to be solved:
If ibtype = 1, the problem type is sub(A)*x =
lambda*sub(B)*x;
If ibtype = 2, the problem type is sub(A)*sub(B)*x =
lambda*x;
If ibtype = 3, the problem type is sub(B)*sub(A)*x =
lambda*x.

(global). CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

(global). CHARACTER*1. Must be 'A' or 'V' or 'I'.range

1874

6 Intel® Math Kernel Library Reference Manual

If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues in the
interval: [vl, vu]
If range = 'I', the routine computes eigenvalues with
indices il through iu.

(global). CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays a and b store the upper triangles of
sub(A) and sub (B);
If uplo = 'L', arrays a and b store the lower triangles of
sub(A) and sub (B).

(global). INTEGER. The order of the matrices sub(A) and

sub (B), n ≥ 0.

n

(local)a
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains
the local pieces of the n-by-n symmetric distributed matrix
sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular part of the matrix.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular part of the matrix.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix A. If
desca(ctxt_) is incorrect, p?sygvx cannot guarantee
correct error reporting.

desca

(local). REAL for pssygvxb
DOUBLE PRECISION for pdsygvx.
Pointer into the local memory to an array of dimension
(lld_b, LOCc(jb+n-1)). On entry, this array contains
the local pieces of the n-by-n symmetric distributed matrix
sub(B).

1875

ScaLAPACK Routines 6

If uplo = 'U', the leading n-by-n upper triangular part of
sub(B) contains the upper triangular part of the matrix.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular part of the matrix.

(global) INTEGER. The row and column indices in the global
array b indicating the first row and the first column of the
submatrix B, respectively.

ib, jb

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix B. descb(ctxt_)
must be equal to desca(ctxt_).

descb

(global)vl, vu
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
If range = 'A' or 'I', vl and vu are not referenced.

(global)il, iu
INTEGER.
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned. Constraint:

il ≥ 1, min(il, n)≤ iu ≤ n
If range = 'A' or 'V', il and iu are not referenced.

(global)abstol
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
If jobz='V', setting abstol to p?lamch(context, 'U')
yields the most orthogonal eigenvectors.
The absolute error tolerance for the eigenvalues. An
approximate eigenvalue is accepted as converged when it
is determined to lie in an interval [a,b] of width less than
or equal to
abstol + eps*max(|a|,|b|),
where eps is the machine precision. If abstol is less than
or equal to zero, then eps*norm(T) will be used in its place,
where norm(T) is the 1-norm of the tridiagonal matrix
obtained by reducing A to tridiagonal form.

1876

6 Intel® Math Kernel Library Reference Manual

Eigenvalues will be computed most accurately when abstol
is set to twice the underflow threshold 2*p?lamch('S')
not zero. If this routine returns with
((mod(info,2).ne.0).or.*(mod(info/8,2).ne.0)),
indicating that some eigenvalues or eigenvectors did not
converge, try setting abstol to 2*p?lamch('S').

(global).orfac
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Specifies which eigenvectors should be reorthogonalized.
Eigenvectors that correspond to eigenvalues which are within
tol=orfac*norm(A) of each other are to be
reorthogonalized. However, if the workspace is insufficient
(see lwork), tol may be decreased until all eigenvectors
to be reorthogonalized can be stored in one process. No
reorthogonalization will be done if orfac equals zero. A
default value of 1.0e-3 is used if orfac is negative. orfac
should be identical on all processes.

(global) INTEGER. The row and column indices in the global
array z indicating the first row and the first column of the
submatrix Z, respectively.

iz, jz

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix Z.descz(ctxt_)
must equal desca(ctxt_).

descz

(local)work
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Workspace array, dimension (lwork)

(local) INTEGER.lwork
Dimension of the array work. See below for definitions of
variables used to define lwork.
If no eigenvectors are requested (jobz = 'N'), then lwork

≥ 5*n + max(5*nn, NB*(np0 + 1)).
If eigenvectors are requested (jobz = 'V'), then the
amount of workspace required to guarantee that all
eigenvectors are computed is:

1877

ScaLAPACK Routines 6

lwork ≥ 5*n + max(5*nn, np0*mq0 + 2*nb*nb) +
iceil(neig, NPROW*NPCOL)*nn.
The computed eigenvectors may not be orthogonal if the
minimal workspace is supplied and orfac is too small. If
you want to guarantee orthogonality at the cost of
potentially poor performance you should add the following
to lwork:
(clustersize-1)*n,
where clustersize is the number of eigenvalues in the
largest cluster, where a cluster is defined as a set of close
eigenvalues:

{w(k),..., w(k+clustersize-1)|w(j+1) ≤ w(j) +
orfac*2*norm(A)}
Variable definitions:
neig = number of eigenvectors requested,
nb = desca(mb_) = desca(nb_) = descz(mb_) =
descz(nb_),
nn = max(n, nb, 2),
desca(rsrc_) = desca(nb_) = descz(rsrc_) =
descz(csrc_) = 0,
np0 = numroc(nn, nb, 0, 0, NPROW),
mq0 = numroc(max(neig, nb, 2), nb, 0, 0, NPCOL)
iceil(x, y) is a ScaLAPACK function returning ceiling(x/y)
If lwork is too small to guarantee orthogonality, p?syevx
attempts to maintain orthogonality in the clusters with the
smallest spacing between the eigenvalues.
If lwork is too small to compute all the eigenvectors
requested, no computation is performed and info= -23 is
returned.
Note that when range='V', number of requested
eigenvectors are not known until the eigenvalues are
computed. In this case and if lwork is large enough to
compute the eigenvalues, p?sygvx computes the
eigenvalues and as many eigenvectors as possible.
Greater performance can be achieved if adequate workspace
is provided. In some situations, performance can decrease
as the provided workspace increases above the workspace
amount shown below:

1878

6 Intel® Math Kernel Library Reference Manual

lwork ≥ max(lwork, 5*n + nsytrd_lwopt,
nsygst_lwopt), where
lwork, as defined previously, depends upon the number of
eigenvectors requested, and
nsytrd_lwopt = n + 2*(anb+1)*(4*nps+2) +
(nps+3)*nps
nsygst_lwopt = 2*np0*nb + nq0*nb + nb*nb
anb = pjlaenv(desca(ctxt_), 3, p?syttrd ', 'L',
0, 0, 0, 0)
sqnpc = int(sqrt(dble(NPROW * NPCOL)))
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)
NB = desca(mb_)
np0 = numroc(n, nb, 0, 0, NPROW)
nq0 = numroc(n, nb, 0, 0, NPCOL)
numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
For large n, no extra workspace is needed, however the
biggest boost in performance comes for small n, so it is wise
to provide the extra workspace (typically less than a
Megabyte per process).

If clustersize ≥ n/sqrt(NPROW*NPCOL), then providing
enough space to compute all the eigenvectors orthogonally
will cause serious degradation in performance. At the limit
(that is, clustersize = n-1) p?stein will perform no
better than ?stein on a single processor.
For clustersize = n/sqrt(NPROW*NPCOL)
reorthogonalizing all eigenvectors will increase the total
execution time by a factor of 2 or more.
For clustersize > n/sqrt(NPROW*NPCOL) execution time
will grow as the square of the cluster size, all other factors
remaining equal and assuming enough workspace. Less
workspace means less reorthogonalization but faster
execution.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the size
required for optimal performance for all work arrays. Each

1879

ScaLAPACK Routines 6

of these values is returned in the first entry of the
corresponding work arrays, and no error message is issued
by pxerbla.

(local) INTEGER. Workspace array.iwork

(local) INTEGER, dimension of iwork.liwork

liwork ≥ 6*nnp
Where:
nnp = max(n, NPROW*NPCOL + 1, 4)
If liwork = -1, then liwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit,a
If jobz = 'V', and if info = 0, sub(A) contains the
distributed matrix Z of eigenvectors. The eigenvectors are
normalized as follows:
for ibtype = 1 or 2, ZT*sub(B)*Z = i;
for ibtype = 3, ZT*inv(sub(B))*Z = i.
If jobz = 'N', then on exit the upper triangle (if uplo='U')
or the lower triangle (if uplo='L') of sub(A), including the
diagonal, is destroyed.

On exit, if info ≤ n, the part of sub(B) containing the
matrix is overwritten by the triangular factor U or L from
the Cholesky factorization sub(B) = UT*U or sub(B) =
L*LT.

b

(global) INTEGER. The total number of eigenvalues found,

0 ≤ m ≤ n.

m

(global) INTEGER.nz

Total number of eigenvectors computed. 0 ≤ nz ≤ m. The
number of columns of z that are filled.

If jobz ≠ 'V', nz is not referenced.

1880

6 Intel® Math Kernel Library Reference Manual

If jobz = 'V', nz = m unless the user supplies insufficient
space and p?sygvx is not able to detect this before
beginning computation. To get all the eigenvectors
requested, the user must supply both sufficient space to
hold the eigenvectors in z (m.le.descz(n_)) and sufficient
workspace to compute them. (See lwork below.) p?sygvx
is always able to detect insufficient space without
computation unless range.eq.'V'.

(global)w
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Array, DIMENSION (n). On normal exit, the first m entries
contain the selected eigenvalues in ascending order.

(local).z
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
global dimension (n, n), local dimension (lld_z,
LOCc(jz+n-1)).
If jobz = 'V', then on normal exit the first m columns of
z contain the orthonormal eigenvectors of the matrix
corresponding to the selected eigenvalues. If an eigenvector
fails to converge, then that column of z contains the latest
approximation to the eigenvector, and the index of the
eigenvector is returned in ifail.
If jobz = 'N', then z is not referenced.

If jobz='N' work(1) = optimal amount of workspace
required to compute eigenvalues efficiently

work

If jobz = 'V' work(1) = optimal amount of workspace
required to compute eigenvalues and eigenvectors efficiently
with no guarantee on orthogonality.
If range='V', it is assumed that all eigenvectors may be
required.

(global) INTEGER.ifail
Array, DIMENSION (n).
ifail provides additional information when info.ne.0

1881

ScaLAPACK Routines 6

If (mod(info/16,2).ne.0) then ifail(1) indicates the
order of the smallest minor which is not positive definite. If
(mod(info,2).ne.0) on exit, then ifail contains the
indices of the eigenvectors that failed to converge.
If neither of the above error conditions hold and jobz =
'V', then the first m elements of ifail are set to zero.

(global) INTEGER.iclustr
Array, DIMENSION (2*NPROW*NPCOL). This array contains
indices of eigenvectors corresponding to a cluster of
eigenvalues that could not be reorthogonalized due to
insufficient workspace (see lwork, orfac and info).
Eigenvectors corresponding to clusters of eigenvalues
indexed iclustr(2*i-1) to iclustr(2*i), could not be
reorthogonalized due to lack of workspace. Hence the
eigenvectors corresponding to these clusters may not be
orthogonal. iclustr() is a zero terminated array.
(iclustr(2*k).ne.0.and. iclustr(2*k+1).eq.0) if
and only if k is the number of clusters iclustr is not
referenced if jobz = 'N'.

(global)gap
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Array, DIMENSION (NPROW*NPCOL). This array contains the
gap between eigenvalues whose eigenvectors could not be
reorthogonalized. The output values in this array correspond
to the clusters indicated by the array iclustr. As a result,
the dot product between eigenvectors corresponding to the
i-th cluster may be as high as (C*n)/gap(i), where C is
a small constant.

(global) INTEGER.info
If info = 0, the execution is successful.
If info <0: the i-th argument is an array and the j-entry
had an illegal value, then info = -(i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.
If info > 0:
If (mod(info,2).ne.0), then one or more eigenvectors
failed to converge. Their indices are stored in ifail.

1882

6 Intel® Math Kernel Library Reference Manual

If (mod(info,2,2).ne.0), then eigenvectors corresponding
to one or more clusters of eigenvalues could not be
reorthogonalized because of insufficient workspace. The
indices of the clusters are stored in the array iclustr.
If (mod(info/4,2).ne.0), then space limit prevented
p?sygvx from computing all of the eigenvectors between
vl and vu. The number of eigenvectors computed is returned
in nz.
If (mod(info/8,2).ne.0), then p?stebz failed to compute
eigenvalues.
If (mod(info/16,2).ne.0), then B was not positive
definite. ifail(1) indicates the order of the smallest minor
which is not positive definite.

p?hegvx
Computes selected eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
definite eigenproblem.

Syntax

call pchegvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb,
vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork,
lrwork, iwork, liwork, ifail, iclustr, gap, info)

call pzhegvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb,
vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork,
lrwork, iwork, liwork, ifail, iclustr, gap, info)

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

sub(A)*x = λ*sub(B)*x, sub(A)*sub(B)*x = λ*x, or sub(B)*sub(A)*x = λ*x.

Here sub (A) denoting A(ia:ia+n-1, ja:ja+n-1) and sub(B) are assumed to be Hermitian
and sub(B) denoting B(ib:ib+n-1, jb:jb+n-1) is also positive definite.

1883

ScaLAPACK Routines 6

Input Parameters

(global) INTEGER. Must be 1 or 2 or 3.ibtype
Specifies the problem type to be solved:
If ibtype = 1, the problem type is
sub(A)*x = lambda*sub(B)*x;
If ibtype = 2, the problem type is
sub(A)*sub(B)*x = lambda*x;
If ibtype = 3, the problem type is
sub(B)*sub(A)*x = lambda*x.

(global). CHARACTER*1. Must be 'N' or 'V'.jobz
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

(global). CHARACTER*1. Must be 'A' or 'V' or 'I'.range
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues in the
interval: [vl, vu]
If range = 'I', the routine computes eigenvalues with
indices il through iu.

(global). CHARACTER*1. Must be 'U' or 'L'.uplo
If uplo = 'U', arrays a and b store the upper triangles of
sub(A) and sub (B);
If uplo = 'L', arrays a and b store the lower triangles of
sub(A) and sub (B).

(global). INTEGER.n

The order of the matrices sub(A) and sub (B) (n ≥ 0).

(local)a
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains
the local pieces of the n-by-n Hermitian distributed matrix
sub(A). If uplo = 'U', the leading n-by-n upper triangular
part of sub(A) contains the upper triangular part of the
matrix. If uplo = 'L', the leading n-by-n lower triangular
part of sub(A) contains the lower triangular part of the
matrix.

1884

6 Intel® Math Kernel Library Reference Manual

(global) INTEGER.ia, ja
The row and column indices in the global array a indicating
the first row and the first column of the submatrix A,
respectively.

(global and local) INTEGER array, dimension (dlen_).desca
The array descriptor for the distributed matrix A. If
desca(ctxt_) is incorrect, p?hegvx cannot guarantee
correct error reporting.

(local).b
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
Pointer into the local memory to an array of dimension
(lld_b, LOCc(jb+n-1)). On entry, this array contains
the local pieces of the n-by-n Hermitian distributed matrix
sub(B).
If uplo = 'U', the leading n-by-n upper triangular part of
sub(B) contains the upper triangular part of the matrix.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(B) contains the lower triangular part of the matrix.

(global) INTEGER.ib, jb
The row and column indices in the global array b indicating
the first row and the first column of the submatrix B,
respectively.

(global and local) INTEGER array, dimension (dlen_).descb
The array descriptor for the distributed matrix B.
descb(ctxt_) must be equal to desca(ctxt_).

(global)vl, vu
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
If range = 'V', the lower and upper bounds of the interval
to be searched for eigenvalues.
If range = 'A' or 'I', vl and vu are not referenced.

(global)il, iu
INTEGER.
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned. Constraint:

il ≥ 1, min(il, n) ≤ iu ≤ n

1885

ScaLAPACK Routines 6

If range = 'A' or 'V', il and iu are not referenced.

(global)abstol
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
If jobz='V', setting abstol to p?lamch(context, 'U')
yields the most orthogonal eigenvectors.
The absolute error tolerance for the eigenvalues. An
approximate eigenvalue is accepted as converged when it
is determined to lie in an interval [a,b] of width less than
or equal to
abstol + eps*max(|a|,|b|),
where eps is the machine precision. If abstol is less than
or equal to zero, then eps*norm(T) will be used in its place,
where norm(T) is the 1-norm of the tridiagonal matrix
obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol
is set to twice the underflow threshold 2*p?lamch('S')
not zero. If this routine returns with
((mod(info,2).ne.0).or. * (mod(info/8,2).ne.0)),
indicating that some eigenvalues or eigenvectors did not
converge, try setting abstol to 2*p?lamch('S').

(global).orfac
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Specifies which eigenvectors should be reorthogonalized.
Eigenvectors that correspond to eigenvalues which are within
tol=orfac*norm(A) of each other are to be
reorthogonalized. However, if the workspace is insufficient
(see lwork), tol may be decreased until all eigenvectors
to be reorthogonalized can be stored in one process. No
reorthogonalization will be done if orfac equals zero. A
default value of 1.0E-3 is used if orfac is negative. orfac
should be identical on all processes.

(global) INTEGER. The row and column indices in the global
array z indicating the first row and the first column of the
submatrix Z, respectively.

iz, jz

1886

6 Intel® Math Kernel Library Reference Manual

(global and local) INTEGER array, dimension (dlen_). The
array descriptor for the distributed matrix Z.descz(ctxt_
) must equal desca(ctxt_).

descz

(local)work
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
Workspace array, dimension (lwork)

(local).lwork
INTEGER. The dimension of the array work.
If only eigenvalues are requested:

lwork ≥ n+ max(NB*(np0 + 1), 3)
If eigenvectors are requested:

lwork ≥ n + (np0+ mq0 + NB)*NB
with nq0 = numroc(nn, NB, 0, 0, NPCOL).
For optimal performance, greater workspace is needed, that
is

lwork ≥ max(lwork, n, nhetrd_lwopt, nhegst_lwopt)
where lwork is as defined above, and
nhetrd_lwork = 2*(anb+1)*(4*nps+2) + (nps +
1)*nps;
nhegst_lwopt = 2*np0*nb + nq0*nb + nb*nb
nb = desca(mb_)
np0 = numroc(n, nb, 0, 0, NPROW)
nq0 = numroc(n, nb, 0, 0, NPCOL)
ictxt = desca(ctxt_)
anb = pjlaenv(ictxt, 3, 'p?hettrd', 'L', 0, 0,
0, 0)
sqnpc = sqrt(dble(NPROW * NPCOL))
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)
numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function
MYROW, MYCOL, NPROW and NPCOL can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the size
required for optimal performance for all work arrays. Each

1887

ScaLAPACK Routines 6

of these values is returned in the first entry of the
corresponding work arrays, and no error message is issued
by pxerbla.

(local)rwork
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Workspace array, DIMENSION (lrwork).

(local) INTEGER. The dimension of the array rwork.lrwork
See below for definitions of variables used to define lrwork.
If no eigenvectors are requested (jobz = 'N'), then

lrwork ≥ 5*nn+4*n
If eigenvectors are requested (jobz = 'V'), then the
amount of workspace required to guarantee that all
eigenvectors are computed is:

lrwork ≥ 4*n + max(5*nn, np0*mq0)+ iceil(neig,
NPROW*NPCOL)*nn
The computed eigenvectors may not be orthogonal if the
minimal workspace is supplied and orfac is too small. If
you want to guarantee orthogonality (at the cost of
potentially poor performance) you should add the following
value to lrwork:
(clustersize-1)*n,
where clustersize is the number of eigenvalues in the
largest cluster, where a cluster is defined as a set of close
eigenvalues:

{w(k),..., w(k+clustersize-1)| w(j+1) ≤
w(j)+orfac*2*norm(A)}
Variable definitions:
neig = number of eigenvectors requested;
nb = desca(mb_) = desca(nb_) = descz(mb_) =
descz(nb_);
nn = max(n, nb, 2);
desca(rsrc_) = desca(nb_) = descz(rsrc_) =
descz(csrc_) = 0 ;
np0 = numroc(nn, nb, 0, 0, NPROW);
mq0 = numroc(max(neig, nb, 2), nb, 0, 0, NPCOL);
iceil(x, y) is a ScaLAPACK function returning ceiling(x/y).

1888

6 Intel® Math Kernel Library Reference Manual

When lrwork is too small:
If lwork is too small to guarantee orthogonality, p?hegvx
attempts to maintain orthogonality in the clusters with the
smallest spacing between the eigenvalues.
If lwork is too small to compute all the eigenvectors
requested, no computation is performed and info= -25 is
returned. Note that when range='V', p?hegvx does not
know how many eigenvectors are requested until the
eigenvalues are computed. Therefore, when range='V' and
as long as lwork is large enough to allow p?hegvx to
compute the eigenvalues, p?hegvx will compute the
eigenvalues and as many eigenvectors as it can.
Relationship between workspace, orthogonality &
performance:
If clustersize > n/sqrt(NPROW*NPCOL), then providing
enough space to compute all the eigenvectors orthogonally
will cause serious degradation in performance. In the limit
(that is, clustersize = n-1) p?stein will perform no
better than ?stein on 1 processor.
For clustersize = n/sqrt(NPROW*NPCOL)
reorthogonalizing all eigenvectors will increase the total
execution time by a factor of 2 or more.
For clustersize > n/sqrt(NPROW*NPCOL) execution time
will grow as the square of the cluster size, all other factors
remaining equal and assuming enough workspace. Less
workspace means less reorthogonalization but faster
execution.
If lwork = -1, then lrwork is global input and a workspace
query is assumed; the routine only calculates the size
required for optimal performance for all work arrays. Each
of these values is returned in the first entry of the
corresponding work arrays, and no error message is issued
by pxerbla.

(local) INTEGER. Workspace array.iwork

(local) INTEGER, dimension of iwork.liwork

liwork ≥ 6*nnp
Where: nnp = max(n, NPROW*NPCOL + 1, 4)

1889

ScaLAPACK Routines 6

If liwork = -1, then liwork is global input and a
workspace query is assumed; the routine only calculates
the minimum and optimal size for all work arrays. Each of
these values is returned in the first entry of the
corresponding work array, and no error message is issued
by pxerbla.

Output Parameters

On exit, if jobz = 'V', then if info = 0, sub(A) contains
the distributed matrix Z of eigenvectors.

a

The eigenvectors are normalized as follows:
If ibtype = 1 or 2, then ZH*sub(B)*Z = i;
If ibtype = 3, then ZH*inv(sub(B))*Z = i.
If jobz = 'N', then on exit the upper triangle (if uplo='U')
or the lower triangle (if uplo='L') of sub(A), including the
diagonal, is destroyed.

On exit, if info ≤ n, the part of sub(B) containing the
matrix is overwritten by the triangular factor U or L from
the Cholesky factorization sub(B) = UH*U, or sub(B) = L*LH.

b

(global) INTEGER. The total number of eigenvalues found,

0 ≤ m ≤ n.

m

(global) INTEGER. Total number of eigenvectors computed.
0 < nz < m. The number of columns of z that are filled.

nz

If jobz ≠ 'V', nz is not referenced.
If jobz = 'V', nz = m unless the user supplies insufficient
space and p?hegvx is not able to detect this before
beginning computation. To get all the eigenvectors
requested, the user must supply both sufficient space to
hold the eigenvectors in z (m. le. descz(n_)) and
sufficient workspace to compute them. (See lwork below.)
The routine p?hegvx is always able to detect insufficient
space without computation unless range = 'V'.

(global)w
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.

1890

6 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (n). On normal exit, the first m entries
contain the selected eigenvalues in ascending order.

(local).z
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
global dimension (n, n), local dimension (lld_z,
LOCc(jz+n-1)).
If jobz = 'V', then on normal exit the first m columns of
z contain the orthonormal eigenvectors of the matrix
corresponding to the selected eigenvalues. If an eigenvector
fails to converge, then that column of z contains the latest
approximation to the eigenvector, and the index of the
eigenvector is returned in ifail.
If jobz = 'N', then z is not referenced.

On exit, work(1) returns the optimal amount of workspace.work

On exit, rwork(1) contains the amount of workspace
required for optimal efficiency

rwork

If jobz='N' rwork(1) = optimal amount of workspace
required to compute eigenvalues efficiently
If jobz='V' rwork(1) = optimal amount of workspace
required to compute eigenvalues and eigenvectors efficiently
with no guarantee on orthogonality.
If range='V', it is assumed that all eigenvectors may be
required when computing optimal workspace.

(global) INTEGER.ifail
Array, DIMENSION (n).
ifail provides additional information when info.ne.0
If (mod(info/16,2).ne.0), then ifail(1) indicates the
order of the smallest minor which is not positive definite.
If (mod(info,2).ne.0) on exit, then ifail(1) contains
the indices of the eigenvectors that failed to converge.
If neither of the above error conditions are held, and jobz
= 'V', then the first m elements of ifail are set to zero.

(global) INTEGER.iclustr
Array, DIMENSION (2*NPROW*NPCOL). This array contains
indices of eigenvectors corresponding to a cluster of
eigenvalues that could not be reorthogonalized due to

1891

ScaLAPACK Routines 6

insufficient workspace (see lwork, orfac and info).
Eigenvectors corresponding to clusters of eigenvalues
indexed iclustr(2*i-1) to iclustr(2*i), could not be
reorthogonalized due to lack of workspace. Hence the
eigenvectors corresponding to these clusters may not be
orthogonal.
iclustr() is a zero terminated array.
(iclustr(2*k).ne.0.and.clustr(2*k+1).eq.0) if and
only if k is the number of clusters.
iclustr is not referenced if jobz = 'N'.

(global)gap
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Array, DIMENSION (NPROW*NPCOL).
This array contains the gap between eigenvalues whose
eigenvectors could not be reorthogonalized. The output
values in this array correspond to the clusters indicated by
the array iclustr. As a result, the dot product between
eigenvectors corresponding to the i-th cluster may be as
high as (C*n)/gap(i), where C is a small constant.

(global) INTEGER.info
If info = 0, the execution is successful.
If info <0: the i-th argument is an array and the j-entry
had an illegal value, then info = -(i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.
If info > 0:
If (mod(info,2).ne.0), then one or more eigenvectors
failed to converge. Their indices are stored in ifail.
If (mod(info,2,2).ne.0), then eigenvectors corresponding
to one or more clusters of eigenvalues could not be
reorthogonalized because of insufficient workspace. The
indices of the clusters are stored in the array iclustr.
If (mod(info/4,2).ne.0), then space limit prevented
p?sygvx from computing all of the eigenvectors between
vl and vu. The number of eigenvectors computed is returned
in nz.

1892

6 Intel® Math Kernel Library Reference Manual

If (mod(info/8,2).ne.0), then p?stebz failed to compute
eigenvalues.
If (mod(info/16,2).ne.0), then B was not positive
definite. ifail(1) indicates the order of the smallest minor
which is not positive definite.

1893

ScaLAPACK Routines 6

7ScaLAPACK Auxiliary and Utility
Routines

This chapter describes the Intel® Math Kernel Library implementation of ScaLAPACK Auxiliary Routines
and Utility Functions and Routines. The library includes routines for both real and complex data.

NOTE. ScaLAPACK routines are provided with Intel® Cluster MKL product only which is a
superset of Intel MKL.

Routine naming conventions, mathematical notation, and matrix storage schemes used for ScaLAPACK
auxiliary and utility routines are the same as described in previous chapters. Some routines and functions
may have combined character codes, such as sc or dz. For example, the routine pscsum1 uses a complex
input array and returns a real value.

Auxiliary Routines
Table 7-1 ScaLAPACK Auxiliary Routines

DescriptionData
Types

Routine Name

Conjugates a complex vector.c,zp?lacgv

Finds the index of the element whose real part has maximum
absolute value (similar to the Level 1 PBLAS p?amax, but using
the absolute value to the real part).

c,zp?max1

Finds the element with maximum real part absolute value and
its corresponding global index.

c,z?combamax1

Forms the 1-norm of a complex vector similar to Level 1 PBLAS
p?asum, but using the true absolute value.

sc,dzp?sum1

Computes an LU factorization of a general tridiagonal matrix
with no pivoting. The routine is called by p?dbtrs.

s,d,c,zp?dbtrsv

Computes an LU factorization of a general band matrix, using
partial pivoting with row interchanges. The routine is called by
p?dttrs.

s,d,c,zp?dttrsv

1895

DescriptionData
Types

Routine Name

Reduces a general rectangular matrix to real bidiagonal form
by an orthogonal/unitary transformation (unblocked
algorithm).

s,d,c,zp?gebd2

Reduces a general matrix to upper Hessenberg form by an
orthogonal/unitary similarity transformation (unblocked
algorithm).

s,d,c,zp?gehd2

Computes an LQ factorization of a general rectangular matrix
(unblocked algorithm).

s,d,c,zp?gelq2

Computes a QL factorization of a general rectangular matrix
(unblocked algorithm).

s,d,c,zp?geql2

Computes a QR factorization of a general rectangular matrix
(unblocked algorithm).

s,d,c,zp?geqr2

Computes an RQ factorization of a general rectangular matrix
(unblocked algorithm).

s,d,c,zp?gerq2

Computes an LU factorization of a general matrix, using
partial pivoting with row interchanges (local blocked
algorithm).

s,d,c,zp?getf2

Reduces the first nb rows and columns of a general
rectangular matrix A to real bidiagonal form by an
orthogonal/unitary transformation, and returns auxiliary
matrices that are needed to apply the transformation to the
unreduced part of A.

s,d,c,zp?labrd

Estimates the 1-norm of a square matrix, using the reverse
communication for evaluating matrix-vector products.

s,d,c,zp?lacon

Looks for two consecutive small subdiagonal elements.s,dp?laconsb

Copies all or part of a distributed matrix to another
distributed matrix.

s,d,c,zp?lacp2

Copies from a global parallel array into a local replicated
array or vice versa.

s,dp?lacp3

1896

7 Intel® Math Kernel Library Reference Manual

DescriptionData
Types

Routine Name

Copies all or part of one two-dimensional array to another.s,d,c,zp?lacpy

Moves the eigenvectors from where they are computed to
ScaLAPACK standard block cyclic array.

s,d,c,zp?laevswp

Reduces the first nb columns of a general rectangular matrix
A so that elements below the kth subdiagonal are zero, by
an orthogonal/unitary transformation, and returns auxiliary
matrices that are needed to apply the transformation to the
unreduced part of A.

s,d,c,zp?lahrd

Exploits IEEE arithmetic to accelerate the computations of
eigenvalues. (C interface function).

s,d,c,zp?laiect

Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any element,
of a general rectangular matrix.

s,d,c,zp?lange

Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any element,
of an upper Hessenberg matrix.

s,d,c,zp?lanhs

Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any element
of a real symmetric or complex Hermitian matrix.

s,d,c,z/c,zp?lansy, p?lanhe

Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any element,
of a triangular matrix.

s,d,c,zp?lantr

Applies a permutation matrix to a general distributed matrix,
resulting in row or column pivoting.

s,d,c,zp?lapiv

Scales a general rectangular matrix, using row and column
scaling factors computed by p?geequ.

s,d,c,zp?laqge

Scales a symmetric/Hermitian matrix, using scaling factors
computed by p?poequ.

s,d,c,zp?laqsy

1897

ScaLAPACK Auxiliary and Utility Routines 7

DescriptionData
Types

Routine Name

Redistributes an array assuming that the input array bycol
is distributed across rows and that all process columns
contain the same copy of bycol.

s,dp?lared1d

Redistributes an array assuming that the input array byrow
is distributed across columns and that all process rows
contain the same copy of byrow .

s,dp?lared2d

Applies an elementary reflector to a general rectangular
matrix.

s,d,c,zp?larf

Applies a block reflector or its transpose/conjugate-transpose
to a general rectangular matrix.

s,d,c,zp?larfb

Applies the conjugate transpose of an elementary reflector
to a general matrix.

c,zp?larfc

Generates an elementary reflector (Householder matrix).s,d,c,zp?larfg

Forms the triangular vector T of a block reflector H=I-VTVHs,d,c,zp?larft

Applies an elementary reflector as returned by p?tzrzf to
a general matrix.

s,d,c,zp?larz

Applies a block reflector or its transpose/conjugate-transpose
as returned by p?tzrzf to a general matrix.

s,d,c,zp?larzb

Applies (multiplies by) the conjugate transpose of an
elementary reflector as returned by p?tzrzf to a general
matrix.

c,zp?larzc

Forms the triangular factor T of a block reflector H=I-VTVH

as returned by p?tzrzf.
s,d,c,zp?larzt

Multiplies a general rectangular matrix by a real scalar
defined as Cto/Cfrom.

s,d,c,zp?lascl

Initializes the off-diagonal elements of a matrix to α and the

diagonal elements to β.

s,d,c,zp?laset

1898

7 Intel® Math Kernel Library Reference Manual

DescriptionData
Types

Routine Name

Looks for a small subdiagonal element from the bottom of
the matrix that it can safely set to zero.

s,dp?lasmsub

Updates a sum of squares represented in scaled form.s,d,c,zp?lassq

Performs a series of row interchanges on a general
rectangular matrix.

s,d,c,zp?laswp

Computes the trace of a general square distributed matrix.s,d,c,zp?latra

Reduces the first nb rows and columns of a
symmetric/Hermitian matrix A to real tridiagonal form by
an orthogonal/unitary similarity transformation.

s,d,c,zp?latrd

Reduces an upper trapezoidal matrix to upper triangular
form by means of orthogonal/unitary transformations.

s,d,c,zp?latrz

Computes the product UUH or LHL, where U and L are upper
or lower triangular matrices (local unblocked algorithm).

s,d,c,zp?lauu2

Computes the product UUH or LHL, where U and L are upper
or lower triangular matrices.

s,d,c,zp?lauum

Forms the Wilkinson transform.s,dp?lawil

Generates all or part of the orthogonal/unitary matrix Q from
a QL factorization determined by p?geqlf (unblocked
algorithm).

s,d,c,zp?org2l/p?ung2l

Generates all or part of the orthogonal/unitary matrix Q from
a QR factorization determined by p?geqrf (unblocked
algorithm).

s,d,c,zp?org2r/p?ung2r

Generates all or part of the orthogonal/unitary matrix Q from
an LQ factorization determined by p?gelqf (unblocked
algorithm).

s,d,c,zp?orgl2/p?ungl2

Generates all or part of the orthogonal/unitary matrix Q from
an RQ factorization determined by p?gerqf (unblocked
algorithm).

s,d,c,zp?orgr2/p?ungr2

1899

ScaLAPACK Auxiliary and Utility Routines 7

DescriptionData
Types

Routine Name

Multiplies a general matrix by the orthogonal/unitary matrix
from a QL factorization determined by p?geqlf (unblocked
algorithm).

s,d,c,zp?orm2l/p?unm2l

Multiplies a general matrix by the orthogonal/unitary matrix
from a QR factorization determined by p?geqrf (unblocked
algorithm).

s,d,c,zp?orm2r/p?unm2r

Multiplies a general matrix by the orthogonal/unitary matrix
from an LQ factorization determined by p?gelqf (unblocked
algorithm).

s,d,c,zp?orml2/p?unml2

Multiplies a general matrix by the orthogonal/unitary matrix
from an RQ factorization determined by p?gerqf (unblocked
algorithm).

s,d,c,zp?ormr2/p?unmr2

Solves a single triangular linear system via frontsolve or
backsolve where the triangular matrix is a factor of a banded
matrix computed by p?pbtrf.

s,d,c,zp?pbtrsv

Solves a single triangular linear system via frontsolve or
backsolve where the triangular matrix is a factor of a
tridiagonal matrix computed by p?pttrf.

s,d,c,zp?pttrsv

Computes the Cholesky factorization of a
symmetric/Hermitian positive definite matrix (local unblocked
algorithm).

s,d,c,zp?potf2

Multiplies a vector by the reciprocal of a real scalar.s,d,cs,zdp?rscl

Reduces a symmetric/Hermitian definite generalized
eigenproblem to standard form, using the factorization
results obtained from p?potrf (local unblocked algorithm).

s,d,c,zp?sygs2/p?hegs2

Reduces a symmetric/Hermitian matrix to real symmetric
tridiagonal form by an orthogonal/unitary similarity
transformation (local unblocked algorithm).

s,d,c,zp?sytd2/p?hetd2

Computes the inverse of a triangular matrix (local unblocked
algorithm).

s,d,c,zp?trti2

1900

7 Intel® Math Kernel Library Reference Manual

DescriptionData
Types

Routine Name

Sends multiple shifts through a small (single node) matrix
to maximize the number of bulges that can be sent through.

s,d?lamsh

Applies Householder reflectors to matrices on either their
rows or columns.

s,d?laref

Sorts eigenpairs by real and complex data types.s,d?lasorte

Sorts numbers in increasing or decreasing order.s,d?lasrt2

Computes the eigenvectors corresponding to specified
eigenvalues of a real symmetric tridiagonal matrix, using
inverse iteration.

s,d?stein2

Computes an LU factorization of a general band matrix with
no pivoting (local unblocked algorithm).

s,d,c,z?dbtf2

Computes an LU factorization of a general band matrix with
no pivoting (local blocked algorithm).

s,d,c,z?dbtrf

Computes an LU factorization of a general tridiagonal matrix
with no pivoting (local blocked algorithm).

s,d,c,z?dttrf

Solves a general tridiagonal system of linear equations using
the LU factorization computed by ?dttrf.

s,d,c,z?dttrsv

Solves a symmetric (Hermitian) positive-definite tridiagonal
system of linear equations, using the LDLH factorization
computed by ?pttrf.

s,d,c,z?pttrsv

Computes all eigenvalues and, optionally, eigenvectors of
a symmetric tridiagonal matrix using the implicit QL or QR
method.

s,d?steqr2

1901

ScaLAPACK Auxiliary and Utility Routines 7

p?lacgv
Conjugates a complex vector.

Syntax

call pclacgv(n, x, ix, jx, descx, incx)

call pzlacgv(n, x, ix, jx, descx, incx)

Description

The routine conjugates a complex vector of length n, sub(x), where sub(x) denotes X(ix,
jx:jx+n-1) if incx = descx(m_) and X(ix:ix+n-1, jx) if incx = 1.

Input Parameters

(global) INTEGER. The length of the distributed vector
sub(x).

n

(local).x
COMPLEX for pclacgv
COMPLEX*16 for pzlacgv.Pointer into the local memory to
an array of DIMENSION (lld_x,*). On entry the vector to
be conjugated x(i) = X(ix+(jx-1)*m_x+(i-1)*incx),

1 ≤ i ≤ n.

(global) INTEGER.The row index in the global array x
indicating the first row of sub(x).

ix

(global) INTEGER. The column index in the global array x
indicating the first column of sub(x).

jx

(global and local) INTEGER. Array, DIMENSION (dlen_). The
array descriptor for the distributed matrix X.

descx

(global) INTEGER.The global increment for the elements of
X. Only two values of incx are supported in this version,
namely 1 and m_x. incx must not be zero.

incx

Output Parameters

(local).x
On exit, the conjugated vector.

1902

7 Intel® Math Kernel Library Reference Manual

p?max1
Finds the index of the element whose real part has
maximum absolute value (similar to the Level 1
PBLAS p?amax, but using the absolute value to the
real part).

Syntax

call pcmax1(n, amax, indx, x, ix, jx, descx, incx)

call pzmax1(n, amax, indx, x, ix, jx, descx, incx)

Description

This routine computes the global index of the maximum element in absolute value of a distributed
vector sub(x). The global index is returned in indx and the value is returned in amax, where
sub(x) denotes X(ix:ix+n-1, jx) if incx = 1, X(ix, jx:jx+n-1) if incx = m_x.

Input Parameters

(global) pointer to INTEGER. The number of components of

the distributed vector sub(x). n ≥ 0.

n

(local)x
COMPLEX for pcmax1.
COMPLEX*16 for pzmax1
Array containing the local pieces of a distributed matrix of
dimension of at least ((jx-1)*m_x + ix + (n - 1
)*abs(incx)). This array contains the entries of the
distributed vector sub (x).

(global) INTEGER.The row index in the global array X
indicating the first row of sub(x).

ix

(global) INTEGER. The column index in the global array X
indicating the first column of sub(x)

jx

(global and local) INTEGER. Array, DIMENSION (dlen_). The
array descriptor for the distributed matrix X.

descx

(global) INTEGER.The global increment for the elements of
X. Only two values of incx are supported in this version,
namely 1 and m_x. incx must not be zero.

incx

1903

ScaLAPACK Auxiliary and Utility Routines 7

Output Parameters

(global output) pointer to REAL.The absolute value of the
largest entry of the distributed vector sub(x) only in the
scope of sub(x).

amax

(global output) pointer to INTEGER.The global index of the
element of the distributed vector sub(x) whose real part
has maximum absolute value.

indx

?combamax1
Finds the element with maximum real part absolute
value and its corresponding global index.

Syntax

call ccombamax1(v1, v2)

call zcombamax1(v1, v2)

Description

This routine finds the element having maximum real part absolute value as well as its
corresponding global index.

Input Parameters

(local)v1
COMPLEX for ccombamax1
COMPLEX*16 for zcombamax1 Array, DIMENSION 2. The first
maximum absolute value element and its global index.
v1(1) = amax, v1(2) = indx.

(local)v2
COMPLEX for ccombamax1
COMPLEX*16 for zcombamax1
Array, DIMENSION 2. The second maximum absolute value
element and its global index. v2(1) = amax, v2(2) =
indx.

1904

7 Intel® Math Kernel Library Reference Manual

Output Parameters

(local).v1
The first maximum absolute value element and its global
index. v1(1) = amax, v1(2) = indx.

p?sum1
Forms the 1-norm of a complex vector similar to
Level 1 PBLAS p?asum, but using the true absolute
value.

Syntax

call pscsum1(n, asum, x, ix, jx, descx, incx)

call pdzsum1(n, asum, x, ix, jx, descx, incx)

Description

This routine returns the sum of absolute values of a complex distributed vector sub(x) in asum,
where sub(x) denotes X(ix:ix+n-1, jx:jx), if incx = 1, X(ix:ix, jx:jx+n-1), if incx
= m_x.

Based on p?asum from the Level 1 PBLAS. The change is to use the 'genuine' absolute value.

Input Parameters

(global) pointer to INTEGER. The number of components of

the distributed vector sub(x). n ≥ 0.

n

(local) COMPLEX for pscsum1x
COMPLEX*16 for pdzsum1.
Array containing the local pieces of a distributed matrix of
dimension of at least ((jx-1)*m_x + ix + (n - 1
)*abs(incx)). This array contains the entries of the
distributed vector sub (x).

(global) INTEGER.The row index in the global array X
indicating the first row of sub(x).

ix

(global) INTEGER. The column index in the global array X
indicating the first column of sub(x)

jx

1905

ScaLAPACK Auxiliary and Utility Routines 7

(global and local) INTEGER. Array, DIMENSION 8. The array
descriptor for the distributed matrix X.

descx

(global) INTEGER.The global increment for the elements of
X. Only two values of incx are supported in this version,
namely 1 and m_x.

incx

Output Parameters

(local)asum
Pointer to REAL. The sum of absolute values of the
distributed vector sub(x) only in its scope.

p?dbtrsv
Computes an LU factorization of a general
triangular matrix with no pivoting. The routine is
called by p?dbtrs.

Syntax

call psdbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pddbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pcdbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pzdbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

Description

This routines solves a banded triangular system of linear equations

A(1 :n, ja:ja+n-1) * X = B(ib:ib+n-1, 1 :nrhs) or

A(1 :n, ja:ja+n-1)T * X = B(ib:ib+n-1, 1 :nrhs) (for real flavors); A(1 :n, ja:ja+n-1)H * X

= B(ib:ib+n-1, 1 :nrhs) (for complex flavors),

1906

7 Intel® Math Kernel Library Reference Manual

where A(1 :n, ja:ja+n-1) is a banded triangular matrix factor produced by the Gaussian
elimination code PD@(dom_pre)BTRF and is stored in A(1 :n, ja:ja+n-1) and af. The matrix
stored in A(1 :n, ja:ja+n-1) is either upper or lower triangular according to uplo, and the
choice of solving A(1 :n, ja:ja+n-1) or A(1 :n, ja:ja+n-1)T is dictated by the user by the
parameter trans.

Routine p?dbtrf must be called first.

Input Parameters

(global) CHARACTER.uplo
If uplo='U', the upper triangle of A(1:n, ja:ja+n-1) is
stored,
if uplo = 'L', the lower triangle of A(1:n, ja:ja+n-1) is
stored.

(global) CHARACTER.trans
If trans = 'N', solve with A(1:n, ja:ja+n-1),
if trans = 'C', solve with conjugate transpose A(1:n,
ja:ja+n-1).

(global) INTEGER. The order of the distributed submatrix

A;(n≥ 0).

n

(global) INTEGER. Number of subdiagonals. 0 ≤ bwl ≤ n-1.bwl

(global) INTEGER. Number of subdiagonals. 0 ≤ bwu ≤ n-1.bwu

(global) INTEGER. The number of right-hand sides; the

number of columns of the distributed submatrix B (nrhs≥
0).

nrhs

(local).a
REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Pointer into the local memory to an array with first

DIMENSION lld_a≥(bwl+bwu+1)(stored in desca). On entry,
this array contains the local pieces of the n-by-n
unsymmetric banded distributed Cholesky factor L or LT*A(1
:n, ja:ja+n-1). This local portion is stored in the packed

1907

ScaLAPACK Auxiliary and Utility Routines 7

banded format used in LAPACK. Please see the Application
Notes below and the ScaLAPACK manual for more detail on
the format of distributed matrices.

(global) INTEGER. The index in the global array a that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array of DIMENSION (dlen_).desca

if 1d type (dtype_a = 501 or 502), dlen≥ 7;

if 2d type (dtype_a = 1), dlen≥ 9. The array descriptor for
the distributed matrix A. Contains information of mapping
of A to memory.

(local)b
REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Pointer into the local memory to an array of local lead

DIMENSION lld_b≥nb. On entry, this array contains the
local pieces of the right-hand sides B(ib:ib+n-1, 1:nrhs).

(global) INTEGER. The row index in the global array b that
points to the first row of the matrix to be operated on (which
may be either all of b or a submatrix of B).

ib

(global and local) INTEGER array of DIMENSION (dlen_).descb

if 1d type (dtype_b =502), dlen≥7;

if 2d type (dtype_b =1), dlen≥9. The array descriptor for
the distributed matrix B. Contains information of mapping
B to memory.

(local)laf
INTEGER. Size of user-input Auxiliary Filling space af.

laf must be ≥nb*(bwl+bwu)+6*max(bwl, bwu)*max(bwl,
bwu). If laf is not large enough, an error code is returned
and the minimum acceptable size will be returned in af(1).

(local).work
REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv

1908

7 Intel® Math Kernel Library Reference Manual

COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Temporary workspace. This space may be overwritten in
between calls to routines.
work must be the size given in lwork.

(local or global) INTEGER.lwork
Size of user-input workspace work. If lwork is too small,
the minimal acceptable size will be returned in work(1) and
an error code is returned.

lwork≥ max(bwl, bwu)*nrhs.

Output Parameters

(local).a
This local portion is stored in the packed banded format
used in LAPACK. Please see the ScaLAPACK manual for more
detail on the format of distributed matrices.

On exit, this contains the local piece of the solutions
distributed matrix X.

b

(local).af
REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Auxiliary Filling Space. Filling is created during the
factorization routine p?dbtrf and this is stored in af. If a
linear system is to be solved using p?dbtrf after the
factorization routine, af must not be altered after the
factorization.

On exit, work(1) contains the minimal lwork.work

(local).info
INTEGER. If info = 0, the execution is successful.
< 0: If the i-th argument is an array and the j-entry had
an illegal value, then info = - (i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1909

ScaLAPACK Auxiliary and Utility Routines 7

p?dttrsv
Computes an LU factorization of a general band
matrix, using partial pivoting with row
interchanges. The routine is called by p?dttrs.

Syntax

call psdttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pddttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pcdttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pzdttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

Description

This routine solves a tridiagonal triangular system of linear equations

A(1 :n, ja:ja+n-1) * X = B(ib:ib+n-1, 1 :nrhs) or

A(1 :n, ja:ja+n-1)T * X = B(ib:ib+n-1, 1 :nrhs) for real flavors; A(1 :n,
ja:ja+n-1)H * X = B(ib:ib+n-1, 1 :nrhs) for complex flavors,

where A(1 :n, ja:ja+n-1) is a tridiagonal matrix factor produced by the Gaussian elimination
code PS@(dom_pre)TTRF and is stored in A(1 :n, ja:ja+n-1) and af.

The matrix stored in A(1 :n, ja:ja+n-1) is either upper or lower triangular according to
uplo, and the choice of solving A(1 :n, ja:ja+n-1) or A(1 :n, ja:ja+n-1)T is dictated
by the user by the parameter trans.

Routine p?dttrf must be called first.

Input Parameters

(global) CHARACTER.uplo
If uplo='U', the upper triangle of A(1:n, ja:ja+n-1) is
stored,
if uplo = 'L', the lower triangle of A(1:n, ja:ja+n-1) is
stored.

1910

7 Intel® Math Kernel Library Reference Manual

(global) CHARACTER.trans
If trans = 'N', solve with A(1:n, ja:ja+n-1),
if trans = 'C', solve with conjugate transpose A(1:n,
ja:ja+n-1).

(global) INTEGER. The order of the distributed submatrix

A;(n≥ 0).

n

(global) INTEGER. The number of right-hand sides; the
number of columns of the distributed submatrix

B(ib:ib+n-1, 1:nrhs). (nrhs≥ 0).

nrhs

(local).dl
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the lower
diagonal of the matrix.
Globally, dl(1) is not referenced, and dl must be aligned
with d.

Must be of size ≥desca(nb_).

(local).d
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the main
diagonal of the matrix.

(local).du
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the upper
diagonal of the matrix.
Globally, du(n) is not referenced, and du must be aligned
with d.

1911

ScaLAPACK Auxiliary and Utility Routines 7

(global) INTEGER. The index in the global array a that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local). INTEGER array of DIMENSION (dlen_).desca

if 1d type (dtype_a = 501 or 502), dlen≥ 7;

if 2d type (dtype_a = 1), dlen≥ 9.
The array descriptor for the distributed matrix A. Contains
information of mapping of A to memory.

(local)b
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer into the local memory to an array of local lead

DIMENSION lld_b≥nb. On entry, this array contains the
local pieces of the right-hand sides B(ib:ib+n-1, 1
:nrhs).

(global). INTEGER. The row index in the global array b that
points to the first row of the matrix to be operated on (which
may be either all of b or a submatrix of B).

ib

(global and local).INTEGER array of DIMENSION (dlen_).descb

if 1d type (dtype_b = 502), dlen≥7;

if 2d type (dtype_b = 1), dlen≥ 9.
The array descriptor for the distributed matrix B. Contains
information of mapping B to memory.

(local).laf
INTEGER.
Size of user-input Auxiliary Filling space af.

laf must be ≥ 2*(nb+2). If laf is not large enough, an
error code is returned and the minimum acceptable size will
be returned in af(1).

(local).work
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv

1912

7 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for pzdttrsv.
Temporary workspace. This space may be overwritten in
between calls to routines.
work must be the size given in lwork.

(local or global).INTEGER.lwork
Size of user-input workspace work. If lwork is too small,
the minimal acceptable size will be returned in work(1) and
an error code is returned.

lwork≥ 10*npcol+4*nrhs.

Output Parameters

(local).dl
On exit, this array contains information containing the
factors of the matrix.

On exit, this array contains information containing the

factors of the matrix. Must be of size ≥desca (nb_).

d

On exit, this contains the local piece of the solutions
distributed matrix X.

b

(local).af
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Auxiliary Filling Space. Filling is created during the
factorization routine p?dttrf and this is stored in af. If a
linear system is to be solved using p?dttrs after the
factorization routine, af must not be altered after the
factorization.

On exit, work(1) contains the minimal lwork.work

(local). INTEGER.info
If info=0, the execution is successful.
if info< 0: If the i-th argument is an array and the j-entry
had an illegal value, then info = - (i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

1913

ScaLAPACK Auxiliary and Utility Routines 7

p?gebd2
Reduces a general rectangular matrix to real
bidiagonal form by an orthogonal/unitary
transformation (unblocked algorithm).

Syntax

call psgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pdgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pcgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pzgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

Description

This routine reduces a real/complex general m-by-n distributed matrix sub(A) = A(ia:ia+m-1,
ja:ja+n-1) to upper or lower bidiagonal form B by an orthogonal/unitary transformation:

Q' * sub(A) * P = B.

If m ≥ n, B is the upper bidiagonal; if m < n, B is the lower bidiagonal.

Input Parameters

(global) INTEGER.m
The number of rows of the distributed submatrix sub(A). (m

≥ 0).

(global) INTEGER.n

The order of the distributed submatrix sub(A). (n ≥ 0).

(local).a
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the general
distributed matrix sub(A).

1914

7 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).work
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
This is a workspace array of DIMENSION (lwork).

(local or global) INTEGER.lwork
The dimension of the array work.

lwork is local input and must be at least lwork ≥ max(
mpa0, nqa0), where nb = mb_a = nb_a, iroffa =
mod(ia-1, nb), iarow = indxg2p (ia, nb,
myrow, rsrc_a, nprow), iacol = indxg2p (ja,
nb, mycol, csrc_a, npcol), mpa0 = numroc(
m+iroffa, nb, myrow, iarow, nprow), nqa0 =
numroc(n+icoffa, nb, mycol, iacol, npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

(local).a

On exit, if m ≥ n, the diagonal and the first superdiagonal
of sub(A) are overwritten with the upper bidiagonal matrix
B; the elements below the diagonal, with the array tauq,
represent the orthogonal/unitary matrix Q as a product of
elementary reflectors, and the elements above the first

1915

ScaLAPACK Auxiliary and Utility Routines 7

superdiagonal, with the array taup, represent the orthogonal
matrix P as a product of elementary reflectors. If m < n,
the diagonal and the first subdiagonal are overwritten with
the lower bidiagonal matrix B; the elements below the first
subdiagonal, with the array tauq, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors, and the elements above the diagonal, with the
array taup, represent the orthogonal matrix P as a product
of elementary reflectors. See Applications Notes below.

(local)d
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.

Array, DIMENSION LOCc(ja+min(m,n)-1) if m ≥ n;
LOCr(ia+min(m,n)-1) otherwise. The distributed diagonal
elements of the bidiagonal matrix B: d(i) = a(i,i). d is
tied to the distributed matrix A.

(local)e
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.

Array, DIMENSION LOCc(ja+min(m,n)-1) if m ≥ n;
LOCr(ia+min(m,n)-2) otherwise. The distributed diagonal
elements of the bidiagonal matrix B:

if m ≥ n, e(i) = a(i, i+1) for i = 1, 2, ... , n-1;
if m < n, e(i) = a(i+1, i) for i = 1, 2, ..., m-1.
e is tied to the distributed matrix A.

(local).tauq
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.

1916

7 Intel® Math Kernel Library Reference Manual

Array, DIMENSIONLOCc(ja+min(m,n)-1). The scalar factors
of the elementary reflectors which represent the
orthogonal/unitary matrix Q. tauq is tied to the distributed
matrix A.

(local).taup
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Array, DIMENSION LOCr(ia+min(m,n)-1). The scalar
factors of the elementary reflectors which represent the
orthogonal/unitary matrix P. taup is tied to the distributed
matrix A.

On exit, work(1) returns the minimal and optimal lwork.work

(local)info
INTEGER.
If info = 0, the execution is successful.
if info < 0: If the i-th argument is an array and the
j-entry had an illegal value, then info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

The matrices Q and P are represented as products of elementary reflectors:

If m≥n,

Q = H(1) H(2) . . . H(n) and P = G(1) G(2). . . G(n-1)

Each H(i) and G(i) has the form:

H(i) = I - tauq *v *v' and G(i) = I - taup *u*u',

where tauq and taup are real/complex scalars, and v and u are real/complex vectors. v(1:
i-1) = 0, v(i) = 1, and v(i+i:m) is stored on exit in

A(ia+i-ia+m-1, a+i-1);

u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(ia+i-1, ja+i+1:ja+n-1);

tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).

1917

ScaLAPACK Auxiliary and Utility Routines 7

If m < n,

v(1: i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(ia+i+1: ia+m-1, ja+i-1);

u(1: i-1) = 0, u(i) = 1, and u(i+1 :n) is stored on exit in A(ia+i-1,ja+i:ja+n-1);

tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).

The contents of sub(A) on exit are illustrated by the following examples:

where d and e denote diagonal and off-diagonal elements of B, vi denotes an element of the
vector defining H(i), and ui an element of the vector defining G(i).

p?gehd2
Reduces a general matrix to upper Hessenberg
form by an orthogonal/unitary similarity
transformation (unblocked algorithm).

Syntax

call psgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

call pdgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

call pcgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

call pzgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

1918

7 Intel® Math Kernel Library Reference Manual

Description

This routine reduces a real/complex general distributed matrix sub(A) to upper Hessenberg
form H by an orthogonal/unitary similarity transformation: Q' * sub(A) * Q = H, where
sub(A) = A(ia+n-1 :ia+n-1, ja+n-1 :ja+n-1).

Input Parameters

(global) INTEGER. The order of the distributed submatrix A.

(n≥ 0).

n

(global) INTEGER. It is assumed that sub(A) is already upper
triangular in rows ia:ia+ilo-2 and ia+ihi:ia+n-1 and
columns ja:ja+jlo-2 and ja+jhi:ja+n-1. See Application
Notes for further information.

ilo, ihi

If n≥ 0, 1 ≤ ilo ≤ ihi ≤ n; otherwise set ilo = 1, ihi
= n.

(local).a
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the n-by-n
general distributed matrix sub(A) to be reduced.

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).work
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
This is a workspace array of DIMENSION (lwork).

(local or global). INTEGER.lwork

1919

ScaLAPACK Auxiliary and Utility Routines 7

The dimension of the array work.

lwork is local input and must be at least lwork≥nb + max(
npa0, nb), where nb = mb_a = nb_a, iroffa = mod(
ia-1, nb), iarow = indxg2p (ia, nb, myrow,
rsrc_a, nprow),npa0 = numroc(ihi+iroffa, nb,
myrow, iarow, nprow).
indxg2p and numroc are ScaLAPACK tool functions;myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

(local). On exit, the upper triangle and the first subdiagonal
of sub(A) are overwritten with the upper Hessenberg matrix
H, and the elements below the first subdiagonal, with the

a

array tau, represent the orthogonal/unitary matrix Q as a
product of elementary reflectors. See Application Notes
below.

(local).tau
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
Array, DIMENSION LOCc(ja+n-2) The scalar factors of the
elementary reflectors (see Application Notes below).
Elements ja:ja+ilo-2 and ja+ihi:ja+n-2 of tau are set
to zero. tau is tied to the distributed matrix A.

On exit, work(1) returns the minimal and optimal lwork.work

(local).INTEGER.info
If info = 0, the execution is successful.

1920

7 Intel® Math Kernel Library Reference Manual

if info < 0: If the i-th argument is an array and the j-entry
had an illegal value, then info = - (i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Application Notes

The matrix Q is represented as a product of (ihi-ilo) elementary reflectors

Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Each H(i) has the form

H(i) = I - tau *v *v',

where tau is a real/complex scalar, and v is a real/complex vector with v(1: i) = 0, v(i+1)
= 1 and v(ihi+1: n) = 0; v(i+2: ihi) is stored on exit in A(ia+ilo+i:ia+ihi-1,
ia+ilo+i-2), and tau in tau(ja+ilo+i-2).

The contents of A(ia:ia+n-1, ja:ja+n-1) are illustrated by the following example, with n =
7, ilo = 2 and ihi = 6:

where a denotes an element of the original matrix sub(A), h denotes a modified element of the
upper Hessenberg matrix H, and vi denotes an element of the vector defining H(ja+ilo+i-2).

1921

ScaLAPACK Auxiliary and Utility Routines 7

p?gelq2
Computes an LQ factorization of a general
rectangular matrix (unblocked algorithm).

Syntax

call psgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pcgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pzgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

This routine computes an LQ factorization of a real/complex distributed m-by-n matrix sub(A)
= A(ia:ia+m-1, ja:ja+n-1) = L *Q.

Input Parameters

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). (m≥0).

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(A).

(n≥0).

(local).a
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the m-by-n
distributed matrix sub(A) which is to be factored.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

1922

7 Intel® Math Kernel Library Reference Manual

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).work
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
This is a workspace array of DIMENSION (lwork).

(local or global) INTEGER.lwork
The dimension of the array work.

lwork is local input and must be at least lwork≥nq0 + max(
1, mp0), where iroff = mod(ia-1, mb_a), icoff =
mod(ja-1, nb_a), iarow = indxg2p(ia, mb_a, myrow,
rsrc_a, nprow), iacol = indxg2p(ja, nb_a, mycol, csrc_a,
npcol), mp0 = numroc(m+iroff, mb_a, myrow, iarow,
nprow), nq0 = numroc(n+icoff, nb_a, mycol, iacol,
npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

(local).a
On exit, the elements on and below the diagonal of sub(A)
contain the m by min(m,n) lower trapezoidal matrix L (L is

lower triangular if m ≤ n); the elements above the diagonal,
with the array tau, represent the orthogonal/unitary matrix
Q as a product of elementary reflectors (see Application
Notes below).

(local).tau
REAL for psgelq2

1923

ScaLAPACK Auxiliary and Utility Routines 7

DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
Array, DIMENSION LOCr(ia+min(m, n)-1). This array
contains the scalar factors of the elementary reflectors. tau
is tied to the distributed matrix A.

On exit, work(1) returns the minimal and optimal lwork.work

(local).INTEGER. If info = 0, the execution is successful.
if info < 0: If the i-th argument is an array and the j-entry
had an illegal value, then info = - (i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

info

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ia+k-1) H(ia+k-2). . . H(ia) for real flavors,Q = H(ia+k-1)' H(ia+k-2)'. . . H(ia)' for
complex flavors,

where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with v(1: i-1) = 0 and
v(i) = 1; v(i+1: n) (for real flavors) or conjg(v(i+1: n)) (for complex flavors) is stored
on exit in A(ia+i-1,ja+i:ja+n-1), and tau in TAU(ia+i-1).

p?geql2
Computes a QL factorization of a general
rectangular matrix (unblocked algorithm).

Syntax

call psgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pcgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pzgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)

1924

7 Intel® Math Kernel Library Reference Manual

Description

The routine computes a QL factorization of a real/complex distributed m-by-n matrix sub(A) =
A(ia:ia+m-1, ja:ja+n-1)= Q *L.

Input Parameters

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). (m≥ 0).

(global) INTEGER.n
The number of columns to be operated on, that is, the

number of columns of the distributed submatrix sub(A). (n≥
0).

(local).a
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
Pointer into the local memory to an array of DIMENSION
(lld_a,LOCc (ja+n-1)).
On entry, this array contains the local pieces of the m-by-n
distributed matrix sub(A) which is to be factored.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).work
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
This is a workspace array of DIMENSION (lwork).

(local or global) INTEGER.lwork
The dimension of the array work.

1925

ScaLAPACK Auxiliary and Utility Routines 7

lwork is local input and must be at least lwork≥mp0 +
max(1, nq0), where iroff = mod(ia-1, mb_a), icoff =
mod(ja-1, nb_a), iarow = indxg2p(ia, mb_a, myrow,
rsrc_a, nprow), iacol = indxg2p(ja, nb_a, mycol, csrc_a,
npcol), mp0 = numroc(m+iroff, mb_a, myrow, iarow,
nprow), nq0 = numroc(n+icoff, nb_a, mycol, iacol,
npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

(local).a
On exit,

if m ≥ n, the lower triangle of the distributed submatrix
A(ia+m-n:ia+m-1, ja:ja+n-1) contains the n-by-n lower

triangular matrix L; if m ≤ n, the elements on and below
the (n-m)-th superdiagonal contain the m-by-n lower
trapezoidal matrix L; the remaining elements, with the array
tau, represent the orthogonal/ unitary matrix Q as a product
of elementary reflectors (see Application Notes below).

(local).tau
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
Array, DIMENSION LOCc(ja+n-1). This array contains the
scalar factors of the elementary reflectors. tau is tied to the
distributed matrix A.

On exit, work(1) returns the minimal and optimal lwork.work

(local). INTEGER.info

1926

7 Intel® Math Kernel Library Reference Manual

If info = 0, the execution is successful. if info < 0: If the
i-th argument is an array and the j-entry had an illegal
value, then info = - (i*100+j), if the i-th argument is a
scalar and had an illegal value, then info = -i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ja+k-1) . . . H(ja+1) H(ja), where k = min(m,n).

Each H(i) has the form

H(i) = I- tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with v(m-k+i+1: m) = 0
and v(m-k+i) = 1; v(1: m-k+i-1) is stored on exit in A(ia:ia+m-k+i-2, ja+n-k+i-1), and
tau in TAU(ja+n-k+i-1).

p?geqr2
Computes a QR factorization of a general
rectangular matrix (unblocked algorithm).

Syntax

call psgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pcgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pzgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

This routine computes a QR factorization of a real/complex distributed m-by-n matrix sub(A) =
A(ia:ia+m-1, ja:ja+n-1)= Q*R.

Input Parameters

(global). INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). (m≥0).

1927

ScaLAPACK Auxiliary and Utility Routines 7

(global).INTEGER. The number of columns to be operated
on, that is, the number of columns of the distributed

submatrix sub(A). (n≥0).

n

(local).a
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
Pointer into the local memory to an array of DIMENSION
(lld_a, LOCc (ja+n-1)).
On entry, this array contains the local pieces of the m-by-n
distributed matrix sub(A) which is to be factored.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).work
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
This is a workspace array of DIMENSION (lwork).

(local or global). INTEGER.lwork
The dimension of the array work.

lwork is local input and must be at least lwork≥mp0 +
max(1, nq0), where iroff = mod(ia-1, mb_a), icoff
= mod(ja-1, nb_a), iarow = indxg2p(ia, mb_a,
myrow, rsrc_a, nprow), iacol = indxg2p(ja,
nb_a, mycol, csrc_a, npcol), mp0 = numroc(
m+iroff, mb_a, myrow, iarow, nprow), nq0 =
numroc(n+icoff, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

1928

7 Intel® Math Kernel Library Reference Manual

If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

(local).a
On exit, the elements on and above the diagonal of sub(A)
contain the min(m,n) by n upper trapezoidal matrix R (R is

upper triangular if m≥n); the elements below the diagonal,
with the array tau, represent the orthogonal/unitary matrix
Q as a product of elementary reflectors (see Application
Notes below).

(local).tau
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
Array, DIMENSION LOCc(ja+min(m,n)-1). This array
contains the scalar factors of the elementary reflectors. tau
is tied to the distributed matrix A.

On exit, work(1) returns the minimal and optimal lwork.work

(local). INTEGER.info
If info = 0, the execution is successful. if info < 0:
If the i-th argument is an array and the j-entry had an
illegal value, then info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ja) H(ja+1) . . . H(ja+k-1), where k = min(m,n).

Each H(i) has the form

H(j)= I - tau * v * v',

1929

ScaLAPACK Auxiliary and Utility Routines 7

where tau is a real/complex scalar, and v is a real/complex vector with v(1: i-1) = 0 and v(i)
= 1; v(i+1: m) is stored on exit in A(ia+i:ia+m-1, ja+i-1), and tau in TAU(ja+i-1).

p?gerq2
Computes an RQ factorization of a general
rectangular matrix (unblocked algorithm).

Syntax

call psgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pcgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pzgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

This routine computes an RQ factorization of a real/complex distributed m-by-n matrix sub(A)
= A(ia:ia+m-1, ja:ja+n-1) = R*Q.

Input Parameters

(global). INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). (m≥0).

(global).INTEGER. The number of columns to be operated
on, that is, the number of columns of the distributed

submatrix sub(A). (n≥0).

n

(local).a
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
Pointer into the local memory to an array of DIMENSION
(lld_a,LOCc(ja+n-1)).
On entry, this array contains the local pieces of the m-by-n
distributed matrix sub(A) which is to be factored.

1930

7 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).work
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
This is a workspace array of DIMENSION (lwork).

(local or global). INTEGER.lwork
The dimension of the array work.

lwork is local input and must be at least lwork≥nq0 +
max(1, mp0), where
iroff = mod(ia-1, mb_a), icoff = mod(ja-1,
nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow
),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol
), mp0 = numroc(m+iroff, mb_a, myrow, iarow,
nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol
),
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

(local).a
On exit,

1931

ScaLAPACK Auxiliary and Utility Routines 7

if m ≤ n, the upper triangle of A(ia+m-n:ia+m-1, ja:ja+n-1)

contains the m-by-m upper triangular matrix R; if m ≥ n, the
elements on and above the (m-n)-th subdiagonal contain
the m-by-n upper trapezoidal matrix R; the remaining
elements, with the array tau, represent the orthogonal/
unitary matrix Q as a product of elementary reflectors (see
Application Notes below).

(local).tau
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
Array, DIMENSION LOCr(ia+m -1). This array contains the
scalar factors of the elementary reflectors. tau is tied to the
distributed matrix A.

On exit, work(1) returns the minimal and optimal lwork.work

(local). INTEGER.info
If info = 0, the execution is successful.
if info < 0: If the i-th argument is an array and the j-entry
had an illegal value, then info = - (i*100+j), if the i-th
argument is a scalar and had an illegal value, then info =
-i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ia) H(ia+1) . . . H(ia+k-1) for real flavors,

Q = H(ia)' H(ia+1)' . . . H(ia+k-1)' for complex flavors,

where k = min(m, n).

Each H(i) has the form

H(i) = I - tau *v *v',

where tau is a real/complex scalar, and v is a real/complex vector with v(n-k+i+1:n) = 0
and v(n-k+i) = 1; v(1:n-k+i-1) for real flavors or conjg(v(1:n-k+i-1)) for complex
flavors is stored on exit in A(ia+m-k+i-1, ja:ja+n-k+i-2), and tau in TAU(ia+m-k+i-1).

1932

7 Intel® Math Kernel Library Reference Manual

p?getf2
Computes an LU factorization of a general matrix,
using partial pivoting with row interchanges (local
blocked algorithm).

Syntax

call psgetf2(m, n, a, ia, ja, desca, ipiv, info)

call pdgetf2(m, n, a, ia, ja, desca, ipiv, info)

call pcgetf2(m, n, a, ia, ja, desca, ipiv, info)

call pzgetf2(m, n, a, ia, ja, desca, ipiv, info)

Description

This routine computes an LU factorization of a general m-by-n distributed matrix sub(A) =
A(ia:ia+m-1, ja:ja+n-1) using partial pivoting with row interchanges.

The factorization has the form sub(A) = P * L * U, where P is a permutation matrix, L is
lower triangular with unit diagonal elements (lower trapezoidal if m>n), and U is upper triangular
(upper trapezoidal if m < n). This is the right-looking Parallel Level 2 BLAS version of the
algorithm.

Input Parameters

(global). INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). (m≥0).

(global).INTEGER. The number of columns to be operated
on, that is, the number of columns of the distributed

submatrix sub(A). (nb_a - mod(ja-1, nb_a)≥n≥0).

n

(local).a
REAL for psgetf2
DOUBLE PRECISION for pdgetf2
COMPLEX for pcgetf2
COMPLEX*16 for pzgetf2.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)).

1933

ScaLAPACK Auxiliary and Utility Routines 7

On entry, this array contains the local pieces of the m-by-n
distributed matrix sub(A).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

Output Parameters

(local). INTEGER.ipiv
Array, DIMENSION(LOCr(m_a) + mb_a). This array contains
the pivoting information. ipiv(i) -> The global row that
local row i was swapped with. This array is tied to the
distributed matrix A.

(local). INTEGER.info
If info = 0: successful exit.
If info < 0:

• if the i-th argument is an array and the j-entry had an
illegal value, then info = -(i*100+j),

• if the i-th argument is a scalar and had an illegal value,
then info = - i.

If info > 0: If info = k, u(ia+k-1, ja+k-1) is exactly
zero. The factorization has been completed, but the factor
u is exactly singular, and division by zero will occur if it is
used to solve a system of equations.

1934

7 Intel® Math Kernel Library Reference Manual

p?labrd
Reduces the first nb rows and columns of a general
rectangular matrix A to real bidiagonal form by an
orthogonal/unitary transformation, and returns
auxiliary matrices that are needed to apply the
transformation to the unreduced part of A.

Syntax

call pslabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx,
y, iy, jy, descy, work)

call pdlabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx,
y, iy, jy, descy, work)

call pclabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx,
y, iy, jy, descy, work)

call pzlabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx,
y, iy, jy, descy, work)

Description

This routine reduces the first nb rows and columns of a real/complex general m-by-n distributed
matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1) to upper or lower bidiagonal form by an
orthogonal/unitary transformation Q'* A * P, and returns the matrices X and Y necessary to
apply the transformation to the unreduced part of sub(A).

If m ≥n, sub(A) is reduced to upper bidiagonal form; if m < n, sub(A) is reduced to lower
bidiagonal form.

This is an auxiliary routine called by p?gebrd.

Input Parameters

(global). INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). (m ≥ 0).

(global).INTEGER. The number of columns to be operated
on, that is, the number of columns of the distributed

submatrix sub(A). (n ≥ 0).

n

1935

ScaLAPACK Auxiliary and Utility Routines 7

(global) INTEGER.nb
The number of leading rows and columns of sub(A) to be
reduced.

(local).a
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the general
distributed matrix sub(A).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. The row and column indices in the global
array x indicating the first row and the first column of the
submatrix sub(X), respectively.

ix, jx

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix X.

descx

(global) INTEGER. The row and column indices in the global
array y indicating the first row and the first column of the
submatrix sub(Y), respectively.

iy, jy

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix Y.

descy

(local).work
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Workspace array, DIMENSION(lwork)

lwork ≥ nb_a + nq,
with nq = numroc(n + mod(ia-1, nb_y), nb_y,
mycol, iacol, npcol)

1936

7 Intel® Math Kernel Library Reference Manual

iacol = indxg2p (ja, nb_a, mycol, csrc_a, npcol
)
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

(local)a
On exit, the first nb rows and columns of the matrix are
overwritten; the rest of the distributed matrix sub(A) is

unchanged. if m ≥ n, elements on and below the diagonal
in the first nb columns, with the array tauq, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors;and elements above the diagonal in the first nb
rows, with the array taup, represent the orthogonal/unitary
matrix P as a product of elementary reflectors.
If m < n, elements below the diagonal in the first nb
columns, with the array tauq, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors, and elements on and above the diagonal in the
first nb rows, with the array taup, represent the
orthogonal/unitary matrix P as a product of elementary
reflectors. See Application Notes below.

(local).d
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd

Array, DIMENSION LOCr(ia+min(m,n)-1) if m ≥ n;
LOCc(ja+min(m,n)-1) otherwise. The distributed diagonal
elements of the bidiagonal distributed matrix B:
d(i) = A(ia+i-1, ja+i-1).
d is tied to the distributed matrix A.

(local).e
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd

1937

ScaLAPACK Auxiliary and Utility Routines 7

COMPLEX*16 for pzlabrd

Array, DIMENSION LOCr(ia+min(m,n)-1) if m ≥ n;
LOCc(ja+min(m,n)-2) otherwise. The distributed
off-diagonal elements of the bidiagonal distributed matrix
B:

if m ≥ n, E(i) = A(ia+i-1, ja+i) for i = 1, 2, ...,
n-1;
if m < n,E(i) = A(ia+i, ja+i-1) for i = 1, 2, ...,
m-1.
e is tied to the distributed matrix A.

(local).tauq, taup
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Array DIMENSION LOCc(ja+min(m, n)-1) for tauq,
DIMENSION LOCr(ia+min(m, n)-1) for taup. The scalar
factors of the elementary reflectors which represent the
orthogonal/unitary matrix Q for tauq, P for taup. tauq and
taup are tied to the distributed matrix A. See Application
Notes below.

(local)x
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Pointer into the local memory to an array of DIMENSION
(lld_x, nb). On exit, the local pieces of the distributed
m-by-nb matrix X(ix:ix+m-1, jx:jx+nb-1) required to
update the unreduced part of sub(A).

(local).y
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd

1938

7 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of DIMENSION
(lld_y, nb). On exit, the local pieces of the distributed
n-by-nb matrix Y(iy:iy+n-1, jy:jy+nb-1) required to
update the unreduced part of sub(A).

Application Notes

The matrices Q and P are represented as products of elementary reflectors:

Q = H(1) H(2) . . . H(nb) and P = G(1) G(2). . . G(nb)

Each H(i) and G(i) has the form:

H(i) = I - tauq *v *v' and G(i) = I - taup *u *u',

where tauq and taup are real/complex scalars, and v and u are real/complex vectors.

If m ≥ n, v(1: i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in

A(ia+i-1:ia+m-1, ja+i-1); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit
in A(ia+i-1, ja+i:ja+n-1); tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).

If m < n, v(1: i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in

A(ia+i+1:ia+m-1, ja+i-1); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
A(ia+i-1, ja+i:ja+n-1); tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1). The
elements of the vectors v and u together form the m-by-nb matrix V and the nb-by-n matrix U'
which are necessary, with X and Y, to apply the transformation to the unreduced part of the
matrix, using a block update of the form: sub(A):= sub(A) - V*Y' - X*U'. The contents
of sub(A) on exit are illustrated by the following examples with nb = 2:

1939

ScaLAPACK Auxiliary and Utility Routines 7

where a denotes an element of the original matrix which is unchanged, vi denotes an element
of the vector defining H(i), and ui an element of the vector defining G(i).

p?lacon
Estimates the 1-norm of a square matrix, using
the reverse communication for evaluating
matrix-vector products.

Syntax

call pslacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

call pdlacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

call pclacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

call pzlacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

Description

This routine estimates the 1-norm of a square, real/unitary distributed matrix A. Reverse
communication is used for evaluating matrix-vector products. x and v are aligned with the
distributed matrix A, this information is implicitly contained within iv, ix, descv, and descx.

1940

7 Intel® Math Kernel Library Reference Manual

Input Parameters

(global).INTEGER. The length of the distributed vectors v

and x. n ≥ 0.

n

(local).v
REAL for pslacon
DOUBLE PRECISION for pdlacon
COMPLEX for pclacon
COMPLEX*16 for pzlacon.
Pointer into the local memory to an array of DIMENSION
LOCr(n+mod(iv-1, mb_v)). On the final return, v = a*w,
where est = norm(v)/norm(w) (w is not returned).

(global) INTEGER. The row and column indices in the global
array v indicating the first row and the first column of the
submatrix V, respectively.

iv, jv

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix V.

descv

(local).x
REAL for pslacon
DOUBLE PRECISION for pdlacon
COMPLEX for pclacon
COMPLEX*16 for pzlacon.
Pointer into the local memory to an array of DIMENSION
LOCr(n+mod(ix-1, mb_x)).

(global) INTEGER. The row and column indices in the global
array x indicating the first row and the first column of the
submatrix X, respectively.

ix, jx

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix X.

descx

(local). INTEGER.isgn
Array, DIMENSION LOCr(n+mod(ix-1, mb_x)). isgn is
aligned with x and v.

(local). INTEGER.kase
On the initial call to p?lacon, kase should be 0.

1941

ScaLAPACK Auxiliary and Utility Routines 7

Output Parameters

(local).x
On an intermediate return, X should be overwritten by A*X,
if kase=1, A' *X, if kase=2,
p?lacon must be re-called with all the other parameters
unchanged.

(global). REAL for single precision flavorsest
DOUBLE PRECISION for double precision flavors

(local)kase
INTEGER. On an intermediate return, kase is 1 or 2,
indicating whether X should be overwritten by A*X, or A'*X.
On the final return from p?lacon, kase is again 0.

p?laconsb
Looks for two consecutive small subdiagonal
elements.

Syntax

call pslaconsb(a, desca, i, l, m, h44, h33, h43h34, buf, lwork)

call pdlaconsb(a, desca, i, l, m, h44, h33, h43h34, buf, lwork)

Description

This routine looks for two consecutive small subdiagonal elements by analyzing the effect of
starting a double shift QR iteration given by h44, h33, and h43h34 to see if this process makes
a subdiagonal negligible.

Input Parameters

(global). REAL for pslaconsba
DOUBLE PRECISION for pdlaconsb
Array, DIMENSION (desca (lld_),*). On entry, the
Hessenberg matrix whose tridiagonal part is being scanned.
Unchanged on exit.

(global and local) INTEGER.desca
Array of DIMENSION (dlen_). The array descriptor for the
distributed matrix A.

1942

7 Intel® Math Kernel Library Reference Manual

(global) INTEGER.i
The global location of the bottom of the unreduced submatrix
of A. Unchanged on exit.

(global) INTEGER.l
The global location of the top of the unreduced submatrix
of A. Unchanged on exit.

(global). REAL for pslaconsbh44, h33, h43h34
DOUBLE PRECISION for pdlaconsb
These three values are for the double shift QR iteration.

(global) INTEGER.lwork
This must be at least 7*ceil(ceil((i-l)/hbl
)/lcm(nprow, npcol)). Here lcm is least common multiple
and nprowxnpcol is the logical grid size.

Output Parameters

(global). On exit, this yields the starting location of the QR
double shift. This will satisfy:

m

l ≤ m ≤ i-2.

(local).buf
REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
Array of size lwork.

(global). On exit, lwork is the size of the work buffer.lwork

p?lacp2
Copies all or part of a distributed matrix to another
distributed matrix.

Syntax

call pslacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pdlacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pclacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pzlacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

1943

ScaLAPACK Auxiliary and Utility Routines 7

Description

This routine copies all or part of a distributed matrix A to another distributed matrix B. No
communication is performed, p?lacp2 performs a local copy sub(A):= sub(B), where sub(A)
denotes A(ia:ia+m-1, a:ja+n-1) and sub(B) denotes B(ib:ib+m-1, jb:jb+n-1).

p?lacp2 requires that only dimension of the matrix operands is distributed.

Input Parameters

(global) CHARACTER. Specifies the part of the distributed
matrix sub(A) to be copied:

uplo

= 'U': Upper triangular part is copied; the strictly lower
triangular part of sub(A) is not referenced;
= 'L': Lower triangular part is copied; the strictly upper
triangular part of sub(A) is not referenced.
Otherwise: all of the matrix sub(A) is copied.

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). (m ≥ 0).

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(A). (n

≥ 0).

(local).a
REAL for pslacp2
DOUBLE PRECISION for pdlacp2
COMPLEX for pclacp2
COMPLEX*16 for pzlacp2.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the m-by-n
distributed matrix sub(A).

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of
sub(A), respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

1944

7 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The row and column indices in the global
array B indicating the first row and the first column of
sub(B), respectively.

ib, jb

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix B.

descb

Output Parameters

(local).b
REAL for pslacp2
DOUBLE PRECISION for pdlacp2
COMPLEX for pclacp2
COMPLEX*16 for pzlacp2.
Pointer into the local memory to an array of DIMENSION
(lld_b, LOCc(jb+n-1)). This array contains on exit the local
pieces of the distributed matrix sub(B) set as follows:
if uplo = 'U', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),

1 ≤ i ≤ j, 1 ≤ j ≤ n;
if uplo = 'L', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),

j ≤ i ≤ m, 1≤ j ≤ n;

otherwise, B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1), 1 ≤ i

≤ m, 1 ≤ j ≤ n.

p?lacp3
Copies from a global parallel array into a local
replicated array or vice versa.

Syntax

call pslacp3(m, i, a, desca, b, ldb, ii, jj, rev)

call pdlacp3(m, i, a, desca, b, ldb, ii, jj, rev)

Description

This is an auxiliary routine that copies from a global parallel array into a local replicated array
or vise versa. Note that the entire submatrix that is copied gets placed on one node or more.
The receiving node can be specified precisely, or all nodes can receive, or just one row or
column of nodes.

1945

ScaLAPACK Auxiliary and Utility Routines 7

Input Parameters

(global) INTEGER.m
m is the order of the square submatrix that is copied.

m ≥ 0. Unchanged on exit.

(global) INTEGER. A(i, i) is the global location that the
copying starts from. Unchanged on exit.

i

(global). REAL for pslacp3a
DOUBLE PRECISION for pdlacp3
Array, DIMENSION (desca(lld_),*). On entry, the parallel
matrix to be copied into or from.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).b
REAL for pslacp3
DOUBLE PRECISION for pdlacp3
Array, DIMENSION (ldb, m). If rev = 0, this is the global
portion of the array A(i:i+m-1, i:i+m-1). If rev = 1,
this is the unchanged on exit.

(local)ldb
INTEGER.
The leading dimension of B.

(global) INTEGER. By using rev 0 and 1, data can be sent
out and returned again. If rev = 0, then ii is destination
row index for the node(s) receiving the replicated B. If ii

ii

≥ 0, jj ≥ 0, then node (ii, jj) receives the data. If ii =

-1, jj ≥ 0, then all rows in column jj receive the data. If

ii ≥ 0, jj = -1, then all cols in row ii receive the data. f
ii = -1, jj = -1, then all nodes receive the data. If rev
!=0, then ii is the source row index for the node(s) sending
the replicated B.

(global) INTEGER. Similar description as ii above.jj

(global) INTEGER. Use rev = 0 to send global A into locally
replicated B (on node (ii, jj)). Use rev != 0 to send locally
replicated B from node (ii, jj) to its owner (which changes
depending on its location in A) into the global A.

rev

1946

7 Intel® Math Kernel Library Reference Manual

Output Parameters

(global). On exit, if rev = 1, the copied data. Unchanged
on exit if rev = 0.

a

(local). If rev = 1, this is unchanged on exit.b

p?lacpy
Copies all or part of one two-dimensional array to
another.

Syntax

call pslacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pdlacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pclacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pzlacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

Description

This routine copies all or part of a distributed matrix A to another distributed matrix B. No
communication is performed, p?lacpy performs a local copy sub(A):= sub(B), where sub(A)
denotes A(ia:ia+m-1,ja:ja+n-1) and sub(B) denotes B(ib:ib+m-1,jb:jb+n-1).

Input Parameters

(global). CHARACTER. Specifies the part of the distributed
matrix sub(A) to be copied:

uplo

= 'U': Upper triangular part is copied; the strictly lower
triangular part of sub(A) is not referenced;
= 'L': Lower triangular part is copied; the strictly upper
triangular part of sub(A) is not referenced.
Otherwise: all of the matrix sub(A) is copied.

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). (m ≥0).

(global) INTEGER.n

1947

ScaLAPACK Auxiliary and Utility Routines 7

The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(A).

(n≥0).

(local).a
REAL for pslacpy
DOUBLE PRECISION for pdlacpy
COMPLEX for pclacpy
COMPLEX*16 for pzlacpy.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the
distributed matrix sub(A).

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. The row and column indices in the global
array B indicating the first row and the first column of sub(B)
respectively.

ib, jb

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

descb

Output Parameters

(local).b
REAL for pslacpy
DOUBLE PRECISION for pdlacpy
COMPLEX for pclacpy
COMPLEX*16 for pzlacpy.
Pointer into the local memory to an array of DIMENSION
(lld_b, LOCc(jb+n-1)). This array contains on exit the local
pieces of the distributed matrix sub(B) set as follows:
if uplo = 'U', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),

1≤i≤j, 1≤j≤n;if uplo = 'L', B(ib+i-1, jb+j-1) =

A(ia+i-1, ja+j-1),j≤i≤m, 1≤j≤n;

1948

7 Intel® Math Kernel Library Reference Manual

otherwise, B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1), 1≤i≤m,

1≤j≤n.

p?laevswp
Moves the eigenvectors from where they are
computed to ScaLAPACK standard block cyclic
array.

Syntax

call pslaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)

call pdlaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)

call pclaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)

call pzlaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)

Description

This routine moves the eigenvectors (potentially unsorted) from where they are computed, to
a ScaLAPACK standard block cyclic array, sorted so that the corresponding eigenvalues are
sorted.

Input Parameters

np = the number of rows local to a given process.

nq = the number of columns local to a given process.

(global). INTEGER.n

The order of the matrix A. n ≥ 0.

(local).zin
REAL for pslaevswp
DOUBLE PRECISION for pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp. Array, DIMENSION (ldzi,
nvs(iam)). The eigenvectors on input. Each eigenvector
resides entirely in one process. Each process holds a
contiguous set of nvs(iam) eigenvectors. The first
eigenvector which the process holds is: sum for i=[0, iam-1)
of nvs(i).

1949

ScaLAPACK Auxiliary and Utility Routines 7

(local)ldzi
INTEGER.The leading dimension of the zin array.

(global) INTEGER.The row and column indices in the global
array Z indicating the first row and the first column of the
submatrix Z, respectively.

iz, jz

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix Z.

descz

(global) INTEGER.nvs
Array, DIMENSION(nprocs+1)
nvs(i) = number of processes number of eigenvectors held
by processes [0, i-1)
nvs(1) = number of eigen vectors held by[0, 1 -1) = 0
nvs(nprocs+1)= number of eigen vectors held by [0,
nprocs)= total number of eigenvectors.

(global) INTEGER.key
Array, DIMENSION (n). Indicates the actual index (after
sorting) for each of the eigenvectors.

(local).rwork
REAL for pslaevswp
DOUBLE PRECISIONfor pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp. Array, DIMENSION (lrwork).

(local)lrwork
INTEGER. Dimension of work.

Output Parameters

(local).z
REAL for pslaevswp
DOUBLE PRECISION for pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp.
Array, global DIMENSION (n, n), local DIMENSION
(descz(dlen_), nq). The eigenvectors on output. The
eigenvectors are distributed in a block cyclic manner in both
dimensions, with a block size of nb.

1950

7 Intel® Math Kernel Library Reference Manual

p?lahrd
Reduces the first nb columns of a general
rectangular matrix A so that elements below the
k-th subdiagonal are zero, by an orthogonal/unitary
transformation, and returns auxiliary matrices that
are needed to apply the transformation to the
unreduced part of A.

Syntax

call pslahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

call pdlahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

call pclahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

call pzlahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

Description

The routines reduces the first nb columns of a real general n-by-(n-k+1) distributed matrix
A(ia:ia+n-1 , ja:ja+n-k) so that elements below the k-th subdiagonal are zero. The
reduction is performed by an orthogonal/unitary similarity transformation Q' * A * Q. The
routine returns the matrices V and T which determine Q as a block reflector I - V*T*V', and
also the matrix Y = A * V * T.

This is an auxiliary routine called by p?gehrd. In the following comments sub(A) denotes
A(ia:ia+n-1, ja:ja+n-1).

Input Parameters

(global) INTEGER.n

The order of the distributed submatrix sub(A). n ≥ 0.

(global) INTEGER.k
The offset for the reduction. Elements below the k-th
subdiagonal in the first nb columns are reduced to zero.

(global) INTEGER.nb
The number of columns to be reduced.

(local).a
REAL for pslahrd
DOUBLE PRECISION for pdlahrd

1951

ScaLAPACK Auxiliary and Utility Routines 7

COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Pointer into the local memory to an array of DIMENSION
(lld_a, LOCc(ja+n-k)). On entry, this array contains the
local pieces of the n-by-(n-k+1) general distributed matrix
A(ia:ia+n-1, ja:ja+n-k).

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(global) INTEGER. The row and column indices in the global
array Y indicating the first row and the first column of the
submatrix sub(Y), respectively.

iy, jy

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix Y.

descy

(local).work
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array, DIMENSION (nb).

Output Parameters

(local).a
On exit, the elements on and above the k-th subdiagonal
in the first nb columns are overwritten with the
corresponding elements of the reduced distributed
matrix;the elements below the k-th subdiagonal, with the
array tau, represent the matrix Q as a product of elementary
reflectors. The other columns of A(ia:ia+n-1, ja:ja+n-k)
are unchanged. See Application Notes below.

(local)tau
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd

1952

7 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for pzlahrd.
Array, DIMENSION LOCc(ja+n-2). The scalar factors of the
elementary reflectors (see Application Notes below). tau is
tied to the distributed matrix A.

(local)REAL for pslahrdt
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array, DIMENSION (nb_a, nb_a) The upper triangular matrix
T.

(local).y
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Pointer into the local memory to an array of DIMENSION
(lld_y, nb_a). On exit, this array contains the local pieces

of the n-by-nb distributed matrix Y. lld_y ≥ LOCr(ia+n-1).

Application Notes

The matrix Q is represented as a product of nb elementary reflectors

Q = H(1) H(2) . . . H(nb).

Each H(i) has the form

H(i) = i - tau *v * v',

where tau is a real/complex scalar, and v is a real/complex vector with v(1: i+k-1)= 0, v(i+k)=
1; v(i+k+1:n) is stored on exit in A(ia+i+k:ia+n-1, ja+i-1), and tau in TAU(ja+i-1).

The elements of the vectors v together form the (n-k+1)-by-nb matrix V which is needed, with
T and Y, to apply the transformation to the unreduced part of the matrix, using an update of
the form: A(ia:ia+n-1, ja:ja+n-k) := (I-V*T*V')*(A(ia:ia+n-1, ja:ja+n-k)-Y*V'). The
contents of A(ia:ia+n-1, ja:ja+n-k) on exit are illustrated by the following example with n
= 7, k = 3, and nb = 2:

1953

ScaLAPACK Auxiliary and Utility Routines 7

where a denotes an element of the original matrix A(ia:ia+n-1, ja:ja+n-k), h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector
defining H(i).

p?laiect
Exploits IEEE arithmetic to accelerate the
computations of eigenvalues. (C interface function).

Syntax

void pslaiect(float *sigma, int *n, float *d, int *count);

void pdlaiectb(float *sigma, int *n, float *d, int *count);

void pdlaiectl(float *sigma, int *n, float *d, int *count);

Description

This routine computes the number of negative eigenvalues of (A- σI). This implementation of
the Sturm Sequence loop exploits IEEE arithmetic and has no conditionals in the innermost
loop. The signbit for real routine pslaiect is assumed to be bit 32. Double precision routines
pdlaiectb and pdlaiectl differ in the order of the double precision word storage and,
consequently, in the signbit location. For pdlaiectb, the double precision word is stored in
the big-endian word order and the signbit is assumed to be bit 32. For pdlaiectl, the double
precision word is stored in the little-endian word order and the signbit is assumed to be bit 64.

1954

7 Intel® Math Kernel Library Reference Manual

Note that all arguments are call-by-reference so that this routine can be directly called from
Fortran code.

This is a ScaLAPACK internal subroutine and arguments are not checked for unreasonable
values.

Input Parameters

Realfor pslaiectsigma
DOUBLE PRECISIONfor pdlaiectb/pdlaiectl.
The shift. p?laiect finds the number of eigenvalues less
than equal to sigma.

INTEGER. The order of the tridiagonal matrix T. n ≥ 1.n

Real for pslaiectd
DOUBLE PRECISION for pdlaiectb/pdlaiectl.
Array of DIMENSION(2n -1).
On entry, this array contains the diagonals and the squares
of the off-diagonal elements of the tridiagonal matrix T.
These elements are assumed to be interleaved in memory
for better cache performance. The diagonal entries of T are
in the entries d(1), d(3),..., d(2n-1), while the
squares of the off-diagonal entries are d(2), d(4), ...,
d(2n-2). To avoid overflow, the matrix must be scaled so
that its largest entry is no greater than overflow(1/2) *
underflow(1/4) in absolute value, and for greatest accuracy,
it should not be much smaller than that.

Output Parameters

INTEGER. The count of the number of eigenvalues of T less
than or equal to sigma.

n

1955

ScaLAPACK Auxiliary and Utility Routines 7

p?lange
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element, of a general rectangular matrix.

Syntax

val = pslange(norm, m, n, a, ia, ja, desca, work)

val = pdlange(norm, m, n, a, ia, ja, desca, work)

val = pclange(norm, m, n, a, ia, ja, desca, work)

val = pzlange(norm, m, n, a, ia, ja, desca, work)

Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or
the element of largest absolute value of a distributed matrix sub(A) = A(ia:ia+m-1,
ja:ja+n-1).

p?lange returns the value

(max(abs(A(i,j))), norm = 'M' or 'm' with ia ≤ i ≤ ia+m-1,

(and ja ≤ j ≤ ja+n-1,

(

(norm1(sub(A)), norm = '1', 'O' or 'o'

(

(normI(sub(A)), norm = 'I' or 'i'

(

(normF(sub(A)), norm = 'F', 'f', 'E' or 'e',

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a matrix norm.

1956

7 Intel® Math Kernel Library Reference Manual

Input Parameters

(global) CHARACTER. Specifies the value to be returned by
the routine as described above.

norm

(global). INTEGER.m
The number of rows to be operated on, that is, the number
of rows of the distributed submatrix sub(A). When m = 0,

p?lange is set to zero. m ≥ 0.

(global). INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(A).

When n = 0, p?lange is set to zero. n ≥ 0.

(local).a
Real for pslange
DOUBLE PRECISION for pdlange
COMPLEX for pclange
COMPLEX*16 for pzlange.
Pointer into the local memory to an array of DIMENSION
(lld_a, LOCc(ja+n-1)) containing the local pieces of the
distributed matrix sub(A).

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).work
Real for pslange
DOUBLE PRECISION for pdlange
COMPLEX for pclange
COMPLEX*16 for pzlange.
Array DIMENSION (lwork).

lwork ≥ 0 if norm = 'M' or 'm' (not referenced),
nq0 if norm = '1', 'O' or 'o',
mp0 if norm = 'I' or 'i',
0 if norm = 'F', 'f', 'E' or 'e' (not referenced),
where

1957

ScaLAPACK Auxiliary and Utility Routines 7

iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1,
nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow
),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol
),
mp0 = numroc(m+iroffa, mb_a, myrow, iarow,
nprow),
nq0 = numroc(n+icoffa, nb_a, mycol, iacol,
npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

The value returned by the fuction.val

p?lanhs
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element, of an upper Hessenberg matrix.

Syntax

val = pslanhs(norm, n, a, ia, ja, desca, work)

val = pdlanhs(norm, n, a, ia, ja, desca, work)

val = pclanhs(norm, n, a, ia, ja, desca, work)

val = pzlanhs(norm, n, a, ia, ja, desca, work)

Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or
the element of largest absolute value of a distributed matrix sub(A) = A(ia:ia+m-1,
ja:ja+n-1).

p?lanhs returns the value

(max(abs(A(i,j))), norm = 'M' or 'm' with ia ≤ i ≤ ia+m-1,

1958

7 Intel® Math Kernel Library Reference Manual

(and ja ≤ j ≤ ja+n-1,

(

(norm1(sub(A)), norm = '1', 'O' or 'o'

(

(normI(sub(A)), norm = 'I' or 'i'

(

(normF(sub(A)), norm = 'F', 'f', 'E' or 'e',

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a matrix norm.

Input Parameters

(global) CHARACTER. Specifies the value to be returned by
the routine as described above.

norm

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(A).

When n = 0, p?lanhs is set to zero. n ≥ 0.

(local).a
Real for pslanhs
DOUBLE PRECISION for pdlanhs
COMPLEX for pclanhs
COMPLEX*16 for pzlanhs.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)) containing the local
pieces of the distributed matrix sub(A).

(global) INTEGER.ia, ja
The row and column indices in the global array A indicating
the first row and the first column of the submatrix sub(A),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).work

1959

ScaLAPACK Auxiliary and Utility Routines 7

Real for pslanhs
DOUBLE PRECISION for pdlanhs
COMPLEX for pclanhs
COMPLEX*16 for pzlanh.
Array, DIMENSION (lwork).

lwork ≥ 0 if norm = 'M' or 'm' (not referenced),
nq0 if norm = '1', 'O' or 'o',
mp0 if norm = 'I' or 'i',
0 if norm = 'F', 'f', 'E' or 'e' (not referenced),
where
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow,
imycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

The value returned by the fuction.val

1960

7 Intel® Math Kernel Library Reference Manual

p?lansy, p?lanhe
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element, of a real symmetric or a complex
Hermitian matrix.

Syntax

val = pslansy(norm, uplo, n, a, ia, ja, desca, work)

val = pdlansy(norm, uplo, n, a, ia, ja, desca, work)

val = pclansy(norm, uplo, n, a, ia, ja, desca, work)

val = pzlansy(norm, uplo, n, a, ia, ja, desca, work)

val = pclanhe(norm, uplo, n, a, ia, ja, desca, work)

val = pzlanhe(norm, uplo, n, a, ia, ja, desca, work)

Description

The functions return the value of the 1-norm, or the Frobenius norm, or the infinity norm, or
the element of largest absolute value of a distributed matrix sub(A) = A(ia:ia+m-1,
ja:ja+n-1).

p?lansy, p?lanhe return the value

(max(abs(A(i,j))), norm = 'M' or 'm' with ia ≤ i ≤ ia+m-1,

(and ja ≤ j ≤ ja+n-1,

(

(norm1(sub(A)), norm = '1', 'O' or 'o'

(

(normI(sub(A)), norm = 'I' or 'i'

(

(normF(sub(A)), norm = 'F', 'f', 'E' or 'e',

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a matrix norm.

1961

ScaLAPACK Auxiliary and Utility Routines 7

Input Parameters

(global) CHARACTER. Specifies the value to be returned by
the routine as described above.

norm

(global) CHARACTER. Specifies whether the upper or lower
triangular part of the symmetric matrix sub(A) is to be
referenced.

uplo

= 'U': Upper triangular part of sub(A) is referenced,
= 'L': Lower triangular part of sub(A) is referenced.

(global) INTEGER.n
The number of columns to be operated on i.e the number
of columns of the distributed submatrix sub(A). When n =

0, p?lansy is set to zero. n ≥ 0.

(local).a
Real for pslansy
DOUBLE PRECISION for pdlansy
COMPLEX for pclansy, pclanhe
COMPLEX*16 for pzlansy, pzlanhe.
Pointer into the local memory to an array of DIMENSION
(lld_a, LOCc(ja+n-1)) containing the local pieces of the
distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular matrix whose norm is
to be computed, and the strictly lower triangular part of this
matrix is not referenced. If uplo = 'L', the leading n-by-n
lower triangular part of sub(A) contains the lower triangular
matrix whose norm is to be computed, and the strictly upper
triangular part of sub(A) is not referenced.

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).work
Real for pslansy
DOUBLE PRECISION for pdlansy
COMPLEX for pclansy, pclanhe

1962

7 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for pzlansy, pzlanhe.
Array DIMENSION (lwork).

lwork ≥ 0 if norm = 'M' or 'm' (not referenced),
2*nq0+np0+ldw if norm = '1', 'O' or 'o', 'I' or 'i',
where ldw is given by:
if(nprow.ne.npcol) then
ldw = mb_a*ceil(ceil(np0/mb_a)/(lcm/nprow))
else
ldw = 0
end if
0 if norm = 'F', 'f', 'E' or 'e' (not referenced),
where lcm is the least common multiple of nprow and
npcol, lcm = ilcm(nprow, npcol) and ceil denotes
the ceiling operation (iceil).
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

The value returned by the fuction.val

1963

ScaLAPACK Auxiliary and Utility Routines 7

p?lantr
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element, of a triangular matrix.

Syntax

val = pslantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)

val = pdlantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)

val = pclantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)

val = pzlantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)

Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or
the element of largest absolute value of a trapezoidal or triangular distributed matrix sub(A)
= A(ia:ia+m-1, ja:ja+n-1).

p?lantr returns the value

(max(abs(A(i,j))), norm = 'M' or 'm' with ia ≤ i ≤ ia+m-1,

(and ja ≤ j ≤ ja+n-1,

(

(norm1(sub(A)), norm = '1', 'O' or 'o'

(

(normI(sub(A)), norm = 'I' or 'i'

(

(normF(sub(A)), norm = 'F', 'f', 'E' or 'e',

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a matrix norm.

1964

7 Intel® Math Kernel Library Reference Manual

Input Parameters

(global) CHARACTER. Specifies the value to be returned by
the routine as described above.

norm

(global) CHARACTER.uplo
Specifies whether the upper or lower triangular part of the
symmetric matrix sub(A) is to be referenced.
= 'U': Upper trapezoidal,
= 'L': Lower trapezoidal.
Note that sub(A) is triangular instead of trapezoidal if m =
n.

(global). CHARACTER.diag
Specifies whether or not the distributed matrix sub(A) has
unit diagonal.
= 'N': Non-unit diagonal.
= 'U': Unit diagonal.

(global) INTEGER.m
The number of rows to be operated on, that is, the number
of rows of the distributed submatrix sub(A). When m = 0,

p?lantr is set to zero. m ≥ 0.

(global) INTEGER.n
The number of columns to be operated on i.e the number
of columns of the distributed submatrix sub(A). When n =

0, p?lantr is set to zero. n ≥ 0.

(local).a
Real for pslantr
DOUBLE PRECISION for pdlantr
COMPLEX for pclantr
COMPLEX*16 for pzlantr.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)) containing the local
pieces of the distributed matrix sub(A).

(global) INTEGER.ia, ja
The row and column indices in the global array a indicating
the first row and the first column of the submatrix sub(A),
respectively.

1965

ScaLAPACK Auxiliary and Utility Routines 7

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).work
Real for pslantr
DOUBLE PRECISION for pdlantr
COMPLEX for pclantr
COMPLEX*16 for pzlantr.
Array DIMENSION (lwork).

lwork ≥ 0 if norm = 'M' or 'm' (not referenced),
nq0 if norm = '1', 'O' or 'o',
mp0 if norm = 'I' or 'i',
0 if norm = 'F', 'f', 'E' or 'e' (not referenced),
where lcm is the least common multiple of nprow and npcol
lcm = ilcm(nprow, npcol) and ceil denotes the
ceiling operation (iceil).
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1,
nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow
),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol
),
mp0 = numroc(m+iroffa, mb_a, myrow, iarow,
nprow),
nq0 = numroc(n+icoffa, nb_a, mycol, iacol,
npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

The value returned by the fuction.val

1966

7 Intel® Math Kernel Library Reference Manual

p?lapiv
Applies a permutation matrix to a general
distributed matrix, resulting in row or column
pivoting.

Syntax

call pslapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
descip, iwork)

call pdlapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
descip, iwork)

call pclapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
descip, iwork)

call pzlapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
descip, iwork)

Description

This routine applies either P (permutation matrix indicated by ipiv) or inv(P) to a general
m-by-n distributed matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1), resulting in row or column
pivoting. The pivot vector may be distributed across a process row or a column. The pivot vector
should be aligned with the distributed matrix A. This routine will transpose the pivot vector, if
necessary.

For example, if the row pivots should be applied to the columns of sub(A), pass rowcol='C'
and pivroc='C'.

Input Parameters

(global) CHARACTER*1.direc
Specifies in which order the permutation is applied:
= 'F' (Forward). Applies pivots forward from top of matrix.
Computes P*sub(A).
= 'B' (Backward) Applies pivots backward from bottom of
matrix.
Computes inv(P)*sub(A).

(global) CHARACTER*1.rowcol
Specifies if the rows or columns are to be permuted:
= 'R' Rows will be permuted,

1967

ScaLAPACK Auxiliary and Utility Routines 7

= 'C' Columns will be permuted.

(global) CHARACTER*1.pivroc
Specifies whether ipiv is distributed over a process row or
column:
= 'R'ipiv is distributed over a process row,
= 'C'ipiv is distributed over a process column.

(global) INTEGER.m
The number of rows to be operated on, that is, the number
of rows of the distributed submatrix sub(A). When m = 0,

p?lapiv is set to zero. m ≥ 0.

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(A).

When n = 0, p?lapiv is set to zero. n ≥ 0.

(local).a
Real for pslapiv
DOUBLE PRECISION for pdlapiv
COMPLEX for pclapiv
COMPLEX*16 for pzlapiv.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)) containing the local
pieces of the distributed matrix sub(A).

(global) INTEGER.ia, ja
The row and column indices in the global array A indicating
the first row and the first column of the submatrix sub(A),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local). INTEGER.ipiv
Array, DIMENSION (lipiv) ;
when rowcol='R' or 'r':

lipiv≥LOCr(ia+m-1) + mb_a if pivroc='C' or 'c',

lipiv≥LOCc(m + mod(jp-1, nb_p)) if pivroc='R' or
'r', and,
when rowcol='C' or 'c':

1968

7 Intel® Math Kernel Library Reference Manual

lipiv≥LOCr(n + mod(ip-1, mb_p)) if pivroc='C' or
'c',

lipiv≥LOCc(ja+n-1) + nb_a if pivroc='R' or 'r'.
This array contains the pivoting information. ipiv(i) is the
global row (column), local row (column) i was swapped
with. When rowcol='R' or 'r' and pivroc='C' or 'c',
or rowcol='C' or 'c' and pivroc='R' or 'r', the last
piece of this array of size mb_a (resp. nb_a) is used as
workspace. In those cases, this array is tied to the
distributed matrix A.

(global) INTEGER. The row and column indices in the global
array P indicating the first row and the first column of the
submatrix sub(P), respectively.

ip, jp

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed vector ipiv.

descip

(local). INTEGER.iwork
Array, DIMENSION (ldw), where ldw is equal to the
workspace necessary for transposition, and the storage of
the tranposed ipiv :

1969

ScaLAPACK Auxiliary and Utility Routines 7

Let lcm be the least common multiple of nprow and npcol.

If(rowcol.eq.'r' .and. pivroc. eq.'r') then

If(nprow.eq. npcol) then

ldw = LOCr(n_p + mod(jp-1, nb_p)) + nb_p

else

ldw = LOCr(n_p + mod(jp-1, nb_p))+

nb_p * ceil(ceil(LOCc(n_p)/nb_p) / (lcm/npcol)
)

end if

else if(rowcol.eq.'c' .and. pivroc.eq.'c')
then

if(nprow.eq.

npcol) then

ldw = LOCc(m_p + mod(ip-1, mb_p)) + mb_p

else

ldw = LOCc(m_p + mod(ip-1, mb_p)) +

mb_p *ceil(ceil(LOCr(m_p)/mb_p) / (lcm/nprow))

end if

else

iwork is not referenced.

end if.

Output Parameters

(local).a
On exit, the local pieces of the permuted distributed
submatrix.

1970

7 Intel® Math Kernel Library Reference Manual

p?laqge
Scales a general rectangular matrix, using row and
column scaling factors computed by p?geequ .

Syntax

call pslaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

call pdlaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

call pclaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

call pzlaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

Description

This routine equilibrates a general m-by-n distributed matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1)
using the row and scaling factors in the vectors r and c computed by p?geequ.

Input Parameters

(global). INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). (m ≥ 0).

(global).INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(A). (n

≥ 0).

(local).a
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)).
On entry, this array contains the distributed matrix sub(A).

(global) INTEGER. The row and column indices in the global
array A indicating the first row and the first column of the
submatrix sub(A), respectively.

ia, ja

1971

ScaLAPACK Auxiliary and Utility Routines 7

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local).r
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Array, DIMENSION LOCr(m_a). The row scale factors for
sub(A). r is aligned with the distributed matrix A, and
replicated across every process column. r is tied to the
distributed matrix A.

(local).c
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Array, DIMENSIONLOCc(n_a). The row scale factors for
sub(A). c is aligned with the distributed matrix A, and
replicated across every process column. c is tied to the
distributed matrix A.

(local).rowcnd
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
The global ratio of the smallest r(i) to the largest r(i),

ia ≤ i ≤ ia+m-1.

(local).colcnd
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
The global ratio of the smallest c(i) to the largest c(i),

ia ≤ i ≤ ia+n-1.

(global). REAL for pslaqgeamax
DOUBLE PRECISION for pdlaqge

1972

7 Intel® Math Kernel Library Reference Manual

COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Absolute value of largest distributed submatrix entry.

Output Parameters

(local).a
On exit, the equilibrated distributed matrix. See equed for
the form of the equilibrated distributed submatrix.

(global) CHARACTER.equed
Specifies the form of equilibration that was done.
= 'N': No equilibration
= 'R': Row equilibration, that is, sub(A) has been
pre-multiplied by diag(r(ia:ia+m-1)),
= 'C': column equilibration, that is, sub(A) has been
post-multiplied by diag(c(ja:ja+n-1)),
= 'B': Both row and column equilibration, that is, sub(A)
has been replaced by diag(r(ia:ia+m-1))* sub(A) *
diag(c(ja:ja+n-1)).

p?laqsy
Scales a symmetric/Hermitian matrix, using scaling
factors computed by p?poequ .

Syntax

call pslaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

call pdlaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

call pclaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

call pzlaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

Description

This routine equilibrates a symmetric distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1)
using the scaling factors in the vectors sr and sc. The scaling factors are computed by p?poequ.

1973

ScaLAPACK Auxiliary and Utility Routines 7

Input Parameters

(global) CHARACTER. Specifies the upper or lower triangular
part of the symmetric distributed matrix sub(A)is to be
referenced:

uplo

= 'U': Upper triangular part;
= 'L': Lower triangular part.

(global) INTEGER.n

The order of the distributed submatrix sub(A). n ≥ 0.

(local).a
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Pointer into the local memory to an array of DIMENSION
(lld_a,LOCc(ja+n-1)).
On entry, this array contains the local pieces of the
distributed matrix sub(A). On entry, the local pieces of the
distributed symmetric matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular part of the matrix, and
the strictly lower triangular part of sub(A) is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular part of the matrix, and
the strictly upper triangular part of sub(A) is not referenced.

(global) INTEGER.ia, ja
The row and column indices in the global array A indicating
the first row and the first column of the submatrix sub(A),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)sr
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.

1974

7 Intel® Math Kernel Library Reference Manual

Array, DIMENSION LOCr(m_a). The scale factors for
A(ia:ia+m-1, ja:ja+n-1). sr is aligned with the
distributed matrix A, and replicated across every process
column. sr is tied to the distributed matrix A.

(local)sc
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Array, DIMENSION LOCc(m_a). The scale factors for A
(ia:ia+m-1, ja:ja+n-1). sr is aligned with the distributed
matrix A, and replicated across every process column. sr
is tied to the distributed matrix A.

(global). REAL for pslaqsyscond
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Ratio of the smallest sr(i) (respectively sc(j)) to the

largest sr(i) (respectively sc(j)), with ia ≤ i ≤ ia+n-1

and ja ≤ j ≤ ja+n-1.

(global).amax
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Absolute value of largest distributed submatrix entry.

Output Parameters

On exit,a
if equed = 'Y', the equilibrated matrix:
diag(sr(ia:ia+n-1)) * sub(A) *
diag(sc(ja:ja+n-1)).

(global) CHARACTER*1.equed
Specifies whether or not equilibration was done.
= 'N': No equilibration.

1975

ScaLAPACK Auxiliary and Utility Routines 7

= 'Y': Equilibration was done, that is, sub(A) has been
replaced by:
diag(sr(ia:ia+n-1))* sub(A) *
diag(sc(ja:ja+n-1)).

p?lared1d
Redistributes an array assuming that the input
array, bycol, is distributed across rows and that
all process columns contain the same copy of
bycol.

Syntax

call pslared1d(n, ia, ja, desc, bycol, byall, work, lwork)

call pdlared1d(n, ia, ja, desc, bycol, byall, work, lwork)

Description

This routine redistributes a 1D array. It assumes that the input array bycol is distributed across
rows and that all process column contain the same copy of bycol. The output array byall is
identical on all processes and contains the entire array.

Input Parameters

np = Number of local rows in bycol()

(global). INTEGER.n

The number of elements to be redistributed. n ≥ 0.

(global) INTEGER. ia, ja must be equal to 1.ia, ja

(global and local) INTEGER array, DIMENSION 8. A 2D array
descirptor, which describes bycol.

desc

(local).bycol
REAL for pslared1d
DOUBLE PRECISION for pdlared1d
COMPLEX for pclared1d
COMPLEX*16 for pzlared1d.
Distributed block cyclic array global DIMENSION (n), local
DIMENSION np. bycol is distributed across the process rows.
All process columns are assumed to contain the same value.

1976

7 Intel® Math Kernel Library Reference Manual

(local).work
REAL for pslared1d
DOUBLE PRECISION for pdlared1d
COMPLEX for pclared1d
COMPLEX*16 for pzlared1d.
DIMENSION (lwork). Used to hold the buffers sent from one
process to another.

(local)lwork

INTEGER. The size of the work array. lwork ≥ numroc(n,
desc(nb_), 0, 0, npcol).

Output Parameters

(global). REAL for pslared1dbyall
DOUBLE PRECISION for pdlared1d
COMPLEX for pclared1d
COMPLEX*16 for pzlared1d.
Global DIMENSION (n), local DIMENSION (n). byall is exactly
duplicated on all processes. It contains the same values as
bycol, but it is replicated across all processes rather than
being distributed.

p?lared2d
Redistributes an array assuming that the input
array byrow is distributed across columns and that
all process rows contain the same copy of byrow.

Syntax

call pslared2d(n, ia, ja, desc, byrow, byall, work, lwork)

call pdlared2d(n, ia, ja, desc, byrow, byall, work, lwork)

Description

This routine redistributes a 1D array. It assumes that the input array byrow is distributed across
columns and that all process rows contain the same copy of byrow. The output array byall will
be identical on all processes and will contain the entire array.

1977

ScaLAPACK Auxiliary and Utility Routines 7

Input Parameters

np = Number of local rows in byrow()

(global) INTEGER.n

The number of elements to be redistributed. n ≥ 0.

(global) INTEGER. ia, ja must be equal to 1.ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). A
2D array descirptor, which describes byrow.

desc

(local).byrow
REAL for pslared2d
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d
COMPLEX*16 for pzlared2d.
Distributed block cyclic array global DIMENSION (n), local
DIMENSION np. bycol is distributed across the process
columns. All process rows are assumed to contain the same
value.

(local).work
REAL for pslared2d
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d
COMPLEX*16 for pzlared2d.
DIMENSION (lwork). Used to hold the buffers sent from one
process to another.

(local).INTEGER. The size of the work array. lwork ≥
numroc(n, desc(nb_), 0, 0, npcol).

lwork

Output Parameters

(global). REAL for pslared2dbyall
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d
COMPLEX*16 for pzlared2d.
Global DIMENSION(n), local DIMENSION (n). byall is exactly
duplicated on all processes. It contains the same values as
bycol, but it is replicated across all processes rather than
being distributed.

1978

7 Intel® Math Kernel Library Reference Manual

p?larf
Applies an elementary reflector to a general
rectangular matrix.

Syntax

call pslarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pdlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pclarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pzlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

Description

This routine applies a real/complex elementary reflector Q (or QT) to a real/complex m-by-n
distributed matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q
is represented in the form

Q = I - tau * v * v',

where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then Q is taken to be the unit matrix.

Input Parameters

(global). CHARACTER.side
= 'L': form Q * sub(C),
= 'R': form sub(C)* Q, Q = QT.

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). (m ≥ 0).

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(A). (n

≥ 0).

(local).v
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf

1979

ScaLAPACK Auxiliary and Utility Routines 7

COMPLEX*16 for pzlarf.
Pointer into the local memory to an array of DIMENSION
(lld_v,*) containing the local pieces of the distributed
vectors V representing the Householder transformation Q,
v(iv:iv+m-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+m-1) if side = 'L' and incv = m_v,
v(iv:iv+n-1, jv) if side = 'R' and incv = 1,
v(iv, jv:jv+n-1) if side = 'R' and incv = m_v.
The vector v is the representation of Q. v is not used if tau
= 0.

(global) INTEGER. The row and column indices in the global
array V indicating the first row and the first column of the
submatrix sub(V), respectively.

iv, jv

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix V.

descv

(global) INTEGER.incv
The global increment for the elements of v. Only two values
of incv are supported in this version, namely 1 and m_v.
incv must not be zero.

(local).tau
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Array, DIMENSION LOCc(jv) if incv = 1, and LOCr(iv)
otherwise. This array contains the Householder scalars
related to the Householder vectors.
tau is tied to the distributed matrix v.

(local).c
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Pointer into the local memory to an array of
DIMENSION(lld_c, LOCc(jc+n-1)), containing the local
pieces of sub(C).

(global) INTEGER.ic, jc

1980

7 Intel® Math Kernel Library Reference Manual

The row and column indices in the global array c indicating
the first row and the first column of the submatrix sub(C),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix C.

descc

(local).work
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Array, DIMENSION (lwork).

If incv = 1,

if side = 'L',

if ivcol = iccol,

lwork≥nqc0

else

lwork≥mpc0 + max(1, nqc0)

1981

ScaLAPACK Auxiliary and Utility Routines 7

end if

else if side = 'R' ,

lwork≥nqc0 + max(max(1, mpc0), numroc(numroc(
n+

icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq))

end if

else if incv = m_v,

if side = 'L',

lwork≥mpc0 + max(max(1, nqc0), numroc(

numroc(m+iroffc,mb_v,0,0,nprow),mb_v,0,0, lcmp
))

else if side = 'R',

if ivrow = icrow,

lwork≥mpc0

else

lwork≥nqc0 + max(1, mpc0)

end if

end if

end if,

where lcm is the least common multiple of nprow and npcol
and lcm = ilcm(nprow, npcol), lcmp = lcm/nprow, lcmq
= lcm/npcol,
iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1,
nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow
),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol
),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow,
nprow),

1982

7 Intel® Math Kernel Library Reference Manual

nqc0 = numroc(n+icoffc, nb_c, mycol, iccol,
npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by
calling the subroutine blacs_gridinfo.

Output Parameters

(local).c
On exit, sub(C) is overwritten by the Q * sub(C) if side
= 'L',
or sub(C) * Q if side = 'R'.

p?larfb
Applies a block reflector or its
transpose/conjugate-transpose to a general
rectangular matrix.

Syntax

call pslarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c,
ic, jc, descc, work)

call pdlarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c,
ic, jc, descc, work)

call pclarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c,
ic, jc, descc, work)

call pzlarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c,
ic, jc, descc, work)

Description

This routine applies a real/complex block reflector Q or its transpose QT/conjugate transpose
QH to a real/complex distributed m-by-n matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1) from the
left or the right.

Input Parameters

(global).CHARACTER.side

1983

ScaLAPACK Auxiliary and Utility Routines 7

if side = 'L': apply Q or QT for real flavors (QH for complex
flavors) from the Left;
if side = 'R': apply Q or QTfor real flavors (QH for complex
flavors) from the Right.

(global).CHARACTER.trans
if trans = 'N': no transpose, apply Q;
for real flavors, if trans='T': transpose, apply QT

for complex flavors, if trans = 'C': conjugate transpose,
apply QH;

(global) CHARACTER. Indicates how Q is formed from a
product of elementary reflectors.

direct

if direct = 'F': Q = H(1) H(2) . . . H(k) (Forward)
if direct = 'B': Q = H(k) . . . H(2) H(1) (Backward)

(global) CHARACTER.storev
Indicates how the vectors that define the elementary
reflectors are stored:
if storev = 'C': Columnwise
if storev = 'R': Rowwise.

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(C). (m ≥ 0).

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(C). (n

≥ 0).

(global) INTEGER.k
The order of the matrix T.

(local).v
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of DIMENSION
(lld_v, LOCc(jv+k-1)) if storev = 'C',
(lld_v, LOCc(jv+m-1)) if storev = 'R' and side =
'L',

1984

7 Intel® Math Kernel Library Reference Manual

(lld_v, LOCc(jv+n-1)) if storev = 'R' and side =
'R'.
It contains the local pieces of the distributed vectors V
representing the Householder transformation.

if storev = 'C' and side = 'L', lld_v ≥
max(1,LOCr(iv+m-1));

if storev = 'C' and side = 'R', lld_v ≥
max(1,LOCr(iv+n-1));

if storev = 'R', lld_v ≥ LOCr(jv+k-1).

(global) INTEGER.iv, jv
The row and column indices in the global array V indicating
the first row and the first column of the submatrix sub(V),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix V.

descv

(local).c
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of
DIMENSION(lld_c, LOCc(jc+n-1)), containing the local
pieces of sub(C).

(global) INTEGER. The row and column indices in the global
array C indicating the first row and the first column of the
submatrix sub(C), respectively.

ic, jc

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix C.

descc

(local).work
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Workspace array, DIMENSION (lwork).

If storev = 'C',

1985

ScaLAPACK Auxiliary and Utility Routines 7

if side = 'L',

lwork ≥ (nqc0 + mpc0) * k

else if side = 'R',

lwork ≥ (nqc0 + max(npv0 + numroc(numroc(n
+ icoffc,

nb_v, 0, 0, npcol), nb_v, 0, 0, lcmq),

mpc0)) * k

end if

else if storev = 'R' ,

if side = 'L' ,

lwork ≥ (mpc0 + max(mqv0 + numroc(numroc(
m+iroffc,

mb_v, 0, 0, nprow), mb_v, 0, 0, lcmp),

nqc0)) * k

else if side = 'R',

lwork ≥ (mpc0 + nqc0) * k

end if

end if,

where

1986

7 Intel® Math Kernel Library Reference Manual

lcmq = lcm / npcol with lcm = iclm(nprow, npcol
),

iroffv = mod(iv-1, mb_v), icoffv = mod(jv-1,
nb_v),

ivrow = indxg2p(iv, mb_v, myrow, rsrc_v, nprow
),

ivcol = indxg2p(jv, nb_v, mycol, csrc_v, npcol
),

MqV0 = numroc(m+icoffv, nb_v, mycol, ivcol,
npcol),

NpV0 = numroc(n+iroffv, mb_v, myrow, ivrow,
nprow),

iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1,
nb_c),

icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow
),

iccol = indxg2p(

jc, nb_c, mycol, csrc_c, npcol),

MpC0 = numroc(m+iroffc, mb_c, myrow, icrow,
nprow),

NpC0 = numroc(n+icoffc, mb_c, myrow, icrow,
nprow),

NqC0 = numroc(n+icoffc, nb_c, mycol, iccol,
npcol),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by
calling the subroutine blacs_gridinfo.

Output Parameters

(local).t
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.

1987

ScaLAPACK Auxiliary and Utility Routines 7

Array, DIMENSION(mb_v, mb_v) if storev = 'R', and
(nb_v, nb_v) if storev = 'C'. The triangular matrix t
is the representation of the block reflector.

(local).c
On exit, sub(C) is overwritten by the Q * sub(C), or Q'
*sub(C) or sub(C)*Q or sub(C)*Q'.

p?larfc
Applies the conjugate transpose of an elementary
reflector to a general matrix.

Syntax

call pclarfc(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pzlarfc(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

Description

This routine applies a complex elementary reflector QH to a complex m-by-n distributed matrix
sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is represented in the
form

Q = i - tau * v * v',

where tau is a complex scalar and v is a complex vector.

If tau = 0, then Q is taken to be the unit matrix.

Input Parameters

(global).CHARACTER.side
if side = 'L': form QH*sub(C) ;
if side = 'R': form sub (C)*QH.

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(C). (m ≥ 0).

(global) INTEGER.n

1988

7 Intel® Math Kernel Library Reference Manual

The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(C). (n

≥ 0).

(local).v
COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Pointer into the local memory to an array of DIMENSION
(lld_v,*) containing the local pieces of the distributed
vectors v representing the Householder transformation Q,
v(iv:iv+m-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+m-1) if side = 'L' and incv = m_v,
v(iv:iv+n-1, jv) if side = 'R' and incv = 1,
v(iv, jv:jv+n-1) if side = 'R' and incv = m_v.
The vector v is the representation of Q. v is not used if tau
= 0.

(global) INTEGER.iv, jv
The row and column indices in the global array V indicating
the first row and the first column of the submatrix sub(V),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix V.

descv

(global) INTEGER.incv
The global increment for the elements of v. Only two values
of incv are supported in this version, namely 1 and m_v.
incv must not be zero.

(local)tau
COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Array, DIMENSION LOCc(jv) if incv = 1, and LOCr(iv)
otherwise. This array contains the Householder scalars
related to the Householder vectors.
tau is tied to the distributed matrix V.

(local).c
COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.

1989

ScaLAPACK Auxiliary and Utility Routines 7

Pointer into the local memory to an array of DIMENSION
(lld_c, LOCc(jc+n-1)), containing the local pieces of
sub(C).

(global) INTEGER.ic, jc
The row and column indices in the global array C indicating
the first row and the first column of the submatrix sub(C),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix C.

descc

(local).work
COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Workspace array, DIMENSION (lwork).

If incv = 1,

if side = 'L' ,

if ivcol = iccol,

lwork ≥ nqc0

else

lwork ≥ mpc0 + max(1, nqc0)

end if

else if side = 'R',

lwork ≥ nqc0 + max(max(1, mpc0), numroc(
numroc(

n+icoffc,nb_v,0,0,npcol), nb_v,0,0,lcmq))

end if

1990

7 Intel® Math Kernel Library Reference Manual

else if incv = m_v,

if side = 'L',

lwork ≥ mpc0 + max(max(1, nqc0), numroc(
numroc(

m+iroffc,mb_v,0,0,nprow),mb_v,0,0,lcmp))

else if side = 'R' ,

if ivrow = icrow,

lwork ≥ mpc0

else

lwork ≥ nqc0 + max(1, mpc0)

end if

end if

end if,

where lcm is the least common multiple of nprow and npcol
and lcm = ilcm(nprow, npcol), lcmp = lcm /
nprow, lcmq = lcm / npcol,
iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1,
nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow
),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol
),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow,
nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol,
npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool
functions;myrow, mycol, nprow, and npcol can be
determined by calling the subroutine blacs_gridinfo.

1991

ScaLAPACK Auxiliary and Utility Routines 7

Output Parameters

(local).c
On exit, sub(C) is overwritten by the QH * sub(C) if side =
'L', or sub(C) * QH if side = 'R'.

p?larfg
Generates an elementary reflector (Householder
matrix).

Syntax

call pslarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

call pdlarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

call pclarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

call pzlarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

Description

This routine generates a real/complex elementary reflector H of order n, such that

H * sub(X) = H * (x(iax, jax)) = (alpha), H' * H = i,

(x) (0)

where alpha is a scalar (a real scalar - for complex flavors), and sub(X) is an (n-1)-element
real/complex distributed vector X(ix:ix+n-2, jx) if incx = 1 and X(ix, jx:jx+n-2) if
incx = descx(m_). H is represented in the form

H = I - tau * (1) * (1 v') ,

(v)

where tau is a real/complex scalar and v is a real/complex (n-1)-element vector. Note that H
is not Hermitian.

If the elements of sub(X) are all zero (and X(iax, jax) is real for complex flavors), then tau
= 0 and H is taken to be the unit matrix.

Otherwise 1 ≤ real(tau) ≤ 2 and abs(tau-1) ≤ 1.

1992

7 Intel® Math Kernel Library Reference Manual

Input Parameters

(global) INTEGER.n

The global order of the elementary reflector. n ≥ 0.

(global) INTEGER.iax, jax
The global row and column indices in x of X(iax, jax).

(local).x
Real for pslarfg
DOUBLE PRECISION for pdlarfg
COMPLEX for pclarfg
COMPLEX*16 for pzlarfg.
Pointer into the local memory to an array of DIMENSION
(lld_x, *). This array contains the local pieces of the
distributed vector sub(X). Before entry, the incremented
array sub(X) must contain vector x.

(global) INTEGER.ix, jx
The row and column indices in the global array X indicating
the first row and the first column of sub(X), respectively.

(global and local) INTEGER.descx
Array of DIMENSION (dlen_). The array descriptor for the
distributed matrix X.

(global) INTEGER.incx
The global increment for the elements of x. Only two values
of incx are supported in this version, namely 1 and m_x.
incx must not be zero.

Output Parameters

(local)alpha
REAL for pslafg
DOUBLE PRECISION for pdlafg
COMPLEX for pclafg
COMPLEX*16 for pzlafg.
On exit, alpha is computed in the process scope having the
vector sub(X).

(local).x
On exit, it is overwritten with the vector v.

1993

ScaLAPACK Auxiliary and Utility Routines 7

(local).tau
Real for pslarfg
DOUBLE PRECISION for pdlarfg
COMPLEX for pclarfg
COMPLEX*16 for pzlarfg.
Array, DIMENSION LOCc(jx) if incx = 1, and LOCr(ix)
otherwise. This array contains the Householder scalars
related to the Householder vectors.
tau is tied to the distributed matrix X.

p?larft
Forms the triangular vector T of a block reflector
H=I-V*T*VH.

Syntax

call pslarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pdlarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pclarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pzlarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

Description

This routine forms the triangular factor T of a real/complex block reflector H of order n, which
is defined as a product of k elementary reflectors.

If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

If storev = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th
column of the distributed matrix V, and

H = I - V * T * V'

If storev = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th
row of the distributed matrix V, and

H = I - V' * T *V.

1994

7 Intel® Math Kernel Library Reference Manual

Input Parameters

(global) CHARACTER*1.direct
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
if direct = 'F': H = H(1) H(2) . . . H(k) (forward)
if direct = 'B': H = H(k) . . . H(2) H(1)
(backward).

(global) CHARACTER*1.storev
Specifies how the vectors that define the elementary
reflectors are stored (See Application Notes below):
if storev = 'C': columnwise;
if storev = 'R': rowwise.

(global) INTEGER.n

The order of the block reflector H. n ≥ 0.

(global) INTEGER.k
The order of the triangular factor T (= the number of
elementary reflectors).

1 ≤ k ≤ mb_v (= nb_v).

REAL for pslarftv
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Pointer into the local memory to an array of local DIMENSION
(LOCr(iv+n-1), LOCc(jv+k-1)) if storev = 'C', and
(LOCr(iv+k-1), LOCc(jv+n-1)) if storev = 'R'.
The distributed matrix V contains the Householder vectors.
(See Application Notes below).

(global) INTEGER.iv, jv
The row and column indices in the global array v indicating
the first row and the first column of the submatrix sub(V),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix V.

descv

(local)tau
REAL for pslarft

1995

ScaLAPACK Auxiliary and Utility Routines 7

DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Array, DIMENSIONLOCr(iv+k-1) if incv = m_v, and
LOCc(jv+k-1) otherwise. This array contains the
Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix V.

(local).work
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Workspace array, DIMENSION (k*(k-1)/2).

Output Parameters

REAL for pslarftv
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.

(local)t
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Array, DIMENSION (nb_v,nb_v) if storev = 'Col', and
(mb_v,mb_v) otherwise. It contains the k-by-k triangular
factor of the block reflector associated with v. If direct =
'F', t is upper triangular;
if direct = 'B', t is lower triangular.

Application Notes

The shape of the matrix V and the storage of the vectors that define the H(i) is best illustrated
by the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the
corresponding array elements are modified but restored on exit. The rest of the array is not
used.

1996

7 Intel® Math Kernel Library Reference Manual

1997

ScaLAPACK Auxiliary and Utility Routines 7

p?larz
Applies an elementary reflector as returned by
p?tzrzf to a general matrix.

Syntax

call pslarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

call pdlarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

call pclarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

call pzlarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

Description

This routine applies a real/complex elementary reflector Q (or QT) to a real/complex m-by-n
distributed matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q
is represented in the form

Q = I - tau * v * v',

where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then Q is taken to be the unit matrix.

Q is a product of k elementary reflectors as returned by p?tzrzf.

Input Parameters

(global) CHARACTER.side
if side = 'L': form Q* sub(C),
if side = 'R': form sub (C)*Q, Q=QT (for real flavors).

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(C). (m ≥ 0).

(global) INTEGER.n

1998

7 Intel® Math Kernel Library Reference Manual

The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(C). (n

≥ 0).

(global). INTEGER.l
The columns of the distributed submatrix sub(A) containing
the meaningful part of the Householder reflectors. If side

= 'L', m ≥ l ≥ 0,

if side = 'R', n ≥ l ≥ 0.

(local).v
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Pointer into the local memory to an array of DIMENSION
(lld_v,*) containing the local pieces of the distributed
vectors v representing the Householder transformation Q,
v(iv:iv+l-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+l-1) if side = 'L' and incv = m_v,
v(iv:iv+l-1, jv) if side = 'R' and incv = 1,
v(iv, jv:jv+l-1) if side = 'R' and incv = m_v.
The vector v in the representation of Q. v is not used if tau
= 0.

(global) INTEGER. The row and column indices in the global
array V indicating the first row and the first column of the
submatrix sub(V), respectively.

iv, jv

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix V.

descv

(global) INTEGER.incv
The global increment for the elements of v. Only two values
of incv are supported in this version, namely 1 and m_v.
incv must not be zero.

(local)tau
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.

1999

ScaLAPACK Auxiliary and Utility Routines 7

Array, DIMENSION LOCc(jv) if incv = 1, and LOCr(iv)
otherwise. This array contains the Householder scalars
related to the Householder vectors.
tau is tied to the distributed matrix V.

(local).c
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Pointer into the local memory to an array of DIMENSION
(lld_c, LOCc(jc+n-1)), containing the local pieces of
sub(C).

(global) INTEGER.ic, jc
The row and column indices in the global array C indicating
the first row and the first column of the submatrix sub(C),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix C.

descc

(local).work
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.

2000

7 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (lwork)

If incv = 1,

if side = 'L' ,

if ivcol = iccol,

lwork ≥ NqC0

else

lwork ≥ MpC0 + max(1, NqC0)

end if

else if side = 'R' ,

lwork ≥ NqC0 + max(max(1, MpC0),
numroc(numroc(n+icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq))

end if

else if incv = m_v,

if side = 'L' ,

lwork ≥ MpC0 + max(max(1, NqC0),
numroc(numroc(m+iroffc,mb_v,0,0,nprow),mb_v,0,0,lcmp))

else if side = 'R' ,

if ivrow = icrow,

lwork ≥ MpC0

else

lwork ≥ NqC0 + max(1, MpC0)

end if

end if

end if,

where lcm is the least common multiple of nprow and npcol
and
lcm = ilcm(nprow, npcol), lcmp = lcm / nprow,
lcmq = lcm / npcol,

2001

ScaLAPACK Auxiliary and Utility Routines 7

iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by
calling the subroutine blacs_gridinfo.

Output Parameters

(local).c
On exit, sub(C) is overwritten by the Q * sub(C) if side
= 'L', or sub(C) * Q if side = 'R'.

p?larzb
Applies a block reflector or its
transpose/conjugate-transpose as returned by
p?tzrzf to a general matrix.

Syntax

call pslarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,
ic, jc, descc, work)

call pdlarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,
ic, jc, descc, work)

call pclarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,
ic, jc, descc, work)

call pzlarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,
ic, jc, descc, work)

Description

This routine applies a real/complex block reflector Q or its transpose QT (conjugate transpose
QH for complex flavors) to a real/complex distributed m-by-n matrix sub(C) = C(ic:ic+m-1,
jc:jc+n-1) from the left or the right.

Q is a product of k elementary reflectors as returned by p?tzrzf.

2002

7 Intel® Math Kernel Library Reference Manual

Currently, only storev = 'R' and direct = 'B' are supported.

Input Parameters

(global) CHARACTER.side
if side = 'L': apply Q or QT (QH for complex flavors) from
the Left;
if side = 'R': apply Q or QT (QH for complex flavors) from
the Right.

(global) CHARACTER.trans
if trans = 'N': No transpose, apply Q;
If trans='T': Transpose, apply QT (real flavors);
If trans='C': Conjugate transpose, apply QH (complex
flavors).

(global) CHARACTER.direct
Indicates how H is formed from a product of elementary
reflectors.
if direct = 'F': H = H(1) H(2) . . . H(k) (forward,
not supported)
if direct = 'B': H = H(k) . . . H(2) H(1)
(backward)

(global) CHARACTER.storev
Indicates how the vectors that define the elementary
reflectors are stored:
if storev = 'C': columnwise (not supported).
if storev = 'R': rowwise.

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(C). (m ≥ 0).

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(C). (n

≥ 0).

(global) INTEGER.k
The order of the matrix T. (= the number of elementary
reflectors whose product defines the block reflector).

(global) INTEGER.l

2003

ScaLAPACK Auxiliary and Utility Routines 7

The columns of the distributed submatrix sub(A) containing
the meaningful part of the Householder reflectors.

If side = 'L', m ≥ l ≥ 0,

if side = 'R', n ≥ l ≥ 0.

(local).v
REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Pointer into the local memory to an array of
DIMENSION(lld_v, LOCc(jv+m-1)) if side = 'L',
(lld_v, LOCc(jv+m-1)) if side = 'R'.
It contains the local pieces of the distributed vectors V
representing the Householder transformation as returned
by p?tzrzf.

lld_v ≥ LOCr(iv+k-1).

(global) INTEGER.iv, jv
The row and column indices in the global array V indicating
the first row and the first column of the submatrix sub(V),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix V.

descv

(local)t
REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Array, DIMENSION mb_v by mb_v.
The lower triangular matrix T in the representation of the
block reflector.

(local).c
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.

2004

7 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of
DIMENSION(lld_c, LOCc(jc+n-1)).
On entry, the m-by-n distributed matrix sub(C).

(global) INTEGER.ic, jc
The row and column indices in the global array c indicating
the first row and the first column of the submatrix sub(C),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix C.

descc

(local).work
REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Array, DIMENSION (lwork).

If storev = 'C' ,

if side = 'L' ,

lwork ≥(NqC0 + MpC0)* k

else if side = 'R' ,

lwork ≥ (NqC0 + max(NpV0 +
numroc(numroc(n+icoffc, nb_v, 0, 0, npcol),
nb_v, 0, 0, lcmq), mpc0))* k

end if

else if storev = 'R' ,

if side = 'L' ,

lwork ≥ (mpc0 + max(mqv0 + numroc(numroc(
m+iroffc, mb_v, 0, 0, nprow), mb_v, 0, 0, lcmp),
nqc0))* k

else if side = 'R' ,

lwork ≥ (MpC0 + NqC0) * k

end if

end if,

2005

ScaLAPACK Auxiliary and Utility Routines 7

where lcmq = lcm/npcol with lcm = iclm(nprow,
npcol),
iroffv = mod(iv-1, mb_v), icoffv = mod(jv-1,
nb_v),
ivrow = indxg2p(iv, mb_v, myrow, rsrc_v, nprow),
ivcol = indxg2p(jv, nb_v, mycol, csrc_v, npcol),
MqV0 = numroc(m+icoffv, nb_v, mycol, ivcol,
npcol),
NpV0 = numroc(n+iroffv, mb_v, myrow, ivrow,
nprow),
iroffc = mod(ic-1, mb_c), icoffc= mod(jc-1,
nb_c),
icrow= indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol= indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MpC0 = numroc(m+iroffc, mb_c, myrow, icrow,
nprow),
NpC0 = numroc(n+icoffc, mb_c, myrow, icrow,
nprow),
NqC0 = numroc(n+icoffc, nb_c, mycol, iccol,
npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by
calling the subroutine blacs_gridinfo.

Output Parameters

(local).c
On exit, sub(C) is overwritten by the Q*sub(C), or Q'
*sub(C), or sub(C)*Q, or sub(C)* Q'.

2006

7 Intel® Math Kernel Library Reference Manual

p?larzc
Applies (multiplies by) the conjugate transpose of
an elementary reflector as returned by p?tzrzf
to a general matrix.

Syntax

call pclarzc(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

call pzlarzc(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

Description

This routine applies a complex elementary reflector QH to a complex m-by-n distributed matrix
sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is represented in the
form

Q = i - tau * v * v',

where tau is a complex scalar and v is a complex vector.

If tau = 0, then Q is taken to be the unit matrix.

Q is a product of k elementary reflectors as returned by p?tzrzf.

Input Parameters

(global) CHARACTER.side
if side = 'L': form QH *sub(C);
if side = 'R': form sub(C)*QH .

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(C). (m ≥ 0).

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(C). (n

≥ 0).

(global) INTEGER.l

2007

ScaLAPACK Auxiliary and Utility Routines 7

The columns of the distributed submatrix sub(A) containing
the meaningful part of the Householder reflectors.

If side = 'L', m ≥ l ≥ 0,

if side = 'R', n ≥ l ≥ 0.

(local).v

COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Pointer into the local memory to an array of DIMENSION
(lld_v,*) containing the local pieces of the distributed
vectors v representing the Householder transformation Q,
v(iv:iv+l-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+l-1) if side = 'L' and incv = m_v,
v(iv:iv+l-1, jv) if side = 'R' and incv = 1,
v(iv, jv:jv+l-1) if side = 'R' and incv = m_v.
The vector v in the representation of Q. v is not used if tau
= 0.

(global) INTEGER.iv, jv
The row and column indices in the global array V indicating
the first row and the first column of the submatrix sub(V),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix V.

descv

(global). INTEGER.incv
The global increment for the elements of v. Only two values
of incv are supported in this version, namely 1 and m_v.
incv must not be zero.

(local)tau
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Array, DIMENSIONLOCc(jv) if incv = 1, and LOCr(iv)
otherwise. This array contains the Householder scalars
related to the Householder vectors.
tau is tied to the distributed matrix V.

(local).c
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.

2008

7 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of
DIMENSION(lld_c, LOCc(jc+n-1)), containing the local
pieces of sub(C).

(global) INTEGER.ic, jc
The row and column indices in the global array C indicating
the first row and the first column of the submatrix sub(C),
respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix C.

descc

2009

ScaLAPACK Auxiliary and Utility Routines 7

(local).

If incv = 1,

if side = 'L' ,

if ivcol = iccol,

lwork ≥ NqC0

else

lwork ≥ MpC0 + max(1, NqC0)

end if

else if side = 'R' ,

lwork ≥ nqc0 + max(max(1, mpc0),
numroc(numroc(n+icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq))

end if

else if incv = m_v,

if side = 'L' ,

lwork ≥ mpc0 + max(max(1, nqc0),
numroc(numroc(m+iroffc,mb_v,0,0,nprow
),mb_v,0,0,lcmp))

else if side = 'R',

if ivrow = icrow,

lwork ≥ mpc0

else

lwork ≥ nqc0 + max(1, mpc0)

end if

end if

end if,

work

where lcm is the least common multiple of nprow and npcol;
lcm = ilcm(nprow, npcol), lcmp = lcm/nprow, lcmq=
lcm/npcol,

2010

7 Intel® Math Kernel Library Reference Manual

iroffc = mod(ic-1, mb_c), icoffc= mod(jc-1,
nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MpC0 = numroc(m+iroffc, mb_c, myrow, icrow,
nprow),
NqC0 = numroc(n+icoffc, nb_c, mycol, iccol,
npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by
calling the subroutine blacs_gridinfo.

Output Parameters

(local).c
On exit, sub(C) is overwritten by the QH*sub(C) if side =
'L', or sub(C)*QH if side = 'R'.

p?larzt
Forms the triangular factor T of a block reflector
H=I-V*T*VH as returned by p?tzrzf.

Syntax

call pslarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pdlarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pclarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pzlarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

Description

This routine forms the triangular factor T of a real/complex block reflector H of order > n, which
is defined as a product of k elementary reflectors as returned by p?tzrzf.

If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

2011

ScaLAPACK Auxiliary and Utility Routines 7

If storev = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th
column of the array v, and

H = i - v * t * v'

If storev = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th
row of the array v, and

H = i - v' * t * v

Currently, only storev = 'R' and direct = 'B' are supported.

Input Parameters

(global) CHARACTER.direct
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
if direct = 'F': H = H(1) H(2) . . . H(k) (Forward,
not supported)
if direct = 'B': H = H(k) . . . H(2) H(1)
(Backward).

(global) CHARACTER.storev
Specifies how the vectors which define the elementary
reflectors are stored:
if storev = 'C': columnwise (not supported);
if storev = 'R': rowwise.

(global). INTEGER.n

The order of the block reflector H. n ≥ 0.

(global). INTEGER.k
The order of the triangular factor T (= the number of
elementary reflectors).

1 ≤ k ≤ mb_v (= nb_v).

REAL for pslarztv
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Pointer into the local memory to an array of local
DIMENSION(LOCr(iv+k-1), LOCc(jv+n-1)).
The distributed matrix V contains the Householder vectors.
See Application Notes below.

2012

7 Intel® Math Kernel Library Reference Manual

(global) INTEGER. The row and column indices in the global
array V indicating the first row and the first column of the
submatrix sub(V), respectively.

iv, jv

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix V.

descv

(local)tau
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Array, DIMENSION LOCr(iv+k-1) if incv = m_v, and
LOCc(jv+k-1) otherwise. This array contains the
Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix V.

(local).work
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Workspace array, DIMENSION(k*(k-1)/2).

Output Parameters

REAL for pslarztv
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.

(local)t
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Array, DIMENSION (mb_v, mb_v). It contains the k-by-k
triangular factor of the block reflector associated with v. t
is lower triangular.

2013

ScaLAPACK Auxiliary and Utility Routines 7

Application Notes

The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated
by the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the
corresponding array elements are modified but restored on exit. The rest of the array is not
used.

2014

7 Intel® Math Kernel Library Reference Manual

2015

ScaLAPACK Auxiliary and Utility Routines 7

p?lascl
Multiplies a general rectangular matrix by a real
scalar defined as Cto/Cfrom.

Syntax

call pslascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)

call pdlascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)

call pclascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)

call pzlascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)

Description

This routine multiplies the m-by-n real/complex distributed matrix sub(A) denoting A(ia:ia+m-1,
ja:ja+n-1) by the real/complex scalar cto/cfrom. This is done without over/underflow as
long as the final result cto * A(i,j)/cfrom does not over/underflow. type specifies that
sub(A) may be full, upper triangular, lower triangular or upper Hessenberg.

Input Parameters

(global) CHARACTER.type
type indices of the storage type of the input distributed
matrix.
if type = 'G': sub(A) is a full matrix,
if type = 'L': sub(A) is a lower triangular matrix,
if type = 'U': sub(A) is an upper triangular matrix,
if type = 'H': sub(A) is an upper Hessenberg matrix.

(global)cfrom, cto
REAL for pslascl/pclascl
DOUBLE PRECISION for pdlascl/pzlascl.
The distributed matrix sub(A) is multiplied by cto/cfrom .
A(i,j) is computed without over/underflow if the final result
cto*A(i,j)/cfrom can be represented without
over/underflow. cfrom must be nonzero.

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). (m ≥ 0).

2016

7 Intel® Math Kernel Library Reference Manual

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(A). (n

≥ 0).

(local input/local output)a
REAL for pslascl
DOUBLE PRECISION for pdlascl
COMPLEX for pclascl
COMPLEX*16 for pzlascl.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)).
This array contains the local pieces of the distributed matrix
sub(A).

(global) INTEGER.ia, ja
The column and row indices in the global array A indicating
the first row and column of the submatrix sub(A),
respectively.

(global and local) INTEGER .desca
Array of DIMENSION (dlen_).The array descriptor for the
distributed matrix A.

Output Parameters

(local).a
On exit, this array contains the local pieces of the distributed
matrix multiplied by cto/cfrom.

(local)info
INTEGER.
if info = 0: the execution is successful.
if info < 0: If the i-th argument is an array and the
j-entry had an illegal value, then info = -(i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

2017

ScaLAPACK Auxiliary and Utility Routines 7

p?laset
Initializes the offdiagonal elements of a matrix to
alpha and the diagonal elements to beta.

Syntax

call pslaset(uplo, m, n, alpha, beta, a, ia, ja, desca)

call pdlaset(uplo, m, n, alpha, beta, a, ia, ja, desca)

call pclaset(uplo, m, n, alpha, beta, a, ia, ja, desca)

call pzlaset(uplo, m, n, alpha, beta, a, ia, ja, desca)

Description

This routine initializes an m-by-n distributed matrix sub(A) denoting A(ia:ia+m-1, ja:ja+n-1)
to beta on the diagonal and alpha on the offdiagonals.

Input Parameters

(global) CHARACTER.uplo
Specifies the part of the distributed matrix sub(A) to be set:
if uplo = 'U': upper triangular part is set; the strictly lower
triangular part of sub(A) is not changed;
if uplo = 'L': lower triangular part is set; the strictly upper
triangular part of sub(A) is not changed.
Otherwise: all of the matrix sub(A) is set.

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). (m ≥ 0).

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(A). (n

≥ 0).

(global).alpha
REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.

2018

7 Intel® Math Kernel Library Reference Manual

The constant to which the offdiagonal elements are to be
set.

(global).beta
REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.
The constant to which the diagonal elements are to be set.

Output Parameters

(local).a
REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)).
This array contains the local pieces of the distributed matrix
sub(A) to be set. On exit, the leading m-by-n submatrix
sub(A) is set as follows:

if uplo = 'U', A(ia+i-1, ja+j-1) = alpha, 1 ≤ i ≤

j-1, 1 ≤ j ≤ n,

if uplo = 'L', A(ia+i-1, ja+j-1) = alpha, j+1 ≤ i ≤

m, 1 ≤ j ≤ n,

otherwise, A(ia+i-1, ja+j-1) = alpha, 1 ≤ i ≤ m, 1 ≤

j ≤ n, ia+i.ne.ja+j, and, for all uplo, A(ia+i-1,

ja+i-1) = beta, 1 ≤ i ≤ min(m,n).

(global) INTEGER.ia, ja
The column and row indices in the global array A indicating
the first row and column of the submatrix sub(A),
respectively.

(global and local) INTEGER .desca
Array of DIMENSION (dlen_). The array descriptor for the
distributed matrix A.

2019

ScaLAPACK Auxiliary and Utility Routines 7

p?lasmsub
Looks for a small subdiagonal element from the
bottom of the matrix that it can safely set to zero.

Syntax

call pslasmsub(a, desca, i, l, k, smlnum, buf, lwork)

call pdlasmsub(a, desca, i, l, k, smlnum, buf, lwork)

Description

This routine looks for a small subdiagonal element from the bottom of the matrix that it can
safely set to zero. This routine does a global maximum and must be called by all processes.

Input Parameters

(global)a
REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
Array, DIMENSION(desca(lld_),*).
On entry, the Hessenberg matrix whose tridiagonal part is
being scanned. Unchanged on exit.

(global and local) INTEGER.desca
Array of DIMENSION (dlen_). The array descriptor for the
distributed matrix A.

(global) INTEGER.i
The global location of the bottom of the unreduced submatrix
of A. Unchanged on exit.

(global) INTEGER.l
The global location of the top of the unreduced submatrix
of A.
Unchanged on exit.

(global)smlnum
REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
On entry, a “small number” for the given matrix. Unchanged
on exit.

(global) INTEGER.lwork

2020

7 Intel® Math Kernel Library Reference Manual

On exit, lwork is the size of the work buffer.
This must be at least 2*ceil(ceil((i-l)/hbl)/
lcm(nprow,npcol)). Here lcm is least common multiple,
and nprow x npcol is the logical grid size.

Output Parameters

(global) INTEGER.k
On exit, this yields the bottom portion of the unreduced

submatrix. This will satisfy: l ≤ m ≤ i-1.

(local).buf
REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
Array of size lwork.

p?lassq
Updates a sum of squares represented in scaled
form.

Syntax

call pslassq(n, x, ix, jx, descx, incx, scale, sumsq)

call pdlassq(n, x, ix, jx, descx, incx, scale, sumsq)

call pclassq(n, x, ix, jx, descx, incx, scale, sumsq)

call pzlassq(n, x, ix, jx, descx, incx, scale, sumsq)

Description

This routine returns the values scl and smsq such that

scl2 * smsq = x(1)2 + ... + x(n)2 + scale2*sumsq,

where x(i) = sub(X) = X(ix + (jx-1)*descx(m_) + (i - 1)*incx) for
pslassq/pdlassq and x(i) = sub(X) = abs(X(ix + (jx-1)*descx(m_) + (i -
1)*incx) for pclassq/pzlassq.

For real routines pslassq/pdlassq the value of sumsq is assumed to be non-negative and scl
returns the value

scl = max(scale, abs(x(i))).

2021

ScaLAPACK Auxiliary and Utility Routines 7

For complex routines pclassq/pzlassq the value of sumsq is assumed to be at least unity and
the value of ssq will then satisfy

1.0 ≤ ssq ≤ sumsq +2n

Value scale is assumed to be non-negative and scl returns the value

For all routines p?lassq values scale and sumsq must be supplied in scale and sumsq
respectively, and scale and sumsq are overwritten by scl and ssq respectively.

All routines p?lassq make only one pass through the vector sub(x).

Input Parameters

(global) INTEGER.n
The length of the distributed vector sub(x).

REAL for pslassqx
DOUBLE PRECISION for pdlassq
COMPLEX for pclassq
COMPLEX*16 for pzlassq.
The vector for which a scaled sum of squares is computed:

x(ix + (jx-1)*m_x + (i - 1)*incx), 1 ≤ i ≤ n.

(global) INTEGER.ix
The row index in the global array X indicating the first row
of sub(X).

(global) INTEGER.jx
The column index in the global array X indicating the first
column of sub(X).

(global and local) INTEGER array of DIMENSION (dlen_).descx
The array descriptor for the distributed matrix X.

(global) INTEGER.incx
The global increment for the elements of X. Only two values
of incx are supported in this version, namely 1 and m_x.
The argument incx must not equal zero.

(local).scale

2022

7 Intel® Math Kernel Library Reference Manual

REAL for pslassq/pclassq
DOUBLE PRECISION for pdlassq/pzlassq.
On entry, the value scale in the equation above.

(local)sumsq
REAL for pslassq/pclassq
DOUBLE PRECISION for pdlassq/pzlassq.
On entry, the value sumsq in the equation above.

Output Parameters

(local).scale
On exit, scale is overwritten with scl , the scaling factor
for the sum of squares.

(local).sumsq
On exit, sumsq is overwritten with the value smsq, the basic
sum of squares from which scl has been factored out.

p?laswp
Performs a series of row interchanges on a general
rectangular matrix.

Syntax

call pslaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

call pdlaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

call pclaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

call pzlaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

Description

This routine performs a series of row or column interchanges on the distributed matrix
sub(A)=A(ia:ia+n-1, ja:ja+n-1). One interchange is initiated for each of rows or columns
k1 through k2 of sub(A). This routine assumes that the pivoting information has already been
broadcast along the process row or column. Also note that this routine will only work for k1-k2
being in the same mb (or nb) block. If you want to pivot a full matrix, use p?lapiv.

2023

ScaLAPACK Auxiliary and Utility Routines 7

Input Parameters

(global) CHARACTER.direc
Specifies in which order the permutation is applied:
= 'F' - forward,
= 'B' - backward.

(global) CHARACTER.rowcol
Specifies if the rows or columns are permuted:
= 'R' - rows,
= 'C' - columns.

(global) INTEGER.n
If rowcol='R', the length of the rows of the distributed
matrix A(*, ja:ja+n-1) to be permuted;
If rowcol='C', the length of the columns of the distributed
matrix A(ia:ia+n-1 , *) to be permuted;

(local)a
REAL for pslaswp
DOUBLE PRECISION for pdlaswp
COMPLEX for pclaswp
COMPLEX*16 for pzlaswp.
Pointer into the local memory to an array of DIMENSION
(lld_a, *). On entry, this array contains the local pieces of
the distributed matrix to which the row/columns
interchanges will be applied.

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja
The column index in the global array A indicating the first
column of sub(A).

(global and local) INTEGER array of DIMENSION (dlen_).desca
The array descriptor for the distributed matrix A.

(global) INTEGER.k1
The first element of ipiv for which a row or column
interchange will be done.

(global) INTEGER.k2

2024

7 Intel® Math Kernel Library Reference Manual

The last element of ipiv for which a row or column
interchange will be done.

(local)ipiv
INTEGER. Array, DIMENSION LOCr(m_a)+mb_a for row
pivoting and LOCr(n_a)+nb_a for column pivoting. This
array is tied to the matrix A, ipiv(k)=l implies rows (or
columns) k and l are to be interchanged.

Output Parameters

(local)A
REAL for pslaswp
DOUBLE PRECISION for pdlaswp
COMPLEX for pclaswp
COMPLEX*16 for pzlaswp.
On exit, the permuted distributed matrix.

p?latra
Computes the trace of a general square distributed
matrix.

Syntax

val = pslatra(n, a, ia, ja, desca)

val = pdlatra(n, a, ia, ja, desca)

val = pclatra(n, a, ia, ja, desca)

val = pzlatra(n, a, ia, ja, desca)

Description

This function computes the trace of an n-by-n distributed matrix sub(A) denoting A(ia:ia+n-1,
ja:ja+n-1). The result is left on every process of the grid.

Input Parameters

(global) INTEGER.n
The number of rows and columns to be operated on, that

is, the order of the distributed submatrix sub(A). n ≥ 0.

2025

ScaLAPACK Auxiliary and Utility Routines 7

(local).a
Real for pslatra
DOUBLE PRECISION for pdlatra
COMPLEX for pclatra
COMPLEX*16 for pzlatra.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)) containing the local
pieces of the distributed matrix, the trace of which is to be
computed.

(global) INTEGER. The row and column indices respectively
in the global array A indicating the first row and the first
column of the submatrix sub(A), respectively.

ia, ja

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

desca

Output Parameters

The value returned by the fuction.val

p?latrd
Reduces the first nb rows and columns of a
symmetric/Hermitian matrix A to real tridiagonal
form by an orthogonal/unitary similarity
transformation.

Syntax

call pslatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)

call pdlatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)

call pclatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)

call pzlatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)

Description

This routine reduces nb rows and columns of a real symmetric or complex Hermitian matrix
sub(A)= A(ia:ia+n-1, ja:ja+n-1) to symmetric/complex tridiagonal form by an
orthogonal/unitary similarity transformation Q'* sub(A)* Q, and returns the matrices V and
W, which are needed to apply the transformation to the unreduced part of sub(A).

2026

7 Intel® Math Kernel Library Reference Manual

If uplo = U, p?latrd reduces the last nb rows and columns of a matrix, of which the upper
triangle is supplied;

if uplo = L, p?latrd reduces the first nb rows and columns of a matrix, of which the lower
triangle is supplied.

This is an auxiliary routine called by p?sytrd/p?hetrd.

Input Parameters

(global) CHARACTER.uplo
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix sub(A) is stored:
= 'U': Upper triangular
= L: Lower triangular.

(global) INTEGER.n
The number of rows and columns to be operated on, that

is, the order of the distributed submatrix sub(A). n ≥ 0.

(global) INTEGER.nb
The number of rows and columns to be reduced.

REAL for pslatrda
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the
symmetric/Hermitian distributed matrix sub(A).
If uplo = U, the leading n-by-n upper triangular part of
sub(A) contains the upper triangular part of the matrix, and
its strictly lower triangular part is not referenced.
If uplo = L, the leading n-by-n lower triangular part of
sub(A) contains the lower triangular part of the matrix, and
its strictly upper triangular part is not referenced.

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja

2027

ScaLAPACK Auxiliary and Utility Routines 7

The column index in the global array A indicating the first
column of sub(A).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

desca

(global) INTEGER.iw
The row index in the global array W indicating the first row
of sub(W).

(global) INTEGER.jw
The column index in the global array W indicating the first
column of sub(W).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix W.

descw

(local)work
REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Workspace array of DIMENSION (nb_a).

Output Parameters

(local)a
On exit, if uplo = 'U', the last nb columns have been
reduced to tridiagonal form, with the diagonal elements
overwriting the diagonal elements of sub(A); the elements
above the diagonal with the array tau represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors;
if uplo = 'L', the first nb columns have been reduced to
tridiagonal form, with the diagonal elements overwriting the
diagonal elements of sub(A); the elements below the
diagonal with the array tau represent the orthogonal/unitary
matrix Q as a product of elementary reflectors.

(local)d
REAL for pslatrd/pclatrd
DOUBLE PRECISION for pdlatrd/pzlatrd.
Array, DIMENSION LOCc(ja+n-1).

2028

7 Intel® Math Kernel Library Reference Manual

The diagonal elements of the tridiagonal matrix T: d(i) =
a(i,i). d is tied to the distributed matrix A.

(local)e
REAL for pslatrd/pclatrd
DOUBLE PRECISION for pdlatrd/pzlatrd.
Array, DIMENSION LOCc(ja+n-1) if uplo = 'U',
LOCc(ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix T:
e(i) = a(i, i + 1) if uplo = 'U',
e(i) = a(i + 1, i) if uplo = L.
e is tied to the distributed matrix A.

(local)tau
REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Array, DIMENSION LOCc(ja+n-1). This array contains the
scalar factors tau of the elementary reflectors. tau is tied
to the distributed matrix A.

(local)w
REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Pointer into the local memory to an array of DIMENSION
(lld_w, nb_w). This array contains the local pieces of the
n-by-nb_w matrix w required to update the unreduced part
of sub(A).

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

Q = H(n) H(n-1) . . . H(n-nb+1)

Each H(i) has the form

H(i) = I - tau*v*v' ,

where tau is a real/complex scalar, and v is a real/complex vector with v(i:n) = 0 and v(i-1)
= 1; v(1:i-1) is stored on exit in A(ia:ia+i-1, ja+i), and tau in tau(ja+i-1).

2029

ScaLAPACK Auxiliary and Utility Routines 7

If uplo = L, the matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(nb)

Each H(i) has the form

H(i) = I - tau*v*v' ,

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i) = 0 and v(i+1)
= 1; v(i+2: n) is stored on exit in A(ia+i+1: ia+n-1, ja+i-1), and tau in tau(ja+i-1).

The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to
apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian
rank-2k update of the form:

sub(A) := sub(A) - vw' - wv'.

The contents of a on exit are illustrated by the following examples with

n = 5 and nb = 2:

where d denotes a diagonal element of the reduced matrix, a denotes an element of the original
matrix that is unchanged, and vi denotes an element of the vector defining H(i).

2030

7 Intel® Math Kernel Library Reference Manual

p?latrs
Solves a triangular system of equations with the
scale factor set to prevent overflow.

Syntax

call pslatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)

call pdlatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)

call pclatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)

call pzlatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)

Description

This routine solves a triangular system of equations Ax = σb, ATx = σb or AHx = σb, where

σ is a scale factor set to prevent overflow. The description of the routine will be extended in
the future releases.

Input Parameters

CHARACTER*1.uplo
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

CHARACTER*1.trans
Specifies the operation applied to Ax.
= 'N': Solve Ax = s*b (no transpose)
= 'T': Solve ATx = s*b (transpose)
= 'C': Solve AHx = s*b (conjugate transpose),
where s - is a scale factor

CHARACTER*1.diag
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular

2031

ScaLAPACK Auxiliary and Utility Routines 7

CHARACTER*1.normin
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry. On exit, the norms will
be computed and stored in cnorm.

INTEGER.n

The order of the matrix A. n ≥ 0

REAL for pslatrs/pclatrsa
DOUBLE PRECISION for pdlatrs/pzlatrs
Array, DIMENSION (lda, n). Contains the triangular matrix
A.
If uplo = U, the leading n-by-n upper triangular part of the
array a contains the upper triangular matrix, and the strictly
lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
the array a contains the lower triangular matrix, and the
strictly upper triangular part of a is not referenced.
If diag = 'U', the diagonal elements of a are also not
referenced and are assumed to be 1.

(global) INTEGER. The row and column indices in the global
array a indicating the first row and the first column of the
submatrix A, respectively.

ia, ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

REAL for pslatrs/pclatrsx
DOUBLE PRECISION for pdlatrs/pzlatrs
Array, DIMENSION (n). On entry, the right hand side b of
the triangular system.

(global) INTEGER.The row index in the global array x
indicating the first row of sub(x).

ix

(global) INTEGER.jx
The column index in the global array x indicating the first
column of sub(x).

(global and local) INTEGER.descx
Array, DIMENSION (dlen_). The array descriptor for the
distributed matrix X.

2032

7 Intel® Math Kernel Library Reference Manual

REAL for pslatrs/pclatrscnorm
DOUBLE PRECISION for pdlatrs/pzlatrs.
Array, DIMENSION (n). If normin = 'Y', cnorm is an input
argument and cnorm (j) contains the norm of the
off-diagonal part of the j-th column of A. If trans = 'N',
cnorm (j) must be greater than or equal to the infinity-norm,
and if trans = 'T' or 'C', cnorm(j) must be greater than
or equal to the 1-norm.

(local).work
REAL for pslatrs
DOUBLE PRECISION for pdlatrs
COMPLEX for pclatrs
COMPLEX*16 for pzlatrs.
Temporary workspace.

Output Parameters

On exit, x is overwritten by the solution vector x.X

REAL for pslatrs/pclatrsscale
DOUBLE PRECISION for pdlatrs/pzlatrs.
Array, DIMENSION (lda, n). The scaling factor s for the
triangular system as described above.
If scale = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to Ax =
0.

If normin = 'N', cnorm is an output argument and cnorm(j)
returns the 1-norm of the off-diagonal part of the j-th
column of A.

cnorm

2033

ScaLAPACK Auxiliary and Utility Routines 7

p?latrz
Reduces an upper trapezoidal matrix to upper
triangular form by means of orthogonal/unitary
transformations.

Syntax

call pslatrz(m, n, l, a, ia, ja, desca, tau, work)

call pdlatrz(m, n, l, a, ia, ja, desca, tau, work)

call pclatrz(m, n, l, a, ia, ja, desca, tau, work)

call pzlatrz(m, n, l, a, ia, ja, desca, tau, work)

Description

This routine reduces the m-by-n(m ≤ n) real/complex upper trapezoidal matrix sub(A) =
[A(ia:ia+m-1, ja:ja+m-1) A(ia:ia+m-1, ja+n-l:ja+n-1)] to upper triangular form by
means of orthogonal/unitary transformations.

The upper trapezoidal matrix sub(A) is factored as

sub(A) = (R 0)*Z,

where Z is an n-by-n orthogonal/unitary matrix and R is an m-by-m upper triangular matrix.

Input Parameters

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(A). m ≥ 0.

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(A). n

≥ 0.

(global) INTEGER.l
The number of columns of the distributed submatrix sub(A)
containing the meaningful part of the Householder reflectors.
l > 0.

(local)a

2034

7 Intel® Math Kernel Library Reference Manual

REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)). On entry, the local
pieces of the m-by-n distributed matrix sub(A), which is to
be factored.

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja
The column index in the global array A indicating the first
column of sub(A).

(global and local) INTEGER array of DIMENSION (dlen_).desca
The array descriptor for the distributed matrix A.

(local)work
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Workspace array, DIMENSION (lwork).

lwork ≥ nq0 + max(1, mp0), where
iroff = mod(ia-1, mb_a),
icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),
numroc, indxg2p, and numroc are ScaLAPACK tool
functions; myrow, mycol, nprow, and npcol can be
determined by calling the subroutine blacs_gridinfo.

2035

ScaLAPACK Auxiliary and Utility Routines 7

Output Parameters

On exit, the leading m-by-m upper triangular part of sub(A)
contains the upper triangular matrix R, and elements n-l+1
to n of the first m rows of sub(A), with the array tau,
represent the orthogonal/unitary matrix Z as a product of
m elementary reflectors.

a

(local)tau
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Array, DIMENSION(LOCr(ja+m-1)). This array contains the
scalar factors of the elementary reflectors. tau is tied to the
distributed matrix A.

Application Notes

The factorization is obtained by Householder's method. The k-th transformation matrix, Z(k),
which is used (or, in case of complex routines, whose conjugate transpose is used) to introduce
zeros into the (m - k + 1)-th row of sub(A), is given in the form

where

2036

7 Intel® Math Kernel Library Reference Manual

tau is a scalar and z(k) is an (n-m)-element vector. tau and z(k) are chosen to annihilate
the elements of the k-th row of sub(A). The scalar tau is returned in the k-th element of tau
and the vector u(k) in the k-th row of sub(A), such that the elements of z(k) are in a(
k, m + 1), ..., a(k, n). The elements of R are returned in the upper triangular part
of sub(A).

Z is given by

Z = Z(1) Z(2) ... Z(m).

p?lauu2
Computes the product U*UH or LH*L, where U and
L are upper or lower triangular matrices (local
unblocked algorithm).

Syntax

call pslauu2(uplo, n, a, ia, ja, desca)

call pdlauu2(uplo, n, a, ia, ja, desca)

call pclauu2(uplo, n, a, ia, ja, desca)

call pzlauu2(uplo, n, a, ia, ja, desca)

Description

This routine computes the product U*U' or L'*L, where the triangular factor U or L is stored in
the upper or lower triangular part of the distributed matrix

sub(A)= A(ia:ia+n-1, ja:ja+n-1).

If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor U
in sub(A).

If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor L
in sub(A).

This is the unblocked form of the algorithm, calling BLAS Level 2 Routines. No communication
is performed by this routine, the matrix to operate on should be strictly local to one process.

Input Parameters

(global) CHARACTER*1.uplo

2037

ScaLAPACK Auxiliary and Utility Routines 7

Specifies whether the triangular factor stored in the matrix
sub(A) is upper or lower triangular:
= U: upper triangular
= L: lower triangular.

(global) INTEGER.n
The number of rows and columns to be operated on, that

is, the order of the triangular factor U or L. n ≥ 0.

(local)a
REAL for pslauu2
DOUBLE PRECISION for pdlauu2
COMPLEX for pclauu2
COMPLEX*16 for pzlauu2.
Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1). On entry, the local
pieces of the triangular factor U or L.

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja
The column index in the global array A indicating the first
column of sub(A).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

desca

Output Parameters

(local)a
On exit, if uplo = 'U', the upper triangle of the distributed
matrix sub(A) is overwritten with the upper triangle of the
product U*U'; if uplo = 'L', the lower triangle of sub(A)
is overwritten with the lower triangle of the product L'*L.

2038

7 Intel® Math Kernel Library Reference Manual

p?lauum
Computes the product U*UH or LH*L, where U and
L are upper or lower triangular matrices.

Syntax

call pslauum(uplo, n, a, ia, ja, desca)

call pdlauum(uplo, n, a, ia, ja, desca)

call pclauum(uplo, n, a, ia, ja, desca)

call pzlauum(uplo, n, a, ia, ja, desca)

Description

This routine computes the product U*U' or L'*L, where the triangular factor U or L is stored in
the upper or lower triangular part of the matrix sub(A)= A(ia:ia+n-1, ja:ja+n-1).

If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor U
in sub(A). If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the
factor L in sub(A).

This is the blocked form of the algorithm, calling Level 3 PBLAS.

Input Parameters

(global) CHARACTER*1.uplo
Specifies whether the triangular factor stored in the matrix
sub(A) is upper or lower triangular:
= 'U': upper triangular
= 'L': lower triangular.

(global) INTEGER.n
The number of rows and columns to be operated on, that

is, the order of the triangular factor U or L. n ≥ 0.

(local)a
REAL for pslauum
DOUBLE PRECISION for pdlauum
COMPLEX for pclauum
COMPLEX*16 for pzlauum.

2039

ScaLAPACK Auxiliary and Utility Routines 7

Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1). On entry, the local
pieces of the triangular factor U or L.

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja
The column index in the global array A indicating the first
column of sub(A).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

desca

Output Parameters

(local)a
On exit, if uplo = 'U', the upper triangle of the distributed
matrix sub(A) is overwritten with the upper triangle of the
product U*U' ; if uplo = 'L', the lower triangle of sub(A)
is overwritten with the lower triangle of the product L'*L.

p?lawil
Forms the Wilkinson transform.

Syntax

call pslawil(ii, jj, m, a, desca, h44, h33, h43h34, v)

call pdlawil(ii, jj, m, a, desca, h44, h33, h43h34, v)

Description

This routine gets the transform given by h44, h33, and h43h34 into v starting at row m.

Input Parameters

(global) INTEGER.ii
Row owner of h(m+2, m+2).

(global) INTEGER.jj
Column owner of h(m+2, m+2).

2040

7 Intel® Math Kernel Library Reference Manual

(global) INTEGER.m
On entry, the location from where the transform starts (row
m). Unchanged on exit.

(global)a
REAL for pslawil
DOUBLE PRECISION for pdlawil
Array, DIMENSION (desca(lld_),*).
On entry, the Hessenberg matrix. Unchanged on exit.

(global and local) INTEGERdesca
Array of DIMENSION (dlen_). The array descriptor for the
distributed matrix A. Unchanged on exit.

(global)
REAL for pslawil

h43h34 DOUBLE PRECISION for pdlawil
These three values are for the double shift QR iteration.
Unchanged on exit.

Output Parameters

(global)v
REAL for pslawil
DOUBLE PRECISION for pdlawil
Array of size 3 that contains the transform on output.

p?org2l/p?ung2l
Generates all or part of the orthogonal/unitary
matrix Q from a QL factorization determined by
p?geqlf (unblocked algorithm).

Syntax

call psorg2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorg2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pcung2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzung2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

2041

ScaLAPACK Auxiliary and Utility Routines 7

Description

The routine p?org2l/p?ung2l generates an m-by-n real/complex distributed matrix Q denoting
A(ia:ia+m-1, ja:ja+n-1) with orthonormal columns, which is defined as the last n columns
of a product of k elementary reflectors of order m:

Q = H(k) . . . H(2) H(1) as returned by p?geqlf.

Input Parameters

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix Q. m ≥ 0.

(global) INTEGER.n
The number of columns to be operated on, that is, the

number of columns of the distributed submatrix Q. m ≥ n

≥ 0.

(global) INTEGER.k
The number of elementary reflectors whose product defines

the matrix Q. n≥ k ≥ 0.

REAL for psorg2la
DOUBLE PRECISION for pdorg2l
COMPLEX for pcung2l
COMPLEX*16 for pzung2l.
Pointer into the local memory to an array, DIMENSION
(lld_a, LOCc(ja+n-1).
On entry, the j-th column must contain the vector that

defines the elementary reflector H(j), ja+n-k ≤ j ≤
ja+n-k, as returned by p?geqlf in the k columns of its
distributed matrix argument A(ia:*,ja+n-k:ja+n-1).

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja
The column index in the global array A indicating the first
column of sub(A).

2042

7 Intel® Math Kernel Library Reference Manual

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX for pcung2l
COMPLEX*16 for pzung2l.
Array, DIMENSION LOCc(ja+n-1).
This array contains the scalar factor tau(j) of the
elementary reflector H(j), as returned by p?geqlf.

(local)work
REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX for pcung2l
COMPLEX*16 for pzung2l.
Workspace array, DIMENSION (lwork).

(local or global) INTEGER.lwork
The dimension of the array work.

lwork is local input and must be at least lwork ≥ mpa0 +
max(1, nqa0), where
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow,
nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol,
npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

2043

ScaLAPACK Auxiliary and Utility Routines 7

Output Parameters

On exit, this array contains the local pieces of the m-by-n
distributed matrix Q.

a

On exit, work(1) returns the minimal and optimal lwork.work

(local) INTEGER.info
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100 +j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?org2r/p?ung2r
Generates all or part of the orthogonal/unitary
matrix Q from a QR factorization determined by
p?geqrf (unblocked algorithm).

Syntax

call psorg2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorg2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pcung2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzung2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine p?org2r/p?ung2r generates an m-by-n real/complex matrix Q denoting
A(ia:ia+m-1, ja:ja+n-1) with orthonormal columns, which is defined as the first n columns
of a product of k elementary reflectors of order m:

Q = H(1) H(2) . . . H(k)

as returned by p?geqrf.

Input Parameters

(global) INTEGER.m

2044

7 Intel® Math Kernel Library Reference Manual

The number of rows to be operated on, that is, the number

of rows of the distributed submatrix Q.m ≥ 0.

(global) INTEGER.n
The number of columns to be operated on, that is, the

number of columns of the distributed submatrix Q. m ≥ n

≥ 0.

(global) INTEGER.k
The number of elementary reflectors whose product defines

the matrix Q. n ≥ k ≥ 0.

REAL for psorg2ra
DOUBLE PRECISION for pdorg2r
COMPLEX for pcung2r
COMPLEX*16 for pzung2r.
Pointer into the local memory to an array,
DIMENSION(lld_a, LOCc(ja+n-1).
On entry, the j-th column must contain the vector that

defines the elementary reflector H(j), ja ≤ j ≤ ja+k-1,
as returned by p?geqrf in the k columns of its distributed
matrix argument A(ia:*,ja:ja+k-1).

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja
The column index in the global array A indicating the first
column of sub(A).

(global and local) INTEGER array of DIMENSION (dlen_).desca
The array descriptor for the distributed matrix A.

(local)tau
REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX for pcung2r
COMPLEX*16 for pzung2r.
Array, DIMENSION LOCc(ja+k-1).

2045

ScaLAPACK Auxiliary and Utility Routines 7

This array contains the scalar factor tau(j) of the
elementary reflector H(j), as returned by p?geqrf. This
array is tied to the distributed matrix A.

(local)work
REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX for pcung2r
COMPLEX*16 for pzung2r.
Workspace array, DIMENSION (lwork).

(local or global) INTEGER.lwork
The dimension of the array work.

lwork is local input and must be at least lwork ≥ mpa0 +
max(1, nqa0),
where
iroffa = mod(ia-1, mb_a , icoffa = mod(ja-1,
nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow,
nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol,
npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, this array contains the local pieces of the m-by-n
distributed matrix Q.

a

On exit, work(1) returns the minimal and optimal lwork.work

(local) INTEGER.info

2046

7 Intel® Math Kernel Library Reference Manual

= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?orgl2/p?ungl2
Generates all or part of the orthogonal/unitary
matrix Q from an LQ factorization determined by
p?gelqf (unblocked algorithm).

Syntax

call psorgl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorgl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pcungl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzungl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine p?orgl2/p?ungl2 generates a m-by-n real/complex matrix Q denoting
A(ia:ia+m-1, ja:ja+n-1) with orthonormal rows, which is defined as the first m rows of a
product of k elementary reflectors of order n

Q = H(k) . . . H(2) H(1) (for real flavors),

Q = H(k)' . . . H(2)' H(1)' (for complex flavors)

as returned by p?gelqf.

Input Parameters

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix Q. m ≥ 0.

(global) INTEGER.n

2047

ScaLAPACK Auxiliary and Utility Routines 7

The number of columns to be operated on, that is, the

number of columns of the distributed submatrix Q. n ≥ m

≥ 0.

(global) INTEGER.k
The number of elementary reflectors whose product defines

the matrix Q. m ≥ k ≥ 0.

REAL for psorgl2a
DOUBLE PRECISION for pdorgl2
COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Pointer into the local memory to an array, DIMENSION
(lld_a, LOCc(ja+n-1).
On entry, the i-th row must contain the vector that defines

the elementary reflector H(i), ia ≤ i ≤ ia+k-1, as
returned by p?gelqf in the k rows of its distributed matrix
argument A(ia:ia+k-1, ja:*).

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja
The column index in the global array A indicating the first
column of sub(A).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Array, DIMENSION LOCr(ja+k-1). This array contains the
scalar factors tau(i) of the elementary reflectors H(i), as
returned by p?gelqf. This array is tied to the distributed
matrix A.

(local)WORK
REAL for psorgl2

2048

7 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION for pdorgl2
COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Workspace array, DIMENSION (lwork).

(local or global) INTEGER.lwork
The dimension of the array work.

lwork is local input and must be at least lwork ≥ nqa0 +
max(1, mpa0), where
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow,
nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol,
npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, this array contains the local pieces of the m-by-n
distributed matrix Q.

a

On exit, work(1) returns the minimal and optimal lwork.work

(local) INTEGER.info
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

2049

ScaLAPACK Auxiliary and Utility Routines 7

p?orgr2/p?ungr2
Generates all or part of the orthogonal/unitary
matrix Q from an RQ factorization determined by
p?gerqf (unblocked algorithm).

Syntax

call psorgr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorgr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pcungr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzungr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine p?orgr2/p?ungr2 generates an m-by-n real/complex matrix Q denoting
A(ia:ia+m-1, ja:ja+n-1) with orthonormal rows, which is defined as the last m rows of a
product of k elementary reflectors of order n

Q = H(1) H(2) . . . H(k) (for real flavors)

Q = H(1)' H(2)' . . . H(k)' (for complex flavors)

as returned by p?gerqf.

Input Parameters

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix Q. m ≥ 0.

(global) INTEGER.n
The number of columns to be operated on, that is, the

number of columns of the distributed submatrix Q. n ≥ m

≥ 0.

(global) INTEGER.k
The number of elementary reflectors whose product defines

the matrix Q. m ≥ k ≥ 0.

REAL for psorgr2a
DOUBLE PRECISION for pdorgr2

2050

7 Intel® Math Kernel Library Reference Manual

COMPLEX for pcungr2
COMPLEX*16 for pzungr2.
Pointer into the local memory to an array,
DIMENSION(lld_a, LOCc(ja+n-1).
On entry, the i-th row must contain the vector that defines

the elementary reflector H(i), ia+m-k ≤ i ≤ ia+m-1,
as returned by p?gerqf in the k rows of its distributed
matrix argument A(ia+m-k:ia+m-1, ja:*).

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja
The column index in the global array A indicating the first
column of sub(A).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX for pcungr2
COMPLEX*16 for pzungr2.
Array, DIMENSION LOCr(ja+m-1). This array contains the
scalar factors tau(i) of the elementary reflectors H(i), as
returned by p?gerqf. This array is tied to the distributed
matrix A.

(local)work
REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX for pcungr2
COMPLEX*16 for pzungr2.
Workspace array, DIMENSION (lwork).

(local or global) INTEGER.lwork
The dimension of the array work.

lwork is local input and must be at least lwork ≥ nqa0 +
max(1, mpa0), where iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),

2051

ScaLAPACK Auxiliary and Utility Routines 7

iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow
),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol
),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow,
nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol,
npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, this array contains the local pieces of the m-by-n
distributed matrix Q.

a

On exit, work(1) returns the minimal and optimal lwork.work

(local) INTEGER.info
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

2052

7 Intel® Math Kernel Library Reference Manual

p?orm2l/p?unm2l
Multiplies a general matrix by the
orthogonal/unitary matrix from a QL factorization
determined by p?geqlf (unblocked algorithm).

Syntax

call psorm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pdorm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pcunm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine p?orm2l/p?unm2l overwrites the general real/complex m-by-n distributed matrix
sub (C)=C(ic:ic+m-1,jc:jc+n-1) with

side = 'R'side = 'L'

sub (C)*QQ*sub (C)trans = 'N'

sub(C)*QTQT * sub(C)trans = 'T' (for real flavors)

sub(C)*QHQH * sub(C)trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

Q = H(k). . . H(2) H(1)

as returned by p?geqlf . Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

(global) CHARACTER.side

2053

ScaLAPACK Auxiliary and Utility Routines 7

= 'L': apply Q or QT for real flavors (QH for complex flavors)
from the left,
= 'R': apply Q or QT for real flavors (QH for complex flavors)
from the right.

(global) CHARACTER.trans
= 'N': apply Q (no transpose)
= 'T': apply QT (transpose, for real flavors)
= 'C': apply QH (conjugate transpose, for complex flavors)

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(C). m ≥ 0.

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(C). n

≥ 0.

(global) INTEGER.k
The number of elementary reflectors whose product defines
the matrix Q.

If side = 'L', m ≥ k ≥ 0;

if side = 'R', n ≥ k ≥ 0.

(local)a
REAL for psorm2l
DOUBLE PRECISION for pdorm2l
COMPLEX for pcunm2l
COMPLEX*16 for pzunm2l.
Pointer into the local memory to an array,
DIMENSION(lld_a, LOCc(ja+k-1).
On entry, the j-th row must contain the vector that defines

the elementary reflector H(j), ja ≤ j ≤ ja+k-1, as
returned by p?geqlf in the k columns of its distributed
matrix argument A(ia:*,ja:ja+k-1). The argument
A(ia:*,ja:ja+k-1) is modified by the routine but restored
on exit.

If side = 'L', lld_a ≥ max(1, LOCr(ia+m-1)),

if side = 'R', lld_a ≥ max(1, LOCr(ia+n-1)).

2054

7 Intel® Math Kernel Library Reference Manual

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja
The column index in the global array A indicating the first
column of sub(A).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psorm2l
DOUBLE PRECISION for pdorm2l
COMPLEX for pcunm2l
COMPLEX*16 for pzunm2l.
Array, DIMENSIONLOCc(ja+n-1). This array contains the
scalar factor tau(j) of the elementary reflector H(j), as
returned by p?geqlf. This array is tied to the distributed
matrix A.

(local)c
REAL for psorm2l
DOUBLE PRECISION for pdorm2l
COMPLEX for pcunm2l
COMPLEX*16 for pzunm2l.
Pointer into the local memory to an array,
DIMENSION(lld_c, LOCc(jc+n-1)).On entry, the local
pieces of the distributed matrix sub (C).

(global) INTEGER.ic
The row index in the global array C indicating the first row
of sub(C).

(global) INTEGER.jc
The column index in the global array C indicating the first
column of sub(C).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix C.

descc

(local)work
REAL for psorm2l
DOUBLE PRECISION for pdorm2l

2055

ScaLAPACK Auxiliary and Utility Routines 7

COMPLEX for pcunm2l
COMPLEX*16 for pzunm2l.
Workspace array, DIMENSION (lwork).
On exit, work(1) returns the minimal and optimal lwork.

(local or global) INTEGER.lwork
The dimension of the array work.
lwork is local input and must be at least

if side = 'L', lwork ≥ mpc0 + max(1, nqc0),

if side = 'R', lwork ≥ nqc0 + max(max(1, mpc0),
numroc(numroc(n+icoffc, nb_a, 0, 0, npcol),
nb_a, 0, 0, lcmq)),
where
lcmq = lcm/npcol,
lcm = iclm(nprow, npcol),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
Mqc0 = numroc(m+icoffc, nb_c, mycol, icrow,
nprow),
Npc0 = numroc(n+iroffc, mb_c, myrow, iccol,
npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, sub(C) is overwritten by Q*sub(C), or Q'*sub(C),
or sub(C)*Q', or sub(C)*Q.

c

On exit, work(1) returns the minimal and optimal lwork.work

(local) INTEGER.info

2056

7 Intel® Math Kernel Library Reference Manual

= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

NOTE. The distributed submatrices A(ia:*, ja:*) and C(ic:ic+m-1,jc:jc+n-1)
must verify some alignment properties, namely the following expressions should be true:

If side = 'L', (mb_a.eq.mb_c .AND. iroffa.eq.iroffc .AND. iarow.eq.icrow
)

If side = 'R', (mb_a.eq.nb_c .AND. iroffa.eq.iroffc).

p?orm2r/p?unm2r
Multiplies a general matrix by the
orthogonal/unitary matrix from a QR factorization
determined by p?geqrf (unblocked algorithm).

Syntax

call psorm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pdorm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pcunm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine p?orm2r/p?unm2r overwrites the general real/complex m-by-n distributed matrix
sub (C)=C(ic:ic+m-1, jc:jc+n-1) with

side = 'R'side = 'L'

2057

ScaLAPACK Auxiliary and Utility Routines 7

sub (C)*QQ*sub (C)trans = 'N'

sub(C)*QTQT * sub(C)trans = 'T' (for real flavors)

sub(C)*QHQH * sub(C)trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

Q = H(k). . . H(2) H(1)

as returned by p?geqrf . Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

(global) CHARACTER.side
= 'L': apply Q or QT for real flavors (QH for complex flavors)
from the left,
= 'R': apply Q or QT for real flavors (QH for complex flavors)
from the right.

(global) CHARACTER.trans
= 'N': apply Q (no transpose)
= 'T': apply QT (transpose, for real flavors)
= 'C': apply QH (conjugate transpose, for complex flavors)

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(C). m ≥ 0.

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(C). n

≥ 0.

(global) INTEGER.k
The number of elementary reflectors whose product defines
the matrix Q.

If side = 'L', m ≥ k ≥ 0;

if side = 'R', n ≥ k ≥ 0.

(local)a

2058

7 Intel® Math Kernel Library Reference Manual

REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Pointer into the local memory to an array,
DIMENSION(lld_a, LOCc(ja+k-1).
On entry, the j-th column must contain the vector that

defines the elementary reflector H(j), ja ≤ j ≤ ja+k-1,
as returned by p?geqrf in the k columns of its distributed
matrix argument A(ia:*,ja:ja+k-1). The argument
A(ia:*,ja:ja+k-1) is modified by the routine but restored
on exit.

If side = 'L', lld_a ≥ max(1, LOCr(ia+m-1)),

if side = 'R', lld_a ≥ max(1, LOCr(ia+n-1)).

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja
The column index in the global array A indicating the first
column of sub(A).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Array, DIMENSION LOCc(ja+k-1). This array contains the
scalar factors tau(j) of the elementary reflector H(j), as
returned by p?geqrf. This array is tied to the distributed
matrix A.

(local)c
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.

2059

ScaLAPACK Auxiliary and Utility Routines 7

Pointer into the local memory to an array,
DIMENSION(lld_c, LOCc(jc+n-1)).
On entry, the local pieces of the distributed matrix sub (C).

(global) INTEGER.ic
The row index in the global array C indicating the first row
of sub(C).

(global) INTEGER.jc
The column index in the global array C indicating the first
column of sub(C).

(global and local) INTEGER array of DIMENSION (dlen_).descc
The array descriptor for the distributed matrix C.

(local)work
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Workspace array, DIMENSION (lwork).

(local or global) INTEGER.lwork
The dimension of the array work.
lwork is local input and must be at least

if side = 'L', lwork ≥ mpc0 + max(1, nqc0),

if side = 'R', lwork ≥ nqc0 + max(max(1, mpc0),
numroc(numroc(n+icoffc, nb_a, 0, 0, npcol),
nb_a, 0, 0, lcmq)),
where
lcmq = lcm/npcol ,
lcm = iclm(nprow, npcol),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
Mqc0 = numroc(m+icoffc, nb_c, mycol, icrow,
nprow),
Npc0 = numroc(n+iroffc, mb_c, myrow, iccol,
npcol),

2060

7 Intel® Math Kernel Library Reference Manual

ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, sub(C) is overwritten by Q*sub(C), or Q'*sub(C),
or sub(C)*Q', or sub(C)*Q.

c

On exit, work(1) returns the minimal and optimal lwork.work

(local) INTEGER.info
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

NOTE. The distributed submatrices A(ia:*, ja:*) and C(ic:ic+m-1, jc:jc+n-1)
must verify some alignment properties, namely the following expressions should be true:

If side = 'L', (mb_a.eq.mb_c .AND. iroffa.eq.iroffc .AND. iarow.eq.icrow)

If side = 'R', (mb_a.eq.nb_c .AND. iroffa.eq.iroffc).

2061

ScaLAPACK Auxiliary and Utility Routines 7

p?orml2/p?unml2
Multiplies a general matrix by the
orthogonal/unitary matrix from an LQ factorization
determined by p?gelqf (unblocked algorithm).

Syntax

call psorml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pdorml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pcunml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine p?orml2/p?unml2 overwrites the general real/complex m-by-n distributed matrix
sub (C)=C(ic:ic+m-1, jc:jc+n-1) with

side = 'R'side = 'L'

sub (C)*QQ*sub (C)trans = 'N'

sub(C)*QTQT * sub(C)trans = 'T' (for real flavors)

sub(C)*QHQH * sub(C)trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary distributed matrix defined as the product of k
elementary reflectors

Q = H(k). . . H(2) H(1) (for real flavors)

Q = H(k)' . . . H(2)' H(1)' (for complex flavors)

as returned by p?gelqf . Q is of order m if side = 'L' and of order n if side = 'R'.

2062

7 Intel® Math Kernel Library Reference Manual

Input Parameters

(global) CHARACTER.side
= 'L': apply Q or QT for real flavors (QH for complex flavors)
from the left,
= 'R': apply Q or QT for real flavors (QH for complex flavors)
from the right.

(global) CHARACTER.trans
= 'N': apply Q (no transpose)
= 'T': apply QT (transpose, for real flavors)
= 'C': apply QH (conjugate transpose, for complex flavors)

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(C). m ≥ 0.

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(C). n

≥ 0.

(global) INTEGER.k
The number of elementary reflectors whose product defines
the matrix Q.

If side = 'L', m ≥ k ≥ 0;

if side = 'R', n ≥ k ≥ 0.

(local)a
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Pointer into the local memory to an array, DIMENSION
(lld_a, LOCc(ja+m-1) if side='L',
(lld_a, LOCc(ja+n-1) if side='R',

where lld_a ≥ max (1, LOCr(ia+k-1)).
On entry, the i-th row must contain the vector that defines

the elementary reflector H(i), ia ≤ i ≤ ia+k-1, as
returned by p?gelqf in the k rows of its distributed matrix

2063

ScaLAPACK Auxiliary and Utility Routines 7

argument A(ia:ia+k-1, ja:*). The argument
A(ia:ia+k-1, ja:*) is modified by the routine but
restored on exit.

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja
The column index in the global array A indicating the first
column of sub(A).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Array, DIMENSION LOCc(ia+k-1). This array contains the
scalar factors tau(i) of the elementary reflector H(i), as
returned by p?gelqf. This array is tied to the distributed
matrix A.

(local)c
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Pointer into the local memory to an array,
DIMENSION(lld_c, LOCc(jc+n-1)). On entry, the local
pieces of the distributed matrix sub (C).

(global) INTEGER.ic
The row index in the global array C indicating the first row
of sub(C).

(global) INTEGER.jc
The column index in the global array C indicating the first
column of sub(C).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix C.

descc

2064

7 Intel® Math Kernel Library Reference Manual

(local)work
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Workspace array, DIMENSION (lwork).

(local or global) INTEGER.lwork
The dimension of the array work.
lwork is local input and must be at least

if side = 'L', lwork ≥ mqc0 + max(max(1, npc0),
numroc(numroc(m+icoffc, mb_a, 0, 0, nprow),
mb_a, 0, 0, lcmp)),

if side = 'R', lwork ≥ npc0 + max(1, mqc0),
where
lcmp = lcm / nprow,
lcm = iclm(nprow, npcol),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
Mpc0 = numroc(m+icoffc, mb_c, mycol, icrow,
nprow),
Nqc0 = numroc(n+iroffc, nb_c, myrow, iccol,
npcol),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, sub(C) is overwritten by Q*sub(C) ,or Q'*sub(C),
or sub(C)*Q', or sub(C)*Q.

c

On exit, work(1) returns the minimal and optimal lwork.work

2065

ScaLAPACK Auxiliary and Utility Routines 7

(local) INTEGER.info
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

NOTE. The distributed submatrices A(ia:*, ja:*) and C(ic:ic+m-1, jc:jc+n-1)
must verify some alignment properties, namely the following expressions should be true:

If side = 'L', (nb_a.eq.mb_c .AND. icoffa.eq.iroffc)

If side = 'R', (nb_a.eq.nb_c .AND. icoffa.eq.icoffc .AND. iacol.eq.iccol).

p?ormr2/p?unmr2
Multiplies a general matrix by the
orthogonal/unitary matrix from an RQ factorization
determined by p?gerqf (unblocked algorithm).

Syntax

call psormr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pdormr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pcunmr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunmr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine p?ormr2/p?unmr2 overwrites the general real/complex m-by-n distributed matrix
sub (C)=C(ic:ic+m-1, jc:jc+n-1) with

side = 'R'side = 'L'

2066

7 Intel® Math Kernel Library Reference Manual

sub (C)*QQ*sub (C)trans = 'N'

sub(C)*QTQT * sub(C)trans = 'T' (for real flavors)

sub(C)*QHQH * sub(C)trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary distributed matrix defined as the product of k
elementary reflectors

Q = H(1) H(2). . . H(k) (for real flavors)

Q = H(1)' H(2)' . . . H(k)' (for complex flavors)

as returned by p?gerqf . Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

(global) CHARACTER.side
= 'L': apply Q or QT for real flavors (QH for complex flavors)
from the left,
= 'R': apply Q or QT for real flavors (QH for complex flavors)
from the right.

(global) CHARACTER.trans
= 'N': apply Q (no transpose)
= 'T': apply QT (transpose, for real flavors)
= 'C': apply QH (conjugate transpose, for complex flavors)

(global) INTEGER.m
The number of rows to be operated on, that is, the number

of rows of the distributed submatrix sub(C). m ≥ 0.

(global) INTEGER.n
The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(C). n

≥ 0.

(global) INTEGER.k
The number of elementary reflectors whose product defines
the matrix Q.

If side = 'L', m ≥ k ≥ 0;

if side = 'R', n ≥ k ≥ 0.

2067

ScaLAPACK Auxiliary and Utility Routines 7

(local)a
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Pointer into the local memory to an array, DIMENSION
(lld_a, LOCc(ja+m-1) if side='L',
(lld_a, LOCc(ja+n-1) if side='R',

where lld_a ≥ max (1, LOCr(ia+k-1)).
On entry, the i-th row must contain the vector that defines

the elementary reflector H(i), ia ≤ i ≤ ia+k-1, as
returned by p?gerqf in the k rows of its distributed matrix
argument A(ia:ia+k-1, ja:*).
The argument A(ia:ia+k-1, ja:*) is modified by the
routine but restored on exit.

(global) INTEGER.ia
The row index in the global array A indicating the first row
of sub(A).

(global) INTEGER.ja
The column index in the global array A indicating the first
column of sub(A).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

desca

(local)tau
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Array, DIMENSION LOCc(ia+k-1). This array contains the
scalar factors tau(i) of the elementary reflector H(i), as
returned by p?gerqf. This array is tied to the distributed
matrix A.

(local)c
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2

2068

7 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for pzunmr2.
Pointer into the local memory to an array,
DIMENSION(lld_c, LOCc(jc+n-1)). On entry, the local
pieces of the distributed matrix sub (C).

(global) INTEGER.ic
The row index in the global array C indicating the first row
of sub(C).

(global) INTEGER.jc
The column index in the global array C indicating the first
column of sub(C).

(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix C.

descc

(local)work
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Workspace array, DIMENSION (lwork).

(local or global) INTEGER.lwork
The dimension of the array work.
lwork is local input and must be at least

if side = 'L', lwork ≥ mpc0 + max(max(1, nqc0),
numroc(numroc(m+iroffc, mb_a, 0, 0, nprow),
mb_a, 0, 0, lcmp)),

if side = 'R', lwork ≥ nqc0 + max(1, mpc0),
where lcmp = lcm/nprow,
lcm = iclm(nprow, npcol),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
Mpc0 = numroc(m+iroffc, mb_c, myrow, icrow,
nprow),
Nqc0 = numroc(n+icoffc, nb_c, mycol, iccol,
npcol),

2069

ScaLAPACK Auxiliary and Utility Routines 7

ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by
calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

Output Parameters

On exit, sub(C) is overwritten by Q*sub(C), or Q' *sub(C),
or sub(C)*Q', or sub(C)*Q.

c

On exit, work(1) returns the minimal and optimal lwork.work

(local) INTEGER.info
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

NOTE. The distributed submatrices A(ia:*, ja:*) and C(ic:ic+m-1,jc:jc+n-1)
must verify some alignment properties, namely the following expressions should be true:

If side = 'L', (nb_a.eq.mb_c .AND. icoffa.eq.iroffc)

If side = 'R', (nb_a.eq.nb_c .AND. icoffa.eq.icoffc .AND. iacol.eq.iccol
).

2070

7 Intel® Math Kernel Library Reference Manual

p?pbtrsv
Solves a single triangular linear system via
frontsolve or backsolve where the triangular matrix
is a factor of a banded matrix computed by
p?pbtrf.

Syntax

call pspbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pdpbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pcpbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pzpbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

Description

The routine p?pbtrsv solves a banded triangular system of linear equations

A(1:n, ja:ja+n-1)*X = B(jb:jb+n-1, 1:nrhs)

or

A(1:n, ja:ja+n-1)T *X = B(jb:jb+n-1, 1:nrhs) for real flavors,

A(1:n, ja:ja+n-1)H *X = B(jb:jb+n-1, 1:nrhs) for complex flavors,

where A(1:n, ja:ja+n-1) is a banded triangular matrix factor produced by the Cholesky
factorization code p?pbtrf and is stored in A(1:n, ja:ja+n-1) and af. The matrix stored in
A(1:n, ja:ja+n-1) is either upper or lower triangular according to uplo, and the choice of
solving A(1:n, ja:ja+n-1) or A(1:n, ja:ja+n-1)T for real flavors and A(1:n, ja:ja+n-1)H

for complex flavors respectively is dictated by the user by the parameter trans.

Routine p?pbtrf must be called first.

Input Parameters

(global) CHARACTER. Must be 'U' or 'L'.uplo
If uplo = 'U', upper triangle of A(1:n, ja:ja+n-1) is
stored;

2071

ScaLAPACK Auxiliary and Utility Routines 7

If uplo = 'L', lower triangle of A(1:n, ja:ja+n-1) is
stored.

(global) CHARACTER. Must be 'N' or 'T' or 'C'.trans
If trans = 'N', solve with A(1:n, ja:ja+n-1);
If trans = 'T' or 'C' for real flavors, solve with A(1:n,
ja:ja+n-1)T.
If trans = 'C' for complex flavors, solve with conjugate
transpose(A(1:n, ja:ja+n-1)H.

(global) INTEGER.n
The number of rows and columns to be operated on, that
is, the order of the distributed submatrix A(1:n,

ja:ja+n-1). n ≥ 0.

(global) INTEGER.bw

The number of subdiagonals in 'L' or 'U', 0 ≤ bw ≤ n-1.

(global) INTEGER.nrhs
The number of right hand sides; the number of columns of
the distributed submatrix B(jb:jb+n-1, 1:nrhs); nrhs

≥ 0.

(local)a
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
Pointer into the local memory to an array with the first

DIMENSION lld_a ≥(bw+1), stored in desca.
On entry, this array contains the local pieces of the n-by-n
symmetric banded distributed Cholesky factor L or
LT*A(1:n, ja:ja+n-1).
This local portion is stored in the packed banded format
used in LAPACK. Please see the Application Notes below and
the ScaLAPACK manual for more detail on the format of
distributed matrices.

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

2072

7 Intel® Math Kernel Library Reference Manual

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

If 1D type (dtype_a = 501), then dlen ≥ 7;

If 2D type (dtype_a = 1), then dlen ≥ 9.
Contains information on mapping of A to memory. Please,
see ScaLAPACK manual for full description and options.

(local)b
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
Pointer into the local memory to an array of local lead

DIMENSION lld_b ≥ nb.
On entry, this array contains the local pieces of the right
hand sides B(jb:jb+n-1, 1:nrhs).

(global) INTEGER. The row index in the global array B that
points to the first row of the matrix to be operated on (which
may be either all of B or a submatrix of B).

ib

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix B.

descb

If 1D type (dtype_b = 502), then dlen≥ 7;

If 2D type (dtype_b = 1), then dlen≥ 9.
Contains information on mapping of B to memory. Please,
see ScaLAPACK manual for full description and options.

(local)laf
INTEGER. The size of user-input auxiliary Fillin space af.

Must be laf ≥ (nb+2*bw)*bw . If laf is not large enough,
an error code will be returned and the minimum acceptable
size will be returned in af(1).

(local)work
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.

2073

ScaLAPACK Auxiliary and Utility Routines 7

The array work is a temporary workspace array of
DIMENSION lwork. This space may be overwritten in
between calls to routines.

(local or global) INTEGER. The size of the user-input

workspace work, must be at least lwork ≥ bw*nrhs. If
lwork is too small, the minimal acceptable size will be
returned in work(1) and an error code is returned.

lwork

Output Parameters

(local)af
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
The array af is of DIMENSION laf. It contains auxiliary Fillin
space. Fillin is created during the factorization routine
p?pbtrf and this is stored in af. If a linear system is to be
solved using p?pbtrs after the factorization routine, af
must not be altered after the factorization.

On exit, this array contains the local piece of the solutions
distributed matrix X.

b

On exit, work(1) contains the minimum value of lwork.work(1)

(local) INTEGER.info
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

If the factorization routine and the solve routine are to be called separately to solve various
sets of right-hand sides using the same coefficient matrix, the auxiliary space af must not be
altered between calls to the factorization routine and the solve routine.

2074

7 Intel® Math Kernel Library Reference Manual

The best algorithm for solving banded and tridiagonal linear systems depends on a variety of
parameters, especially the bandwidth. Currently, only algorithms designed for the case N/P
>> bw are implemented. These algorithms go by many names, including Divide and Conquer,
Partitioning, domain decomposition-type, etc.

The Divide and Conquer algorithm assumes the matrix is narrowly banded compared with the
number of equations. In this situation, it is best to distribute the input matrix A
one-dimensionally, with columns atomic and rows divided amongst the processes. The basic
algorithm divides the banded matrix up into P pieces with one stored on each processor, and
then proceeds in 2 phases for the factorization or 3 for the solution of a linear system.

1. Local Phase: The individual pieces are factored independently and in parallel. These factors
are applied to the matrix creating fill-in, which is stored in a non-inspectable way in auxiliary
space af. Mathematically, this is equivalent to reordering the matrix A as PAPT and then
factoring the principal leading submatrix of size equal to the sum of the sizes of the matrices
factored on each processor. The factors of these submatrices overwrite the corresponding
parts of A in memory.

2. Reduced System Phase: A small (bw*(P-1)) system is formed representing interaction
of the larger blocks and is stored (as are its factors) in the space af. A parallel Block Cyclic
Reduction algorithm is used. For a linear system, a parallel front solve followed by an
analogous backsolve, both using the structure of the factored matrix, are performed.

3. Backsubsitution Phase: For a linear system, a local backsubstitution is performed on each
processor in parallel.

2075

ScaLAPACK Auxiliary and Utility Routines 7

p?pttrsv
Solves a single triangular linear system via
frontsolve or backsolve where the triangular matrix
is a factor of a tridiagonal matrix computed by
p?pttrf .

Syntax

call pspttrsv(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

call pdpttrsv(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

call pcpttrsv(uplo, trans, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pzpttrsv(uplo, trans, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

Description

This routine solves a tridiagonal triangular system of linear equations

A(1:n, ja:ja+n-1)*X = B(jb:jb+n-1, 1:nrhs)

or

A(1:n, ja:ja+n-1)T*X = B(jb:jb+n-1, 1:nrhs) for real flavors,

A(1:n, ja:ja+n-1)H*X = B(jb:jb+n-1, 1:nrhs) for complex flavors,

where A(1:n, ja:ja+n-1) is a tridiagonal triangular matrix factor produced by the Cholesky
factorization code p?pttrf and is stored in A(1:n, ja:ja+n-1) and af. The matrix stored in
A(1:n, ja:ja+n-1) is either upper or lower triangular according to uplo, and the choice of
solving A(1:n, ja:ja+n-1) or A(1:n, ja:ja+n-1)T for real flavors and A(1:n, ja:ja+n-1)H

for complex flavors respectively is dictated by the user by the parameter trans.

Routine p?pttrf must be called first.

Input Parameters

(global) CHARACTER. Must be 'U' or 'L'.uplo
If uplo = 'U', upper triangle of A(1:n, ja:ja+n-1) is
stored;

2076

7 Intel® Math Kernel Library Reference Manual

If uplo = 'L', lower triangle of A(1:n, ja:ja+n-1) is
stored.

(global) CHARACTER. Must be 'N' or 'C'.trans
If trans = 'N', solve with A(1:n, ja:ja+n-1);
If trans = 'C' (for complex flavors), solve with conjugate
transpose (A(1:n, ja:ja+n-1))H.

(global) INTEGER.n
The number of rows and columns to be operated on, that
is, the order of the distributed submatrix A(1:n,

ja:ja+n-1). n ≥ 0.

(global) INTEGER.nrhs
The number of right hand sides; the number of columns of

the distributed submatrix B(jb:jb+n-1, 1:nrhs); nrhs ≥
0.

(local)d
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
Pointer to the local part of the global vector storing the main

diagonal of the matrix; must be of size ≥ desca(nb_).

(local)e
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
Pointer to the local part of the global vector storing the

upper diagonal of the matrix; must be of size ≥ desca(nb_).
Globally, du(n) is not referenced, and du must be aligned
with d.

(global) INTEGER. The index in the global array A that points
to the start of the matrix to be operated on (which may be
either all of A or a submatrix of A).

ja

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

2077

ScaLAPACK Auxiliary and Utility Routines 7

If 1D type (dtype_a = 501 or 502), then dlen ≥ 7;

If 2D type (dtype_a = 1), then dlen ≥ 9.
Contains information on mapping of A to memory. Please,
see ScaLAPACK manual for full description and options.

(local)b
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
Pointer into the local memory to an array of local lead

DIMENSION lld_b ≥ nb.
On entry, this array contains the local pieces of the right
hand sides B(jb:jb+n-1, 1:nrhs).

(global) INTEGER. The row index in the global array B that
points to the first row of the matrix to be operated on (which
may be either all of B or a submatrix of B).

ib

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix B.

descb

If 1D type (dtype_b = 502), then dlen ≥ 7;

If 2D type (dtype_b = 1), then dlen ≥ 9.
Contains information on mapping of B to memory. Please,
see ScaLAPACK manual for full description and options.

(local)laf
INTEGER. The size of user-input auxiliary Fillin space af.

Must be laf ≥ (nb+2*bw)*bw.
If laf is not large enough, an error code will be returned
and the minimum acceptable size will be returned in af(1).

(local)work
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
The array work is a temporary workspace array of
DIMENSION lwork. This space may be overwritten in
between calls to routines.

2078

7 Intel® Math Kernel Library Reference Manual

(local or global) INTEGER. The size of the user-input

workspace work, must be at least lwork ≥(10+2*min(100,
nrhs))*npcol+4*nrhs. If lwork is too small, the minimal
acceptable size will be returned in work(1) and an error
code is returned.

lwork

Output Parameters

(local).d, e
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
On exit, these arrays contain information on the factors of
the matrix.

(local)af
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
The array af is of DIMENSION laf. It contains auxiliary Fillin
space. Fillin is created during the factorization routine
p?pbtrf and this is stored in af. If a linear system is to be
solved using p?pttrs after the factorization routine, af
must not be altered after the factorization.

On exit, this array contains the local piece of the solutions
distributed matrix X.

b

On exit, work(1) contains the minimum value of lwork.work(1)

(local) INTEGER.info
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

2079

ScaLAPACK Auxiliary and Utility Routines 7

p?potf2
Computes the Cholesky factorization of a
symmetric/Hermitian positive definite matrix (local
unblocked algorithm).

Syntax

call pspotf2(uplo, n, a, ia, ja, desca, info)

call pdpotf2(uplo, n, a, ia, ja, desca, info)

call pcpotf2(uplo, n, a, ia, ja, desca, info)

call pzpotf2(uplo, n, a, ia, ja, desca, info)

Description

This routine computes the Cholesky factorization of a real symmetric or complex Hermitian
positive definite distributed matrix sub (A)=A(ia:ia+n-1, ja:ja+n-1).

The factorization has the form

sub (A) = U' U, if uplo = 'U', or

sub (A) = LL', if uplo = 'L',

where U is an upper triangular matrix and L is lower triangular.

Input Parameters

(global) CHARACTER.uplo
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix A is stored.
= 'U': upper triangle of sub (A) is stored;
= 'L': lower triangle of sub (A) is stored.

(global) INTEGER.n
The number of rows and columns to be operated on, that

is, the order of the distributed submatrix sub (A). n ≥ 0.

(local)a
REAL for pspotf2
DOUBLE PRECISION or pdpotf2
COMPLEX for pcpotf2
COMPLEX*16 for pzpotf2.

2080

7 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of
DIMENSION(lld_a, LOCc(ja+n-1)) containing the local
pieces of the n-by-n symmetric distributed matrix sub(A) to
be factored.
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular matrix and the strictly
lower triangular part of this matrix is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular matrix and the strictly
upper triangular part of sub(A) is not referenced.

(global) INTEGER.ia, ja
The row and column indices in the global array A indicating
the first row and the first column of the sub(A), respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

Output Parameters

(local)a
On exit,
if uplo = 'U', the upper triangular part of the distributed
matrix contains the Cholesky factor U;
if uplo = 'L', the lower triangular part of the distributed
matrix contains the Cholesky factor L.

(local) INTEGER.info
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value,
then info = -i.
> 0: if info = k, the leading minor of order k is not
positive definite, and the factorization could not be
completed.

2081

ScaLAPACK Auxiliary and Utility Routines 7

p?rscl
Multiplies a vector by the reciprocal of a real scalar.

Syntax

call psrscl(n, sa, sx, ix, jx, descx, incx)

call pdrscl(n, sa, sx, ix, jx, descx, incx)

call pcsrscl(n, sa, sx, ix, jx, descx, incx)

call pzdrscl(n, sa, sx, ix, jx, descx, incx)

Description

This routine multiplies an n-element real/complex vector sub(x) by the real scalar 1/a. This is
done without overflow or underflow as long as the final result sub(x)/a does not overflow or
underflow.

sub(x) denotes x(ix:ix+n-1, jx:jx), if incx = 1,

and x(ix:ix, jx:jx+n-1), if incx = m_x.

Input Parameters

(global) INTEGER.n
The number of components of the distributed vector sub(x).

n ≥ 0.

REAL for psrscl/pcsrsclsa
DOUBLE PRECISION for pdrscl/pzdrscl.
The scalar a that is used to divide each component of the

vector x. This argument must be ≥ 0, or the subroutine will
divide by zero.

REAL forpsrsclsx
DOUBLE PRECISION for pdrscl
COMPLEX for pcsrscl
COMPLEX*16 for pzdrscl.
Array containing the local pieces of a distributed matrix of
DIMENSION of at least ((jx-1)*m_x + ix +
(n-1)*abs(incx)). This array contains the entries of the
distributed vector sub(x).

2082

7 Intel® Math Kernel Library Reference Manual

(global) INTEGER.The row index of the submatrix of the
distributed matrix X to operate on.

ix

(global) INTEGER.jx
The column index of the submatrix of the distributed matrix
X to operate on.

(global and local). INTEGER.descx
Array of DIMENSION 8. The array descriptor for the
distributed matrix X.

(global) INTEGER.incx
The increment for the elements of X. This version supports
only two values of incx, namely 1 and m_x.

Output Parameters

On exit, the result x/a.sx

p?sygs2/p?hegs2
Reduces a symmetric/Hermitian definite
generalized eigenproblem to standard form, using
the factorization results obtained from p?potrf
(local unblocked algorithm).

Syntax

call pssygs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

call pdsygs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

call pchegs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

call pzhegs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

Description

The routine p?sygs2/p?hegs2 reduces a real symmetric-definite or a complex Hermitian-definite
generalized eigenproblem to standard form.

sub(A) denotes A(ia:ia+n-1, ja:ja+n-1) and sub(B) denotes B(ib:ib+n-1, jb:jb+n-1).

If ibtype = 1, the problem is

sub(A)*x = λ*sub(B)*x,

2083

ScaLAPACK Auxiliary and Utility Routines 7

and sub(A) is overwritten by

inv(UT)*sub(A)*inv(U) or inv(L)*sub(A)*inv(LT) for real flavors and

inv(UH)*sub(A)*inv(U) or inv(L)*sub(A)*inv(LH) for complex flavors.

If ibtype = 2 or 3, the problem is

sub(A)*sub(B)x = λ*x or sub(B)*sub(A)x =λ*x,

and sub(A) is overwritten

by U*sub(A)*UT or L**T*sub(A)*L for real flavors and

by U*sub(A)*UH or L**H*sub(A)*L for complex flavors.

sub(B) must have been previously factorized as UT*U or L*LT (for real flavors) or as UH*U or
L*LH (for complex flavors) by p?potrf.

Input Parameters

(global) INTEGER.ibtype
= 1: compute inv(UT)*sub(A)*inv(U) or
inv(L)*sub(A)*inv(LT) for real subroutines, and
inv(UH)*sub(A)*inv(U) or inv(L)*sub(A)*inv(LH) for complex
subroutines;
= 2 or 3: compute U*sub(A)*UT or LT*sub(A)*L for real
subroutines, and by U*sub(A)*UH or LH*sub(A)*L for complex
subroutines.

(global) CHARACTERuplo
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix sub(A) is stored, and how
sub(B) is factorized.
= 'U': Upper triangular of sub(A) is stored and sub(B) is
factorized as UT*U (for real subroutines) or as UH*U (for
complex subroutines).
= 'L': Lower triangular of sub(A) is stored and sub(B) is
factorized as L*LT (for real subroutines) or as L*LH (for
complex subroutines)

(global) INTEGER.n

The order of the matrices sub(A) and sub(B). n ≥ 0.

(local)a

2084

7 Intel® Math Kernel Library Reference Manual

REAL for pssygs2
DOUBLE PRECISION for pdsygs2
COMPLEX for pchegs2
COMPLEX*16 for pzhegs2.
Pointer into the local memory to an array,
DIMENSION(lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the n-by-n
symmetric/Hermitian distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular part of the matrix, and
the strictly lower triangular part of sub(A) is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular part of the matrix, and
the strictly upper triangular part of sub(A) is not referenced.

(global) INTEGER.ia, ja
The row and column indices in the global array A indicating
the first row and the first column of the sub(A), respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)B
REAL for pssygs2
DOUBLE PRECISION for pdsygs2
COMPLEX for pchegs2
COMPLEX*16 for pzhegs2.
Pointer into the local memory to an array,
DIMENSION(lld_b, LOCc(jb+n-1)).
On entry, this array contains the local pieces of the
triangular factor from the Cholesky factorization of sub(B)
as returned by p?potrf.

(global) INTEGER.ib, jb
The row and column indices in the global array B indicating
the first row and the first column of the sub(B), respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix B.

descb

2085

ScaLAPACK Auxiliary and Utility Routines 7

Output Parameters

(local)a
On exit, if info = 0, the transformed matrix is stored in
the same format as sub(A).

INTEGER.info
= 0: successful exit.
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?sytd2/p?hetd2
Reduces a symmetric/Hermitian matrix to real
symmetric tridiagonal form by an
orthogonal/unitary similarity transformation (local
unblocked algorithm).

Syntax

call pssytd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pdsytd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pchetd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pzhetd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

Description

The routine p?sytd2/p?hetd2 reduces a real symmetric/complex Hermitian matrix sub(A) to
symmetric/Hermitian tridiagonal form T by an orthogonal/unitary similarity transformation:

Q' sub(A)Q = T, where sub(A) = A(ia:ia+n-1, ja:ja+n-1).

Input Parameters

(global) CHARACTER.uplo
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix sub(A) is stored:
= 'U': upper triangular

2086

7 Intel® Math Kernel Library Reference Manual

= 'L': lower triangular

(global) INTEGER.n
The number of rows and columns to be operated on, that

is, the order of the distributed submatrix sub(A). n ≥ 0.

(local)a
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
Pointer into the local memory to an array,
DIMENSION(lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the n-by-n
symmetric/Hermitian distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
sub(A) contains the upper triangular part of the matrix, and
the strictly lower triangular part of sub(A) is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
sub(A) contains the lower triangular part of the matrix, and
the strictly upper triangular part of sub(A) is not referenced.

(global) INTEGER.ia, ja
The row and column indices in the global array A indicating
the first row and the first column of the sub(A), respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

(local)work
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
The array work is a temporary workspace array of
DIMENSION lwork.

Output Parameters

On exit, if uplo = 'U', the diagonal and first superdiagonal
of sub(A) are overwritten by the corresponding elements of
the tridiagonal matrix T, and the elements above the first

a

2087

ScaLAPACK Auxiliary and Utility Routines 7

superdiagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors;
if uplo = 'L', the diagonal and first subdiagonal of A are
overwritten by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array tau, represent the orthogonal/unitary matrix Q
as a product of elementary reflectors. See the Application
Notes below.

(local)d
REAL for pssytd2/pchetd2
DOUBLE PRECISION for pdsytd2/pzhetd2.
Array, DIMENSION(LOCc(ja+n-1)). The diagonal elements
of the tridiagonal matrix T:
d(i) = a(i,i); d is tied to the distributed matrix A.

(local)e
REAL for pssytd2/pchetd2
DOUBLE PRECISION for pdsytd2/pzhetd2.
Array, DIMENSION(LOCc(ja+n-1)),
if uplo = 'U', LOCc(ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix T:
e(i) = a(i,i+1) if uplo = 'U',
e(i) = a(i+1,i) if uplo = 'L'.
e is tied to the distributed matrix A.

(local)tau
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
Array, DIMENSION(LOCc(ja+n-1)).
The scalar factors of the elementary reflectors. tau is tied
to the distributed matrix A.

On exit, work(1) returns the minimal and optimal value of
lwork.

work(1)

(local or global) INTEGER.lwork
The dimension of the workspace array work.

lwork is local input and must be at least lwork ≥ 3n.

2088

7 Intel® Math Kernel Library Reference Manual

If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum
and optimal size for all work arrays. Each of these values
is returned in the first entry of the corresponding work array,
and no error message is issued by pxerbla.

(local) INTEGER.info
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

Q = H(n-1). . . H(2) H(1)

Each H(i) has the form

H(i) = I - tau*v*v',

where tau is a real/complex scalar, and v is a real/complex vector with v(i+1:n) = 0 and
v(i) = 1; v(1:i-1) is stored on exit in A(ia:ia+i-2, ja+i), and tau in TAU(ja+i-1).

If uplo = 'L', the matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(n-1).

Each H(i) has the form

H(i) = I - tau*v*v' ,

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i) = 0 and v(i+1)
= 1; v(i+2:n) is stored on exit in A(ia+i+1:ia+n-1, ja+i-1), and tau in TAU(ja+i-1).

The contents of sub (A) on exit are illustrated by the following examples with n = 5:

2089

ScaLAPACK Auxiliary and Utility Routines 7

where d and e denotes diagonal and off-diagonal elements of T, and vi denotes an element of
the vector defining H(i).

NOTE. The distributed submatrix sub(A) must verify some alignment properties, namely
the following expression should be true:

(mb_a.eq.nb_a .AND. iroffa.eq.icoffa) with iroffa = mod(ia - 1, mb_a)
and icoffa = mod(ja -1, nb_a).

p?trti2
Computes the inverse of a triangular matrix (local
unblocked algorithm).

Syntax

call pstrti2(uplo, diag, n, a, ia, ja, desca, info)

call pdtrti2(uplo, diag, n, a, ia, ja, desca, info)

call pctrti2(uplo, diag, n, a, ia, ja, desca, info)

call pztrti2(uplo, diag, n, a, ia, ja, desca, info)

Description

This routine computes the inverse of a real/complex upper or lower triangular block matrix sub
(A) = A(ia:ia+n-1, ja:ja+n-1).

This matrix should be contained in one and only one process memory space (local operation).

2090

7 Intel® Math Kernel Library Reference Manual

Input Parameters

(global) CHARACTER*1.uplo
Specifies whether the matrix sub (A) is upper or lower
triangular.
= 'U': sub (A) is upper triangular
= 'L': sub (A) is lower triangular.

(global) CHARACTER*1.diag
Specifies whether or not the matrix A is unit triangular.
= 'N': sub (A) is non-unit triangular
= 'U': sub (A) is unit triangular.

(global) INTEGER.n
The number of rows and columns to be operated on, i.e.,

the order of the distributed submatrix sub(A). n ≥ 0.

(local)a
REAL for pstrti2
DOUBLE PRECISION for pdtrti2
COMPLEX for pctrti2
COMPLEX*16 for pztrti2.
Pointer into the local memory to an array,
DIMENSION(lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the
triangular matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of
the matrix sub(A) contains the upper triangular part of the
matrix, and the strictly lower triangular part of sub(A) is not
referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
the matrix sub(A) contains the lower triangular part of the
matrix, and the strictly upper triangular part of sub(A) is
not referenced. If diag = 'U', the diagonal elements of
sub(A) are not referenced either and are assumed to be 1.

(global) INTEGER.ia, ja
The row and column indices in the global array A indicating
the first row and the first column of the sub(A), respectively.

(global and local) INTEGER array, DIMENSION (dlen_). The
array descriptor for the distributed matrix A.

desca

2091

ScaLAPACK Auxiliary and Utility Routines 7

Output Parameters

On exit, the (triangular) inverse of the original matrix, in
the same storage format.

a

INTEGER.info
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had
an illegal value,
then info = - (i*100),
if the i-th argument is a scalar and had an illegal value,
then info = -i.

?lamsh
Sends multiple shifts through a small (single node)
matrix to maximize the number of bulges that can
be sent through.

Syntax

call slamsh(s, lds, nbulge, jblk, h, ldh, n, ulp)

call dlamsh(s, lds, nbulge, jblk, h, ldh, n, ulp)

Description

This routine sends multiple shifts through a small (single node) matrix to see how small
consecutive subdiagonal elements are modified by subsequent shifts in an effort to maximize
the number of bulges that can be sent through. The subroutine should only be called when
there are multiple shifts/bulges (nbulge > 1) and the first shift is starting in the middle of
an unreduced Hessenberg matrix because of two or more small consecutive subdiagonal
elements.

Input Parameters

(local)s
INTEGER. REAL for slamsh
DOUBLE PRECISION for dlamsh
Array, DIMENSION (lds,*).

2092

7 Intel® Math Kernel Library Reference Manual

On entry, the matrix of shifts. Only the 2x2 diagonal of s is
referenced. It is assumed that s has jblk double shifts (size
2).

(local) INTEGER.lds
On entry, the leading dimension of S; unchanged on exit.

1<nbulge ≤ jblk ≤ lds/2.

(local) INTEGER.nbulge
On entry, the number of bulges to send through h (>1).
nbulge should be less than the maximum determined

(jblk). 1<nbulge ≤ jblk ≤ lds/2.

(local) INTEGER.jblk
On entry, the leading dimension of S; unchanged on exit.

(local) INTEGER.h
REAL for slamsh
DOUBLE PRECISION for dlamsh
Array, DIMENSION (lds, n).
On entry, the local matrix to apply the shifts on.
h should be aligned so that the starting row is 2.

(local)ldh
INTEGER.
On entry, the leading dimension of H; unchanged on exit.

(local) INTEGER.n
On entry, the size of H. If all the bulges are expected to go
through, n should be at least 4nbulge+2. Otherwise, nbulge
may be reduced by this routine.

(local)ulp
REAL for slamsh
DOUBLE PRECISION for dlamsh
On entry, machine precision. Unchanged on exit.

Output Parameters

On exit, the data is rearranged in the best order for applying.s

On exit, the maximum number of bulges that can be sent
through.

nbulge

On exit, the data is destroyed.h

2093

ScaLAPACK Auxiliary and Utility Routines 7

?laref
Applies Householder reflectors to matrices on either
their rows or columns.

Syntax

call slaref(type, a, lda, wantz, z, ldz, block, irow1, icol1, istart, istop,
itmp1, itmp2, liloz, lihiz, vecs, v2, v3, t1, t2, t3)

call dlaref(type, a, lda, wantz, z, ldz, block, irow1, icol1, istart, istop,
itmp1, itmp2, liloz, lihiz, vecs, v2, v3, t1, t2, t3)

Description

This routine applies one or several Householder reflectors of size 3 to one or two matrices (if
column is specified) on either their rows or columns.

Input Parameters

(global) CHRACTER*1.type
If type = 'R', apply reflectors to the rows of the matrix
(apply from left). Otherwise, apply reflectors to the columns
of the matrix. Unchanged on exit.

(global) REAL for slarefa
DOUBLE PRECISION for dlaref
Array, DIMENSION (lda, *).
On entry, the matrix to receive the reflections.

(local) INTEGER.lda
On entry, the leading dimension of A; unchanged on exit.

(global) LOGICAL.wantz
If wantz = .TRUE., apply any column reflections to Z as
well.
If wantz = .FALSE., do no additional work on Z.

(global) REAL for slarefz
DOUBLE PRECISION for dlaref
Array, DIMENSION (ldz, *).
On entry, the second matrix to receive column reflections.

(local) INTEGER.ldz
On entry, the leading dimension of Z; unchanged on exit.

2094

7 Intel® Math Kernel Library Reference Manual

(global). LOGICAL.block
= .TRUE. : apply several reflectors at once and read their
data from the vecs array;
= .FALSE. : apply the single reflector given by v2, v3, t1,
t2, and t3.

(local) INTEGER.irow1
On entry, the local row element of the matrix A.

(local) INTEGER.icol1
On entry, the local column element of the matrix A.

(global) INTEGER.istart
Specifies the "number" of the first reflector.
istart is used as an index into vecs if block is set. istart
is ignored if block is .FALSE. .

(global) INTEGER.istop
Specifies the "number" of the last reflector.
istop is used as an index into vecs if block is set. istop
is ignored if block is .FALSE. .

(local) INTEGER.itmp1
Starting range into A. For rows, this is the local first column.
For columns, this is the local first row.

(local) INTEGER.itmp2
Ending range into A. For rows, this is the local last column.
For columns, this is the local last row.

(local). INTEGER.liloz, lihiz
Serve the same purpose as itmp1, itmp2 but for Z when
wantz is set.

(global)vecs
REAL for slaref
DOUBLE PRECISION for dlaref.
Array of size 3 *n (matrix size). This array holds the size 3
reflectors one after another and is only accessed when block
is .TRUE.

(global). INTEGER.v2,v3,t1,t2,t3
REAL for slaref
DOUBLE PRECISION for dlaref.

2095

ScaLAPACK Auxiliary and Utility Routines 7

These parameters hold information on a single size 3
Householder reflector and are read when block is .FALSE.,
and overwritten when block is .TRUE..

Output Parameters

On exit, the updated matrix.a

Changed only if wantz is set. If wantz is .FALSE. , z is not
referenced.

z

Undefined.irow1

Undefined.icol1

These parameters are read when block is .FALSE., and
overwritten when block is .TRUE..

v2,v3,t1,t2,t3

?lasorte
Sorts eigenpairs by real and complex data types.

Syntax

call slasorte(s, lds, j, out, info)

call dlasorte(s, lds, j, out, info)

Description

This routine sorts eigenpairs so that real eigenpairs are together and complex eigenpairs are
together. This helps to employ 2x2 shifts easily since every 2nd subdiagonal is guaranteed to
be zero. This routine does no parallel work and makes no calls.

Input Parameters

(local) INTEGER.s
REAL for slasorte
DOUBLE PRECISION for dlasorte
Array, DIMENSION (lds).
On entry, a matrix already in Schur form.

(local) INTEGER.lds
On entry, the leading dimension of the array s; unchanged
on exit.

2096

7 Intel® Math Kernel Library Reference Manual

(local) INTEGER.j
On entry, the order of the matrix S; unchanged on exit.

(local) INTEGER.out
REAL for slasorte
DOUBLE PRECISION for dlasorte
Array, DIMENSION (2*j). The work buffer required by the
routine.

(local) INTEGER.info
Set, if the input matrix had an odd number of real
eigenvalues and things could not be paired or if the input
matrix S was not originally in Schur form. 0 indicates
successful completion.

Output Parameters

On exit, the diagonal blocks of S have been rewritten to pair
the eigenvalues. The resulting matrix is no longer similar
to the input.

s

Work buffer.out

?lasrt2
Sorts numbers in increasing or decreasing order.

Syntax

call slasrt2(id, n, d, key, info)

call dlasrt2(id, n, d, key, info)

Description

This routine is modified LAPACK routine ?lasrt, which sorts the numbers in d in increasing
order (if id = 'I') or in decreasing order (if id = 'D'). It uses Quick Sort, reverting to

Insertion Sort on arrays of size ≤ 20. Dimension of STACK limits n to about 232.

Input Parameters

CHARACTER*1.id
= 'I': sort d in increasing order;

2097

ScaLAPACK Auxiliary and Utility Routines 7

= 'D': sort d in decreasing order.

INTEGER. The length of the array d.n

REAL for slasrt2d
DOUBLE PRECISION for dlasrt2.
Array, DIMENSION (n).
On entry, the array to be sorted.

INTEGER.key
Array, DIMENSION (n).
On entry, key contains a key to each of the entries in d().
Typically, key(i) = i for all i .

Output Parameters

On exit, d has been sorted into increasing orderD

(d(1) ≤ ... ≤ d(n)) or into decreasing order

(d(1) ≥ ... ≥ d(n)), depending on id.

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value.

On exit, key is permuted in exactly the same manner as d()
was permuted from input to output. Therefore, if key(i)
= i for all i upon input, then d_out(i) = d_in(key(i)).

key

?stein2
Computes the eigenvectors corresponding to
specified eigenvalues of a real symmetric
tridiagonal matrix, using inverse iteration.

Syntax

call sstein2(n, d, e, m, w, iblock, isplit, orfac, z, ldz, work, iwork, ifail,
info)

call dstein2(n, d, e, m, w, iblock, isplit, orfac, z, ldz, work, iwork, ifail,
info)

2098

7 Intel® Math Kernel Library Reference Manual

Description

This routine is a modified LAPACK routine ?stein. It computes the eigenvectors of a real
symmetric tridiagonal matrix T corresponding to specified eigenvalues, using inverse iteration.

The maximum number of iterations allowed for each eigenvector is specified by an internal
parameter maxits (currently set to 5).

Input Parameters

INTEGER. The order of the matrix T (n ≥ 0).n

INTEGER. The number of eigenvectors to be found (0 ≤ m

≤ n).

m

REAL for single-precision flavorsd, e, w
DOUBLE PRECISION for double-precision flavors.
Arrays: d(*), DIMENSION (n). The n diagonal elements of
the tridiagonal matrix T.
e(*), DIMENSION (n).
The (n-1) subdiagonal elements of the tridiagonal matrix
T, in elements 1 to n-1. e(n) need not be set.
w(*), DIMENSION (n).
The first m elements of w contain the eigenvalues for which
eigenvectors are to be computed. The eigenvalues should
be grouped by split-off block and ordered from smallest to
largest within the block. (The output array w from ?stebz
with ORDER = 'B' is expected here).
The dimension of w must be at least max(1, n).

INTEGER.iblock
Array, DIMENSION (n).
The submatrix indices associated with the corresponding
eigenvalues in w ;
iblock(i) = 1, if eigenvalue w(i) belongs to the first
submatrix from the top,
iblock(i) = 2, if eigenvalue w(i) belongs to the second
submatrix, etc. (The output array iblock from ?stebz is
expected here).

INTEGER.isplit
Array, DIMENSION (n).

2099

ScaLAPACK Auxiliary and Utility Routines 7

The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to isplit(1),
the second submatrix consists of rows/columns
isplit(1)+1 through isplit(2), etc. (The output array
isplit from ?stebz is expected here).

REAL for single-precision flavorsorfac
DOUBLE PRECISION for double-precision flavors.
orfac specifies which eigenvectors should be orthogonalized.
Eigenvectors that correspond to eigenvalues which are within
orfac*|| T || of each other are to be orthogonalized.

INTEGER. The leading dimension of the output array z; ldz

≥ max(1, n).

ldz

REAL for single-precision flavorswork
DOUBLE PRECISION for double-precision flavors.
Workspace array, DIMENSION (5n).

INTEGER. Workspace array, DIMENSION (n).iwork

Output Parameters

REAL for sstein2z
DOUBLE PRECISION for dstein2
Array, DIMENSION (ldz, m).
The computed eigenvectors. The eigenvector associated
with the eigenvalue w(i) is stored in the i-th column of z.
Any vector that fails to converge is set to its current iterate
after maxits iterations.

INTEGER.ifail
Array, DIMENSION (m).
On normal exit, all elements of ifail are zero. If one or
more eigenvectors fail to converge after maxits iterations,
then their indices are stored in the array ifail.

INTEGER.info
info = 0, the exit is successful.
info < 0: if info = -i, the i-th had an illegal value.
info > 0: if info = i, then i eigenvectors failed to
converge in maxits iterations. Their indices are stored in
the array ifail.

2100

7 Intel® Math Kernel Library Reference Manual

?dbtf2
Computes an LU factorization of a general band
matrix with no pivoting (local unblocked algorithm).

Syntax

call sdbtf2(m, n, kl, ku, ab, ldab, info)

call ddbtf2(m, n, kl, ku, ab, ldab, info)

call cdbtf2(m, n, kl, ku, ab, ldab, info)

call zdbtf2(m, n, kl, ku, ab, ldab, info)

Description

This routine computes an LU factorization of a general real/complex m-by-n band matrix A
without using partial pivoting with row interchanges.

This is the unblocked version of the algorithm, calling BLAS Routines and Functions.

Input Parameters

INTEGER. The number of rows of the matrix A(m ≥ 0).m

INTEGER. The number of columns in A(n ≥ 0).n

INTEGER. The number of sub-diagonals within the band of

A(kl ≥ 0).

kl

INTEGER. The number of super-diagonals within the band

of A(ku ≥ 0).

ku

REAL for sdbtf2ab
DOUBLE PRECISION for ddbtf2
COMPLEX for cdbtf2
COMPLEX*16 for zdbtf2.
Array, DIMENSION (ldab, n).
The matrix A in band storage, in rows kl+1 to 2kl+ku+1;
rows 1 to kl of the array need not be set. The j-th column
of A is stored in the j-th column of the array ab as follows:

ab(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku) ≤ i

≤ min(m,j+kl).

2101

ScaLAPACK Auxiliary and Utility Routines 7

INTEGER. The leading dimension of the array ab.ldab

(ldab ≥ 2kl + ku +1)

Output Parameters

On exit, details of the factorization: U is stored as an upper
triangular band matrix with kl+ku superdiagonals in rows
1 to kl+ku+1, and the multipliers used during the
factorization are stored in rows kl+ku+2 to 2*kl+ku+1.
See the Application Notes below for further details.

ab

INTEGER.info
= 0: successful exit
< 0: if info = - i, the i-th argument had an illegal value,
> 0: if info = + i, u(i,i) is 0. The factorization has
been completed, but the factor U is exactly singular. Division
by 0 will occur if you use the factor U for solving a system
of linear equations.

Application Notes

The band storage scheme is illustrated by the following example, when m = n = 6, kl = 2,
ku = 1:

The routine does not use array elements marked *; elements marked + need not be set on
entry, but the routine requires them to store elements of U, because of fill-in resulting from
the row interchanges.

2102

7 Intel® Math Kernel Library Reference Manual

?dbtrf
Computes an LU factorization of a general band
matrix with no pivoting (local blocked algorithm).

Syntax

call sdbtrf(m, n, kl, ku, ab, ldab, info)

call ddbtrf(m, n, kl, ku, ab, ldab, info)

call cdbtrf(m, n, kl, ku, ab, ldab, info)

call zdbtrf(m, n, kl, ku, ab, ldab, info)

Description

This routine computes an LU factorization of a real m-by-n band matrix A without using partial
pivoting or row interchanges.

This is the blocked version of the algorithm, calling BLAS Routines and Functions.

Input Parameters

INTEGER. The number of rows of the matrix A (m ≥ 0).m

INTEGER. The number of columns in A(n ≥ 0).n

INTEGER. The number of sub-diagonals within the band of

A(kl ≥ 0).

kl

INTEGER. The number of super-diagonals within the band

of A(ku ≥ 0).

ku

REAL for sdbtrfab
DOUBLE PRECISION for ddbtrf
COMPLEX for cdbtrf
COMPLEX*16 for zdbtrf.
Array, DIMENSION (ldab, n).
The matrix A in band storage, in rows kl+1 to 2kl+ku+1;
rows 1 to kl of the array need not be set. The j-th column
of A is stored in the j-th column of the array ab as follows:

ab(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku) ≤ i ≤
min(m,j+kl).

2103

ScaLAPACK Auxiliary and Utility Routines 7

INTEGER. The leading dimension of the array ab.ldab

(ldab ≥ 2kl + ku +1)

Output Parameters

On exit, details of the factorization: U is stored as an upper
triangular band matrix with kl+ku superdiagonals in rows
1 to kl+ku+1, and the multipliers used during the
factorization are stored in rows kl+ku+2 to 2*kl+ku+1. See
the Application Notes below for further details.

ab

INTEGER.info
= 0: successful exit
< 0: if info = - i, the i-th argument had an illegal value,
> 0: if info = + i, u(i,i) is 0. The factorization has
been completed, but the factor U is exactly singular. Division
by 0 will occur if you use the factor U for solving a system
of linear equations.

Application Notes

The band storage scheme is illustrated by the following example, when m = n = 6, kl = 2,
ku = 1:

The routine does not use array elements marked *.

2104

7 Intel® Math Kernel Library Reference Manual

?dttrf
Computes an LU factorization of a general
tridiagonal matrix with no pivoting (local blocked
algorithm).

Syntax

call sdttrf(n, dl, d, du, info)

call ddttrf(n, dl, d, du, info)

call cdttrf(n, dl, d, du, info)

call zdttrf(n, dl, d, du, info)

Description

This routine computes an LU factorization of a real or complex tridiagonal matrix A using
elimination without partial pivoting.

The factorization has the form A = L*U, where L is a product of unit lower bidiagonal matrices
and U is upper triangular with nonzeros only in the main diagonal and first superdiagonal.

Input Parameters

INTEGER. The order of the matrix A(n ≥ 0).n

REAL for sdttrfdl, d, du
DOUBLE PRECISION for ddttrf
COMPLEX for cdttrf
COMPLEX*16 for zdttrf.
Arrays containing elements of A.
The array dl of DIMENSION(n - 1) contains the
sub-diagonal elements of A.
The array d of DIMENSION n contains the diagonal elements
of A.
The array du of DIMENSION(n - 1) contains the
super-diagonal elements of A.

Output Parameters

Overwritten by the (n-1) multipliers that define the matrix
L from the LU factorization of A.

dl

2105

ScaLAPACK Auxiliary and Utility Routines 7

Overwritten by the n diagonal elements of the upper
triangular matrix U from the LU factorization of A.

d

Overwritten by the (n-1) elements of the first
super-diagonal of U.

du

INTEGER.info
= 0: successful exit
< 0: if info = - i, the i-th argument had an illegal value,
> 0: if info = i, u(i,i) is exactly 0. The factorization
has been completed, but the factor U is exactly singular.
Division by 0 will occur if you use the factor U for solving a
system of linear equations.

?dttrsv
Solves a general tridiagonal system of linear
equations using the LU factorization computed by
?dttrf.

Syntax

call sdttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

call ddttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

call cdttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

call zdttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

Description

This routine solves one of the following systems of linear equations:

L*X = B, LT*X = B, or LH*X = B,

U*X = B, UT*X = B, or UH*X = B

with factors of the tridiagonal matrix A from the LU factorization computed by ?dttrf.

Input Parameters

CHARACTER*1.uplo
Specifies whether to solve with L or U.

CHARACTER. Must be 'N' or 'T' or 'C'.trans

2106

7 Intel® Math Kernel Library Reference Manual

Indicates the form of the equations:
If trans = 'N', then A*X = B is solved for X (no
transpose).
If trans = 'T', then AT*X = B is solved for X (transpose).
If trans = 'C', then AH*X = B is solved for X (conjugate
transpose).

INTEGER. The order of the matrix A(n ≥ 0).n

INTEGER. The number of right-hand sides, that is, the

number of columns in the matrix B(nrhs ≥ 0).

nrhs

REAL for sdttrsvdl,d,du,b
DOUBLE PRECISION for ddttrsv
COMPLEX for cdttrsv
COMPLEX*16 for zdttrsv.
Arrays of DIMENSIONs: dl(n -1), d(n), du(n -1),
b(ldb,nrhs).
The array dl contains the (n - 1) multipliers that define
the matrix L from the LU factorization of A.
The array d contains n diagonal elements of the upper
triangular matrix U from the LU factorization of A.
The array du contains the (n - 1) elements of the first
super-diagonal of U.
On entry, the array b contains the right-hand side matrix
B.

INTEGER. The leading dimension of the array b; ldb ≥
max(1, n).

ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER. If info=0, the execution is successful.info
If info = -i, the i-th parameter had an illegal value.

2107

ScaLAPACK Auxiliary and Utility Routines 7

?pttrsv
Solves a symmetric (Hermitian) positive-definite
tridiagonal system of linear equations, using the
L*D*LH factorization computed by ?pttrf.

Syntax

call spttrsv(trans, n, nrhs, d, e, b, ldb, info)

call dpttrsv(trans, n, nrhs, d, e, b, ldb, info)

call cpttrsv(uplo, trans, n, nrhs, d, e, b, ldb, info)

call zpttrsv(uplo, trans, n, nrhs, d, e, b, ldb, info)

Description

This routine solves one of the triangular systems:

LT*X = B, or L*X = B for real flavors,

or

L*X = B, or LH*X = B,

U*X = B, or UH*X = B for complex flavors,

where L (or U for complex flavors) is the Cholesky factor of a Hermitian positive-definite
tridiagonal matrix A such that

A = L*D*LH (computed by spttrf/dpttrf)

or

A = UH*D*U or A = L*D*LH (computed by cpttrf/zpttrf).

Input Parameters

CHARACTER*1. Must be 'U' or 'L'.uplo
Specifies whether the superdiagonal or the subdiagonal of
the tridiagonal matrix A is stored and the form of the
factorization:
If uplo = 'U', e is the superdiagonal of U, and A =
U'*D*U;
if uplo = 'L', e is the subdiagonal of L, and A = L*D*L'.
The two forms are equivalent, if A is real.

2108

7 Intel® Math Kernel Library Reference Manual

CHARACTER.trans
Specifies the form of the system of equations:
for real flavors:
if trans = 'N': L*X = B (no transpose)
if trans = 'T': LT*X = B (transpose)
for complex flavors:
if trans = 'N': U*X = B or L*X = B (no transpose)
if trans = 'C': UH*X = B or LH*X = B (conjugate
transpose).

INTEGER. The order of the tridiagonal matrix A. n ≥ 0.n

INTEGER. The number of right hand sides, that is, the

number of columns of the matrix B. nrhs ≥ 0.

nrhs

REAL array, DIMENSION (n). The n diagonal elements of the
diagonal matrix D from the factorization computed by
?pttrf.

d

COMPLEX array, DIMENSION(n-1). The (n-1) off-diagonal
elements of the unit bidiagonal factor U or L from the
factorization computed by ?pttrf. See uplo.

e

COMPLEX array, DIMENSION (ldb, nrhs).b
On entry, the right hand side matrix B.

INTEGER.ldb
The leading dimension of the array b.

ldb ≥ max(1, n).

Output Parameters

On exit, the solution matrix X.b

INTEGER.info
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value.

2109

ScaLAPACK Auxiliary and Utility Routines 7

?steqr2
Computes all eigenvalues and, optionally,
eigenvectors of a symmetric tridiagonal matrix
using the implicit QL or QR method.

Syntax

call ssteqr2(compz, n, d, e, z, ldz, nr, work, info)

call dsteqr2(compz, n, d, e, z, ldz, nr, work, info)

Description

This routine is a modified version of LAPACK routine ?steqr. The routine ?steqr2 computes
all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit
QL or QR method. ?steqr2 is modified from ?steqr to allow each ScaLAPACK process running
?steqr2 to perform updates on a distributed matrix Q. Proper usage of ?steqr2 can be gleaned
from examination of ScaLAPACK routine p?syev.

Input Parameters

CHARACTER*1. Must be 'N' or 'I'.compz
If compz = 'N', the routine computes eigenvalues only. If
compz = 'I', the routine computes the eigenvalues and
eigenvectors of the tridiagonal matrix T.
z must be initialized to the identity matrix by p?laset or
?laset prior to entering this subroutine.

INTEGER. The order of the matrix T(n ≥ 0).n

REAL for single-precision flavorsd, e, work
DOUBLE PRECISION for double-precision flavors.
Arrays: d contains the diagonal elements of T. The dimension
of d must be at least max(1, n).
e contains the (n-1) subdiagonal elements of T. The
dimension of e must be at least max(1, n-1).
work is a workspace array. The dimension of work is max(1,
2*n-2). If compz = 'N', then work is not referenced.

(local)z
REAL for ssteqr2
DOUBLE PRECISION for dsteqr2

2110

7 Intel® Math Kernel Library Reference Manual

Array, global DIMENSION (n, n), local DIMENSION (ldz, nr).
If compz = 'V', then z contains the orthogonal matrix used
in the reduction to tridiagonal form.

INTEGER. The leading dimension of the array z. Constraints:ldz

ldz ≥ 1,

ldz ≥ max(1, n), if eigenvectors are desired.

INTEGER. nr = max(1, numroc(n, nb, myprow, 0,
nprocs)).

nr

If compz = 'N', then nr is not referenced.

Output Parameters

REAL array, DIMENSION (n), for ssteqr2.d
DOUBLE PRECISION array, DIMENSION (n), for dsteqr2.
On exit, the eigenvalues in ascending order, if info = 0.
See also info.

REAL array, DIMENSION (n-1), for ssteqr2.e
DOUBLE PRECISION array, DIMENSION (n-1), for dsteqr2.
On exit, e has been destroyed.

(local)z
REAL for ssteqr2
DOUBLE PRECISION for dsteqr2
Array, global DIMENSION (n, n), local DIMENSION (ldz, nr).
On exit, if info = 0, then,
if compz = 'V', z contains the orthonormal eigenvectors
of the original symmetric matrix, and if compz = 'I', z
contains the orthonormal eigenvectors of the symmetric
tridiagonal matrix. If compz = 'N', then z is not referenced.

INTEGER.info
info = 0, the exit is successful.
info < 0: if info = -i, the i-th had an illegal value.
info > 0: the algorithm has failed to find all the
eigenvalues in a total of 30n iterations;
if info = i, then i elements of e have not converged to
zero; on exit, d and e contain the elements of a symmetric
tridiagonal matrix, which is orthogonally similar to the
original matrix.

2111

ScaLAPACK Auxiliary and Utility Routines 7

Utility Functions and Routines
This section describes ScaLAPACK utility functions and routines. Summary information about
these routines is given in the following table:

Table 7-2 ScaLAPACK Utility Functions and Routines

DescriptionData TypesRoutine
Name

Returns the square root of the underflow and overflow
thresholds if the exponent-range is very large.

s,dp?labad

Performs a simple check for the features of the IEEE standard.
(C interface function).

s,dp?lachkieee

Determines machine parameters for floating-point arithmetic.s,dp?lamch

Computes the position of the sign bit of a floating-point number.
(C interface function).

s,dp?lasnbt

Error handling routine called by ScaLAPACK routines.pxerbla

p?labad
Returns the square root of the underflow and
overflow thresholds if the exponent-range is very
large.

Syntax

call pslabad(ictxt, small, large)

call pdlabad(ictxt, small, large)

Description

This routine takes as input the values computed by p?lamch for underflow and overflow, and
returns the square root of each of these values if the log of large is sufficiently large. This
subroutine is intended to identify machines with a large exponent range, such as the Crays,
and redefine the underflow and overflow limits to be the square roots of the values computed
by p?lamch. This subroutine is needed because p?lamch does not compensate for poor
arithmetic in the upper half of the exponent range, as is found on a Cray.

2112

7 Intel® Math Kernel Library Reference Manual

In addition, this routine performs a global minimization and maximization on these values, to
support heterogeneous computing networks.

Input Parameters

(global) INTEGER.ictxt
The BLACS context handle in which the computation takes
place.

(local).small
REAL PRECISION for pslabad.
DOUBLE PRECISION for pdlabad.
On entry, the underflow threshold as computed by p?lamch.

(local).large
REAL PRECISION for pslabad.
DOUBLE PRECISION for pdlabad.
On entry, the overflow threshold as computed by p?lamch.

Output Parameters

(local).small
On exit, if log10(large) is sufficiently large, the square
root of small, otherwise unchanged.

(local).large
On exit, if log10(large) is sufficiently large, the square
root of large, otherwise unchanged.

p?lachkieee
Performs a simple check for the features of the
IEEE standard. (C interface function).

Syntax

void pslachkieee(int *isieee, float *rmax, float *rmin);

void pdlachkieee(int *isieee, float *rmax, float *rmin);

Description

This routine performs a simple check to make sure that the features of the IEEE standard are
implemented. In some implementations, p?lachkieee may not return.

2113

ScaLAPACK Auxiliary and Utility Routines 7

Note that all arguments are call-by-reference so that this routine can be directly called from
Fortran code.

This is a ScaLAPACK internal subroutine and arguments are not checked for unreasonable
values.

Input Parameters

(local).rmax
REAL for pslachkieee
DOUBLE PRECISION for pdlachkieee
The overflow threshold(= ?lamch ('O')).

(local).rmin
REAL for pslachkieee
DOUBLE PRECISION for pdlachkieee
The underflow threshold(= ?lamch ('U')).

Output Parameters

(local). INTEGER.isieee
On exit, isieee = 1 implies that all the features of the
IEEE standard that we rely on are implemented. On exit,
isieee = 0 implies that some the features of the IEEE
standard that we rely on are missing.

p?lamch
Determines machine parameters for floating-point
arithmetic.

Syntax

val = pslamch(ictxt, cmach)

val = pdlamch(ictxt, cmach)

Description

This function determines single precision machine parameters.

2114

7 Intel® Math Kernel Library Reference Manual

Input Parameters

(global). INTEGER.The BLACS context handle in which the
computation takes place.

ictxt

(global) CHARACTER*1.cmach
Specifies the value to be returned by p?lamch:
= 'E' or 'e', p?lamch := eps
= 'S' or 's' , p?lamch := sfmin
= 'B' or 'b', p?lamch := base
= 'P' or 'p', p?lamch := eps*base
= 'N' or 'n', p?lamch := t
= 'R' or 'r', p?lamch := rnd
= 'M' or 'm', p?lamch := emin
= 'U' or 'u', p?lamch := rmin
= 'L' or 'l', p?lamch := emax
= 'O' or 'o', p?lamch := rmax,
where
eps = relative machine precision
sfmin = safe minimum, such that 1/sfmin does not overflow
base = base of the machine
prec = eps*base
t = number of (base) digits in the mantissa
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
emin = minimum exponent before (gradual) underflow
rmin = underflow threshold - base(emin-1)

emax = largest exponent before overflow
rmax = overflow threshold - (baseemax)*(1-eps)

Output Parameters

Value returned by the fuction.val

2115

ScaLAPACK Auxiliary and Utility Routines 7

p?lasnbt
Computes the position of the sign bit of a
floating-point number. (C interface function).

Syntax

void pslasnbt(int *ieflag);

void pdlasnbt(int *ieflag);

Description

This routine finds the position of the signbit of a single/double precision floating point number.
This routine assumes IEEE arithmetic, and hence, tests only the 32-nd bit (for single precision)
or 32-nd and 64-th bits (for double precision) as a possibility for the signbit. sizeof(int) is
assumed equal to 4 bytes.

If a compile time flag (NO_IEEE) indicates that the machine does not have IEEE arithmetic,
ieflag = 0 is returned.

Output Parameters

INTEGER.ieflag
This flag indicates the position of the signbit of any
single/double precision floating point number.
ieflag = 0, if the compile time flag NO_IEEE indicates
that the machine does not have IEEE arithmetic, or if
sizeof(int) is different from 4 bytes.
ieflag = 1 indicates that the signbit is the 32-nd bit for
a single precision routine.
In the case of a double precision routine:
ieflag = 1 indicates that the signbit is the 32-nd bit (Big
Endian).
ieflag = 2 indicates that the signbit is the 64-th bit (Little
Endian).

2116

7 Intel® Math Kernel Library Reference Manual

pxerbla
Error handling routine called by ScaLAPACK
routines.

Syntax

call pxerbla(ictxt, srname, info)

Description

This routine is an error handler for the ScaLAPACK routines. It is called by a ScaLAPACK routine
if an input parameter has an invalid value. A message is printed. Program execution is not
terminated. For the ScaLAPACK driver and computational routines, a RETURN statement is
issued following the call to pxerbla.

Control returns to the higher-level calling routine, and it is left to the user to determine how
the program should proceed. However, in the specialized low-level ScaLAPACK routines (auxiliary
routines that are Level 2 equivalents of computational routines), the call to pxerbla() is
immediately followed by a call to BLACS_ABORT() to terminate program execution since recovery
from an error at this level in the computation is not possible.

It is always good practice to check for a nonzero value of info on return from a ScaLAPACK
routine. Installers may consider modifying this routine in order to call system-specific
exception-handling facilities.

Input Parameters

(global) INTEGERictxt
The BLACS context handle, indicating the global context of
the operation. The context itself is global.

(global) CHARACTER*6srname
The name of the routine which called pxerbla.

(global) INTEGER.info
The position of the invalid parameter in the parameter list
of the calling routine.

2117

ScaLAPACK Auxiliary and Utility Routines 7

8Sparse Solver Routines

Intel® Math Kernel Library (Intel® MKL) provides user-callable sparse solver software to solve real or
complex, symmetric, structurally symmetric or non-symmetric, positive definite, indefinite or Hermitian
sparse linear system of equations.

The terms and concepts required to understand the use of the Intel MKL direct sparse solver subroutines
are discussed in the Linear Solvers Basics appendix. If you are familiar with linear sparse solvers and
sparse matrix storage schemes, you can omit reading these sections and go directly to the interface
descriptions. The direct sparse solver PARDISO* is described in the section that follows. After that, two
alternative interfaces (direct sparse solver and iterative sparse solver) that consist of several Intel MKL
routines implementing the step-by-step solution process are described.

PARDISO - Parallel Direct Sparse Solver Interface
This section describes the interface to the shared-memory multiprocessing parallel direct sparse
solver known as PARDISO. The interface is Fortran, but can be called from C programs by observing
Fortran parameter passing and naming conventions used by the supported compilers and operating
systems. A discussion of the algorithms used in PARDISO and more information on the solver can
be found at http://www.computational.unibas.ch/cs/scicomp.

The PARDISO package is a high-performance, robust, memory efficient and easy to use software
for solving large sparse symmetric and unsymmetric linear systems of equations on shared memory
multiprocessors. The solver uses a combination of left- and right-looking Level-3 BLAS supernode
techniques [Schenk00-2]. In order to improve sequential and parallel sparse numerical factorization
performance, the algorithms are based on a Level-3 BLAS update and pipelining parallelism is
exploited with a combination of left- and right-looking supernode techniques [Schenk00,
Schenk01, Schenk02, Schenk03]. The parallel pivoting methods allow complete supernode
pivoting in order to compromise numerical stability and scalability during the factorization process.
For sufficiently large problem sizes, numerical experiments demonstrate that the scalability of the
parallel algorithm is nearly independent of the shared-memory multiprocessing architecture and a
speedup of up to seven using eight processors has been observed.

2119

PARDISO supports, as illustrated in Figure 8-1, a wide range of sparse matrix types and computes
the solution of real or complex, symmetric, structurally symmetric or unsymmetric, positive
definite, indefinite or Hermitian sparse linear system of equations on shared-memory
multiprocessing architectures.

Figure 8-1 Sparse Matrices That Can be Solved With PARDISO

You can find example code that uses PARDISO interface routine to solve systems of linear
equations in PARDISO Code Examples section in the Appendix C .

pardiso
Calculates the solution of a set of sparse linear
equations with multiple right-hand sides.

Syntax

Fortran:

call pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja, perm, nrhs, iparm,
msglvl, b, x, error)

C:

pardiso (pt, &maxfct, &mnum, &mtype, &phase, &n, a, ia, ja, perm, &nrhs,
iparm, &msglvl, b, x, &error);

2120

8 Intel® Math Kernel Library Reference Manual

(An underscore may or may not be required after “pardiso” depending on the OS and compiler
conventions for that OS).

Interface:

SUBROUTINE pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja, perm, nrhs,
iparm, msglvl, b, x, error)

INTEGER *4 pt (64)

INTEGER *4 maxfct, mnum, mtype, phase, n, nrhs, error, ia(*), ja(*), perm(*),
iparm(*)

REAL *8 a(*), b(n,nrhs), x(n,nrhs)

Note that the above interface is given for the 32-bit architectures. For 64-bit architectures, the
argument pt(64) must be defined as INTEGER*8 type.

Description

PARDISO calculates the solution of a set of sparse linear equations

AX = B

with multiple right-hand sides, using a parallel LU, LDL or LLT factorization, where A is an n-by-n
matrix, and X and B are n-by-nrhs matrices. PARDISO performs the following analysis steps
depending on the structure of the input matrix A.

Symmetric Matrices: The solver first computes a symmetric fill-in reducing permutation P
based on either the minimum degree algorithm [Liu85] or the nested dissection algorithm from
the METIS package [Karypis98] (included with Intel MKL), followed by the parallel left-right
looking numerical Cholesky factorization [Schenk00-2] of PAPT = LLT for symmetric
positive-definite matrices, or PAPT = LDLT for symmetric indefinite matrices. The solver uses
diagonal pivoting, or 1x1 and 2x2 Bunch and Kaufman pivoting for symmetric indefinite matrices,
and an approximation of X is found by forward and backward substitution and iterative
refinements.

The coefficient matrix is perturbed whenever numerically acceptable 1x1 and 2x2 pivots cannot
be found within the diagonal supernode block. One or two passes of iterative refinements may
be required to correct the effect of the perturbations. This restricting notion of pivoting with
iterative refinements is effective for highly indefinite symmetric systems. Furthermore the
accuracy of this method is for a large set of matrices from different applications areas as
accurate as a direct factorization method that uses complete sparse pivoting techniques
[Schenk04]. Another possiblity to improve the pivoting accuracy is to use symmetric weighted
matchings algorithms. These methods identify large entries in the coefficient matrix A that, if
permuted close to the diagonal, permit the factorization process to identify more acceptable

2121

Sparse Solver Routines 8

pivots and proceed with fewer pivot perturbations. The methods are based on maximum weighted
matchings and improve the quality of the factor in a complementary way to the alternative idea
of using more complete pivoting techniques.

The inertia is also computed for real symmetric indefinite matrices.

Structurally Symmetric Matrices: The solver first computes a symmetric fill-in reducing
permutation P followed by the parallel numerical factorization of PAPT = QLUT. The solver uses
partial pivoting in the supernodes and an approximation of X is found by forward and backward
substitution and iterative refinements.

Unsymmetric Matrices: The solver first computes a non-symmetric permutation PMPS and
scaling matrices Dr and Dc with the aim to place large entries on the diagonal which enhances
greatly the reliability of the numerical factorization process [Duff99]. In the next step the solver
computes a fill-in reducing permutation P based on the matrix PMPSA + (PMPSA)T followed by the
parallel numerical factorization

QLUR = PPMPSDrADcP

with supernode pivoting matrices Q and R. When the factorization algorithm reaches a point
where it cannot factorize the supernodes with this pivoting strategy, it uses a pivoting
perturbation strategy similar to [Li99]. The magnitude of the potential pivot is tested against
a constant threshold of alpha = eps*||A2||inf , where eps is the machine precision, A2 =
P*PMPS*Dr*A*Dc*P, and ||A2||inf is the infinity norm of the scaled and permuted matrix A.
Therefore any tiny pivots encountered during elimination are set to the sign
(lii)*eps*||A2||inf - this trades off some numerical stability for the ability to keep pivots
from getting too small. Although many failures could render the factorization well-defined but
essentially useless, in practice it is observed that the diagonal elements are rarely modified for
a large class of matrices. The result of this pivoting approach is that the factorization is, in
general, not exact and iterative refinement may be needed.

Direct-Iterative Preconditioning for Unsymmetric Linear Systems. The solver also allows
a combination of direct and iterative methods [Sonn89] in order to accelerate the linear solution
process for transient simulation. A majority of applications of sparse solvers require solutions
of systems with gradually changing values of the nonzero coefficient matrix, but the same
identical sparsity pattern. In these applications, the analysis phase of the solvers has to be
performed only once and the numerical factorizations are the important time-consuming steps
during the simulation. PARDISO uses a numerical factorization A = LU for the first system and
applies these exact factors L and U for the next steps in a preconditioned Krylow-Subspace
iteration. If the iteration does not converge, the solver will automatically switch back to the
numerical factorization. This method can be applied for unsymmetric matrices in PARDISO and
the user can select the method using only one input parameter. For further details see the
parameter description (iparm(4), iparm(20)).

2122

8 Intel® Math Kernel Library Reference Manual

The sparse data storage in PARDISO follows the scheme described in Sparse Matrix Storage
Format section with ja standing for columns, ia for rowIndex, and a for values. The algorithms
in PARDISO require column indices ja to be increasingly ordered per row and the presence of
the diagonal element per row for any symmetric or structurally symmetric matrix. The
unsymmetric matrices need no diagonal elements in the PARDISO solver.

There are four tasks that PARDISO is capable of performing, namely analysis and symbolic
factorization, numerical factorization, forward and backward substitution including iterative
refinement and finally the termination to release all internal solver memory. When an input
data structure is not accessed in a call, a NULL pointer or any valid address can be passed as
a place holder for that argument.

Input Parameters

INTEGER*4 for 32 -bit operating systems;pt
INTEGER*8 for 64 -bit operating systems
Array, DIMENSION (64)
On entry, this is the solver internal data address pointer.
Theses addresses are passed to the solver and all related
internal memory management is organized through this
pointer

NOTE. pt is an integer array with 64 entries. It is
very important that the pointer is initialized with zero
at the first call of PARDISO. After that first call you
should never modify the pointer, as a serious memory
leak can occur. The integer length should be 4-byte
on 32-bit operating systems and 8-byte on 64-bit
operating systems.

INTEGERmaxfct
Maximal number of factors with identical nonzero sparsity
structure that the user would like to keep at the same time
in memory. It is possible to store several different
factorizations with the same nonzero structure at the same
time in the internal data management of the solver. In most
of the applications this value is equal to 1.

2123

Sparse Solver Routines 8

PARDISO can process several matrices with identical matrix
sparsity pattern and is able to store the factors of these
matrices at the same time. Matrices with different sparsity
structure can be kept in memory with different memory
address pointers pt.

INTEGERmnum
Actual matrix for the solution phase. With this scalar you
can define the matrix that you would like to factorize. The

value must be: 1 ≤ mnum ≤ maxfct.
In most of the applications this value is equal to 1.

INTEGERmtype
This scalar value defines the matrix type. The PARDISO
solver supports the following matrices:

real and structurally symmetric
matrix

= 1

real and symmetric positive definite
matrix

= 2

real and symmetric indefinite matrix= -2

complex and structurally symmetric
matrix

= 3

complex and Hermitian positive
definite matrix

= 4

complex and Hermitian indefinite
matrix

= -4

complex and symmetric matrix= 6

real and unsymmetric matrix= 11

complex and unsymmetric matrix= 13

This parameter influences the pivoting method.

INTEGERphase
Controls the execution of the solver. It is a two-digit integer

ij (10i + j, 1≤ i ≤3, i<j ≤3 for normal execution
modes). The i digit indicates the starting phase of execution,
and j indicates the ending phase. PARDISO has the following
phases of execution:

2124

8 Intel® Math Kernel Library Reference Manual

• Phase 1: Fill-reduction analysis and symbolic factorization

• Phase 2: Numerical factorization

• Phase 3: Forward and Backward solve including iterative
refinements

• Termination and Memory Release Phase (phase≤ 0)

If a previous call to the routine has computed information
from previous phases, execution may start at any phase.
The phase parameter can have the following values:

Solver Execution Stepsphase

Analysis11

Analysis, numerical factorization12

Analysis, numerical factorization, solve,
iterative refinement

13

Numerical factorization22

Numerical factorization, solve, iterative
refinement

23

Solve, iterative refinement33

Release internal memory for L and U
matrix number mnum

0

Release all internal memory for all
matrices

-1

INTEGERn
Number of equations. This is the number of equations in
the sparse linear systems of equations A*X = B. Constraint:
n > 0.

REAL/COMPLEXa
Array. Contains the nonzero values of the coefficient matrix
A corresponding to the indices in ja. The size of a is the
same as that of ja and the coefficient matrix can be either
real or complex. The matrix must be stored in compressed
sparse row format with increasing values of ja for each row.
Refer to values array description in Sparse Matrix Storage
Format for more details.

2125

Sparse Solver Routines 8

NOTE. The nonzeros of each row of the matrix A
must be stored in increasing order. For symmetric
or structural symmetric matrices it is also important
that the diagonal elements are also available and
stored in the matrix. If the matrix is symmetric, then
the array a is only accessed in the factorization
phase, in the triangular solution and iterative
refinement phase. Unsymmetric matrices are
accessed in all phases of the solution process.

INTEGERia

Array, dimension (n+1). For i≤n, ia(i) points to the first
column index of row i in the array ja in compressed sparse
row format. That is, ia(i) gives the index of the element
in array a that contains the first non-zero element from row
i of A. The last element ia(n+1) is taken to be equal to
the number of non-zeros in A, plus one. Refer to rowIndex
array description in Sparse Matrix Storage Format for more
details.The array ia is also accessed in all phases of the
solution process. Note that the row and columns numbers
start from 1.

INTEGERja
Array. ja(*) contains column indices of the sparse matrix
A stored in compressed sparse row format. The indices in
each row must be sorted in increasing order.The array ja
is also accessed in all phases of the solution process. For
symmetric and structurally symmetric matrices it is assumed
that zero diagonal elements are also stored in the list of
nonzeros in a and ja. For symmetric matrices, the solver
needs only the upper triangular part of the system as is
shown for columns array in Sparse Matrix Storage Format.

INTEGERperm
Array, dimension (n). Holds the permutation vector of size
n. The array perm is defined as follows. Let A be the original
matrix and B = P*A*PT be the permuted matrix. Row

2126

8 Intel® Math Kernel Library Reference Manual

(column) i of A is the perm(i) row (column) of B. The
numbering of the array must start by 1 and it must describe
a permutation.
On entry, you can apply your own fill-in reducing ordering
to the solver. The permutation vector perm is only accessed
if iparm(5) = 1.

INTEGERnrhs
Number of right-hand sides that need to be solved for.

INTEGERiparm
Array, dimension (64). This array is used to pass various
parameters to PARDISO and to return some useful
information after the execution of the solver. If iparm(1)
= 0, then PARDISO fills iparm(1), and iparm(4) through
iparm(64)with default values and uses them. Note that
there is no default values for iparm(3) and this value must
always be supplied by the user, whether iparm(1) is 0 or
1.
Individual components of the iparm array are described
below (some of them are described in the Output Parameters
section).
iparm(1)- use default values.
If iparm(1) = 0, then iparm(2) and iparm(4) through
iparm(64) are filled with default values, otherwise the user
has to supply all values in iparm from iparm(2) to
iparm(64).
iparm(2) - fill-in reducing ordering.
iparm(2) controls the fill-in reducing ordering for the input
matrix. If iparm(2) is 0, then the minimum degree
algorithm is applied [Li99], if iparm(2) is 2, the solver uses
the nested dissection algorithm from the METIS package
[Karypis98]. The default value of iparm(2) is 2.
iparm(3)- number of processors.
iparm(3) must contain the number of processors that are
available for the parallel execution. The number must be
equal to the OpenMP environment variable
OMP_NUM_THREADS.

2127

Sparse Solver Routines 8

CAUTION. If the user has not explicitly set
OMP_NUM_THREADS, then this value can be set by the
operating system to the maximal numbers of
processors on the system. It is therefore always
recommended to control the parallel execution of the
solver by explicitly setting OMP_NUM_THREADS. If less
processors are available than specified, the execution
may slow down instead of speeding up.

There is no default value for iparm(3).
iparm(4) - preconditioned CGS.
This parameter controls preconditioned CGS [Sonn89] for
unsymmetric or structural symmetric matrices and
Conjugate-Gradients for symmetric matrices. iparm(4) has
the form

iparm(4)= 10*L+K

The K and L values have the meanings as follow.

DescriptionValue of K

The factorization is always computed as
required by phase.

0

CGS iteration replaces the computation
of LU. The preconditioner is LU that was
computed at a previous step (the first

1

step or last step with a failure) in a
sequence of solutions needed for
identical sparsity patterns.
CG iteration for symmetric matrices
replaces the computation of LU. The
preconditioner is LU that was computed

2

at a previous step (the first step or last
step with a failure) in a sequence of
solutions needed for identical sparsity
patterns.

Value L:
The value L controls the stopping criterion of the
Krylow-Subspace iteration:

2128

8 Intel® Math Kernel Library Reference Manual

epsCGS = 10-L is used in the stopping criterion

||dxi|| / ||dx1|| < epsCGS

with ||dxi|| = ||inv(L*U)*ri|| and ri is the residuum
at iteration i of the preconditioned Krylow-Subspace
iteration.
Strategy: A maximum number of 150 iterations is fixed by
expecting that the iteration will converge before consuming
half the factorization time. Intermediate convergence rates
and residuum excursions are checked and can terminate
the iteration process. If phase =23, then the factorization
for a given A is automatically recomputed in these cases
where the Krylow-Subspace iteration failed, and the
corresponding direct solution is returned. Otherwise the
solution from the preconditioned Krylow-Subspace iteration
is returned. Using phase =33 results in an error message
(error =4) if the stopping criteria for the Krylow-Subspace
iteration can not be reached. More information on the failure
can be obtained from iparm(20).
The default is iparm(4)=0, and other values are only
recommended for an advanced user. iparm(4) must be
greater or equal to zero.
Examples:

Descriptioniparm(4)

LU-preconditioned CGS iteration with a
stopping criterion of 1.0E-3 for
unsymmetric matrices

31

LU-preconditioned CGS iteration with a
stopping criterion of 1.0E-6 for
unsymmetric matrices

61

LU-preconditioned CGS iteration with a
stopping criterion of 1.0E-6 for
symmetric matrices

62

iparm(5)- user permutation.
This parameter controls whether the user supplied fill-in
reducing permutation is used instead of the integrated
multiple-minimum degree or nested dissection algorithms.

2129

Sparse Solver Routines 8

This option may be useful for testing reordering algorithms
or adapting the code to special applications problems (for
instance, to move zero diagonal elements to the end
P*A*PT). For definition of the permutation, see description
of the perm parameter.
The default value of iparm(5) is 0.
iparm(6)- write solution on x.
If iparm(6)is 0 (which is the default), then the array x
contains the solution and the value of b is not changed. If
iparm(6) is 1, then the solver will store the solution on the
right hand side b.
Note that the array x is always used. The default value of
iparm(6) is 0.
iparm(8)
On entry to the solve and iterative refinement step,
iparm(8)should be set to the maximum number of iterative
refinement steps that the solver will perform. The solver
will not perform more than the absolute value of
iparm(8)steps of iterative refinement and will stop the
process if a satisfactory level of accuracy of the solution in
terms of backward error has been achieved.
Note that if iparm(8)< 0, the accumulation of the residuum
is using enhanced precision real and complex data types.
Perturbed pivots result in iterative refinement (independent
of iparm(8)=0) and the iteration number executed is
reported on iparm(7).
The solver will automatically perform two steps of iterative
refinements when perturbed pivots have been obtained
during the numerical factorization and iparm(8) was equal
to zero.
The number of performed iterative refinement steps is
reported on iparm(8).
The default value for iparm(8) is 0.
iparm(9)
This parameter is reserved for future use. Its value must
be set to 0.
iparm(10)- pivoting perturbation.

2130

8 Intel® Math Kernel Library Reference Manual

This parameter instructs PARDISO how to handle small
pivots or zero pivots for unsymmetric matrices (mtype =11
or mtype =13) and symmetric matrices (mtype =-2, mtype
=-4, or mtype =6). For these matrices the solver uses a
complete supernode pivoting approach. When the
factorization algorithm reaches a point where it cannot
factorize the supernodes with this pivoting strategy, it uses
a pivoting perturbation strategy similar to [Li99],
[Schenk04].
The magnitude of the potential pivot is tested against a
constant threshold of

alpha = eps*||A2||inf,

where eps = 10(-iparm(10)), A2 = P*PMPS*Dr
*A*Dc*P,

and ||A2||inf is the infinity norm of the scaled and
permuted matrix A. Any tiny pivots encountered during
elimination are set to the sign (lii)*eps*||A2||inf - this
trades off some numerical stability for the ability to keep
pivots from getting too small. Small pivots are therefore
perturbed with eps = 10(-iparm(10)).
The default value of iparm(10) is 13 and therefore eps =
1.0E-13 for unsymmetric matrices (mtype =11 or mtype
=13).
The default value of iparm(10) is 8, and therefore eps =
1.0E-8 for symmetric indefinite matrices (mtype =-2,
mtype =-4, or mtype =6).
iparm(11)- scaling vectors.
PARDISO uses a maximum weight matching algorithm to
permute large elements on the diagonal and to scale the
matrix so that the diagonal elements are equal to 1 and the
absolute value of the off-diagonal entries are less or equal
to 1. This scaling method is only applied to unsymmetric
matrices (mtype =11 or mtype =13). The scaling can also
be used for symmetric indefinite matrices (mtype =-2,
mtype =-4, or mtype =6) in case that symmetric weighted
matchings is applied (iparm(13)= 1).
It is recommended to use iparm(11) = 1 (scaling) and
iparm(13) = 1 (matchings) for highly indefinite symmetric
matrices, for example from interior point optimizations or

2131

Sparse Solver Routines 8

saddle point problems. It is also very important to note that
the user must provided in the analysis phase (phase=11)
the numerical values of the matrix A in case of scalings and
symmetric weighted matchings.
The default value of iparm(11) is 1 for unsymmetric
matrices (mtype =11 or mtype =13). The default value of
iparm(11) is 0 for symmetric indefinite matrices (mtype
=-2, mtype =-4, or mtype =6).
iparm(12)
This parameter is reserved for future use. Its value must
be set to 0.
iparm(13) - improved accuracy using (non-)symmetric
weighted matchings.
PARDISO can use a maximum weighted matching algorithm
to permute large elements close the diagonal. This strategy
adds an additional level of reliability to our factorization
methods and can be seen as a complement to the alternative
idea of using more complete pivoting techniques during the
numerical factorization.
It is recommended to use iparm(11)=1 (scalings) and
iparm(13)=1 (matchings) for highly indefinite symmetric
matrices, for example from interior point optimizations or
saddle point problems. It is also very important to note that
the user must provided in the analysis phase (phase =11)
the numerical values of the matrix A in case of scalings and
symmetric weighted matchings.
The default value of iparm(13) is 1 for unsymmetric
matrices (mtype =11 or mtype =13). The default value of
iparm(13) is 0 for symmetric matrices (mtype =-2, mtype
=-4, or mtype =6).
iparm(18)
The solver will report the numbers of nonzeros on the factors
if iparm(18)< 0 on entry.
The default value of iparm(18) is -1.
iparm(19)- MFlops of factorization.
If iparm(19)< 0 on entry, the solver will report MFlop
(1.0E6) that are necessary to factor the matrix A. This will
increase the reordering time.
The default value of iparm(19) is 0.

2132

8 Intel® Math Kernel Library Reference Manual

iparm(21)- pivoting for symmetric indefinite matrices.
iparm(21)controls the pivoting method for sparse
symmetric indefinite matrices. If iparm(21) is 0, then 1x1
diagonal pivoting is used. If iparm(21) is 1, then 1x1 and
2x2 Bunch and Kaufman pivoting will be used within the
factorization process. It is also recommended to use
iparm(11)=1 (scalings) and iparm(13)=1 (matchings)
for highly indefinite symmetric matrices, for example from
interior point optimizations or saddle point problems. Bunch
and Kaufman pivoting is available for matrices: mtype =-2,
mtype =-4, or mtype =6.
The default value of iparm(21)is 0.

INTEGERmsglvl
Message level information. If msglvl = 0 then PARDISO
generates no output, if msglvl = 1 the solver prints
statistical information to the screen.

REAL/COMPLEXb
Array, dimension (n,nrhs). On entry, contains the right
hand side vector/matrix B. Note that b is only accessed in
the solution phase.

Output Parameters

This parameter contains internal address pointers.pt

On output, some iparm values will report useful information,
for example, numbers of nonzeros in the factors, and so on.

iparm

iparm(7)- number of performed iterative refinement steps.
The number of iterative refinement steps that are actually
performed during the solve step.
iparm(14)- number of perturbed pivots.
After factorization, iparm(14) contains the number of
perturbed pivots during the elimination process for mtype
=11, mtype =13, mtype =-2, mtype =-4, or mtype =-6.
iparm(15)- peak memory symbolic factorization.
The parameter iparm(15) provides the user with the total
peak memory in KBytes that the solver needed during the
analysis and symbolic factorization phase. This value is only
computed in phase 1.

2133

Sparse Solver Routines 8

iparm(16)- permanent memory symbolic factorization.
The parameter iparm(16) provides the user with the
permanent memory in KBytes that the solver needed from
the analysis and symbolic factorization phase in the
factorization and solve phases. This value is only computed
in phase 1.
iparm(17)- memory numerical factorization and solution.
The parameter iparm(17) provides the user with the total
double precision memory consumption (KBytes) of the solver
for the factorization and solve phases. This value is only
computed in phase 2.
Note that the total peak memory solver consumption is
max(iparm(15), iparm(16)+iparm(17))
iparm(18)- number of nonzeros in factors.
The solver will report the numbers of nonzeros on the factors
if iparm(18) < 0 on entry.
iparm(19)- MFlops of factorization.
Number of operations in MFlop (1.0E6 operations) that are
necessary to factor the matrix A are returned to the user if
iparm(19) < 0 on entry.
iparm(20)- CG/CGS diagnostics.
The value is used to give CG/CGS diagnostics (for example,
the number of iterations and cause of failure):
If iparm(20)> 0, CGS succeeded, and the number of
iterations executed are reported in iparm(20).
If iparm(20)< 0, iterations executed, but CG/CGS failed.
The error report details in iparm(20) are of the form:
iparm(20)= - it_cgs*10 - cgs_error.
If phase is 23, then the factors L, U are recomputed for the
matrix A and the error flag error is zero in case of a
successful factorization. If phase is 33, then error = -4
signals the failure.
Description of cgs_error is given in the table below:

Descriptioncgs_error
- fluctuations of the residuum are too
large

1

- ||dxmax_it_cgs/2|| too large (slow
convergence)

2

2134

8 Intel® Math Kernel Library Reference Manual

Descriptioncgs_error
- stopping criterion not reached at
max_it_cgs

3

- perturbed pivots caused iterative
refinement

4

- factorization is too fast for this matrix.
It is better to use the factorization
method with iparm(4)=0

5

iparm(22)- inertia: number of positive eigenvalues.
The parameter iparm(22) reports the number of positive
eigenvalues for symmetric indefinite matrices.
iparm(23)- inertia: number of negative eigenvalues.
The parameter iparm(23) reports the number of negative
eigenvalues for symmetric indefinite matrices.
iparm(24) to iparm(64)
These parameters are reserved for future use. Their values
must be set to 0.

On output, the array is replaced with the solution if
iparm(6) = 1.

b

REAL/COMPLEXx
Array, dimension (n,nrhs). On output, contains solution if
iparm(6)=0. Note that x is only accessed in the solution
phase.

INTEGERerror
The error indicator according to the below table:

Informationerror

no error0

input inconsistent-1

not enough memory-2

reordering problem-3

zero pivot, numerical factorization or
iterative refinement problem

-4

unclassified (internal) error-5

preordering failed (matrix types 11, 13
only)

-6

2135

Sparse Solver Routines 8

Informationerror

diagonal matrix problem-7

Direct Sparse Solver (DSS) Interface Routines
The Intel MKL supports an alternative to PARDISO interface for the direct sparse solver referred
to here as DSS interface. The DSS interface implements a group of user-callable routines that
are used in the step-by-step solving process and exploits the general scheme described in
Linear Solvers Basics for solving sparse systems of linear equations. This interface also includes
one routine for gathering statistics related to the solving process and an auxiliary routine for
passing character strings from Fortran routines to C routines.

The solving process is conceptually divided into six phases, as shown in Table 8-1 which lists
the names of the routines, grouped by phase, and describes their general use.

Table 8-1 DSS Interface Routines

DescriptionRoutine

Initializes the solver and creates the basic data
structures necessary for the solver. This routine
must be called before any other DSS routine.

dss_create

Used to inform the solver of the locations of the
non-zero elements of the array.

dss_define_structure

Based on the non-zero structure of the matrix, this
routine computes a permutation vector to reduce
fill-in during the factoring process.

dss_reorder

Computes the LU, LDTt or LLT factorization of a real
or complex matrix.

dss_factor_real,
dss_factor_complex

Computes the solution vector for a system of
equations based on the factorization computed by
the previous phase.

dss_solve_real, dss_solve_complex

Deletes all of the data structures created during the
solutions process.

dss_delete

Returns statistics about various phases of the solving
process. Used to gather statistics in the following
areas: time taken to do reordering, time taken to

dss_statistics

2136

8 Intel® Math Kernel Library Reference Manual

DescriptionRoutine

do factorization, problem solving duration,
determinant of a matrix, inertia of a matrix, and
number of floating point operations taken during
factorization. Can be invoked at any phase of the
solving process after the “reorder” phase, but before
the “delete” phase. Note that appropriate
argument(s) must be supplied to this routine to
correspond to phase at which it is invoked.

Used to pass character strings from Fortran routines
to C routines.

mkl_cvt_to_null_terminated_str

To find a single solution vector for a single system of equations with a single right hand side,
the Intel MKL DSS interface routines are invoked in the order in which they are listed in Table
8-1 , with the exception of dss_statistics, which is invoked as described in the table.

However, in certain applications it is necessary to produce solution vectors for multiple right-hand
sides for a given factorization and/or factor several matrices with the same non-zero structure.
Consequently, it is necessary to be able to invoke the Intel MKL sparse routines in an order
other than listed in the table. The following diagram in Figure 8-2 indicates the typical order(s)
in which the DSS interface routines can be invoked.

Figure 8-2 Typical order for invoking DSS interface routines

2137

Sparse Solver Routines 8

You can find example code that uses DSS interface routines to solve systems of linear equations
in Direct Sparse Solver Examples section in the appendix.

DSS Interface Description

As noted in Memory Allocation and Handles section, each DSS routine either reads or writes
an opaque data object called a handle. Because the declaration of a handle varies from language
to language, it is declared as being of type MKL_DSS_HANDLE in this documentation. You can
refer to Memory Allocation and Handles to determine the correct method for declaring a handle
argument.

All other types in this documentation refer to the standard Fortran types, INTEGER, REAL,
COMPLEX, DOUBLE PRECISION, and DOUBLE COMPLEX.

C and C++ programmers should refer to Calling Direct Sparse Solver Routines From C/C++
for information on mapping Fortran types to C/C++ types.

Routine Options

All of the DSS routines have an integer argument (below referred to as opt) for passing various
options to the routines. The permissible values for opt should be specified using only the symbol
constants defined in the language-specific header files (see Implementation Details). All of the
routines accept options for setting the message and termination level as described in Table 8-2
. Additionally, all routines accept the option MKL_DSS_DEFAULTS, which establishes the
documented default options for each DSS routine.

Table 8-2 Symbolic Names for the Message and Termination Level Options

Termination LevelMessage Level

MKL_DSS_TERM_LVL_SUCCESSMKL_DSS_MSG_LVL_SUCCESS

MKL_DSS_TERM_LVL_INFOMKL_DSS_MSG_LVL_INFO

MKL_DSS_TERM_LVL_WARNINGMKL_DSS_MSG_LVL_WARNING

MKL_DSS_TERM_LVL_ERRORMKL_DSS_MSG_LVL_ERROR

MKL_DSS_TERM_LVL_FATALMKL_DSS_MSG_LVL_FATAL

The settings for message and termination level can be set on any call to a DSS routine. However,
once set to a particular level, they remain at that level until they are changed in another call
to a DSS routine.

Users can specify multiple options to a DSS routine by adding the options together. For example,
to set the message level to debug and the termination level to error for all DSS routines, use
the call:

CALL dss_create(handle, MKL_DSS_MSG_LVL_INFO + MKL_DSS_TERM_LVL_ERROR)

2138

8 Intel® Math Kernel Library Reference Manual

User Data Arrays

Many of the DSS routines take arrays of user data as input. For example, user arrays are passed
to the routine dss_define_structure to describe the location of the non-zero entries in the
matrix. In order to minimize storage requirements and improve overall run-time efficiency, the
Intel MKL DSS routines do not make copies of the user input arrays.

WARNING. Users cannot modify the contents of these arrays after they are passed to
one of the solver routines.

dss_create
Initializes the solver.

Syntax

dss_create(handle, opt)

Input Parameters

INTEGER Options passing argument. The default value is
MKL_DSS_MSG_LVL_WARNING+ MKL_DSS_TERM_LVL_ERROR.

opt

Output Parameters

Data object of MKL_DSS_HANDLE type (see Interface
Description).

handle

Description

The routine dss_create is called to initialize the solver. After the call to dss_create, all
subsequent invocations of Intel MKL DSS routines should use the value of handle returned by
dss_create.

WARNING. Do not write the value of handle directly.

Return Values

MKL_DSS_SUCCESS

2139

Sparse Solver Routines 8

MKL_DSS_INVALID_OPTION

MKL_DSS_OUT_OF_MEMORY

dss_define_structure
Communicates to the solver locations of non-zero
elements in the matrix.

Syntax

dss_define_structure(handle, opt, rowIndex, nRows, nCols, columns, nNonZeros);

Input Parameters

INTEGER. Option passing argument. The default option for
the matrix structure is MKL_DSS_SYMMETRIC.

opt

INTEGER. Array of size min(nRows, nCols)+1. Defines the
location of non-zero entries in the matrix.

rowIndex

INTEGER. Number of rows in the matrix.nRows

INTEGER. Number of columns in the matrix.nCols

INTEGER. Array of size nNonZeros. Defines the location of
non-zero entries in the matrix.

columns

INTEGER. Number of non-zero elements in the matrix.nNonZeros

Output Parameters

Data object of MKL_DSS_HANDLE type (see Interface
Description).

handle

Description

The routine dss_define_structure communicates to the solver the locations of the nNonZeros
number of non-zero elements in a matrix of size nRows by nCols.

Note that currently Intel MKL DSS software only operates on square matrices, so nRows must
be equal to nCols.

To communicate the locations of non-zeros in the matrix, do the following:

1. Define the general non-zero structure of the matrix by specifying one of the following values
for the options argument opt:

2140

8 Intel® Math Kernel Library Reference Manual

MKL_DSS_SYMMETRIC_STRUCTURE•

• MKL_DSS_SYMMETRIC

• MKL_DSS_NON_SYMMETRIC

2. Provide the actual locations of the non-zeros by means of the arrays rowIndex and columns
(see Sparse Matrix Storage Format).

Return Values

MKL_DSS_SUCCESS

MKL_DSS_STATE_ERR

MKL_DSS_INVALID_OPTION

MKL_DSS_COL_ERR

MKL_DSS_NOT_SQUARE

MKL_DSS_TOO_FEW_VALUES

MKL_DSS_TOO_MANY_VALUES

dss_reorder
Computes permutation vector that minimizes the
fill-in during the factorization phase.

Syntax

dss_reorder(handle, opt, perm)

Input Parameters

INTEGER. Option passing argument. The default option for
the permutation type is MKL_DSS_AUTO_ORDER.

opt

INTEGER. Array of length nRows. Contains a user-defined
permutation vector (accessed only if opt contains
MKL_DSS_MY_ORDER).

perm

2141

Sparse Solver Routines 8

Output Parameters

Data object of MKL_DSS_HANDLE type (see Interface
Description).

handle

Description

If opt contains the options MKL_DSS_AUTO_ORDER, then dss_reorder computes a permutation
vector that minimizes the fill-in during the factorization phase. For this option, the perm array
is never accessed.

If opt contains the option MKL_DSS_MY_ORDER, then the array perm is considered to be a
permutation vector supplied by the user. In this case, the array perm is of length nRows, where
nRows is the number of rows in the matrix as defined by the previous call to dss_define_structure.

Return Values

MKL_DSS_SUCCESS

MKL_DSS_STATE_ERR

MKL_DSS_INVALID_OPTION

MKL_DSS_OUT_OF_MEMORY

dss_factor_real, dss_factor_complex
Compute the factorization of the matrix with
previously specified location.

Syntax

dss_factor_real(handle, opt, rValues)

dss_factor_complex(handle, opt, cValues)

Input Parameters

Data object of MKL_DSS_HANDLE type (see Interface
Description).

handle

INTEGER Option passing argument. The default option for
the matrix type is MKL_DSS_POSITIVE_DEFINITE.

opt

DOUBLE PRECISION. Array of size nNonZeros. Contains real
non-zero elements of the matrix.

rValues

2142

8 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX. Array of size nNonZeros. Contains
complex non-zero elements of the matrix.

cValues

Description

These routines compute the factorization of the matrix whose non-zero locations were previously
specified by a call to dss_define_structure and whose non-zero values are given in the array
rValues or cValues. The arrays rValues and cValues are assumed to be of length nNonZeros
as defined in a previous call to dss_define_structure.

The opt argument should contain one of the following options:

• MKL_DSS_POSITIVE_DEFINITE,

• MKL_DSS_INDEFINITE,

• MKL_DSS_HERMITIAN_POSITIVE_DEFINITE,

• MKL_DSS_HERMITIAN_INDEFINITE ,

depending on whether the non-zero values in rValues and cValues describe a positive definite,
indefinite, or Hermitian matrix.

Return Values

MKL_DSS_SUCCESS

MKL_DSS_STATE_ERR

MKL_DSS_INVALID_OPTION

MKL_DSS_OPTION_CONFLICT

MKL_DSS_OUT_OF_MEMORY

MKL_DSS_ZERO_PIVOT

dss_solve_real, dss_solve_complex
Compute the corresponding solutions vector and
place it in the output array.

Syntax

dss_solve_real(handle, opt, rRhsValues, nRhs, rSolValues)

dss_solve_complex(handle, opt, cRhsValues, nRhs, cSolValues)

2143

Sparse Solver Routines 8

Input Parameters

Data object of MKL_DSS_HANDLE type (see Interface
Description).

handle

INTEGER. Option passing argument.opt

INTEGER. Number of the right-hand sides in the linear
equation.

nRhs

DOUBLE PRECISION. Array of size nRows by nRhs. Contains
real right-hand side vectors.

rRhsValues

DOUBLE COMPLEX. Array of size nRows by nRhs. Contains
complex right-hand side vectors.

cRhsValues

Output Parameters

DOUBLE PRECISION. Array of size nCols by nRhs. Contains
real solution vectors.

rSolValues

DOUBLE COMPLEX. Array of size nCols by nRhs. Contains
complex solution vectors.

cSolValues

Description

For each right hand side column vector defined in ?RhsValues (where ? is one of r or c), these
routines compute the corresponding solutions vector and place it in the array ?SolValues.

The lengths of the right-hand side and solution vectors, nCols and nRows respectively, are
assumed to have been defined in a previous call to dss_define_structure.

Return Values

MKL_DSS_SUCCESS

MKL_DSS_STATE_ERR

MKL_DSS_INVALID_OPTION

MKL_DSS_OUT_OF_MEMORY

2144

8 Intel® Math Kernel Library Reference Manual

dss_delete
Deletes all of data structures created during the
solutions process.

Syntax

dss_delete(handle, opt)

Input Parameters

INTEGER. Options passing argument. The default value is
MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR.

opt

Output Parameters

Data object of MKL_DSS_HANDLE type (see Interface
Description).

handle

Description

The routine dss_delete is called to delete all of the data structures created during the solutions
process.

Return Values

MKL_DSS_SUCCESS

MKL_DSS_INVALID_OPTION

MKL_DSS_OUT_OF_MEMORY

dss_statistics
Returns statistics about various phases of the
solving process.

Syntax

dss_statistics(handle, opt, statArr, retValues)

2145

Sparse Solver Routines 8

Input Parameters

Data object of MKL_DSS_HANDLE type (see Interface
Description).

handle

INTEGER Options passing argument.opt

STRING Input string that defines the type of the returned
statistics. Can include one or more of the following string
constants (case of the input string has no effect):

statArr

Amount of time taken to do the
reordering.

ReorderTime

Amount of time taken to do the
factorization.

FactorTime

Amount of time taken to solve the
problem after factorization.

SolveTime

Determinant of the matrix A. For real
matrices, determinant is returned as
det_pow, det_base in two consecutive

Determinant

return array locations, where: 1.0

≤abs(det_base) < 10.0 and
determinant = det_base*10(det_pow)

For complex matrices, determinant is
returned as det_pow, det_re, det_im in
three consecutive return array locations,

where: 1.0 ≤abs(det_re) +
abs(det_im) < 10.0 and determinant
= det_re, det_im*10(det_pow)

Inertia of a real symmetric matrix is
defined to be a triplet of nonnegative
integers (p,n,z) where p is a number of

Inertia

positive eigenvalues, n is number of
negative eigenvalues, and z is number of
zero eigenvalues.
Inertia will be returned as three
consecutive return array locations as
p,n,z.

2146

8 Intel® Math Kernel Library Reference Manual

Computing Inertia is only recommended
for stable matrices. Unstable matrices can
lead to incorrect results.
Inertia of a k by k real symmetric
positive definite matrix is always
(k,0,0). Therefore Inertia is returned
only in cases of real symmetric indefinite
matrices. For all other matrix types, an
error message is returned.

Number of floating point operations
performed during factorization.

Flops

NOTE. To avoid problems in passing strings from
Fortran to C, Fortran users must call the
mkl_cvt_to_null_terminated_str routine before
calling dss_statistics. Refer to the description of
mkl_cvt_to_null_terminated_str for details.

Output Parameters

DOUBLE PRECISION Value of the statistics returned.retValues

Description

The dss_statistics routine returns statistics about various phases of the solving process.
Use this routine to gather statistics in the following areas:

– time taken to do reordering,

– time taken to do factorization,

– problem solving duration,

– determinant of a matrix,

– inertia of a matrix,

– number of floating point operations taken during factorization.

Statistics are returned corresponding to the specified input string. The value of the statistics
is returned in double precision in a return array allocated by user.

2147

Sparse Solver Routines 8

For multiple statistics, string constants separated by commas can be used as input. Return
values are put into the return array in the same order as specified in the input string.

Statistics should only be requested at appropriate stages of the solving process. For example,
inquiring about FactorTime before a matrix is factored will lead to errors.

The following table shows the point at which each statistic can be called:

Table 8-3 Statistics Calling Sequences

When to CallType of Statistics

After dss_reorder is completed successfully.ReorderTime

After dss_factor_real or dss_factor_complex is completed successfully.FactorTime

After dss_solve_real or dss_solve_complex is completed successfully.SolveTime

After dss_factor_real or dss_factor_complex is completed successfully.Determinant

After dss_factor_real is completed successfully and matrix is real, symmetric,

and indefinite.

Inertia

After dss_factor_real or dss_factor_complex is completed successfully.Flops

Finding “time used to reorder” and “inertia” of a matrix.

The example below illustrates the use of the dss_statistics routine.

To find these values, call dss_statistics(handle, opt, statArr, retValues), where statArr
is “ReorderTime,Inertia”

In this example, retValues will have the following values:

Return Values

MKL_DSS_SUCCESS

MKL_DSS_STATISTICS_INVALID_MATRIX

MKL_DSS_STATISTICS_INVALID_STATE

MKL_DSS_STATISTICS_INVALID_STRING

2148

8 Intel® Math Kernel Library Reference Manual

mkl_cvt_to_null_terminated_str
Passes character strings from Fortran routines to
C routines.

Syntax

mkl_cvt_to_null_terminated_str (destStr, destLen, srcStr)

Input Parameters

INTEGER. Length of the output array destStr.destLen

STRING. Input string.srcStr

Output Parameters

INTEGER. One-dimensional array of integer.destStr

Description

The routine mkl_cvt_to_null_terminated_str is used to pass character strings from Fortran
routines to C routines. The strings are converted into integer arrays before being passed to C.
Using this routine avoids the problems that can occur on some platforms when passing strings
from Fortran to C. The use of this routine is highly recommended.

Implementation Details

Several aspects of the Intel MKL DSS interface are platform-specific and language-specific. In
order to promote portability across platforms and ease of use across different languages, users
are encouraged to include one of the Intel MKL DSS language-specific header files. Currently,
there are three language specific header files:

• mkl_dss.f77 for F77 programs

• mkl_dss.f90 for F90 programs

• mkl_dss.h for C programs

These language-specific header files define symbolic constants for error returns, function options,
certain defined data types, and function prototypes.

2149

Sparse Solver Routines 8

NOTE. It is strongly recommended that you refer to the constants for options, error
returns, and message severities only by the symbolic names that are defined in the
header files. Use of the Intel MKL DSS software without including one of the above header
files is not supported.

Memory Allocation and Handles

In order to make the Intel MKL DSS routines as easy to use as possible, the routines do not
require the user to allocate any temporary working storage. Any storage required by the solver
(that is not a user input) is allocated by the solver itself. In order to allow multiple users to
access the solver simultaneously, the solver keeps track of the storage allocated for a particular
application by using an opaque data object called a handle.

Each of the Intel MKL DSS routines either creates, uses or deletes a handle. Consequently,
user programs must be able to allocate storage for a handle. The exact syntax for allocating
storage for a handle varies from language to language. To help standardize the handle
declarations, the language-specific header files declare constants and defined data types that
should be used when declaring a handle object in user code.

Fortran 90 programmers should declare a handle as:

INCLUDE "mkl_dss.f90"

TYPE(MKL_DSS_HANDLE) handle

C and C++ programmers should declare a handle as:

#include "mkl_dss.h"

_MKL_DSS_HANDLE_t handle;

Fortran 77 programmers using compilers that support eight byte integers, should declare a
handle as:

INCLUDE "mkl_dss.f77"

INTEGER*8 handle

Otherwise they should replace INTEGER*8 with DOUBLE PRECISION.

In addition to the necessary definition for the correct declaration of a handle, the include file
also defines the following:

• function prototypes for languages that support prototypes

• symbolic constants that are used for the error returns

• user options for the solver routines

2150

8 Intel® Math Kernel Library Reference Manual

• message severity

Iterative Sparse Solvers basedonReverse Communication
Interface (RCI ISS)

The Intel MKL supports an additional to PARDISO interface, namely, the iterative sparse solvers
(ISS) based on reverse communication interface (RCI) referred to here as RCI ISS interface.
The RCI ISS interface implements a group of user-callable routines that are used in the
step-by-step solving process of a symmetric positive definite system (RCI Conjugate Gradient
Solver, or RCI CG), and of a non-symmetric indefinite (non-degenerate) system (RCI Flexible
Generalized Minimal RESidual Solver, or RCI FGMRES) of linear algebraic equations and exploits
the general RCI scheme described in [Dong95]. The terms and concepts required to understand
the use of the Intel MKL RCI ISS subroutines are discussed in the Linear Solvers Basics. RCI
means that user himself must perform certain operations for the solver (for example,
matrix-vector multiplications). When the solver needs the results of such operations, the user
must pass them to the solver. This gives the great universality to the solver as it is independent
of the specific implementation of the operations like the matrix-vector multiplication. However,
this approach requires some additional work from the user. To simplify this task, the user can
use the built-in sparse matrix-vector multiplications and triangular solvers routines (see Sparse
BLAS Level 2 and Level 3.

NOTE. The RCI CG solver is implemented in two versions: for system of equations with
single right hand side, and for system of equations with multiple right hand sides.

The CG method may fail to compute the solution or compute the wrong solution if the
matrix of the system is not symmetric and positive definite.

The FGMRES method may fail if the matrix is degenerate.

The solving process is conceptually divided into four steps, as shown in the Table 8-4 , that
lists the names of the routines, and describes their general use.

Table 8-4 RCI ISS Interface Routines

DescriptionRoutine

Initializes the solver.
dcg_init, dcgmrhs_init,
dfgmres_init

Checks the consistency and correctness of the user defined
data.dcg_check, dcgmrhs_check,

dfgmres_check

2151

Sparse Solver Routines 8

DescriptionRoutine

Computes the approximate solution vector.
dcg, dcgmrhs, dfgmres

Retrieves the number of the current iteration.
dcg_get, dcgmrhs_get, dfgmres_get

The Intel MKL RCI ISS interface routines are normally invoked in the order in which they are
listed in Table8-4 , with the exception of dcg_get, dcgmrhs_get, and dfgmres_get routines
that can be invoked at any place in the code. However, in this case some precautions should
be taken to avoid the wrong results. Advanced users can change that order if they need it. For
others it is strongly recommended to follow the above order of calls.

The following diagram in Figure 8-3 indicates the typical order in which the RCI ISS interface
routines can be invoked.

Figure 8-3 Typical Order for Invoking RCI ISS interface Routines

2152

8 Intel® Math Kernel Library Reference Manual

Figure 8-4 and Figure 8-5 show the general schemes of using the RCI CG and RCI FGMRES
routines respectively.

Figure 8-4 General Scheme of Using RCI CG Routines

...

generate matrix A

generate preconditioner C (optional)

call dcg_init(n, x, b, RCI_request, ipar, dpar, tmp)

change parameters in ipar, dpar if necessary

call dcg_check(n, x, b, RCI_request, ipar, dpar, tmp)

1 call dcg(n, x, b, RCI_request, ipar, dpar, tmp)

if (RCI_request.eq.1) then

multiply the matrix A by tmp(1:n,1) and put the result in tmp(1:n,2)

It is possible to use MKL Sparse BLAS Level 2 subroutines for this operation

c proceed with CG iterations

goto 1

endif

if (RCI_request.eq.2)then

do the stopping test

if (test not passed) then

c proceed with CG iterations

go to 1

else

c stop CG iterations

goto 2

endif

endif

if (RCI_request.eq.3) then (optional)

apply the preconditioner C inverse to tmp(1:n,3) and put the result in tmp(1:n,4)

2153

Sparse Solver Routines 8

c proceed with CG iterations

goto 1

end

2 call dcg_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)

current iteration number is in itercount

the computed approximation is in the array x

Figure 8-5 General Scheme of Using RCI FGMRES Routines

...

generate matrix A

generate preconditioner C (optional)

call dfgmres_init(n, x, b, RCI_request, ipar, dpar, tmp)

change parameters in ipar, dpar if necessary

call dfgmres_check(n, x, b, RCI_request, ipar, dpar, tmp)

1 call dfgmres(n, x, b, RCI_request, ipar, dpar, tmp)

if (RCI_request.eq.1) then

multiply the matrix A by tmp(ipar(22)) and put the result in tmp(ipar(23))

It is possible to use MKL Sparse BLAS Level 2 subroutines for this operation

c proceed with FGMRES iterations

goto 1

endif

if (RCI_request.eq.2) then

do the stopping test

if (test not passed) then

c proceed with FGMRES iterations

go to 1

else

c stop FGMRES iterations

goto 2

2154

8 Intel® Math Kernel Library Reference Manual

endif

endif

if (RCI_request.eq.3) then (optional)

apply the preconditioner C inverse to tmp(ipar(22)) and put the result in tmp(ipar(23))

c proceed with FGMRES iterations

goto 1

endif

if (RCI_request.eq.4) then

check the norm of the next orthogonal vector, it is contained in dpar(7)

if (the norm is not zero up to rounding/computational errors) then

c proceed with FGMRES iterations

goto 1

else

c stop FGMRES iterations

goto 2

endif

endif

2 call dfgmres_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)

current iteration number is in itercount

the computed approximation is in the array x

Note that for the FGMRES method the array x initially contains the current initial approximation
to the solution that can be updated only by calling the dfgmres_get routine that updates the
solution in accordance with the computations performed by the dfgmres routine.

The pseudo codes in these figures demonstrate two main differences in use of RCI CG and RCI
FGMRES interfaces. The first difference relates to the RCI_request=3 (different locations in
the tmp array which is 2-dimensional for CG and 1-dimensional for FGMRES), the second
difference relates to RCI_request=4 (RCI CG interface never produces RCI_request=4).

You can find example codes that use RCI ISS interface routines to solve systems of linear
equations in the Iterative Sparse Solver Code Example section in the Appendix C.

2155

Sparse Solver Routines 8

CG Interface Description

All types in this documentation refer to the standard Fortran types, INTEGER, and DOUBLE
PRECISION.

C and C++ programmers should refer to the section Calling Sparse Solver Routines From C/C++
for information on mapping Fortran types to C/C++ types.

Each routine for the RCI CG solver is implemented in two versions: for system of equations
with single right hand side (SRHS), and for system of equations with multiple right hand sides
(MRHS). The routines for the system with MRHS contain the suffix mrhs in their names.

NOTE. The routines for the system with MRHS can be used with the names without
suffix mrhs. To do this, the user must switch on the compiler's preprocessor and include
the files mkl_solver.h for C/C++, or mkl_solver.f77 for FORTRAN.

Routines Options

All of the RCI CG routines have parameters for passing various options to the routines. The
values for these parameters should be specified very carefully (see CG Common Parameters),
and they can be changed during computations according to the user's needs.

NOTE. Users must provide correct and consistent parameters to the subroutines to
avoid fails or wrong results.

User Data Arrays

Many of the RCI CG routines take arrays of user data as input. For example, user arrays are
passed to the routine dcg to compute the solution of a system of linear algebraic equations.
The Intel MKL RCI CG routines do not make copies of the user input arrays to minimize storage
requirements and improve overall run-time efficiency.

CG Common Parameters

NOTE. The default and initial values listed below are assigned to the parameters by the
calling the dcg_init/dcgmrhs_init routine.

2156

8 Intel® Math Kernel Library Reference Manual

- INTEGER, this parameter sets the size of the problem in the
dcg_init/dcgmrhs_init routine. All other routines uses ipar(1)
parameter instead.

n

- DOUBLE PRECISION array of size n for SRHS, or matrix of size
n by nrhs for MRHS. This parameter contains the current
approximation to the solution. Before the first call to the
dcg/dcgmrhs routine, it contains the initial approximation to the
solution.

x

- INTEGER, this parameter sets the number of right-hand sides for
MRHS routines.

nrhs

- DOUBLE PRECISION array containing the single right-hand side
vector, or matrix (nrhs, n)containing the right-hand side vectors.

b

- INTEGER, this parameter is used to inform about the result of
work of the RCI CG routines. The negative values of the parameter
indicate that the routine is completed with errors or warnings. The

RCI_request

0 value indicates the successful completion of the task. The positive
values mean that the user must perform certain actions,
specifically:

- multiply the matrix by tmp(1:n,1), put the
result in tmp(1:n,2), and return the control
to the dcg/dcgmrhs routine;

RCI_request= 1

- perform the stopping test(s). If they fail,
return the control to the dcg/dcgmrhs routine.
Otherwise, the solution is found and stored in
the x;

RCI_request= 2

- for SRHS: apply the preconditioner to
tmp(1:n,3), put the result in tmp(1:n,4),
and return the control to the dcg routine;

RCI_request= 3

- for MRHS: apply the preconditioner to
tmp(:,3+ipar(3)), put the result in
tmp(:,3), and return the control to the
dcgmrhs routine.

Note that the dcg_get/dcgmrhs_get routine does not change the
parameter RCI_request. This allows user to use this routine inside
the Reverse Communication computations.

2157

Sparse Solver Routines 8

- INTEGER array, of size 128 for SRHS, and of size
(128+2*nrhs)for MRHS ; this parameter is used to specify the
integer set of data for the RCI CG computations:

ipar

- specifies the size of the problem. The
dcg_init/dcgmrhs_init routine assignes
ipar(1)=n. All other routines uses this
parameter instead of n. There is no default
value for this parameter.

ipar(1)

- specifies the type of output for error and
warning messages that are generated by the
RCI CG routines. The default value 6 means

ipar(2)

that all messages are displayed on the screen.
Otherwise the error and warning messages
are written to the newly created files
dcg_errors.txt and dcg_check_warnings.txt
respectively. Note that if ipar(6) and
ipar(7) parameters are set to 0, error and
warning messages are not generated at all.

- for SRHS: contains the current stage of the
RCI CG computations, the initial value is 1;

ipar(3)

- for MRHS: contains the right-hand side for
which the calculations are currently performed.

NOTE. It is highly non-recommended
to alter this variable during
computations.

- contains the current iteration number, the
initial value is 0.

ipar(4)

- specifies the maximum number of iterations,
the default value is min{150,n} .

ipar(5)

- if the value is not equal to 0, the routines
output error messages in accordance with the
parameter ipar(2). Otherwise, the routines

ipar(6)

2158

8 Intel® Math Kernel Library Reference Manual

do not output error messages at all, but they
return a negative value of the parameter
RCI_request. The default value is 1.

- if the value is not equal to 0, the routines
output warning messages in accordance with
the parameter ipar(2). Otherwise, the

ipar(7)

routines do not output warning messages at
all, but they return a negative value of the
parameter RCI_request. The default value is
1.

- if the value is not equal to 0, the
dcg/dcgmrhs routine performs the stopping
test for the maximum number of iterations,

ipar(8)

namely, ipar(4)≤ipar(5). Otherwise, the
method is stopped and corresponding value is
assigned to the RCI_request. If the value is
0, the routine does not perform this stopping
test. The default value is 1.

- if the value is not equal to 0, the
dcg/dcgmrhs routine performs the residual
stopping test, namely,

ipar(9)

dpar(5)≤dpar(4)=dpar(1)*dpar(3)+dpar(2).
Otherwise, the method is stopped and
corresponding value is assigned to the
RCI_request. If the value is 0, the routine
does not perform this stopping test. The
default value is 0.

- if the value is not equal to 0, the
dcg/dcgmrhs routine requests for the user
defined stopping test by setting

ipar(10)

RCI_request=2. If the value is 0, the routine
does not perform the user defined stopping
test. The default value is 1.

NOTE. At least one of the parameters
ipar(8)-ipar(10) must be set to 1.

2159

Sparse Solver Routines 8

- if the value is equal to 0, the dcg/dcgmrhs
routine runs the non-preconditioned version
of the corresponding Conjugate Gradient

ipar(11),

method. Otherwise, the routine runs the
preconditioned version of the Conjugate
Gradient method, and asks the user to perform
the preconditioning step by setting the
parameter RCI_request=3. The default value
is 0.

are reserved and not used in the current RCI
CG SRHS and MRHS routines respectively.

ipar(11:128),
ipar(11:128+2*nrhs)

NOTE. Advanced users can define the
array in the code using RCI CG SRHS as
follows: INTEGER ipar(11). However,
to guarantee the compatibility with the
future releases of the Intel MKL it is
highly recommended to declare the array
ipar of length 128.

- DOUBLE PRECISION array, for SRHS of size 128, for MRHS of
size (128+2*nrhs); this parameter is used to specify the double
precision set of data for the RCI CG computations, specifically:

dpar

- specifies the relative tolerance, the default
value is 1.0D-6;

dpar(1)

- specifies the absolute tolerance, the default
value is 0.0D-0;

dpar(2)

- specifies the square norm of initial residual
(if it is computed in the dcg/dcgmrhs routine),
the initial value is 0;

dpar(3)

- service variable, it is equal to
dpar(1)*dpar(3)+dpar(2) (if it is computed
in the dcg/dcgmrhs routine), the initial value
is 0;

dpar(4)

- specifies the square norm of current residual,
the initial value is 0.0;

dpar(5)

2160

8 Intel® Math Kernel Library Reference Manual

- specifies the square norm of residual from
the previous iteration step (if available), the
initial value is 0.0;

dpar(6)

- contains the "alpha" parameter of the CG
method, the initial value is 0.0;

dpar(7)

- contains the "beta" parameter of the CG
method, it is equal to dpar(5)/dpar(6), the
initial value is 0.0;

dpar(8)

are reserved and not used in the current RCI
CG SRHS and MRHS routines respectively.

dpar(9:128),
dpar(9:128+2*nrhs)

NOTE. Advanced users can define this
array in the code using RCI CG SRHS as
follows: DOUBLE PRECISION dpar(8).
However, to guarantee the compatibility
with the future releases of the Intel MKL
it is highly recommended to declare the
array dpar of length 128.

- DOUBLE PRECISION array, for SRHS of size (n,4), for MRHS of
size (n,3+nrhs); this parameter is used to supply the double
precision temporary space for the RCI CG computations,
specifically:

tmp

- specifies the current search direction. The
initial value is 0.0;

tmp(:,1)

- contains the matrix multiplied by the current
search direction. The initial value is 0.0;

tmp(:,2)

- contains the current residual. The initial value
is 0.0;

tmp(:,3)

- contains the inverse of the preconditioner
applied to the current residual. There is no
initial value for this parameter.

tmp(:,4)

2161

Sparse Solver Routines 8

NOTE. Advanced users can define this
array in the code using RCI CG SRHS as
DOUBLE PRECISIONtmp(n,3) if they run
only non-preconditioned CG iterations.

FGMRES Interface Description

All types in this documentation refer to the standard Fortran types, INTEGER, and DOUBLE
PRECISION.

C and C++ programmers should refer to the section Calling Sparse Solver Routines From C/C++
for information on mapping Fortran types to C/C++ types.

Routines Options

All of the RCI FGMRES routines have parameters for passing various options to the routines.
The values for these parameters should be specified very carefully (see FGMRES Common
Parameters), and they can be changed during computations according to the user's needs.

NOTE. Users must provide correct and consistent parameters to the subroutines to
avoid fails or wrong results.

User Data Arrays

Many of the RCI FGMRES routines take arrays of user data as input. For example, user arrays
are passed to the routine>dfgmres to compute the solution of a system of linear algebraic
equations. In order to minimize storage requirements and improve overall run-time efficiency,
the Intel MKL RCI FGMRES routines do not make copies of the user input arrays.

FGMRES Common Parameters

NOTE. The default and initial values listed below are assigned to the parameters by the
calling thedfgmres_init routine.

2162

8 Intel® Math Kernel Library Reference Manual

- INTEGER, this parameter sets the size of the problem in the
dfgmres_init routine. All other routines uses ipar(1) parameter
instead.

n

- DOUBLE PRECISION array, this parameter contains the current
approximation to the solution vector. Before the first call to the
dfgmres routine, it contains the initial approximation to the
solution vector.

x

- DOUBLE PRECISION array, this parameter contains the right-hand
side vector. Depending on user requests, it may contain the
approximate solution later.

b

- INTEGER, this parameter is used to inform about the result of
work of the RCI FGMRES routines. The negative values of the
parameter indicate that the routine is completed with errors or

RCI_request

warnings. The 0 value indicates the successful completion of the
task. The positive values mean that the user must perform certain
actions, specifically:

- multiply the matrix by tmp(ipar(22)), put
the result in tmp(ipar(23)), and return the
control to the dfgmres routine;

RCI_request= 1

- perform the stopping test(s). If they fail,
return the control to the dfgres routine.
Otherwise, the solution can be updated by a
subsequent call to dfgmres_get routine;

RCI_request= 2

- apply the preconditioner to tmp(ipar(22)),
put the result in tmp(ipar(23)), and return
the control to the dfgmres routine.

RCI_request= 3

- check if the norm of the current orthogonal
vector is not zero up to
rounding/computational errors. Return the

RCI_request= 4

control to the dfgmres routine if it is not zero,
otherwise complete the solution process by
calling dfgmres_get routine.

- INTEGER array, this parameter is used to specify the integer set
of data for the RCI FGMRES computations:

ipar(128)

2163

Sparse Solver Routines 8

- specifies the size of the problem. The
dfgmres_init routine assignes ipar(1)=n.
All other routines uses this parameter instead
of n. There is no default value for this
parameter.

ipar(1)

- specifies the type of output for error and
warning messages that are generated by the
RCI FGMRES routines. The default value 6

ipar(2)

means that all messages are displayed on the
screen. Otherwise the error and warning
messages are written to the newly created file
MKL_RCI_FGMRES_Log.txt. Note that if
ipar(6) and ipar(7) parameters are set to
0, error and warning messages are not
generated at all.

- contains the current stage of the RCI
FGMRES computations, the initial value is 1.

ipar(3)

NOTE. It is highly non-recommended
to alter this variable during
computations.

- contains the current iteration number, the
initial value is 0.

ipar(4)

- specifies the maximum number of iterations,
the default value is min {150,n}.

ipar(5)

- if the value is not equal to 0, the routines
output error messages in accordance with the
parameter ipar(2). Otherwise, the routines

ipar(6)

do not output error messages at all, but they
return a negative value of the parameter
RCI_request. The default value is 1.

- if the value is not equal to 0, the routines
output warning messages in accordance with
the parameter ipar(2). Otherwise, the

ipar(7)

routines do not output warning messages at

2164

8 Intel® Math Kernel Library Reference Manual

all, but they return a negative value of the
parameter RCI_request. The default value is
1.

- if the value is not equal to 0, the dfmres
routine performs the stopping test for the
maximum number of iterations, namely,

ipar(8)

ipar(4)≤ipar(5). Otherwise, the method is
stopped and corresponding value is assigned
to the RCI_request. If the value is 0, the
dfgmres routine does not perform this
stopping test. The default value is 1.

- if the value is not equal to 0, the dfgmres
routine performs the residual stopping test,

namely, dpar(5)≤dpar(4) =

ipar(9)

dpar(1)·dpar(3)+dpar(2). If the criterion
is fulfilled, the method is stopped and
corresponding value is assigned to the
RCI_request. If the value is 0, the dfgmres
routine does not perform this stopping test.
The default value is 0.

- if the value is not equal to 0, the dfgmres
routine requests for the user defined stopping
test by setting RCI_request=2. If the value

ipar(10)

is 0, the dfgmres routine does not perform
the user defined stopping test. The default
value is 1.

NOTE. At least one of the parameters
ipar(8)-ipar(10) must be set to 1.

- if the value is equal to 0, the dfgmres
routine runs the non-preconditioned version
of the FGMRES method. Otherwise, the routine

ipar(11)

runs the preconditioned version of the FGMRES

2165

Sparse Solver Routines 8

method, and asks the user to perform the
preconditioning step by setting the parameter
RCI_request=3. The default value is 0.

- if the value is not equal to 0, the dfgmres
routine performs the automatic test for zero
norm of the currently generated vector,

ipar(12)

namely, dpar(7)≤dpar(8), where dpar(8)
contains the tolerance value. Otherwise, the
routine asks the user to perform this check by
setting the parameter RCI_request=4. The
default value is 0.

- if the value is equal to 0, the dfgmres_get
routine updates the solution to the vector x
according to the computations done by the

ipar(13)

dfgmres routine. If the value is positive, the
routine writes the solution to the right hand
side vector b. If the value is negative, the
routine returns only the number of the current
iteration, and does not update the solution.
The default value is 0

NOTE. Advanced users may use the
dfgmres_get routine at any place in the
code. In this case special attention
should be paid to the parameter
ipar(13). The RCI FGMRES iterations
can be continued after the call to
dfgmres_get routine only if the
parameter ipar(13) is not equal to zero.
If ipar(13) is positive, then the updated
solution will overwrite the right hand side
in the vector b. If the user wants to run
the restarted version of FGMRES with the
same right hand side, it should be saved
in a different memory location before the
first call to dfgmres_get routine with
positive ipar(13).

2166

8 Intel® Math Kernel Library Reference Manual

- contains the internal iteration counter that
counts the number of iterations before the
restart takes place. The initial value is 0.

ipar(14)

NOTE. It is highly non-recommended
to alter this variable during
computations.

- specifies the length of the non-restarted
FGMRES iterations. To run the restarted
version of the FGMRES method, the user

ipar(15)

should assign to ipar(15) the number of
iterations before the restart takes place. The
default value is min {150, n}, that is, by
default the non-restarted version of FGMRES
method is used.

- service variable, specifies the location of the
rotated Hessenberg matrix from which the
matrix stored in the packed format (see
“Matrix Arguments” in the Appendix B for
details) is started in the tmp array.

ipar(16)

- service variable, specifies the location of the
rotation cosines from which the vector of
cosines is started in the tmp array.

ipar(17)

- service variable, specifies the location of the
rotation sines from which the vector of sines
is started in the tmp array.

ipar(18)

- service variable, specifies the location of the
rotated residual vector from which the vector
is started in the tmp array.

ipar(19)

- service variable, specifies the location of the
least squares solution vector from which the
vector is started in the tmp array.

ipar(20)

- service variable, specifies the location of the
set of preconditioned vectors from which the
set is started in the tmp array. The memory

ipar(21)

2167

Sparse Solver Routines 8

locations in the tmp array starting from
ipar(21)are used only for preconditioned
FGMRES method.

- specifies the memory location from which
the first vector (source) used in operations
requested via RCI_request is started in the
tmp array.

ipar(22)

- specifies the memory location from which
the second vector (source) used in operations
requested via RCI_request is started in the
tmp array.

ipar(23)

are reserved and not used in the current RCI
FGMRES routines.

ipar(24:128)

NOTE. Advanced users can define the
array in the code as follows: INTEGER
ipar(23). However, to guarantee the
compatibility with the future releases of
the Intel MKL it is highly recommended
to declare the array ipar of length 128.

- DOUBLE PRECISION array, this parameter is used to specify the
double precision set of data for the RCI CG computations,
specifically:

dpar(128)

- specifies the relative tolerance, the default
value is 1.0D-6;

dpar(1)

- specifies the absolute tolerance, the default
value is 0.0D-0;

dpar(2)

- pecifies the Euclidean norm of the initial
residual (if it is computed in the dfgmres
routine), the initial value is 0.0;

dpar(3)

- service variable, it is equal to
dpar(1)*dpar(3)+dpar(2) (if it is computed
in the dfgmres routine), the initial value is
0.0;

dpar(4)

2168

8 Intel® Math Kernel Library Reference Manual

- specifies the Euclidean norm of the current
residual, the initial value is 0.0;

dpar(5)

- specifies the Euclidean norm of residual from
the previous iteration step (if available), the
initial value is 0.0;

dpar(6)

- contains the norm of the generated vector,
the initial value is 0.0;

dpar(7)

NOTE. For reference only: in terms of
[Saad03] this parameter is the coefficient
hk+1,k of the Hessenberg matrix.

- contains the tolerance for the "zero" norm
of the currently generated vector, the default
value is 1.0D-12.

dpar(8)

are reserved and not used in the current RCI
FGMRES routines.

dpar(9:128)

NOTE. Advanced users can define this
array in the code as follows: DOUBLE
PRECISION dpar(8). However, to
guarantee the compatibility with the
future releases of the Intel MKL it is
highly recommended to declare the array
dpar of length 128.

-DOUBLE PRECISION array of size ((2*ipar(15)+1)*n +
ipar(15)*(ipar(15)+9)/2 + 1)), this parameter is used to
supply the double precision temporary space for the RCI FGMRES
computations, specifically:

tmp

- contains the sequence of generated by
FGMRES method vectors. The initial value is
0.0 for the first part of this memory of length
n;

tmp(1:ipar(16)-1)

2169

Sparse Solver Routines 8

contains the rotated Hessenberg matrix
generated by FGMRES method stored in
the packed format. There is no initial
value for this part of tmp array;

tmp(ipar(16):ipar(17)-1)

- contains the rotation cosines vector
generated by FGMRES method. There is no
initial value for this part of tmp array;

tmp(ipar(17):ipar(18)-1)

contains the rotation sines vector generated
by FGMRES method. There is no initial value
for this part of tmp array;

tmp(ipar(18):ipar(19)-1)

contains the rotated residual vector generated
by FGMRES method. There is no initial value
for this part of tmp array;

tmp(ipar(19):ipar(20)-1)

contains the solution vector to the least
squares problem generated by FGMRES
method. There is no initial value for this part
of tmp array;

tmp(ipar(20):ipar(21)-1)

- - contains the set of preconditioned vectors
generated for FGMRES method by the user.
This part of tmp array is not used if

tmp(ipar(21):)

non-preconditioned version of FGMRES method
is called. There is no initial value for this part
of tmp array.

NOTE. Advanced users can define this
array in the code as DOUBLE PRECISION
tmp((2*ipar(15)+1)*n +
ipar(15)*(ipar(15)+9)/2 + 1)) if
they run only non-preconditioned
FGMRES iterations.

2170

8 Intel® Math Kernel Library Reference Manual

dcg_init
Initializes the solver.

Syntax

dcg_init(n, x, b, RCI_request, ipar, dpar, tmp)

Input Parameters

INTEGER. Contains the size of the problem, and size of
arrays x and b.

n

DOUBLE PRECISION array of size n. Contains the initial
approximation to the solution vector. Normally it is equal
to 0 or to b.

x

DOUBLE PRECISION array of size n. Contains the right-hand
side vector.

b

Output Parameters

INTEGER. Informs about the task completion.RCI_request

INTEGER array of size 128. Refer to the CG Common
Parameters.

ipar

DOUBLE PRECISION array of size 128. Refer to the CG
Common Parameters.

dpar

DOUBLE PRECISION array of size (n,4). Refer to the CG
Common Parameters.

tmp

Description

The routine dcg_init is called to initialize the solver. After initialization all subsequent
invocations of Intel MKL RCI CG routines can use the values of all parameters that are returned
by dcg_init. Advanced users can skip this step and set the values to these parameters directly
in the corresponding routines.

WARNING. Users can modify the contents of these arrays after they are passed to the
solver routine only if they are sure that the values are correct and consistent. Basic check
for correctness and consistency can be done by calling the dcg_check routine, but it
does not guarantee that the method will work correctly.

2171

Sparse Solver Routines 8

Return Values

The routine completed task normally.RCI_request= 0

The routine failed to complete the task.RCI_request= -10000

dcg_check
Checks the consistency and correctness of the user
defined data.

Syntax

dcg_check(n, x, b, RCI_request, ipar, dpar, tmp)

Input Parameters

INTEGER. Contains the size of the problem, and size of
arrays x and b.

n

DOUBLE PRECISION array of size n. Contains the initial
approximation to the solution vector. Normally it is equal
to 0 or to b.

x

DOUBLE PRECISION array of size n. Contains the right-hand
side vector.

b

Output Parameters

INTEGER. Informs about the task completion.RCI_request

INTEGERarray of size 128. Refer to the CG Common
Parameters.

ipar

DOUBLE PRECISION array of size 128. Refer to the CG
Common Parameters.

dpar

DOUBLE PRECISION array of size (n,4). Refer to the CG
Common Parameters.

tmp

2172

8 Intel® Math Kernel Library Reference Manual

Description

The routine dcg_check checks the consistency and correctness of the parameters to be passed
to the solver routine dcg. However this operation does not guarantee that the method will be
able to produce the correct result. It only reduces the chance to make a mistake in the
parameters of the method. Advanced users can skip it if they are sure that the correct data is
specified in the solver parameters.

WARNING. Users can modify the contents of these arrays after they are passed to the
solver routine only if they are sure that the values are correct and consistent. Basic check
for correctness and consistency can be done by calling the dcg_check routine, but it
does not guarantee that the method will work correctly.

Note that the lengths of all vectors are assumed to have been defined in a previous call to
dcg_init subroutine.

Return Values

The routine completed task normally.RCI_request= 0

The routine is interrupted, errors occur.RCI_request= -1100

The routine returns some warning messages.RCI_request= -1001

The routine changed some parameters to make them
consistent or correct.

RCI_request= -1010

The routine returns some warning messages and
changed some parameters.

RCI_request= -1011

dcg
Computes the approximate solution vector.

Syntax

dcg(n, x, b, RCI_request, ipar, dpar, tmp)

Input Parameters

INTEGER. Contains the size of the problem, and size of
arrays x and b.

n

2173

Sparse Solver Routines 8

DOUBLE PRECISION array of size n. Contains the initial
approximation to the solution vector.

x

DOUBLE PRECISION array of size n. Contains the right-hand
side vector.

b

DOUBLE PRECISION array of size (n,4). Refer to the CG
Common Parameters.

tmp

Output Parameters

INTEGER. Informs about the task completion status.RCI_request

DOUBLE PRECISION array of size n. Contains the updated
approximation to the solution vector.

x

INTEGER array of size 128. Refer to the CG Common
Parameters.

ipar

DOUBLE PRECISION array of size 128. Refer to the CG
Common Parameters.

dpar

DOUBLE PRECISION array of size (n,4). Refer to the CG
Common Parameters.

tmp

Description

The routine dcg computes the approximate solution vector using the CG method [Young71].
The value that was in the vector x before the first call, the routine dcg uses as an initial
approximation to the solution. The parameter RCI_request inform the user about task
completion status and ask for results of certain operations that are required to the solver.

Note that the lengths of all vectors are assumed to have been defined in a previous call to the
dcg_init routine.

Return Values

The routine completed task normally, the solution
is found and stored in the vector x. This occurs only
if the stopping tests are fully automatic. For the user
defined stopping tests, see the comments to the
RCI_request= 2.

RCI_request=0

2174

8 Intel® Math Kernel Library Reference Manual

The routine is interrupted because the maximal
number of iterations is reached, but the relative
stopping criterion is not satisfied (this occurs only if
both tests are requested by the user).

RCI_request=-1

The routine is interrupted because the attempt to
divide by zero occurs. This happens if the matrix is
(almost) non-positive definite.

RCI_request=-2

The routine is interrupted because the residual norm
is invalid. (Probably, the data in dpar(6) were
altered outside of the routine, or the dcg_check
routine was not called).

RCI_request=- 10

The routine is interrupted because it enters the
infinite cycle. (Probably, the data in ipar(8),
ipar(9), ipar(10) were altered outside of the
routine, or the dcg_check routine was not called).

RCI_request=-11

Asks user to multiply the matrix by tmp(1:n,1),
put the result in the tmp(1:n,2), and return the
control back to the routine dcg.

RCI_request= 1

Asks user to perform the stopping test(s). If they
fail, the user should return the control back to the
dcg routine. Otherwise, the solution is found and
stored in the vector x.

RCI_request= 2

Asks user to apply the preconditioner to tmp(:,3),
put the result in the tmp(:,4), and return the
control back to the routine dcg.

RCI_request= 3

dcg_get
Retrieves the number of the current iteration.

Syntax

dcg_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)

Input Parameters

INTEGER. Contains the size of the problem, and size of
arrays x and b.

n

2175

Sparse Solver Routines 8

DOUBLE PRECISION array of size n. Contains the initial
approximation vector to the solution.

x

DOUBLE PRECISION array of size n. Contains the right-hand
side vector.

b

INTEGER. This parameter is not used.RCI_request

INTEGER array of size 128. Refer to the CG Common
Parameters.

ipar

DOUBLE PRECISION array of size 128. Refer to the CG
Common Parameters.

dpar

DOUBLE PRECISION array of size (n,4). Refer to the CG
Common Parameters.

tmp

Output Parameters

INTEGER argument. Contains the value of the current
iteration number.

itercount

Description

The routine dcg_get is called to retrieve the current iteration number of the solutions process.

Return Values

The routine dcg_get does not return any value.

dcgmrhs_init
Initializes the RCI CG solver with MHRS.

Syntax

dcgmrhs_init(n, x, nrhs, b, method, RCI_request, ipar, dpar, tmp)

Input Parameters

INTEGER. Contains the size of the problem, and size of
arrays x and b.

n

DOUBLE PRECISION matrix of size n by nrhs. Contains the
initial approximation to the solution vectors. Normally it is
equal to 0 or to b.

x

2176

8 Intel® Math Kernel Library Reference Manual

INTEGER. This parameter sets the number of right-hand
sides.

nrhs

DOUBLE PRECISION matrix of size (nrhs,n). Contains the
right-hand side vectors.

b

INTEGER. Specifies the method of solution:method
1 - CG with multiple right hand sides; default value.
2 - Block-CG (not supported now)

Output Parameters

INTEGER. Informs about the task completion.RCI_request

INTEGER array of size (128+2*nrhs). Refer to the CG
Common Parameters.

ipar

DOUBLE PRECISION array of size (128+2*nrhs). Refer to
the CG Common Parameters.

dpar

DOUBLE PRECISION array of size (n, 3+nrhs). Refer to
the CG Common Parameters.

tmp

Description

The routine dcgmrhs_init is called to initialize the solver. After initialization all subsequent
invocations of Intel MKL RCI CG with multiple right hand sides (MRHS) routines can use the
values of all parameters that are returned by dcgmrhs_init. Advanced users can skip this
step and set the values to these parameters directly in the corresponding routines.

WARNING. Users can modify the contents of these arrays after they are passed to the
solver routine only if they are sure that the values are correct and consistent. Basic check
for correctness and consistency can be done by calling the dcgmrhs_check routine, but
it does not guarantee that the method will work correctly.

NOTE. To use this routine with the name dcg_init, the user must switch on the
compiler's preprocessor and include the files mkl_solver.h for C/C++, or mkl_solver.f77
for FORTRAN.

Return Values

The routine completed task normally.RCI_request= 0

2177

Sparse Solver Routines 8

The routine failed to complete the task.RCI_request= -10000

dcgmrhs_check
Checks the consistency and correctness of the user
defined data.

Syntax

dcgmrhs_check(n, x, nrhs, b, RCI_request, ipar, dpar, tmp)

Input Parameters

INTEGER. Contains the size of the problem, and size of
arrays x and b.

n

DOUBLE PRECISION matrix of size n by nrhs. Contains the
initial approximation to the solution vectors. Normally it is
equal to 0 or to b.

x

INTEGER. This parameter sets the number of right-hand
sides.

nrhs

DOUBLE PRECISION matrix of size (nrhs,n). Contains the
right-hand side vectors.

b

Output Parameters

INTEGER. Informs about the task completion.RCI_request

INTEGER array of size (128+2*nrhs). Refer to the CG
Common Parameters.

ipar

DOUBLE PRECISION array of size (128+2*nrhs). Refer to
the CG Common Parameters.

dpar

DOUBLE PRECISION array of size (n, 3+nrhs). Refer to
the CG Common Parameters.

tmp

Description

The routine dcgmrhs_check checks the consistency and correctness of the parameters to be
passed to the solver routine dcgmrhs. However this operation does not guarantee that the
method will be able to produce the correct result. It only reduces the chance to make a mistake
in the parameters of the method. Advanced users can skip it if they are sure that the correct
data is specified in the solver parameters.

2178

8 Intel® Math Kernel Library Reference Manual

WARNING. Users can modify the contents of these arrays after they are passed to the
solver routine only if they are sure that the values are correct and consistent. Basic check
for correctness and consistency can be done by calling the dcgmrhs_check routine, but
it does not guarantee that the method will work correctly.

Note that the lengths of all vectors are assumed to have been defined in a previous call to
dcgmrhs_init subroutine.

NOTE. To use this routine with the name dcg_check, the user must switch on the
compiler's preprocessor and include the files mkl_solver.h for C/C++, or mkl_solver.f77
for FORTRAN.

Return Values

The routine completed task normally.RCI_request= 0

The routine is interrupted, errors occur.RCI_request= -1100

The routine returns some warning messages.RCI_request= -1001

The routine changed some parameters to make them
consistent or correct.

RCI_request= -1010

The routine returns some warning messages and
changed some parameters.

RCI_request= -1011

dcgmrhs
Computes the approximate solution vectors.

Syntax

dcgmrhs(n, x, nrhs, b, RCI_request, ipar, dpar, tmp)

Input Parameters

INTEGER. Contains the size of the problem, and size of
arrays x and b.

n

DOUBLE PRECISION matrix of size n by nrhs. Contains the
initial approximation to the solution vectors.

x

2179

Sparse Solver Routines 8

INTEGER. This parameter sets the number of right-hand
sides.

nrhs

DOUBLE PRECISION matrix of size (nrhs,n). Contains the
right-hand side vectors.

b

DOUBLE PRECISION array of size (n, 3+nrhs). Refer to
the CG Common Parameters.

tmp

Output Parameters

INTEGER. Informs about the task completion status.RCI_request

DOUBLE PRECISION matrix of size n by nrhs. Contains the
updated approximation to the solution vectors.

x

INTEGER array of size (128+2*nrhs). Refer to the CG
Common Parameters.

ipar

DOUBLE PRECISION array of size (128+2*nrhs). Refer to
the CG Common Parameters.

dpar

DOUBLE PRECISION array of size (n, 3+nrhs). Refer to
the CG Common Parameters.

tmp

Description

The routine dcgmrhs computes the approximate solution vectors using the CG with multiple
right hand sides (MRHS) method [Young71]. The value that was in the x before the first call,
the routine dcgmrhs uses as an initial approximation to the solution. The parameter
RCI_request inform the user about task completion status and ask for results of certain
operations that are required to the solver.

Note that the lengths of all vectors are assumed to have been defined in a previous call to the
dcgmrhs_init routine.

NOTE. To use this routine with the name dcg, the user must switch on the compiler's
preprocessor and include the files mkl_solver.h for C/C++, or mkl_solver.f77 for FORTRAN.

2180

8 Intel® Math Kernel Library Reference Manual

Return Values

The routine completed task normally, the solution
is found and stored in the matrixr x. This occurs only
if the stopping tests are fully automatic. For the user
defined stopping tests, see the comments to the
RCI_request= 2.

RCI_request=0

The routine is interrupted because the maximal
number of iterations is reached, but the relative
stopping criterion is not satisfied (this occurs only if
both tests are requested by the user).

RCI_request=-1

The routine is interrupted because the attempt to
divide by zero occurs. This happens if the matrix is
(almost) non-positive definite.

RCI_request=-2

The routine is interrupted because the residual norm
is invalid. (Probably, the data in dpar(6) were
altered outside of the routine, or the dcgmrhs_check
routine was not called).

RCI_request=- 10

The routine is interrupted because it enters the
infinite cycle. (Probably, the data in ipar(8),
ipar(9), ipar(10) were altered outside of the
routine, or the dcgmrhs_check routine was not
called).

RCI_request=-11

Asks user to multiply the matrix by tmp(1:n,1),
put the result in the tmp(1:n,2), and return the
control back to the routine dcgmrhs.

RCI_request= 1

Asks user to perform the stopping test(s). If they
fail, the user should return the control back to the
dcgmrhs routine. Otherwise, the solution is found
and stored in the matrix x.

RCI_request= 2

Asks user to apply the preconditioner to tmp(:,3),
put the result in the tmp(:,4), and return the
control back to the routine dcgmrhs.

RCI_request= 3

2181

Sparse Solver Routines 8

dcgmrhs_get
Retrieves the number of the current iteration.

Syntax

dcgmrhs_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)

Input Parameters

INTEGER. Contains the size of the problem, and size of
arrays x and b.

n

DOUBLE PRECISION matrix of size n by nrhs. Contains the
initial approximation to the solution vectors.

x

INTEGER. This parameter sets the number of right-hand
sides.

nrhs

DOUBLE PRECISION matrix of size (nrhs,n). Contains the
right-hand side .

b

INTEGER. This parameter is not used.RCI_request

INTEGER array of size (128+2*nrhs). Refer to the CG
Common Parameters.

ipar

DOUBLE PRECISION array of size (128+2*nrhs). Refer to
the CG Common Parameters.

dpar

DOUBLE PRECISION array of size (n, 3+nrhs). Refer to
the CG Common Parameters.

tmp

Output Parameters

INTEGER argument. Contains the value of the current
iteration number.

itercount

Description

The routine dcgmrhs_get is called to retrieve the current iteration number of the solutions
process.

NOTE. To use this routine with the name dcg_get, the user must switch on the compiler's
preprocessor and include the files mkl_solver.h for C/C++, or mkl_solver.f77 for FORTRAN.

2182

8 Intel® Math Kernel Library Reference Manual

Return Values

The routine dcgmrhs_get does not return any value.

dfgmres_init
Initializes the solver.

Syntax

dfgmres_init(n, x, b, RCI_request, ipar, dpar, tmp)

Input Parameters

INTEGER. Contains the size of the problem, and size of
arrays x and b.

n

DOUBLE PRECISION array of size n. Contains the initial
approximation to the solution vector. Normally it is equal
to 0 or to b.

x

DOUBLE PRECISION array of size n. Contains the right-hand
side vector.

b

Output Parameters

INTEGER. Informs about the task completion.RCI_request

INTEGER array of size 128. Refer to the FGMRES Common
Parameters.

ipar

DOUBLE PRECISION array of size 128. Refer to the FGMRES
Common Parameters.

dpar

DOUBLE PRECISION array of size
((2*ipar(15)+1)*n+ipar(15)*ipar(15)+9)/2 + 1).
Refer to the FGMRES Common Parameters.

tmp

Description

The routine dfgmres_init is called to initialize the solver. After initialization all subsequent
invocations of Intel MKL RCI FGMRES routines can use the values of all parameters that are
returned by dfgmres_init. Advanced users can skip this step and set the values to these
parameters directly in the corresponding routines.

2183

Sparse Solver Routines 8

WARNING. Users can modify the contents of these arrays after they are passed to the
solver routine only if they are sure that the values are correct and consistent. Basic check
for correctness and consistency can be done by calling the dfgmres_check routine, but
it does not guarantee that the method will work correctly.

Return Values

The routine completed task normally.RCI_request= 0

The routine failed to complete the task.RCI_request= -10000

dfgmres_check
Checks the consistency and correctness of the user
defined data.

Syntax

dfgmres_check(n, x, b, RCI_request, ipar, dpar, tmp)

Input Parameters

INTEGER. Contains the size of the problem, and size of
arrays x and b.

n

DOUBLE PRECISION array of size n. Contains the initial
approximation to the solution vector. Normally it is equal
to 0 or to b.

x

DOUBLE PRECISION array of size n. Contains the right-hand
side vector.

b

Output Parameters

INTEGER. Informs about the task completion.RCI_request

INTEGER array of size 128. Refer to the FGMRES Common
Parameters.

ipar

DOUBLE PRECISION array of size 128. Refer to the FGMRES
Common Parameters.

dpar

2184

8 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION array of size
((2*ipar(15)+1)*n+ipar(15)*ipar(15)+9)/2 + 1).
Refer to the FGMRES Common Parameters.

tmp

Description

The routine dfgmres_check checks the consistency and correctness of the parameters to be
passed to the solver routine dfgmres. However this operation does not guarantee that the
method will be able to produce the correct result. It only reduces the chance to make a mistake
in the parameters of the method. Advanced users can skip it if they are sure that the correct
data is specified in the solver parameters.

WARNING. Users can modify the contents of these arrays after they are passed to the
solver routine only if they are sure that the values are correct and consistent. Basic check
for correctness and consistency can be done by calling the dfgmres_check routine, but
it does not guarantee that the method will work correctly.

Note that the lengths of all vectors are assumed to have been defined in a previous call to
dfgmres_init subroutine.

Return Values

The routine completed task normally.RCI_request= 0

The routine is interrupted, errors occur.RCI_request= -1100

The routine returns some warning messages.RCI_request= -1001

The routine changed some parameters to make them
consistent or correct.

RCI_request= -1010

The routine returns some warning messages and
changed some parameters.

RCI_request= -1011

dfgmres
Makes the FGMRES iterations.

Syntax

dfgmres(n, x, b, RCI_request, ipar, dpar, tmp)

2185

Sparse Solver Routines 8

Input Parameters

INTEGER. Contains the size of the problem, and size of
arrays x and b.

n

DOUBLE PRECISION array of size n. Contains the initial
approximation to the solution vector.

x

DOUBLE PRECISION array of size n. Contains the right-hand
side vector.

b

DOUBLE PRECISION array of size
((2*ipar(15)+1)*n+ipar(15)*ipar(15)+9)/2 + 1).
Refer to the FGMRES Common Parameters.

tmp

Output Parameters

INTEGER. Informs about the task completion status.RCI_request

INTEGER array of size 128. Refer to the FGMRES Common
Parameters.

ipar

DOUBLE PRECISION array of size 128. Refer to the FGMRES
Common Parameters.

dpar

DOUBLE PRECISION array of size
((2*ipar(15)+1)*n+ipar(15)*ipar(15)+9)/2 + 1).
Refer to the FGMRES Common Parameters.

tmp

Description

The routine dfgmres performs the FGMRES iterations [Saad03]. The value that was in the
vector x before the first call, the routine dfgmres uses as an initial approximation to the solution.
To update the current approximation to the solution, the user should call dfgmres_get routine.
The RCI FGMRES iterations can be continued after the call to the dfgmres_get routine only if
the value of the parameter ipar(13) is not equal to 0 (default value). Note that the updated
solution will overwrite the right hand side in the vector b if the parameter ipar(13) is positive,
and it will be impossible to run the restarted version of FGMRES method. If the user wants to
keep the right hand side, it should be saved in a different memory location before the first call
to dfgmres_get routine with positive ipar(13).

The parameter RCI_request inform the user about task completion status and ask for results
of certain operations that are required to the solver.

Note that the lengths of all vectors are assumed to have been defined in a previous call to the
dfgmres_init routine.

2186

8 Intel® Math Kernel Library Reference Manual

Return Values

The routine completed task normally, the solution
is found. This occurs only if the stopping tests are
fully automatic. For the user defined stopping tests,
see the comments to the RCI_request= 2 or 4.

RCI_request= 0

The routine is interrupted because the maximal
number of iterations is reached, but the relative
stopping criterion is not satisfied (this occurs only if
both tests are requested by the user).

RCI_request= -1

The routine is interrupted because the attempt to
divide by zero occurs. Normally it happens if the
matrix is (almost) degenerate. However it may

RCI_request= -10

happen if the parameter dpar is altered by mistale,
or if the method is not stopped when the solution is
found.

The routine is interrupted because it enters the
infinite cycle. (Probably, the data in ipar(8),
ipar(9), ipar(10) were altered outside of the
routine, or the dfgmres_check routine was not
called).

RCI_request= -11

The routine is interrupted because the some errors
are found in the method parameters. Normally this
happens if the parameters ipar and dpar are
altered by mistake outside the routine.

RCI_request= -12

Asks user to multiply the matrix by tmp(ipar(22)),
put the result in the tmp(ipar(23)), and return the
control back to the routine dfgmres.

RCI_request= 1

Asks user to perform the stopping test(s). If they
fail, the user should return the control back to the
dfgmres routine. Otherwise, the FGMRES solution

RCI_request= 2

is found, and the user should call the dfgmres_get
routine and update the computed solution to the the
vector x.

Asks user to apply the inverse preconditioner to
ipar(22), put the result in the ipar(23), and
return the control back to the routine dfgmres.

RCI_request= 3

2187

Sparse Solver Routines 8

Asks user to check the norm of the currently
generated vector. If it is not zero up to
computational/rounding errors, the user should

RCI_request= 4

return the control back to the dfgmres routine.
Otherwise, the FGMRES solution is found, and the
user should call the dfgmres_get routine and
update the computed solution to the the vector x.

dfgmres_get
Retrieves the number of the current iteration and
updates the solution.

Syntax

dfgmres_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)

Input Parameters

INTEGER. Contains the size of the problem, and size of
arrays x and b.

n

INTEGER array of size 128. Refer to the FGMRES Common
Parameters.

ipar

DOUBLE PRECISION array of size 128. Refer to the FGMRES
Common Parameters.

dpar

DOUBLE PRECISION array of size
((2*ipar(15)+1)*n+ipar(15)*ipar(15)+9)/2 + 1).
Refer to the FGMRES Common Parameters.

tmp

Output Parameters

DOUBLE PRECISION array of size n. If ipar(13)= 0, it
contains the updated approximation to the solution according
to the computations done in dfgmres routine. Otherwise,
it is not changed.

x

DOUBLE PRECISION array of size n. If ipar(13)> 0, it
contains the updated approximation to the solution according
to the computations done in dfgmres routine. Otherwise,
it is not changed.

b

2188

8 Intel® Math Kernel Library Reference Manual

INTEGER. Informs about the task completion.RCI_request

INTEGER argument. Contains the value of the current
iteration number.

itercount

Description

The routine dfgmres_get is called to retrieve the current iteration number of the solutions
process and to update the solution according to the computations performed by the dfgmres
routine. To retrieve the current iteration number only, set the parameter ipar(13)= -1
beforehand. This is normally recommended to do to proceed further with the computations. If
the intermediate solution is needed, the method parameters should be set properly, see for
details FGMRES Common Parameters and Iterative Sparse Solver Code Examples section in
the Appendix C.

Return Values

The routine completed task normally.RCI_request= 0

The routine is interrupted because the some errors
are found in the method parameters. Normally this
happens if some of the parameters ipar and dpar
are altered by mistake outside the routine.

RCI_request= -12

The routine failed to complete the task.RCI_request= -10000

Implementation Details

Several aspects of the Intel MKL RCI ISS interface are platform-specific and language-specific.
In order to promote portability across platforms and ease of use across different languages,
users are encouraged to include one of the Intel MKL RCI ISS language-specific header files.
Currently, there is one language specific header file for C programs.

These language-specific header file defines function prototypes and they are the following:

void dcg_init(int *n, double *x, double *b, int *rci_request, int *ipar,
double dpar, double *tmp);

void dcg_check(int *n, double *x, double *b, int *rci_request, int *ipar,
double dpar, double *tmp);

void dcg(int *n, double *x, double *b, int *rci_request, int *ipar, double
dpar, double *tmp);

void dcg_get(int *n, double *x, double *b, int *rci_request, int *ipar,
double dpar, double *tmp, int *itercount);

2189

Sparse Solver Routines 8

void dcgmrhs_init(int *n, double *x, int *nRhs, double *b, int *method, int
*rci_request, int *ipar, double dpar, double *tmp);

void dcgmrhs_check(int *n, double *x, int *nRhs, double *b, int *rci_request,
int *ipar, double dpar, double *tmp);

void dcgmrhs(int *n, double *x, int *nRhs, double *b, int *rci_request, int
*ipar, double dpar, double *tmp);

void dcgmrhs_get(int *n, double *x, int *nRhs, double *b, int *rci_request,
int *ipar, double dpar, double *tmp, int *itercount);

void dfgmres_init(int *n, double *x, double *b, int *rci_request, int *ipar,
double dpar, double *tmp);

void dfgmres_check(int *n, double *x, double *b, int *rci_request, int *ipar,
double dpar, double *tmp);

void dfgmres(int *n, double *x, double *b, int *rci_request, int *ipar,
double dpar, double *tmp);

void dfgmres_get(int *n, double *x, double *b, int *rci_request, int *ipar,
double dpar, double *tmp, int *itercount);

NOTE. Use of the Intel MKL RCI ISS software without including the language specific
header file is not supported.

Preconditioners or Accelerators based on Incomplete LU
Factorization Technique

Usually, preconditioners or accelerators are used to accelerate an iterative solution process. In
some cases, their use can reduce dramatically the number of iterations and thus lead to better
solver performance. Although the terms ‘preconditioner’ and ‘accelerator’ are synonyms,
hereafter only term ‘preconditioner’ will be used.

Currently, Intel MKL provides one preconditioner for PARDISO CSR matrix format (see Sparse
Matrix Storage Format section). Full MKL compressed sparse row (CSR) format is not supported.
The preconditioner is ILU0 preconditioner. It is based on a well-known factorization of the
original matrix into a product of two triangular matrices: low triangular and upper triangular
matrices. Usually, such a decomposition leads to some fill-in in the resulting matrix structure
as compared to the original matrix. The distinctive feature of the ILU0 preconditioner is that it
preserves the structure of the original matrix in the result.

2190

8 Intel® Math Kernel Library Reference Manual

The used algorithm is described in [Saad03]. The ILU0 preconditioner can be applied to any
non-degenerate matrix. It can be used alone or together with the MKL RCI FGMRES solver (see
Sparse Solver Routines). It is not recommended to use the preconditioner with MKL RCI CG
solver because in general, it gives non-symmetric resulting matrix even if the original matrix
is a symmetric one. Usually, an inverse of the preconditioner is required when it is used. For
this purpose, for the ILU0 preconditioner a user should apply the Intel MKL triangular solver
routine mkl_dcsrtrsv twice: for the low triangular part of the preconditioner, and then for its
upper triangular part.

NOTE. Although ILU0 preconditioner can be applied to any non-degenerate matrix, in
some cases the algorithm does not guarantee that it will terminate successfully and
produce the required result. The result of ILU0 routine can be checked in practice only.

Preconditioner may increase the number of iterations for an arbitrary case of the system
and initial guess and even ruin the convergence. It is user's responsibility to carefully
use a suitable preconditioner.

General Scheme of Using ILU0 and RCI FGMRES Routines

The following pseudo code shows the general scheme of using the ILU0 preconditioner in the
RCI FGMRES context.

...

generate matrix A

generate preconditioner C (optional)

call dfgmres_init(n, x, b, RCI_request, ipar, dpar, tmp)

change parameters in ipar, dpar if necessary

call dcsrilu0(n, a, ia, ja, bilu0, ipar, dpar, ierr)

call dfgmres_check(n, x, b, RCI_request, ipar, dpar, tmp)

1 call dfgmres(n, x, b, RCI_request, ipar, dpar, tmp)

if (RCI_request.eq.1) then

multiply the matrix A by tmp(ipar(22)) and put the result in tmp(ipar(23))

c proceed with FGMRES iterations

goto 1

endif

2191

Sparse Solver Routines 8

if (RCI_request.eq.2) then

do the stopping test

if (test not passed) then

c proceed with FGMRES iterations

go to 1

else

c stop FGMRES iterations.

goto 2

endif

endif

if (RCI_request.eq.3) then

c Below, trvec is an intermediate vector of length at least n

c Here is the recommended use of the result produced by the ILU0 routine.

c via standard Intel MKL Sparse Blas solver routine mkl_dcsrtrsv.

call mkl_dcsrtrsv('L','N','U',n,bilu0,ia,ja,tmp(ipar(22)),trvec)

call mkl_dcsrtrsv('U','N','N',n,bilu0,ia,ja,trvec,tmp(ipar(23)))

c proceed with FGMRES iterations

goto 1

endif

if (RCI_request.eq.4) then

check the norm of the next orthogonal vector, it is contained in dpar(7)

if (the norm is not zero up to rounding/computational errors) then

c proceed with FGMRES iterations

goto 1

else

c stop FGMRES iterations

goto 2

2192

8 Intel® Math Kernel Library Reference Manual

endif

endif

2 call dfgmres_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)

current iteration number is in itercount

the computed approximation is in the array x

You can find example codes that use RCI ISS interface routines to solve systems of linear
equations in the Iterative Sparse Solver Code Example section in the Appendix C.

ILU0 Preconditioner Interface Description

The terms and concepts required to understand the use of the Intel MKL preconritioner routine
are discussed in the Linear Solvers Basics. In this manual, we use FORTRAN style notations.

All types in this documentation refer to the standard Fortran types, INTEGER, and DOUBLE
PRECISION.

C and C++ programmers should refer to the section Calling Sparse Solver Routines From C/C++
for information on mapping Fortran types to C/C++ types.

User Data Arrays

The ILU0 routine takes arrays of user data as input, for example, user arrays representing the
original matrix. In order to minimize storage requirements and improve overall run-time
efficiency, the Intel MKL ILU0 routine does not make copies of the user input arrays.

ILU0 Parameters

The preconditioner has parameters for passing various options to the routine. The values for
these parameters should be specified very carefully, and they can be changed during
computations according to the user's needs.

Some parameters are common with the FGMRES Common Parameters. Their default and initial
values are specified by the routine dfgmres_init only. However, user can redefine these
parameters by his own values. These parameters are listed below.

ipar(2) - specifies the type of output for error messages that are generated by the ILU0
routine. The default value 6 means that all messages are displayed on the screen. Otherwise
the error messages are written to the newly created file MKL_PREC_log.txt. Note that if the
parameter ipar(6) is set to 0, error messages are not generated at all.

2193

Sparse Solver Routines 8

ipar(6) - if its value is not equal to 0, the routine returns error messages in accordance with
the parameter ipar(2). Otherwise, the routine does not generate error messages at all, but
returns a negative value of the parameter ierr. The default value is 1.

NOTE. Users must provide correct and consistent parameters to the routine to avoid
fails or wrong results.

dcsrilu0
ILU0 preconditioner based on incomplete LU
factorization of a sparse matrix in the CSR format
(PARDISO variation).

Syntax

Fortran:

call dcsrilu0(n, a, ia, ja, bilu0, ipar, dpar, ierr)

C:

dcsrilu0(&n, a, ia, ja, bilu0, ipar, dpar, &ierr);

Input Parameters

INTEGER. Size (number of rows or columns) of the original
square n-by-n-matrix A.

n

DOUBLE PRECISION. Array containing the set of elements
of the matrix A. Its length is equal to the number of non-zero
elements in the matrix A. Refer to values array description
in the Sparse Matrix Storage Format section for more details.

a

INTEGER. Array of size (n+1) containing begin indices of
rows of matrix A such that ia(I) is the index in the array
A of the first non-zero element from the row I. The value

ia

of the last element ia(n+1) is equal to the number of
non-zeros in the matrix A plus one. Refer to the rowIndex
array description in the Sparse Matrix Storage Format
section for more details.

2194

8 Intel® Math Kernel Library Reference Manual

INTEGER. Array containing the column indices for each
non-zero element of the matrix A. Its size is equal to the
size of the array a. Refer to the columns array description
in the Sparse Matrix Storage Format section for more details.

ja

NOTE. Column indices should be put in increasing
order for each row of matrix.

INTEGER array of size 128. This parameter is used to specify
the integer set of data for both the ILU0 and RCI FGMRES
computations. Refer to the ipar array description in the

ipar

FGMRES Common Parameters for more details on FGMRES
parameter entries. The entries that are specific to ILU0 are
listed below.

- specifies how the routine operates if
zero diagonal element occurs during
calculation. If this parameter is set to 0

ipar(31)

(default value set by the routine
dfgmres_init) then that the calculations
are stopped and the routine returns
non-zero error value. Otherwise the value
of the diagonal element is set to the
specified value and the calculations are
continued.

NOTE. Advanced users can define
this array in the code as follows:
INTEGER ipar(31). However, to
guarantee the compatibility with the
future releases of the Intel MKL it is
highly recommended to declare the
array ipar of length 128.

2195

Sparse Solver Routines 8

DOUBLE PRECISION array of size 128. This parameter is
used to specify the double precision set of data for both the
ILU0 and RCI FGMRES computations. Refer to the dpar

dpar

array description in the FGMRES Common Parameters for
more details on FGMRES parameter entries. The entries that
are specific to ILU0 are listed below.

- specifies the small value that is
compared with the diagonal elements
during calculations; if the value of the

dpar(31)

diagonal element is smaller, then it is set
to dpar(32), or the calculations are
stopped, in accordance with ipar(31);
the default value is 1.0D-16

NOTE. This parameter can be set
to the negative value, because its
absolute value is actually used in
calculations.

If this parameter is set to 0, the
comparison with the diagonal
element is not performed.

- specifies the value that is assigned to
the diagonal element if its value is less
than dpar(31) (see above); the default
value is 1.0D-10

dpar(32)

NOTE. Advanced users can define
this array in the code as follows:
DOUBLE PRECOSIONdpar(32).
However, to guarantee the
compatibility with the future releases
of the Intel MKL it is highly
recommended to declare the array
dpar of length 128.

2196

8 Intel® Math Kernel Library Reference Manual

Output Parameters

DOUBLE PRECISION. Array B stored in the PARDISO CSR
format containing non-zero elements of the resulting
preconditioning matrix. Its size is equal to the number of

bilu0

non-zero elements in the matrix A. Refer to the values
array description in the Sparse Matrix Storage Format
section for more details.

INTEGER. Error flag, informs about the routine completion
status.

ierr

NOTE. To present the resulting preconditioning matrix in the CSR format the arrays ia
(row indices) and ja (column indices) of the input matrix must be used.

Description

The routine dcsrilu0 computes a preconditioner B [Saad03] of a given sparse matrix A stored
in the CSR format accepted in PARDISO:

A~B=L*U , where L is a low triangular matrix with unit diagonal, U is an upper triangular matrix
with non-unit diagonal, and the portrait of the original matrix A is used to store the incomplete
factors L and U.

Return Values

The routine completed task normally.ierr=0

The routine is interrupted, the error occurs: at least
one diagonal element is omitted from the matrix in
CSR format (see Sparse Matrix Storage Format).

ierr=-101

The routine is interrupted because the matrix
contains zero diagonal element, routine can not
perform operations.

ierr=-102

The routine is interrupted as the matrix contains too
small diagonal element, and an overflow may occur
because of the division by its value required to
complete the task, or a bad approximation to ILU0
with use of this element will be computed.

ierr=-103

2197

Sparse Solver Routines 8

The routine is interrupted because the memory is
insufficient for the internal work array.

ierr=-104

The routine is interrupted because the input matrix
size n isless than or equal to 0.

ierr=-105

The routine is interrupted because the the column
indices ja are placed in not increasing order.

ierr=-106

Interfaces

Fortran 77 and Fortran 95:
SUBROUTINE dcsrilu0 (n, a, ia, ja, bilu0, ipar, dpar, ierr)

INTEGER n, ierr, ipar(128)

INTEGER ia(*), ja(*)

DOUBLE PRECISION a(*), bilu0(*), dpar(128)

C:
void dcsrilu0 (int *n, double *a, int *ia, int *ja, double *bilu0, int
*ipar, double *dpar, int *ierr);

Calling Sparse Solver Routines From C/C++
The calling interface for all of the Intel MKL sparse solver routines is designed to be used easily
from Fortran 77 or Fortran 90. However, any of these routines can be invoked directly from C
or C++ if users are familiar with the inter-language calling conventions of their platforms. These
conventions include, but are not limited to, the argument passing mechanisms for the language,
the data type mappings from Fortran to C/C++ and how Fortran external names are decorated
on the platform.

In order to promote portability and to avoid having most users deal with these issues, the C
header files provide a set of macros and type definitions that are intended to hide the
inter-language calling conventions and provide an interface to the Intel MKL sparse solver
routines that appears natural for C/C++.

2198

8 Intel® Math Kernel Library Reference Manual

For example, consider a hypothetical library routine, foo, that takes real vector of length n,
and returns an integer status. Fortran users would access such a function as:
INTEGER n, status, foo

REAL x(*)

status = foo(x, n)

As noted above, for C users to invoke foo, they would need to know what C data types
correspond to Fortran types INTEGER and REAL; what argument passing mechanism the Fortran
compiler uses; and what, if any, name decoration the is performed by the Fortran compiler
when generating the external symbol foo.

However, by using the C specific header file, for example mkl_solver.h, the invocation of foo,
within a C program would look like:
#include "mkl_solver.h"

_INTEGER_t i, status;

_REAL_t x[];

status = foo(x, i);

Note that in the above example, the header file mkl_solver.h provides definitions for the types
_INTEGER_t and _REAL_t that correspond to the Fortran types INTEGER and REAL.

In order to ease the use of Intel MKL sparse solver routines from C and C++, the general
approach of providing C definitions of Fortran types is used throughout the library. Specifically,
if an argument or result from a sparse solver is documented as having the Fortran language
specific type XXX, then the C and C++ header files provide an appropriate C language type
definitions for the name _XXX_t.

Caveat for C Users

One of the key differences between C/C++ and Fortran is the argument passing mechanisms
for the languages: Fortran programs use pass-by-reference semantics and C/C++ programs
use pass-by-value semantics. In the example in the previous section, the header file,
mkl_solver.h, attempts to hide this difference, by defining a macro, foo that takes the address
of the appropriate arguments. For example, on Tru64 UNIX, mkl_solver.h would define the
macro as:

#define foo(a,b) foo_((a), &(b))

2199

Sparse Solver Routines 8

An important point to note when using the macro form of foo is how it deals with constants.
If we write foo(x, 10), this is translated into foo_(x, &10). In a strictly ANSI compliant
C compiler, it is not permissible to take the address of a constant, so a strictly conforming
program would look like:

INTEGER_t iTen = 10;

_REAL_t * x;

status = foo(x, iTen);

However, some C compilers in a non-ANSI standard mode allow taking the address of a constant
for ease of use with Fortran programs. Thus, the form shown as foo(x, 10) is acceptable
for these compilers.

2200

8 Intel® Math Kernel Library Reference Manual

9Vector Mathematical Functions

This chapter describes Vector Mathematical Functions Library (VML), which is designed to compute
mathematical functions on vector arguments. VML is an integral part of the Intel® MKL Kernel Library and
the VML terminology is used here for simplicity in discussing this group of functions.

VML includes a set of highly optimized implementations of certain computationally expensive core
mathematical functions (power, trigonometric, exponential, hyperbolic etc.) that operate on vectors of
real and complex numbers.

Application programs that might significantly improve performance with VML include nonlinear programming
software, integrals computation, and many others.

VML functions are divided into the following groups according to the operations they perform:

• VML Mathematical Functions compute values of mathematical functions (such as sine, cosine,
exponential, logarithm and so on) on vectors with unit increment indexing.

• VML Pack/Unpack Functions convert to and from vectors with positive increment indexing, vector
indexing and mask indexing (see Appendix B for details on vector indexing methods).

• VML Service Functions allow the user to set /get the accuracy mode, and set/get the error code.

VML mathematical functions take an input vector as argument, compute values of the respective function
element-wise, and return the results in an output vector.

Data Types and Accuracy Modes
Mathematical and pack/unpack vector functions in VML have been implemented for vector arguments
of single and double precision real data. Both Fortran- and C-interfaces to all functions, including
VML service functions, are provided in the library. The differences in naming and calling the functions
for Fortran- and C-interfaces are detailed in the Function Naming Conventions section below.

Each vector function from VML (for each data format) can work in two modes: High Accuracy (HA)
and Low Accuracy (LA). For many functions, using the LA version will improve performance at the
cost of accuracy.

For some cases, the advantage of relaxing the accuracy improves performance very little so the
same function is employed for both versions. Error behavior depends not only on whether the HA
or LA version is chosen, but also depends on the processor on which the software runs.

In addition, special value behavior may differ between the HA and LA versions of the functions. Any
information on accuracy behavior can be found in the Intel MKL Release Notes.

2201

Switching between the two modes (HA and LA) is accomplished by using vmlSetMode(mode)(see
Table 9-12). The function vmlGetMode() will return the currently used mode. The High
Accuracy mode is used by default.

Function Naming Conventions
Full names of all VML functions include only lowercase letters for Fortran-interface, whereas
for C-interface names the lowercase letters are mixed with uppercase.

VML mathematical and pack/unpack function full names have the following structure:

v<p><name><mod>

The initial letter v is a prefix indicating that a function belongs to VML.

The <p> field is a precision prefix that indicates the data type:

REAL for Fortran-interface, or float for C-interfaces

DOUBLE PRECISION for Fortran-interface, or double for C-interface.d

COMPLEX for Fortran-interface, or MKL_Complex8 for C-interface.c

DOUBLE COMPLEX for Fortran-interface, or MKL_Complex16 for
C-interface.

z

The <name> field indicates the function short name, with some of its letters in uppercase for
C-interface (see for example Table 9-2 or Table 9-11).

The <mod> field (written in uppercase for C-interface) is present in pack/unpack functions only;
it indicates the indexing method used:

indexing with positive incrementi

indexing with index vectorv

indexing with mask vector.m

VML service function full names have the following structure:

vml<name>

where vml is a prefix indicating that a function belongs to VML, and <name> is the function
short name, which includes some uppercase letters for C-ifglonterface (see Table 9-11). To
call VML functions from an application program, use conventional function calls. For example,
the VML exponential function for single precision real data can be called as

call vsexp (n, a, y) for Fortran-interface, or

vsExp (n, a, y); for C-interface.

2202

9 Intel® Math Kernel Library Reference Manual

Functions Interface

The interface to VML functions includes function full names and the arguments list. The Fortran-
and C-interface descriptions for different groups of VML functions are given below. Note that
some functions (Div, Pow, and Atan2) have two input vectors a and b as their arguments,
while SinCos function has two output vectors y and z.

VML Mathematical Functions

Fortran:

call v<p><name>(n, a, y)
call v<p><name>(n, a, b, y)
call v<p><name>(n, a, y, z)

C:

v<p><name>(n, a, y);
v<p><name>(n, a, b, y);
v<p><name>(n, a, y, z);

Pack Functions

Fortran:

call v<p>packi(n, a, inca, y)
call v<p>packv(n, a, ia, y)
call v<p>packm(n, a, ma, y)

C:

v<p>PackI(n, a, inca, y);
v<p>PackV(n, a, ia, y);
v<p>PackM(n, a, ma, y);

Unpack Functions

Fortran:

call v<p>unpacki(n, a, y, incy)

2203

Vector Mathematical Functions 9

call v<p>unpackv(n, a, y, iy)
call v<p>unpackm(n, a, y, my)

C:

v<p>UnpackI(n, a, y, incy);
v<p>UnpackV(n, a, y, iy);
v<p>UnpackM(n, a, y, my);

Service Functions

Fortran:

oldmode = vmlsetmode(mode)
mode = vmlgetmode()
olderr = vmlseterrstatus (err)
err = vmlgeterrstatus()
olderr = vmlclearerrstatus()
oldcallback = vmlseterrorcallback(callback)
callback = vmlgeterrorcallback()
oldcallback = vmlclearerrorcallback()

C:

oldmode = vmlSetMode(mode);
mode = vmlGetMode(void);
olderr = vmlSetErrStatus (err);
err = vmlGetErrStatus(void);
olderr = vmlClearErrStatus(void);
oldcallback = vmlSetErrorCallBack(callback);
callback = vmlGetErrorCallBack(void);
oldcallback = vmlClearErrorCallBack(void);

Input Parameters

number of elements to be calculatedn

first input vectora

second input vectorb

2204

9 Intel® Math Kernel Library Reference Manual

vector increment for the input vector ainca

index vector for the input vector aia

mask vector for the input vector ama

vector increment for the output vector yincy

index vector for the output vector yiy

mask vector for the output vector ymy

error codeerr

VML modemode

address of the callback functioncallback

Output Parameters

first output vectory

second output vectorz

error codeerr

VML modemode

former error codeolderr

former VML modeoldmode

address of the callback functioncallback

address of the former callback functionoldcallback

The data types of the parameters used in each function are specified in the respective function
description section. All VML mathematical functions can perform in-place operations, which
means that the same vector can be used as both input and output parameter. This holds true
for functions with two input vectors as well, in which case one of them may be overwritten with
the output vector. For functions with two output vectors, one of them may coincide with the
input vector. But partially overlapping input and output vectors could lead to unpredictable
results.

Vector Indexing Methods
Current VML mathematical functions work only with unit increment. Arrays with other increments,
or more complicated indexing, can be accommodated by gathering the elements into a contiguous
vector and then scattering them after the computation is complete.

Three following indexing methods are used to gather/scatter the vector elements in VML:

2205

Vector Mathematical Functions 9

• positive increment

• index vector

• mask vector.

The indexing method used in a particular function is indicated by the indexing modifier (see
the description of the <mod> field in Function Naming Conventions). For more information on
indexing methods see Vector Arguments in VML in Appendix B.

Error Diagnostics
The VML library has its own error handler. The only difference for C- and Fortran- interfaces is
that the Intel MKL error reporting routine XERBLA can be called after the Fortran- interface VML
function encounters an error, and this routine gets information on VML_STATUS_BADSIZE and
VML_STATUS_BADMEM input errors (see Table 9-14).

The VML error handler has the following properties:

1. The Error Status (vmlErrStatus) global variable is set after each VML function call. The
possible values of this variable are shown in the Table 9-14 .

2. Depending on the VML mode, the error handler function invokes:

• errno variable setting. The possible values are shown in the Table 9-1 .

• writing error text information to the stderr stream

• raising the appropriate exception on error, if necessary

• calling the additional error handler callback function.

Table 9-1 Set Values of the errno Variable

DescriptionValue of errno

No errors are detected.0
The array dimension is not positive.EINVAL
NULL pointer is passed.EACCES
At least one of array values is out of a range of definition.EDOM
At least one of array values caused a singularity, overflow or
underflow.

ERANGE

2206

9 Intel® Math Kernel Library Reference Manual

VML Mathematical Functions
This section describes VML functions which compute values of mathematical functions on real
and complex vector arguments with unit increment.

Each function group is introduced by its short name, a brief description of its purpose, and the
calling sequence for each type of data both for Fortran- and C-interfaces, as well as a description
of the input/output arguments.

For all VML mathematical functions, the input range of parameters is equal to the mathematical
range of definition in the set of defined values for the respective data type. Several VML
functions, specifically Div, Exp, Sinh, Cosh, and Pow, can result in an overflow. For these
functions, the respective input threshold values that mark off the precision overflow are specified
in the function description section. Note that in these specifications, FLT_MAX denotes the
maximum number representable in single precision real data type, while DBL_MAX denotes the
maximum number representable in double precision real data type.

Table 9-2 lists available mathematical functions and data types associated with them.

Table 9-2 VML Mathematical Functions

DescriptionData TypesType of Distribution

Power and Root Functions
Inversion of the vector elementss, dInv
Divide elements of one vector by elements of second vectors, d, c, zDiv
Square root of vector elementss, dSqrt
Inverse square root of vector elementss, dInvSqrt
Cube root of vector elementss, dCbrt
Inverse cube root of vector elementss, dInvCbrt
Each vector element raised to the specified powers, d, c, zPow
Each vector element raised to the constant powers, d, c, zPowx
Square root of sum of squaress, dHypot

Exponential and Logarithmic Functions
Exponential of vector elementss, d, c, zExp
Natural logarithm of vector elementss, d, c, zLn
Denary logarithm of vector elementss, d, c, zLog10

Trigonometric Functions
Cosine of vector elementss, d, c, zCos
Sine of vector elementss, d, c, zSin
Sine and cosine of vector elementss, dSinCos
Tangent of vector elementss, d, c, zTan

2207

Vector Mathematical Functions 9

DescriptionData TypesType of Distribution

Inverse cosine of vector elementss, d, c, zAcos
Inverse sine of vector elementss, d, c, zAsin
Inverse tangent of vector elementss, d, c, zAtan
Four-quadrant inverse tangent of elements of two vectorss, dAtan2

Hyperbolic Functions
Hyperbolic cosine of vector elementss, d, c, zCosh
Hyperbolic sine of vector elementss, d, c, zSinh
Hyperbolic tangent of vector elementss, d, c, zTanh
Inverse hyperbolic cosine (nonnegative) of vector elementss, d, c, zAcosh
Inverse hyperbolic sine of vector elementss, d, c, zAsinh
Computes inverse hyperbolic tangent of vector elements.s, d, c, zAtanh

Special Functions
Error function value of vector elementss, dErf
Complementary error function value of vector elementss, dErfc
Inverse error function value of vector elementss, dErfInv

Rounding Functions
Rounding towards minus infinitys, dFloor
Rounding towards plus infinitys, dCeil
Rounding towards zero infinitys, dTrunc
Rounding to nearest integers, dRound
Rounding according to current modes, dNearbyInt
Rounding according to current mode and raising inexact result
exception

s, dRint

Integer and fraction partss, dModf

Inv
Performs element by element inversion of the
vector.

Syntax

Fortran:

call vsinv(n, a, y)

call vdinv(n, a, y)

2208

9 Intel® Math Kernel Library Reference Manual

C:

call vsInv(n, a, y);

call vdInv(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be calculated.FORTRAN: INTEGER,
INTENT(IN).

n

C: int.

FORTRAN: Array, specifies the input vector a.FORTRAN: REAL,
INTENT(IN) for vsinv

a

C: Pointer to an array that contains the input vector
a.DOUBLE PRECISION,

INTENT(IN) for vdinv

C: const float* for vsInv

const double* for vdInv

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsinv

DOUBLE PRECISION for vdinv

y

C: Pointer to an array that contains the
output vector y.

C: float* for vsInv

double* for vdInv

2209

Vector Mathematical Functions 9

Div
Performs element by element division of vector a
by vector b

Syntax

Fortran:

call vsdiv(n, a, b, y)

call vddiv(n, a, b, y)

C:

vsDiv(n, a, b, y);

vdDiv(n, a, b, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Arrays, specify the input vectors
a and b.

FORTRAN: REAL, INTENT(IN) for
vsdiv

a, b

C: Pointers to arrays that contain the input
vectors a and b.

DOUBLE PRECISION, INTENT(IN)
for vddiv

C: const float* for vsDiv

const double* for vdDiv

Table 9-3 Precision Overflow Thresholds for Div Function

Threshold Limitations on Input ParametersData Type

abs(a[i]) < abs(b[i]) * FLT_MAXsingle precision

abs(a[i]) < abs(b[i]) * DBL_MAXdouble precision

2210

9 Intel® Math Kernel Library Reference Manual

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsdiv

DOUBLE PRECISION for vddiv

y

C: Pointer to an array that contains the
output vector y.

C: float* for vsDiv

double* for vdDiv

Sqrt
Computes a square root of vector elements.

Syntax

Fortran:

call vssqrt(n, a, y)

call vdsqrt(n, a, y)

call vcsqrt(n, a, y)

call vzsqrt(n, a, y)

C:

call vsSqrt(n, a, y);

call vdSqrt(n, a, y);

call vcSqrt(n, a, y);

call vzSqrt(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

2211

Vector Mathematical Functions 9

DescriptionTypeName

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vssqrt

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdsqrt

COMPLEX, INTENT(IN) for vcsqrt

DOUBLE COMPLEX, INTENT(IN) for
vzsqrt

C: const float* for vsSqrt

const double* for vdSqrt

const MKL_Complex8* for vcSqrt

const MKL_Complex16* for
vzSqrt

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vssqrt

DOUBLE PRECISION for vdsqrt

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcsqrt

DOUBLE COMPLEX for vzsqrt

C: float* for vsSqrt

double* for vdSqrt

MKL_Complex8* for vcSqrt

MKL_Complex16* for vzSqrt

2212

9 Intel® Math Kernel Library Reference Manual

InvSqrt
Computes an inverse square root of vector
elements.

Syntax

Fortran:

call vsinvsqrt(n, a, y)

call vdinvsqrt(n, a, y)

C:

call vsInvSqrt(n, a, y);

call vdInvSqrt(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsinvsqrt

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdinvsqrt

C: const float* for vsInvSqrt

const double* for vdInvSqrt

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsinvsqrt

DOUBLE PRECISION for vdinvsqrt

y

2213

Vector Mathematical Functions 9

DescriptionTypeName

C: Pointer to an array that contains the
output vector y.

C: float* for vsInvSqrt

double* for vdInvSqrt

Cbrt
Computes a cube root of vector elements.

Syntax

Fortran:

call vscbrt(n, a, y)

call vdcbrt(n, a, y)

C:

call vsCbrt(n, a, y);

call vdCbrt(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vscbrt

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdcbrt

C: const float* for vsCbrt

const double* for vdCbrt

2214

9 Intel® Math Kernel Library Reference Manual

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vscbrt

DOUBLE PRECISION for vdcbrt

y

C: Pointer to an array that contains the
output vector y.

C: float* for vsCbrt

double* for vdCbrt

InvCbrt
Computes an inverse cube root of vector elements.

Syntax

Fortran:

call vsinvcbrt(n, a, y)

call vdinvcbrt(n, a, y)

C:

call vsInvCbrt(n, a, y);

call vdInvCbrt(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsinvcbrt

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdinvcbrt

C: const float* for vsInvCbrt

2215

Vector Mathematical Functions 9

DescriptionTypeName

const double* for vdInvCbrt

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsinvcbrt

DOUBLE PRECISION for vdinvcbrt

y

C: Pointer to an array that contains the
output vector y.

C: float* for vsInvCbrt

double* for vdInvCbrt

Pow
Computes a to the power b for elements of two
vectors.

Syntax

Fortran:

call vspow(n, a, b, y)

call vdpow(n, a, b, y)

call vcpow(n, a, b, y)

call vzpow(n, a, b, y)

C:

vsPow(n, a, b, y);

vdPow(n, a, b, y);

vcPow(n, a, b, y);

vzPow(n, a, b, y);

2216

9 Intel® Math Kernel Library Reference Manual

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Arrays, specify the input vectors
a and b.

FORTRAN: REAL, INTENT(IN) for
vspow

a, b

C: Pointers to arrays that contain the input
vectors a and b.

DOUBLE PRECISION, INTENT(IN)
for vdpow

COMPLEX, INTENT(IN) for vcpow

DOUBLE COMPLEX, INTENT(IN) for
vzpow

C: const float* for vsPow

const double* for vdPow

C: const MKL_Complex8* for
vcPow

const MKL_Complex16* for vzPow

Table 9-4 Precision Overflow Thresholds for Pow Real Function

Threshold Limitations on Input ParametersData Type

abs(a[i]) < (FLT_MAX)1/b[i]single precision

abs(a[i]) < (DBL_MAX)1/b[i]double precision

NOTE. Overflow can occur also in Pow complex function, but the exact formula is beyond
the scope of this document.

2217

Vector Mathematical Functions 9

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vspow

DOUBLE PRECISION for vdpow

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcpow

DOUBLE COMPLEX for vzpow

C: float* for vsPow

double* for vdPow

MKL_Complex8* for vcPow

MKL_Complex16* for vzPow

Description

The real function Pow has certain limitations on the input range of a and b parameters.
Specifically, if a[i] is positive, then b[i] may be arbitrary. For negative a[i], the value of
b[i] must be integer (either positive or negative).

The complex function Pow has no such input range limitations.

Powx
Raises each element of a vector to the constant
power.

Syntax

Fortran:

call vspowx(n, a, b, y)

call vdpowx(n, a, b, y)

call vcpowx(n, a, b, y)

call vzpowx(n, a, b, y)

2218

9 Intel® Math Kernel Library Reference Manual

C:

vsPowx(n, a, b, y);

vdPowx(n, a, b, y);

vcPowx(n, a, b, y);

vzPowx(n, a, b, y);

Input Parameters

DescriptionTypeName

Number of elements to be calculated.FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array a that specifies the input
vector

FORTRAN: REAL, INTENT(IN) for
vspowx

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdpowx

COMPLEX, INTENT(IN) for vcpowx

DOUBLE COMPLEX, INTENT(IN) for
vzpowx

C: const float* for vsPowx

const double* for vdPowx

const MKL_Complex8* for vcPowx

const MKL_Complex16* for
vzPowx

FORTRAN: Scalar value b that is the
constant power.

FORTRAN: REAL, INTENT(IN) for
vspowx

b

C: Constant value for power b.DOUBLE PRECISION, INTENT(IN)
for vdpowx

COMPLEX, INTENT(IN) for vcpowx

DOUBLE COMPLEX, INTENT(IN) for
vzpowx

2219

Vector Mathematical Functions 9

DescriptionTypeName

C: const float for vsPowx

const double for vdPowx

const MKL_Complex8* for vcPowx

const MKL_Complex16* for
vzPowx

Table 9-5 Precision Overflow Thresholds for Powx Real Function

Threshold Limitations on Input ParametersData Type

abs(a[i]) < (FLT_MAX)1/bsingle precision

abs(a[i]) < (DBL_MAX)1/bdouble precision

NOTE. Overflow can occur also in Powx complex function, but the exact formula is
beyond the scope of this document.

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vspowx

DOUBLE PRECISION for vdpowx

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcpowx

DOUBLE COMPLEX for vzpowx

C: float* for vsPowx

double* for vdPowx

MKL_Complex8* for vcPowx

MKL_Complex16* for vzPowx

2220

9 Intel® Math Kernel Library Reference Manual

Description

The real function Powx has certain limitations on the input range of a and b parameters.
Specifically, if a[i] is positive, then b may be arbitrary. For negative a[i], the value of b must
be integer (either positive or negative).

The complex function Powx has no such input range limitations.

Hypot
Computes a square root of sum of two squared
elements.

Syntax

Fortran:

call vshypot(n, a, b, y)

call vdhypot(n, a, b, y)

C:

vsHypot(n, a, b, y);

vdHypot(n, a, b, y);

Input Parameters

DescriptionTypeName

Number of elements to be calculated.FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Arrays that specify the input
vectors a and b

FORTRAN: REAL, INTENT(IN) for
vshypot

a,b

C: Pointers to arrays that contain the input
vectors a and b.

DOUBLE PRECISION, INTENT(IN)
for vdhypot

C: const float* for vsHypot

const double* for vdHypot

2221

Vector Mathematical Functions 9

Table 9-6 Precision Overflow Thresholds for Hypot Function

Threshold Limitations on Input ParametersData Type

abs(a[i]) < sqrt(FLT_MAX)
single precision

abs(b[i]) < sqrt(FLT_MAX)

abs(a[i]) < sqrt(DBL_MAX)
double precision

abs(b[i]) < sqrt(DBL_MAX)

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vshypot

DOUBLE PRECISION for vdhypot

y

C: Pointer to an array that contains the
output vector y.

C: float* for vsHypot

double* for vdHypot

Exp
Computes an exponential of vector elements.

Syntax

Fortran:

call vsexp(n, a, y)

call vdexp(n, a, y)

call vcexp(n, a, y)

call vzexp(n, a, y)

2222

9 Intel® Math Kernel Library Reference Manual

C:

call vsExp(n, a, y);

call vdExp(n, a, y);

call vcExp(n, a, y);

call vzExp(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsexp

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdexp

COMPLEX, INTENT(IN) for vcexp

DOUBLE COMPLEX, INTENT(IN) for
vzexp

C: const float* for vsExp

const double* for vdExp

const MKL_Complex8* for vcExp

const MKL_Complex16* for vzExp

Table 9-7 Precision Overflow Thresholds for Exp Real Function

Threshold Limitations on Input ParametersData Type

a[i] < Ln(FLT_MAX)single precision

a[i] < Ln(DBL_MAX)double precision

NOTE. Overflow can occur also in Exp complex function, but the exact formula is beyond
the scope of this document.

2223

Vector Mathematical Functions 9

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsexp

DOUBLE PRECISION for vdexp

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcexp

DOUBLE COMPLEX for vzexp

C: float* for vsExp

double* for vdExp

MKL_Complex8* for vcExp

MKL_Complex16* for vzExp

Ln
Computes natural logarithm of vector elements.

Syntax

Fortran:

call vsln(n, a, y)

call vdln(n, a, y)

call vcln(n, a, y)

call vzln(n, a, y)

C:

vsLn(n, a, y);

vdLn(n, a, y);

vcLn(n, a, y);

vzLn(n, a, y);

2224

9 Intel® Math Kernel Library Reference Manual

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsln

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdln

FORTRAN: COMPLEX, INTENT(IN)
for vcln

DOUBLE COMPLEX, INTENT(IN) for
vzln

C: const float* for vsLn

const double* for vdLn

const MKL_Complex8* for vcLn

const MKL_Complex16* for vzLn

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsln

DOUBLE PRECISION for vdln

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcln

DOUBLE COMPLEX for vzln

C: float* for vsLn

double* for vdLn

MKL_Complex8* for vcLn

MKL_Complex16* for vzLn

2225

Vector Mathematical Functions 9

Log10
Computes denary logarithm of vector elements.

Syntax

Fortran:

call vslog10(n, a, y)

call vdlog10(n, a, y)

call vclog10(n, a, y)

call vzlog10(n, a, y)

C:

call vsLog10(n, a, y);

call vdLog10(n, a, y);

call vcLog10(n, a, y);

call vzLog10(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vslog10

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdlog10

COMPLEX, INTENT(IN) for vclog10

DOUBLE COMPLEX, INTENT(IN) for
vzlog10

C: const float* for vsLog10

const double* for vdLog10

2226

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

const MKL_Complex8* for
vcLog10

const MKL_Complex16* for
vzLog10

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vslog10

DOUBLE PRECISION for vdlog10

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vclog10

DOUBLE COMPLEX for vzlog10

C: float* for vsLog10

double* for vdLog10

MKL_Complex8* for vcLog10

MKL_Complex16* for vzLog10

Cos
Computes cosine of vector elements.

Syntax

Fortran:

call vscos(n, a, y)

call vdcos(n, a, y)

call vccos(n, a, y)

call vzcos(n, a, y)

2227

Vector Mathematical Functions 9

C:

call vsCos(n, a, y);

call vdCos(n, a, y);

call vcCos(n, a, y);

call vzCos(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vscos

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdcos

COMPLEX, INTENT(IN) for vccos

DOUBLE PRECISION, INTENT(IN)
for vzcos

C: const float* for vsCos

const double* for vdCos

C: const MKL_Complex8* for
vcCos

const MKL_Complex16* for vzCos

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vscos

DOUBLE PRECISION for vdcos

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vccos

2228

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

DOUBLE COMPLEX for vzcos

C: float* for vsCos

double* for vdCos

C: MKL_Complex8* for vcCos

MKL_Complex16* for vzCos

Sin
Computes sine of vector elements.

Syntax

Fortran:

call vssin(n, a, y)

call vdsin(n, a, y)

call vcsin(n, a, y)

call vzsin(n, a, y)

C:

call vsSin(n, a, y);

call vdSin(n, a, y);

call vcSin(n, a, y);

call vzSin(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

2229

Vector Mathematical Functions 9

DescriptionTypeName

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vssin

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdsin

COMPLEX, INTENT(IN) for vcsin

DOUBLE PRECISION, INTENT(IN)
for vzsin

C: const MKL_Complex8* for
vcSin

const MKL_Complex16* for vzSin

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vssin

DOUBLE PRECISION for vdsin

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcsin

DOUBLE COMPLEX for vzsin

C: float* for vsSin

double* for vdSin

C: MKL_Complex8* for vcSin

MKL_Complex16* for vzSin

2230

9 Intel® Math Kernel Library Reference Manual

SinCos
Computes sine and cosine of vector elements.

Syntax

Fortran:

call vssincos(n, a, y, z)

call vdsincos(n, a, y, z)

C:

vsSinCos(n, a, y, z);

vdSinCos(n, a, y, z);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vssincos

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdsincos

C: const float* for vsSinCos

const double* for vdSinCos

Output Parameters

DescriptionTypeName

FORTRAN: Arrays, specify the output
vectors y (for sine values) and z (for cosine
values).

FORTRAN: REAL for vssincos

DOUBLE PRECISION for vdsincos

C: float* for vsSinCos

y, z

2231

Vector Mathematical Functions 9

DescriptionTypeName

C: Pointers to arrays that contain the output
vectors y (for sinevalues) and z(for cosine
values).

double* for vdSinCos

Tan
Computes tangent of vector elements.

Syntax

Fortran:

call vstan(n, a, y)

call vdtan(n, a, y)

call vctan(n, a, y)

call vztan(n, a, y)

C:

call vsTan(n, a, y);

call vdTan(n, a, y);

call vcTan(n, a, y);

call vzTan(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vstan

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdtan

2232

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

COMPLEX, INTENT(IN) for vctan

DOUBLE COMPLEX, INTENT(IN) for
vztan

C: const float* for vsTan

const double* for vdTan

C: const MKL_Complex8* for
vcTan

const MKL_Complex16* for vzTan

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vstan

DOUBLE PRECISION for vdtan

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vctan

DOUBLE COMPLEX for vztan

C: float* for vsTan

double* for vdTan

MKL_Complex8* for vcTan

MKL_Complex16* for vzTan

2233

Vector Mathematical Functions 9

Acos
Computes inverse cosine of vector elements.

Syntax

Fortran:

call vsacos(n, a, y)

call vdacos(n, a, y)

call vcacos(n, a, y)

call vzacos(n, a, y)

C:

call vsAcos(n, a, y);

call vdAcos(n, a, y);

call vcAcos(n, a, y);

call vzAcos(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsacos

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdacos

COMPLEX, INTENT(IN) for vcacos

DOUBLE COMPLEX, INTENT(IN) for
vzacos

C: const float* for vsAcos

const double* for vdAcos

2234

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

const MKL_Complex8* for vcAcos

const MKL_Complex16* for
vzAcos

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsacos

DOUBLE PRECISION for vdacos

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcacos

DOUBLE COMPLEX for vzacos

C: float* for vsAcos

double* for vdAcos

MKL_Complex8* for vcAcos

MKL_Complex16* for vzAcos

Asin
Computes inverse sine of vector elements.

Syntax

Fortran:

call vsasin(n, a, y)

call vdasin(n, a, y)

call vcasin(n, a, y)

call vzasin(n, a, y)

2235

Vector Mathematical Functions 9

C:

call vsAsin(n, a, y);

call vdAsin(n, a, y);

call vcAsin(n, a, y);

call vzAsin(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsasin

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdasin

COMPLEX, INTENT(IN) for vcasin

DOUBLE COMPLEX, INTENT(IN) for
vzasin

C: const float* for vsAsin

const double* for vdAsin

const MKL_Complex8* for vcAsin

const MKL_Complex16* for
vzAsin

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsasin

DOUBLE PRECISION for vdasin

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcasin

2236

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

DOUBLE COMPLEX for vzasin

C: float* for vsAsin

double* for vdAsin

MKL_Complex8* for vcAsin

MKL_Complex16* for vzAsin

Atan
Computes inverse tangent of vector elements.

Syntax

Fortran:

call vsatan(n, a, y)

call vdatan(n, a, y)

call vcatan(n, a, y)

call vzatan(n, a, y)

C:

call vsAtan(n, a, y);

call vdAtan(n, a, y);

call vcAtan(n, a, y);

call vzAtan(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

2237

Vector Mathematical Functions 9

DescriptionTypeName

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsatan

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdatan

COMPLEX, INTENT(IN) for vcatan

DOUBLE COMPLEX, INTENT(IN) for
vzatan

C: const float* for vsAtan

const double* for vdAsin

const MKL_Complex8* for vcAtan

const MKL_Complex16* for
vzAsin

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsatan

DOUBLE PRECISION for vdatan

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcatan

DOUBLE COMPLEX for vzatan

C: float* for vsAtan

double* for vdAtan

MKL_Complex8* for vcAtan

MKL_Complex16* for vzAtan

2238

9 Intel® Math Kernel Library Reference Manual

Atan2
Computes four-quadrant inverse tangent of
elements of two vectors.

Syntax

Fortran:

call vsatan2(n, a, b, y)

call vdatan2(n, a, b, y)

C:

vsAtan2(n, a, b, y);

vdAtan2(n, a, b, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Arrays, specify the input vectors
a and b.

FORTRAN: REAL, INTENT(IN) for
vsatan2

a, b

C: Pointers to arrays that contain the input
vectors a and b.

DOUBLE PRECISION, INTENT(IN)
for vdatan2

C: const float* for vsAtan2

const double* for vdAtan2

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsatan2

DOUBLE PRECISION for vdatan2

y

2239

Vector Mathematical Functions 9

DescriptionTypeName

C: Pointer to an array that contains the
output vector y.

C: float* for vsAtan2

double* for vdAtan2

Description

The elements of the output vector y are computed as the four-quadrant arctangent of a[i]
/b[i].

Cosh
Computes hyperbolic cosine of vector elements.

Syntax

Fortran:

call vscosh(n, a, y)

call vdcosh(n, a, y)

call vccosh(n, a, y)

call vzcosh(n, a, y)

C:

call vsCosh(n, a, y);

call vdCosh(n, a, y);

call vcCosh(n, a, y);

call vzCosh(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

2240

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vscosh

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdcosh

COMPLEX, INTENT(IN) for vccosh

DOUBLE COMPLEX, INTENT(IN) for
vzcosh

C: const float* for vsCosh

const double* for vdCosh

const MKL_Complex8* for vcCosh

const MKL_Complex16* for
vzCosh

Table 9-8 Precision Overflow Thresholds for Cosh Real Function

Threshold Limitations on Input ParametersData Type

-Ln(FLT_MAX)-Ln2 <a[i] < Ln(FLT_MAX)+Ln2single precision

-Ln(DBL_MAX)-Ln2 <a[i] < Ln(DBL_MAX)+Ln2double precision

NOTE. Overflow can occur also in Cosh complex function, but the exact formula is
beyond the scope of this document.

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vscosh

DOUBLE PRECISION for vdcosh

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vccosh

DOUBLE COMPLEX for vzcosh

C: float* for vsCosh

2241

Vector Mathematical Functions 9

DescriptionTypeName

double* for vdCosh

MKL_Complex8* for vcCosh

MKL_Complex16* for vzCosh

Sinh
Computes hyperbolic sine of vector elements.

Syntax

Fortran:

call vssinh(n, a, y)

call vdsinh(n, a, y)

call vcsinh(n, a, y)

call vzsinh(n, a, y)

C:

call vsSinh(n, a, y);

call vdSinh(n, a, y);

call vcSinh(n, a, y);

call vzSinh(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vssinh

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdsinh

2242

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

COMPLEX, INTENT(IN) for vcsinh

DOUBLE COMPLEX, INTENT(IN) for
vzsinh

C: const float* for vsSinh

const double* for vdSinh

const MKL_Complex8* for vcSinh

const MKL_Complex16* for
vzSinh

Table 9-9 Precision Overflow Thresholds for Sinh Real Function

Threshold Limitations on Input ParametersData Type

-Ln(FLT_MAX)-Ln2 <a[i] < Ln(FLT_MAX)+Ln2single precision

-Ln(DBL_MAX)-Ln2 <a[i] < Ln(DBL_MAX)+Ln2double precision

NOTE. Overflow can occur also in Sinh complex function, but the exact formula is
beyond the scope of this document.

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vssinh

DOUBLE PRECISION for vdsinh

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcsinh

DOUBLE COMPLEX for vzsinh

C: float* for vsSinh

double* for vdSinh

MKL_Complex8* for vcSinh

MKL_Complex16* for vzSinh

2243

Vector Mathematical Functions 9

Tanh
Computes hyperbolic tangent of vector elements.

Syntax

Fortran:

call vstanh(n, a, y)

call vdtanh(n, a, y)

call vctanh(n, a, y)

call vztanh(n, a, y)

C:

call vsTanh(n, a, y);

call vdTanh(n, a, y);

call vcTanh(n, a, y);

call vzTanh(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vstanh

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdtanh

COMPLEX, INTENT(IN) for vctanh

DOUBLE COMPLEX, INTENT(IN) for
vztanh

C: const float* for vsTanh

const double* for vdTanh

2244

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

const MKL_Complex8* for vcTanh

const MKL_Complex16* for
vzTanh

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vstanh

DOUBLE PRECISION for vdtanh

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for cstanh

DOUBLE COMPLEX for zdtanh

C: float* for vsTanh

double* for vdTanh

MKL_Complex8* for vcTanh

MKL_Complex16* for vzTanh

Acosh
Computes inverse hyperbolic cosine (nonnegative)
of vector elements.

Syntax

Fortran:

call vsacosh(n, a, y)

call vdacosh(n, a, y)

call vcacosh(n, a, y)

call vzacosh(n, a, y)

2245

Vector Mathematical Functions 9

C:

call vsAcosh(n, a, y);

call vdAcosh(n, a, y);

call vcAcosh(n, a, y);

call vzAcosh(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsacosh

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdacosh

COMPLEX, INTENT(IN) for vcacosh

DOUBLE COMPLEX, INTENT(IN) for
vzacosh

C: const float* for vsAcosh

const double* for vdAcosh

const MKL_Complex8* for
vcAcosh

const MKL_Complex16* for
vzAcosh

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsacosh

DOUBLE PRECISION for vdacosh

y

2246

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcacosh

DOUBLE COMPLEX for vzacosh

C: float* for vsAcosh

double* for vdAcosh

MKL_Complex8* for vcAcosh

MKL_Complex16* for vzAcosh

Asinh
Computes inverse hyperbolic sine of vector
elements.

Syntax

Fortran:

call vsasinh(n, a, y)

call vdasinh(n, a, y)

call vcasinh(n, a, y)

call vzasinh(n, a, y)

C:

call vsAsinh(n, a, y);

call vdAsinh(n, a, y);

call vcAsinh(n, a, y);

call vzAsinh(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

2247

Vector Mathematical Functions 9

DescriptionTypeName

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsasinh

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdasinh

COMPLEX, INTENT(IN) for vcasinh

DOUBLE COMPLEX, INTENT(IN) for
vzasinh

C: const float* for vsAsinh

const double* for vdAsinh

const MKL_Complex8* for
vcAsinh

const MKL_Complex16* for
vzAsinh

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsasinh

DOUBLE PRECISION for vdasinh

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcasinh

DOUBLE COMPLEX for vzasinh

C: float* for vsAsinh

double* for vdAsinh

MKL_Complex8* for vcAsinh

MKL_Complex16* for vzAsinh

2248

9 Intel® Math Kernel Library Reference Manual

Atanh
Computes inverse hyperbolic tangent of vector
elements.

Syntax

Fortran:

call vsatanh(n, a, y)

call vdatanh(n, a, y) call vcatanh(n, a, y) call vzatanh(n, a, y)

C:

call vsAtanh(n, a, y);

call vdAtanh(n, a, y); call vcAtanh(n, a, y); call vzAtanh(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsatanh

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdatanh

COMPLEX, INTENT(IN) for vcatanh

DOUBLE COMPLEX, INTENT(IN) for
vzatanh

C: const float* for vsAtanh

const double* for vdAtanh

const MKL_Complex8* for
vcAtanh

const MKL_Complex16* for
vzAtanh

2249

Vector Mathematical Functions 9

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsatanh

DOUBLE PRECISION for vdatanh

y

C: Pointer to an array that contains the
output vector y.

COMPLEX for vcatanh

DOUBLE COMPLEX for vzatanh

C: float* for vsAtanh

double* for vdAtanh

MKL_Complex8* for vcAtanh

MKL_Complex16* for vzAtanh

Erf
Computes the error function value of vector
elements.

Syntax

Fortran:

call vserf(n, a, y)

call vderf(n, a, y)

C:

call vsErf(n, a, y);

call vdErf(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

2250

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vserf

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vderf

C: const float* for vsErf

const double* for vdErf

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vserf

DOUBLE PRECISION for vderf

y

C: Pointer to an array that contains the
output vector y.

C: float* for vsErf

double* for vdErf

Description

The function Erf computes the error function values for elements of the input vector a and
writes them to the output vector y.

The error function is defined as given by:

2251

Vector Mathematical Functions 9

Erfc
Computes the complementary error function value
of vector elements.

Syntax

Fortran:

call vserfc(n, a, y)

call vderfc(n, a, y)

C:

call vsErfc(n, a, y);

call vdErfc(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vserfc

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vderfc

C: const float* for vsErfc

const double* for vdErfc

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vserfc

DOUBLE PRECISION for vderfc

y

2252

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

C: Pointer to an array that contains the
output vector y.

C: float* for vsErfc

double* for vdErfc

Description

The function Erfc computes the complimentary error function values for elements of the input
vector a and writes them to the output vector y.

The error function is defined as given by:

erfc(x) = 1 - erf(x)

or, in other words,

ErfInv
Computes inverse error function value of vector
elements.

Syntax

Fortran:

call vserfinv(n, a, y)

call vderfinv(n, a, y)

C:

call vsErfInv(n, a, y);

call vdErfInv(n, a, y);

2253

Vector Mathematical Functions 9

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vserfinv

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vderfinv

C: const float* for vsErfInv

const double* for vdErfInv

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vserfinv

DOUBLE PRECISION for vderfinv

y

C: Pointer to an array that contains the
output vector y.

C: float* for vsErfInv

double* for vdErfInv

Description

The function ErfInv computes the inverse error function values for elements of the input vector
a and writes them to the output vector y.

The inverse error function is defined as given by:

erfinv(x) = erf-1(x),

where erf(x) denotes the error function defined as given by

2254

9 Intel® Math Kernel Library Reference Manual

Floor
Computes a rounded towards minus infinity integer
value for each vector element.

Syntax

Fortran:

call vsfloor(n, a, y)

call vdfloor(n, a, y)

C:

call vsFloor(n, a, y);

call vdFloor(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsfloor

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdfloor

C: const float* for vsFloor

const double* for vdFloor

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsfloor

DOUBLE PRECISION for vdfloor

y

2255

Vector Mathematical Functions 9

DescriptionTypeName

C: Pointer to an array that contains the
output vector y.

C: float* for vsFloor

double* for vdFloor

Ceil
Computes a rounded towards plus infinity integer
value for each vector element.

Syntax

Fortran:

call vsceil(n, a, y)

call vdceil(n, a, y)

C:

call vsCeil(n, a, y);

call vdCeil(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsceil

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdceil

C: const float* for vsCeil

const double* for vdCeil

2256

9 Intel® Math Kernel Library Reference Manual

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsceil

DOUBLE PRECISION for vdceil

y

C: Pointer to an array that contains the
output vector y.

C: float* for vsCeil

double* for vdCeil

Trunc
Computes a rounded towards zero integer value
for each vector element.

Syntax

Fortran:

call vstrunc(n, a, y)

call vdtrunc(n, a, y)

C:

call vsTrunc(n, a, y);

call vdTrunc(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vstrunc

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdtrunc

C: const float* for vsTrunc

2257

Vector Mathematical Functions 9

DescriptionTypeName

const double* for vdTrunc

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vstrunc

DOUBLE PRECISION for vdtrunc

y

C: Pointer to an array that contains the
output vector y.

C: float* for vsTrunc

double* for vdTrunc

Round
Computes a rounded to nearest integer value for
each vector element.

Syntax

Fortran:

call vsround(n, a, y)

call vdround(n, a, y)

C:

call vsRound(n, a, y);

call vdRound(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsround

a

2258

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdround

C: const float* for vsRound

const double* for vdRound

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsround

DOUBLE PRECISION for vdround

y

C: Pointer to an array that contains the
output vector y.

C: float* for vsRound

double* for vdRound

Description

Halfway values, that is, 0.5, -1.5, and the like, are rounded off away from zero. That is, 0.5
-> 1, -1.5 -> -2, etc.

NearbyInt
Computes a rounded integer value in a current
rounding mode for each vector element.

Syntax

Fortran:

call vsnearbyint(n, a, y)

call vdnearbyint(n, a, y)

C:

call vsNearbyInt(n, a, y);

call vdNearbyInt(n, a, y);

2259

Vector Mathematical Functions 9

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsnearbyint

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdnearbyint

C: const float* for vsNearbyInt

const double* for vdNearbyInt

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsnearbyint

DOUBLE PRECISION for
vdnearbyint

y

C: Pointer to an array that contains the
output vector y.

C: float* for vsNearbyInt

double* for vdNearbyInt

Description

Halfway values, that is, 0.5, -1.5, and the like, are rounded off towards even values.

2260

9 Intel® Math Kernel Library Reference Manual

Rint
Computes a rounded integer value in a current
rounding mode for each vector element with
inexact result exception raised for each changed
value.

Syntax

Fortran:

call vsrint(n, a, y)

call vdrint(n, a, y)

C:

call vsRint(n, a, y);

call vdRint(n, a, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsrint

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdrint

C: const float* for vsRint

const double* for vdRint

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y.

FORTRAN: REAL for vsrint

DOUBLE PRECISION for vdrint

y

2261

Vector Mathematical Functions 9

DescriptionTypeName

C: Pointer to an array that contains the
output vector y.

C: float* for vsRint

double* for vdRint

Description

Halfway values, that is, 0.5, -1.5, and the like, are rounded off towards even values. For each
changed value, inexact result exception is raised.

Modf
Computes a truncated integer value and remaining
fraction part for each vector element.

Syntax

Fortran:

call vsmodf(n, a, y, z)

call vdmodf(n, a, y, z)

C:

call vsModf(n, a, y, z);

call vdModf(n, a, y, z);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, specifies the input vector
a.

FORTRAN: REAL, INTENT(IN) for
vsmodf

a

C: Pointer to an array that contains the input
vector a.

DOUBLE PRECISION, INTENT(IN)
for vdmodf

C: const float* for vsModf

2262

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

const double* for vdModf

Output Parameters

DescriptionTypeName

FORTRAN: Array, specifies the output
vector y and z.

FORTRAN: REAL for vsmodf

DOUBLE PRECISION for vdmodf

y, z

C: Pointer to an array that contains the
output vector y and z.

C: float* for vsModf

double* for vdModf

VML Pack/Unpack Functions
This section describes VML functions which convert vectors with unit increment to and from
vectors with positive increment indexing, vector indexing and mask indexing (see Appendix B
for details on vector indexing methods).

Table 9-10 lists available VML Pack/Unpack functions, together with data types and indexing
methods associated with them.

Table 9-10 VML Pack/Unpack Functions

DescriptionIndexing
Methods

Data
Types

Function Short
Name

Gathers elements of arrays, indexed by different
methods.

I,V,Ms, dPack

Scatters vector elements to arrays with different indexing.I,V,Ms, dUnpack

2263

Vector Mathematical Functions 9

Pack
Copies elements of an array with specified indexing
to a vector with unit increment.

Syntax

Fortran:

call vsPackI(n, a, inca, y)

call vsPackV(n, a, ia, y)

call vsPackM(n, a, ma, y)

call vdPackI(n, a, inca, y)

call vdPackV(n, a, ia, y)

call vdPackM(n, a, ma, y)

C:

vsPackI(n, a, inca, y);

vsPackV(n, a, ia, y);

vsPackM(n, a, ma, y);

vdPackI(n, a, inca, y);

vdPackV(n, a, ia, y);

vdPackM(n, a, ma, y);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, DIMENSION at least(1 +
(n-1)*inca) for vspacki/vdpacki,

FORTRAN: REAL, INTENT(IN) for
vspacki, vspackv, vspackm

a

2264

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Array, DIMENSION at least max(
n,max(ia[j])), j=0, …, n-1 for
vspackv/vdpackv ,

DOUBLE PRECISION, INTENT(IN)
for vdpacki, vdpackv, vdpackm.

C: const float* for vsPackI,
vsPackV, vsPackM Array, DIMENSION at least n for

vspackm/vdpackm.const double* for vdPackI,
vdPackV, vdPackM Specifies the input vector a.

C: Specifies pointer to an array that contains
the input vector a. Size of the array must
be:

at least(1 + (n-1)*inca) for
vsPackI/vdPackI,

at least max(n,max(ia[j])), j=0, …,
n-1 for vsPackV/vdPackV ,

at least n for vsPackM/vdPackM.

Specifies the increment for the elements of
a.

FORTRAN: INTEGER, INTENT(IN)
for vspacki, vdpacki.

C: int for vsPackI, vdPackI.

inca

FORTRAN: Array, DIMENSION at least n.FORTRAN: INTEGER, INTENT(IN)
for vspackv, vdpackv.

ia

Specifies the index vector for the elements
of a.C: const int* for vsPackV,

vdPackV. C: Specifies the pointer to an array of size
at least n that contains the index vector for
the elements of a.

FORTRAN: Array, DIMENSION at least n,FORTRAN: INTEGER, INTENT(IN)
for vspackm, vdpackm.

ma

Specifies the mask vector for the elements
of a.C: const int* for vsPackM,

vdPackM. C: Specifies the pointer to an array of size
at least n that contains the mask vector for
the elements of a.

2265

Vector Mathematical Functions 9

Output Parameters

DescriptionTypeName

FORTRAN: Array, DIMENSION at least n.
Specifies the output vector y.

FORTRAN: REAL for vspacki,
vspackv, vspackm

y

C: Pointer to an array of size at least n that
contains the output vector y.

DOUBLE PRECISION for vdpacki,
vdpackv, vdpackm.

C: float* for vsPackI, vsPackV,
vsPackM

double* for vdPackI, vdPackV,
vdPackM

Unpack
Copies elements of a vector with unit increment to
an array with specified indexing.

Syntax

Fortran:

call vsunpacki(n, a, y, incy)

call vsunpackv(n, a, y, iy)

call vsunpackm(n, a, y, my)

call vdunpacki(n, a, y, incy)

call vdunpackv(n, a, y, iy)

call vdunpackm(n, a, y, my)

2266

9 Intel® Math Kernel Library Reference Manual

C:

vsUnpackI(n, a, y, incy);

vsUnpackV(n, a, y, iy);

vsUnpackM(n, a, y, my);

vdUnpackI(n, a, y, incy);

vdUnpackV(n, a, y, iy);

vdUnpackM(n, a, y, my);

Input Parameters

DescriptionTypeName

Specifies the number of elements to be
calculated.

FORTRAN: INTEGER, INTENT(IN).

C: int.

n

FORTRAN: Array, DIMENSION at least n.FORTRAN: REAL, INTENT(IN) for
vsunpacki, vsunpackv,
vsunpackm

a

Specifies the input vector a.

C: Specifies the pointer to an array of size
at least n that contains the input vector a.DOUBLE PRECISION, INTENT(IN)

for vdunpacki, vdunpackv,
vdunpackm.

C: const float* for vsUnpackI,
vsUnpackV, vsUnpackM

const double* for vdUnpackI,
vdUnpackV, vdUnpackM

Specifies the increment for the elements of
y.

FORTRAN: INTEGER, INTENT(IN)
for vsunpacki, vdunpacki.

C: int for vsUnpackI, vdUnpackI.

incy

FORTRAN: Array, DIMENSION at least n.FORTRAN: INTEGER, INTENT(IN)
for vsunpackv, vdunpackv.

iy

Specifies the index vector for the elements
of y.C: const int* for vsUnpackV,

vdUnpackV.

2267

Vector Mathematical Functions 9

DescriptionTypeName

C: Specifies the pointer to an array of size
at least n that contains the index vector for
the elements of a.

FORTRAN: Array, DIMENSION at least n,FORTRAN: INTEGER, INTENT(IN)
for vsunpackm, vdunpackm.

my

Specifies the mask vector for the elements
of y.C: const int* for vsUnpackM,

vdUnpackM. C: Specifies the pointer to an array of size
at least n that contains the mask vector for
the elements of a.

Output Parameters

DescriptionTypeName

FORTRAN: Array, DIMENSIONFORTRAN: REAL for vsunpacki,
vsunpackv, vsunpackm

y

at least (1 + (n-1)*incy) for vsunpacki,
DOUBLE PRECISION for
vdunpacki, vdunpackv,
vdunpackm.

at least max(n,max(iy[j])),j=0,...,
n-1, for vsunpackv,

at least n for vsunpackm/vdunpackm
C: float* for vsUnpackI,
vsUnpackV, vsUnpackM C: Specifies the pointer to an array that

contains the output vector y.
double* for vdUnpackI,
vdUnpackV, vdUnpackM Size of the array must be:

at least (1 + (n-1)*incy) for
vsUnPackI,

at least max(n,max(ia[j])
),j=0,..., n-1, for vsUnPackV,

at least n for vsUnPackM.

2268

9 Intel® Math Kernel Library Reference Manual

VML Service Functions
VML Service functions allow the user to set /get the accuracy mode, and set/get the error code.
All these functions are available both in Fortran- and C- interfaces. Table 9-11 lists available
VML Service functions and their short description.

Table 9-11 VML Service Functions

DescriptionFunction Short Name

Sets the VML modeSetMode
Gets the VML modeGetMode
Sets the VML error statusSetErrStatus
Gets the VML error statusGetErrStatus
Clears the VML error statusClearErrStatus
Sets the additional error handler callback functionSetErrorCallBack
Gets the additional error handler callback functionGetErrorCallBack
Deletes the additional error handler callback functionClearErrorCallBack

SetMode
Sets a new mode for VML functions according to
mode parameter and stores the previous VML mode
to oldmode.

Syntax

Fortran:

oldmode = vmlsetmode(mode)

C:

oldmode = vmlSetMode(mode);

Input Parameters

DescriptionTypeName

Specifies the VML mode to be set.FORTRAN: INTEGER, INTENT(IN).

C: int.

mode

2269

Vector Mathematical Functions 9

Output Parameters

DescriptionTypeName

Specifies the former VML mode.FORTRAN: INTEGER.

C: int.

oldmode

Description

The mode parameter is designed to control accuracy, FPU, error handling and threading options.
Table 9-12 lists values of the mode parameter. All other possible values of the mode parameter
may be obtained from these values by using bitwise OR (|) operation to combine one value
for accuracy, one for FPU, and one for error control options. The default value of the mode
parameter is VML_HA | VML_ERRMODE_DEFAULT | VML_NUM_THREADES_OMP_AUTO. Thus, the
current FPU control word (FPU precision and the rounding method) is used by default.

If any VML mathematical function requires different FPU precision, or rounding method, it
changes these options automatically and then restores the former values. The mode parameter
enables you to minimize switching the internal FPU mode inside each VML mathematical function
that works with similar precision and accuracy settings. To accomplish this, set the mode
parameter to VML_FLOAT_CONSISTENT for single precision real and complex functions, or to
VML_DOUBLE_CONSISTENT for double precision real and complex functions. These values of the
mode parameter are the optimal choice for the respective function groups, as they are required
for most of the VML mathematical functions. After the execution is over, set the mode to
VML_RESTORE if you need to restore the previous FPU mode.

Table 9-12 Values of the mode Parameter

DescriptionValue of mode

Accuracy Control

High accuracy versions of VML functions will be usedVML_HA

Low accuracy versions of VML functions will be usedVML_LA

Additional FPU Mode Control

The optimal FPU mode (control word) for single precision
functions is set, and the previous FPU mode is saved

VML_FLOAT_CONSISTENT

The optimal FPU mode (control word) for double precision
functions is set, and the previous FPU mode is saved

VML_DOUBLE_CONSISTENT

The previously saved FPU mode is restoredVML_RESTORE

Error Mode Control

2270

9 Intel® Math Kernel Library Reference Manual

DescriptionValue of mode

No action is set for computation errorsVML_ERRMODE_IGNORE

On error, the errno variable is setVML_ERRMODE_ERRNO

On error, the error text information is written to stderrVML_ERRMODE_STDERR

On error, an exception is raisedVML_ERRMODE_EXCEPT

On error, an additional error handler function is calledVML_ERRMODE_CALLBACK

On error, the errno variable is set, an exception is raised,

and an additional error handler function is called.

VML_ERRMODE_DEFAULT

Treading Mode Control

This is default behavior. Maximum number of threads is
determined by environmental variable OMP_NUM_THREADS
and can be overridden by OpenMP* function

omp_set_num_threads(). For performance reasons VML

threading logic can use fewer number of threads.

VML_NUM_THREADS_OMP_AUTO

Number of threads is determined by environmental variable
OMP_NUM_THREADS and can be overridden by OpenMP*

function omp_set_num_threads(). Use this mode to

disable VML threading logic.

VML_NUM_THREADS_OMP_FIXED

Examples

Several examples of calling the function vmlSetMode() with different values of the mode
parameter are given below:

Fortran:

oldmode = vmlsetmode(VML_LA)

call vmlsetmode(IOR(VML_LA, IOR(VML_FLOAT_CONSISTENT,
VML_ERRMODE_IGNORE)))

call vmlsetmode(VML_RESTORE)

call vmlsetmode(VML_NUM_THREADS_OMP_FIXED)

2271

Vector Mathematical Functions 9

C:

vmlSetMode(VML_LA);

vmlSetMode(VML_LA | VML_FLOAT_CONSISTENT |
VML_ERRMODE_IGNORE);

vmlSetMode(VML_RESTORE);

vmlSetMode(VML_NUM_THREADS_OMP_FIXED);

GetMode
Gets the VML mode.

Syntax

Fortran:

mod = vmlgetmode()

C:

mod = vmlGetMode(void);

Output Parameters

DescriptionTypeName

Specifies the packed mode parameter.FORTRAN: INTEGER.

C: int.

mod

Description

The function vmlGetMode() returns the VML mode parameter which controls accuracy, FPUand
error handling options. The mod variable value is some combination of the values listed in the
Table 9-12 . You can obtain some of these values using the respective mask from the Table
9-13

Table 9-13 Values of Mask for the mode Parameter

DescriptionValue of mask

Specifies mask for accuracy mode selection.VML_ACCURACY_MASK

Specifies mask for FPU mode selection.VML_FPUMODE_MASK

2272

9 Intel® Math Kernel Library Reference Manual

DescriptionValue of mask

Specifies mask for error mode selection.VML_ERRMODE_MASK

See example below:

Examples

Fortran:

mod = vmlgetmode()

accm = IAND(mod, VML_ACCURACY_MASK)

fpum = IAND(mod, VML_FPUMODE_MASK)

errm = IAND(mod, VML_ERRMODE_MASK)

C:

accm = vmlGetMode(void)& VML_ACCURACY_MASK;

fpum = vmlGetMode(void)& VML_FPUMODE_MASK;

errm = vmlGetMode(void)& VML_ERRMODE_MASK;

SetErrStatus
Sets the new VML error status according to err
and stores the previous VML error status to olderr.

Syntax

Fortran:

olderr = vmlseterrstatus(err)

C:

olderr = vmlSetErrStatus(err);

2273

Vector Mathematical Functions 9

Input Parameters

DescriptionTypeName

Specifies the VML error status to be set.FORTRAN: INTEGER, INTENT(IN).

C: int.

err

Output Parameters

DescriptionTypeName

Specifies the former VML error status.FORTRAN: INTEGER.

C: int.

olderr

Table 9-14 lists possible values of the err parameter.

Table 9-14 Values of the VML Error Status

DescriptionError Status

The execution was completed successfully.VML_STATUS_OK

The array dimension is not positive.VML_STATUS_BADSIZE

NULL pointer is passed.VML_STATUS_BADMEM

At least one of array values is out of a range of
definition.

VML_STATUS_ERRDOM

At least one of array values caused a singularity.VML_STATUS_SING

An overflow has happened during the calculation
process.

VML_STATUS_OVERFLOW

An underflow has happened during the calculation
process.

VML_STATUS_UNDERFLOW

Examples
vmlSetErrStatus(VML_STATUS_OK);

vmlSetErrStatus(VML_STATUS_ERRDOM);

vmlSetErrStatus(VML_STATUS_UNDERFLOW);

2274

9 Intel® Math Kernel Library Reference Manual

GetErrStatus
Gets the VML error status.

Syntax

Fortran:

err = vmlgeterrstatus()

C:

err = vmlGetErrStatus(void);

Output Parameters

DescriptionTypeName

Specifies the VML error status.FORTRAN: INTEGER.

C: int.

err

ClearErrStatus
Sets the VML error status to VML_STATUS_OK and
stores the previous VML error status to olderr.

Syntax

Fortran:

olderr = vmlclearerrstatus()

C:

olderr = vmlClearErrStatus(void);

Output Parameters

DescriptionTypeName

Specifies the former VML error status.FORTRAN: INTEGER.

C: int.

olderr

2275

Vector Mathematical Functions 9

SetErrorCallBack
Sets the additional error handler callback function
and gets the old callback function.

Syntax

Fortran:

oldcallback = vmlseterrorcallback(callback)

C:

oldcallback = vmlSetErrorCallBack(callback);

Input Parameters

DescriptionTypeName

FORTRAN: The callback function has the
following format:

INTEGER FUNCTION ERRFUNC(par)

TYPE (ERROR_STRUCTURE) par

! ...

! user error processing

! ...

ERRFUNC = 0

! if ERRFUNC= 0 - standard VML
error handler

! is called after the callback

! if ERRFUNC != 0 - standard VML
error handler

! is not called

END

FORTRAN: Address of the callback
function.

callback

2276

9 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

The passed error structure is defined as
follows:

TYPE ERROR_STRUCTURE SEQUENCE

INTEGER*4 ICODE

INTEGER*4 IINDEX

REAL*8 DBA1

REAL*8 DBA2

REAL*8 DBR1

REAL*8 DBR2

CHARACTER(64) CFUNCNAME

INTEGER*4 IFUNCNAMELEN

END TYPE ERROR_STRUCTURE

C: The callback function has the following
format:

static int __stdcall
MyHandler(DefVmlErrorContext*

pContext)

{

/* Handler body */

};

C: Pointer to the callback function.callback

2277

Vector Mathematical Functions 9

DescriptionTypeName

The passed error structure is defined as
follows:

typedef struct _DefVmlErrorContext

{

int iCode;/* Error status value */

int iIndex;/* Index for bad array

element, or bad array

dimension, or bad

array pointer */

double dbA1; /* Error argument 1 */

double dbA2; /* Error argument 2 */

double dbR1; /* Error result 1 */

double dbR2; /* Error result 2 */

char cFuncName[64]; /* Function
name */

int iFuncNameLen; /* Length of
functionname*/

} DefVmlErrorContext;

Output Parameters

DescriptionTypeName

FORTRAN: Address of the former callback
function.

FORTRAN: INTEGER

C: int

oldcallback

C: Pointer to the former callback function.

Description

The callback function is called on each VML mathematical function error if
VML_ERRMODE_CALLBACK error mode is set (see Table 9-12).

2278

9 Intel® Math Kernel Library Reference Manual

Use the vmlSetErrorCallBack() function if you need to define your own callback function
instead of default empty callback function.

The input structure for a callback function contains the following information about the error
encountered:

• the input value that caused an error

• location (array index) of this value

• the computed result value

• error code

• name of the function in which the error occurred.

You can insert your own error processing into the callback function. This may include correcting
the passed result values in order to pass them back and resume computation. The standard
error handler is called after the callback function only if it returns 0.

GetErrorCallBack
Gets the additional error handler callback function.

Syntax

Fortran:

callback = vmlgeterrorcallback()

C:

callback = vmlGetErrorCallBack(void);

Output Parameters

DescriptionTypeName

FORTRAN: Address of the callback function.callback

C: Pointer to the callback function.

2279

Vector Mathematical Functions 9

ClearErrorCallBack
Deletes the additional error handler callback
function and retrieves the former callback function.

Syntax

Fortran:

oldcallback = vmlclearerrorcallback()

C:

oldcallback = vmlClearErrorCallBack(void);

Output Parameters

DescriptionTypeName

FORTRAN: Address of the former callback
function.

FORTRAN: INTEGER.

C: int.

oldcallback

C: Pointer to the former callback function.

2280

9 Intel® Math Kernel Library Reference Manual

10Statistical Functions

Statistical functions in Intel® MKL are known as Vector Statistical Library (VSL) that is designed for the
purpose of

• generating vectors of pseudorandom and quasi-random numbers

• performing mathematical operations of convolution and correlation.

The corresponding functionality is described in the respective Random Number Generators and Convolution
and Correlation sections.

Random Number Generators
VSL provides a set of routines implementing commonly used pseudo- or quasi-random number
generators with continuous and discrete distribution. To speed up performance, all these routines
were developed using the calls to the highly optimized Basic Random Number Generators (BRNGs)
and the library of vector mathematical functions (VML, see Chapter 9, “Vector Mathematical
Functions”).

VSL provides interfaces both for FORTRAN and C languages. For users of the C and C++ languages
the mkl_vsl.h header file is provided. For users of the FORTRAN-90 or FORTRAN-95 language the
mkl_vsl.fi header file is provided. Both header files are found in the following directory:

${MKL}/include

The mkl_vsl.fi header is intended for using via the FORTRAN include clause and is compatible with
both standard forms of F90/F95 sources — the free and 72-columns fixed forms. If you need to use
the VSL interface with 80- or 132-columns fixed form sources, you may add a new file to your project.
That file is formatted as a 72-columns fixed-form source and consists of a single include clause as
follows:

include ‘mkl_vsl.fi’

This include clause causes the compiler to generate the module files mkl_vsl.mod and
mkl_vsl_type.mod, which are used to process the FORTRAN use clauses referencing to the VSL
interface:

use mkl_vsl_type

use mkl_vsl

2281

Because of this specific feature, you do not need to include the mkl_vsl.fi header into each
source of your project. You only need to include the header into some of the sources. In any
case, make sure that the sources that depend on the VSL interface are compiled after those
that include the header so that the module files mkl_vsl.mod and mkl_vsl_type.mod are
generated prior to using them.

NOTE. For FORTRAN interface, VSL provides both subroutine-style interface and
function-style interface. Default interface in this case is a function-style interface. Default
interface in this case is a function-style interface. Subroutine-style interface is provided
for backward compatibility only. To use subroutine-style interface, manually include
mkl_vsl_subroutine.fi file instead of mkl_vsl.fi by changing the line include
‘mkl_vsl.fi’ in include\mkl.fi with the line include ‘mkl_vsl_subroutine.fi’.

Function-style interface, unlike subroutine-style interface, allows user to get error status of
each routine.

All VSL routines can be classified into three major categories:

• Transformation routines for different types of statistical distributions, for example, uniform,
normal (Gaussian), binomial, etc. These routines indirectly call basic random number
generators, which are either pseudorandom number generators or quasi-random number
generators. Detailed description of the generators can be found in Distribution Generators
section.

• Service routines to handle random number streams: create, initialize, delete, copy, save to
a binary file, load from a binary file, get the index of a basic generator. The description of
these routines can be found in Service Subroutines section.

• Registration routines for basic pseudorandom generators and routines that obtain properties
of the registered generators (see Advanced Service Subroutines section).

The last two categories are referred to as service routines.

Conventions

This document makes no specific differentiation between random, pseudorandom, and
quasi-random numbers, nor between random, pseudorandom, and quasi-random number
generators unless the context requires otherwise. For details, refer to ‘Random Numbers’ section
in VSL Notes document provided with Intel® MKL.

All generators of nonuniform distributions, both discrete and continuous, are built on the basis
of the uniform distribution generators, called Basic Random Number Generators (BRNGs). The
pseudorandom numbers with nonuniform distribution are obtained through an appropriate

2282

10 Intel® Math Kernel Library Reference Manual

transformation of the uniformly distributed pseudorandom numbers. Such transformations are
referred to as generation methods. For a given distribution, several generation methods can
be used. See VSL Notes for the description of methods available for each generator.

The stream descriptor specifies which BRNG should be used in a given transformation
method. See ‘Random Streams and RNGs in Parallel Computation’ section of VSL Notes.

The term computational node means a logical or physical unit that can process data in
parallel.

Mathematical Notation

The following notation is used throughout the text:

The set of natural numbers N = {1, 2, 3 ...}.N

The set of integers Z = {... -3, -2, -1, 0, 1, 2, 3 ...}.Z

The set of real numbers.R
The floor of a (the largest integer less than or equal to a).

Bitwise exclusive OR.⊕ or xor

Binomial coefficient or combination (α∈R, α≥ 0; k∈N ∪{0}).

For α≥k binomial coefficient is defined as

If α < k, then

Cumulative Gaussian distribution functionΦ(x)

2283

Statistical Functions 10

defined over - ∞ < x < + ∞.

Φ(-∞) = 0, Φ(+∞) = 1.

The complete gamma functionΓ(α)

where α > 0.

The complete beta functionB(p, q)

where p>0 and q>0.

Linear Congruential Generator xn+1 = (axn + c) mod m, where a is
called the multiplier, c is called the increment, and m is called the
modulus of the generator.

LCG(a,c, m)

Multiplicative Congruential Generator xn+1 = (axn) mod m is a special
case of Linear Congruential Generator, where the increment c is taken
to be 0.

MCG(a,m)

Generalized Feedback Shift Register Generator

xn = xn-p ⊕xn-q.

GFSR(p, q)

Naming Conventions

The names of all VSL functions in FORTRAN are lowercase; names in C may contain both
lowercase and uppercase letters.

The names of generator routines have the following structure:

2284

10 Intel® Math Kernel Library Reference Manual

v<type of result>rng<distribution> for FORTRAN-interface

v<type of result>Rng<distribution> for C-interface,

where v is the prefix of a VSL vector function, and the field <type of result> is either s, d,
or i and specifies one of the following types:

REAL for FORTRAN-interfaces
float for C-interface

DOUBLE PRECISION for FORTRAN-interfaced
double for C-interface

INTEGER for FORTRAN-interfacei
int for C-interface

Prefixes s and d apply to continuous distributions only, prefix i applies only to discrete case.
The prefix rng indicates that the routine is a random generator, and the <distribution> field
specifies the type of statistical distribution.

Names of service routines follow the template below:
vsl<name>,

where vsl is the prefix of a VSL service function. The field <name> contains a short function
name. For a more detailed description of service routines refer to Service Routines and Advanced
Service Routines sections.

Prototype of each generator routine corresponding to a given probability distribution fits the
following structure:
<function name>(method, stream, n, r, [<distribution parameters >]),

where

• method is the number specifying the method of generation. A detailed description of this
parameter can be found in Distribution Generators section. See the next page for method
name structure definition.

• stream defines the random stream descriptor and must have a nonzero value. Random
streams and their usage are discussed further in Random Streams and Service Routines.

• n defines the number of random values to be generated. If n is less than or equal to zero,
no values are generated. Furthermore, if n is negative, an error condition is set.

• r defines the destination array for the generated numbers. The dimension of the array must
be large enough to store at least n random numbers.

Additional parameters included into <distribution parameters> field are individual for each
generator routine and are described in detail in Distribution Generators section.

2285

Statistical Functions 10

To invoke a distribution generator, use a call to the respective VSL routine. For example, to
obtain a vector r, composed of n independent and identically distributed random numbers with
normal (Gaussian) distribution, that have the mean value a and standard deviation sigma, write
the following:

for FORTRAN-interface
status = vsrnggaussian(method, stream, n, r, a, sigma)

for C-interface
status = vsRngGaussian(method, stream, n, r, a, sigma)

The name of a method parameter has the following structure:

VSL_METHOD_<precision><distribution>_<method>,

VSL_METHOD_<precision><distribution>_<method>_ACCURATE,

where

<precision> for single precision continuous distributionS

for double precision continuous distributionD

for discrete distributionI

probability distribution<distribution>

method name.<method>

Type of name structure for method parameter corresponds to fast and accuarate modes of
random number generation (see “Distribution Generators” section and VSL Notes for details).

Method names VSL_METHOD_<precision><distribution>_<method> and
VSL_METHOD_<precision><distribution>_<method>_ACCURATE should be used with
vsl<precision>Rng<distribution> function only, where

<precision> for single precision continuous distributions

for double precision continuous distributiond

for discrete distributioni

probability distribution.<distribution>

Table 10-1 provides specific predefined values of the method name. The third column contains
names of the functions that use the given method.

2286

10 Intel® Math Kernel Library Reference Manual

Table 10-1 Values of <method> in method parameter

FunctionsShort DescriptionMethod

Uniform
(continuous),
Uniform
(discrete),
UniformBits

Standard method. Currently there is only one method for
these functions.

STD

Gaussian,
GaussianMV

BOXMULLER generates normally distributed random number
x thru the pair of uniformly distributed numbers u1 and u2
according to the formula:

BOXMULLER

Gaussian,
GaussianMV

BOXMULLER2 generates normally distributed random
numbers x1 and x2 thru the pair of uniformly distributed
numbers u1 and u2 according to the formulas:

BOXMULLER2

Exponential,
Laplace,Weibull,
Cauchy,

Inverse cumulative distribution function method.ICDF

Rayleigh,Lognormal,
Gumbel,Bernoulli,
Geometric,
Gaussian,
GaussianMV

GammaFor α > 1, a gamma distributed random number is generated
as a cube of properly scaled normal random number; for
0.6 ≤α < 1, a gamma distributed random number is

GNORM

generated using rejection from Weibull distribution; for α <

2287

Statistical Functions 10

FunctionsShort DescriptionMethod

0.6, a gamma distributed random number is obtained using
transformation of exponential power distribution; for α = 1,
gamma distribution is reduced to exponential distribution.

BetaFor min(p, q) > 1, Cheng method is used; for min(p,

q) < 1, Jöhnk method is used, if q + K·p2+ C ≤ 0 (K=
0.852..., C=-0.956...) otherwise, Atkinson switching

CJA

algorithm is used; for max(p, q) < 1, method of Jöhnk is
used; for min(p, q) < 1, max(p, q)> 1, Atkinson
switching algorithm is used (CJA stands for the first letters
of Cheng, Jöhnk, Atkinson); for p = 1 or q = 1, inverse
cumulative distribution function method is used;for p = 1
and q = 1, beta distribution is reduced to uniform
distribution.

BinomialAcceptance/rejection method for ntrial·min(p,1 - p)≥
30 with decomposition into 4 regions:

BTPE

– 2 parallelograms

– triangle

– left exponential tail

– right exponential tail

HypergeometricAcceptance/rejection method for large mode of distribution
with decomposition into 3 regions:

H2PE

– rectangular

– left exponential tail

– right exponential tail

PoissonAcceptance/rejection method for λ≥ 27 with decomposition
into 4 regions:

PTPE

– 2 parallelograms

– triangle

– left exponential tail

2288

10 Intel® Math Kernel Library Reference Manual

FunctionsShort DescriptionMethod

– right exponential tail;

otherwise, table lookup method is used.

Poisson,
PoissonV

for λ≥ 1, method based on Poisson inverse CDF

approximation by Gaussian inverse CDF; for λ < 1, table
lookup method is used.

POISNORM

NegBinomialAcceptance/rejection method for ,NBAR

with decomposition into 5 regions:

– rectangular

– 2 trapezoid

– left exponential tail

– right exponential tail

Basic Generators

VSL provides the following BRNGs, which differ in speed and other properties:

• the 32-bit multiplicative congruential pseudorandom number generator MCG(1132489760,
231 -1) [L’Ecuyer99]

• the 32-bit generalized feedback shift register pseudorandom number generator
GFSR(250,103) [Kirkpatrick81]

• the combined multiple recursive pseudorandom number generator MRG-32k3a [L’Ecuyer99a]

• the 59-bit multiplicative congruential pseudorandom number generator MCG(1313, 259)
from NAG Numerical Libraries [NAG]

• Wichmann-Hill pseudorandom number generator (a set of 273 basic generators) from NAG
Numerical Libraries [NAG]

2289

Statistical Functions 10

• Mersenne Twister pseudorandom number generator MT19937 [Matsumoto98] with period
length 219937-1 of the produced sequence

• Set of 1024 Mersenne Twister pseudorandom number generators MT2203 [Matsumoto98],
[Matsumoto00]. Each of them generates a sequence of period length equal to 22203-1.
Parameters of the generators provide mutual independence of the corresponding sequences.

Besides these pseudorandom number generators, VSL provides two basic quasi-random number
generators:

• Sobol quasi-number generator [Sobol76], [Bratley88], which works in dimensions from 1
up to 40.

• Niederreiter quasi-random number generator [Bratley92], which works in dimensions from
1 up to 318.

VSL also provides opportunity to register externally defined initialization parameters of the
quasi-random number generators and to work in dimensions established by user. See additional
details on interface for registration of the parameters in the library in VSL Notes.

Aslo see some testing results for the generators in VSL Notes and comparative performance
data at http://www.intel.com/software/products/mkl/data/vsl/vsl_performance_data.htm.

VSL provides means of registration of such user-designed generators through the steps described
in Advanced Service Subroutines section.

For some basic generators, VSL provides two methods of creating independent random streams
in multiprocessor computations, which are the leapfrog method and the block-splitting method.
These sequence splitting methods are also useful in sequential Monte Carlo.

In addition, MT2203 pseudorandom number generator is a set of 1024 generators designed to
create up to 1024 independent random sequences, which might be used in parallel Monte Carlo
simulations. Another generator that has the same feature is Wichmann-Hill. It allows creating
up to 273 independent random streams. The properties of the generators designed for parallel
computations are discussed in detail in [Coddington94].

You may want to design and use your own basic generators. VSL provides means of registration
of such user-designed generators through the steps described in Advanced Service
Subroutinessection.

There is also an option to utilize externally generated random numbers in VSL distribution
generator routines. For this purpose VSL provides three additional basic random number
generators:

– for external random data packed in 32-bit integer array

– for external random data stored in double precision floating-point array; data is supposed
to be uniformly distributed over (a,b) interval

– for external random data stored in single precision floating-point array; data is supposed
to be uniformly distributed over (a,b) interval.

2290

10 Intel® Math Kernel Library Reference Manual

Such basic generators are called the abstract basic random number generators.

See VSL Notes for a more detailed description of the generator properties.

BRNG Parameter Definition

Predefined values for the brng input parameter are as follows:

Table 10-2 Values of brng parameter

Short DescriptionValue

A 31-bit multiplicative congruential generator.VSL_BRNG_MCG31

A generalized feedback shift register generator.VSL_BRNG_R250

A combined multiple recursive generator with two
components of order 3.

VSL_BRNG_MRG32K3A

A 59-bit multiplicative congruential generator.VSL_BRNG_MCG59

A set of 273 Wichmann-Hill combined multiplicative
congruential generators.

VSL_BRNG_WH

A Mersenne Twister pseudorandom number generator.VSL_BRNG_MT19937

A set of 1024 Mersenne Twister pseudorandom number
generators.

VSL_BRNG_MT2203

A 32-bit Gray code-based generator producing

low-discrepancy sequences for dimensions 1 ≤ s ≤
40; user-defined dimensions are also available.

VSL_BRNG_SOBOL

A 32-bit Gray code-based generator producing

low-discrepancy sequences for dimensions 1 ≤ s ≤
318; user-defined dimensions are also available.

VSL_BRNG_NIEDERR

An abstract random number generator for integer arrays.VSL_BRNG_IABSTRACT

An abstract random number generator for double
precision floating-point arrays.

VSL_BRNG_DABSTRACT

An abstract random number generator for single
precision floating-point arrays.

VSL_BRNG_SABSTRACT

2291

Statistical Functions 10

See VSL Notes for detailed description.

Random Streams

Random stream (or stream) is an abstract source of pseudo- and quasi-random sequences of
uniform distribution. Users have no direct access to these sequences and operate with stream
state descriptors only. A stream state descriptor, which holds state descriptive information for
a particular BRNG, is a necessary parameter in each routine of a distribution generator. Only
the distribution generator routines operate with random streams directly. See VSL Notes for
details.

NOTE. Random streams associated with abstract basic random number generator are
called the abstract random streams. See VSL Notes for detailed description of abstract
streams and their use.

User can create unlimited number of random streams by VSL Service Routines like NewStream
and utilize them in any distribution generator to get the sequence of numbers of given probability
distribution. When they are no longer needed, the streams should be deleted calling service
routine DeleteStream.

VSL provides service functions SaveStreamF and LoadStreamF to save random stream
descriptive data to a binary file and to read this data from a binary file respectively. See VSL
Notes for detailed description.

Data Types

FORTRAN:
TYPEVSL_STREAM_STATE

INTEGER*4 descriptor1

INTEGER*4 descriptor2

ENDTYPE VSL_STREAM_STATE

C:
typedef (void*) VSLStreamStatePtr;

See Advanced Service Routines for the format of the stream state structure for user-designed
generators.

2292

10 Intel® Math Kernel Library Reference Manual

Error Reporting

VSL routines return status codes of the performed operation to report errors and warnings to
the calling program. Thus, it is up to the application to perform error-related actions and/or
recover from the error. The status codes are of integer type and have the following format:

VSL_ERROR_<ERROR_NAME> - indicates VSL errors

VSL_WARNING_<WARNING_NAME> - indicates VSL warnings.

VSL errors are of negative values while warnings are of positive values. The status code of zero
value indicates that the operation is completed successfully: VSL_ERROR_OK (or synonymic
VSL_STATUS_OK).

Table 10-3 Status Codes and Messages

MessageStatus Code

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

Input argument value is not valid.VSL_ERROR_BAD_ARG

Input pointer argument is NULL.VSL_ERROR_NULL_PTR

System cannot allocate memory.VSL_ERROR_MEM_FAILURE

BRNG index is not valid.VSL_ERROR_INVALID_BRNG_INDEX

Two BRNGs are not compatible for the operation.VSL_ERROR_BRNGS_INCOMPATIBLE

BRNG does not support Leapfrog method.VSL_ERROR_LEAPFROG_UNSUPPORTED

BRNG does not support Skip-Ahead method.VSL_ERROR_SKIPAHEAD_UNSUPPORTED

The random stream is invalid.VSL_ERROR_BAD_STREAM

Indicates an error in opening the file.VSL_ERROR_FILE_OPEN

Indicates an error in reading the file.VSL_ERROR_FILE_READ

Indicates an error in writing the file.VSL_ERROR_FILE_WRITE

Indicates an error in closing the file.VSL_ERROR_FILE_CLOSE

2293

Statistical Functions 10

MessageStatus Code

File format is unknown.VSL_ERROR_BAD_FILE_FORMAT

File format version is not supported.VSL_ERROR_UNSUPPORTED_FILE_VER

Registration cannot be completed due to lack of
free entries in the table of registered BRNGs.

VSL_ERROR_BRNG_TABLE_FULL

The value in StreamStateSize field is bad.VSL_ERROR_BAD_STREAM_STATE_SIZE

The value in WordSize field is bad.VSL_ERROR_BAD_WORD_SIZE

The value in NSeeds field is bad.VSL_ERROR_BAD_NSEEDS

The value in NBits field is bad.VSL_ERROR_BAD_NBITS

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or >nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns zero
as the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

The abstract random stream is invalid.VSL_ERROR_INVALID_ABSTRACT_STREAM

Service Routines

Stream handling comprises routines for creating, deleting, or copying the streams and getting
the index of a basic generator. A random stream can also be saved to and then read from a
binary file. Table 10-4 lists all available service routines

Table 10-4 Service Routines

Short DescriptionRoutine

Creates and initializes a random stream.NewStream

Creates and initializes a random stream for the
generators with multiple initial conditions.

NewStreamEx

2294

10 Intel® Math Kernel Library Reference Manual

Short DescriptionRoutine

Creates and initializes an abstract random stream for
integer arrays.

iNewAbstractStream

Creates and initializes an abstract random stream for
double precision floating-point arrays.

dNewAbstractStream

Creates and initializes an abstract random stream for
single precision floating-point arrays.

sNewAbstractStream

Deletes previously created stream.DeleteStream

Copies a stream to another stream.CopyStream

Creates a copy of a random stream state.CopyStreamState

Writes a stream to a binary file.SaveStreamF

Reads a stream from a binary file.LoadStreamF

Initializes the stream by the leapfrog method to generate
a subsequence of the original sequence.

LeapfrogStream

Initializes the stream by the skip-ahead method.SkipAheadStream

Obtains the index of the basic generator responsible for
the generation of a given random stream.

GetStreamStateBrng

Obtains the number of currently registered basic
generators.

GetNumRegBrngs

NOTE. In the above table, the vsl prefix in the function names is omitted. In the function
reference this prefix is always used in function prototypes and code examples.

Most of the generator-based work comprises three basic steps:

1. Creating and initializing a stream (NewStream, NewStreamEx, CopyStream,
CopyStreamState, LeapfrogStream, SkipAheadStream).

2. Generating random numbers with given distribution, see Distribution Generators.

3. Deleting the stream (DeleteStream).

2295

Statistical Functions 10

Note that you can concurrently create multiple streams and obtain random data from one or
several generators by using the stream state. You must use the DeleteStream function to
delete all the streams afterwards.

NewStream
Creates and initializes a random stream.

Syntax

Fortran:

status = vslnewstream(stream, brng, seed)

C:

status = vslNewStream(&stream, brng, seed);

Description

For a basic generator with number brng, this function creates a new stream and initializes it
with a 32-bit seed. The seed is an initial value used to select a particular sequence generated
by the basic generator brng. The function is also applicable for generators with multiple initial
conditions. See VSL Notes for a more detailed description of stream initialization for different
basic generators.

NOTE. This function is not applicable for abstract basic random number generators.
Please use vsliNewAbstractStream, vslsNewAbstractStream or
vsldNewAbstractStream to utilize integer, single-precision or double-precision external
random data respectively.

Input Parameters

DescriptionTypeName

Index of the basic generator to initialize the stream.
See Table 10-2 for specific value.

FORTRAN: INTEGER,
INTENT(IN)

C: int

brng

2296

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Initial condition of the stream. In the case of a
quasi-random number generator seed parameter is
used to set the dimension. If the dimension is greater

FORTRAN: INTEGER,
INTENT(IN)

C: unsigned int

seed

than the dimension that brng can support or is less
than 1, then the dimension is assumed to be equal
to 1.

Output Parameters

DescriptionTypeName

Stream state descriptorFORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(OUT)

stream

C: VSLStreamStatePtr*

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

BRNG index is invalid.VSL_ERROR_INVALID_BRNG_INDEX

System cannot allocate memory for stream.VSL_ERROR_MEM_FAILURE

NewStreamEx
Creates and initializes a random stream for
generators with multiple initial conditions.

Syntax

Fortran:

status = vslnewstreamex(stream, brng, n, params)

C:

status = vslNewStreamEx(&stream, brng, n, params);

2297

Statistical Functions 10

Description

This function provides an advanced tool to set the initial conditions for a basic generator if its
input arguments imply several initialization parameters. Initial values are used to select a
particular sequence generated by the basic generator brng. Whenever possible, use NewStream,
which is analogous to vslNewStreamEx except that it takes only one 32-bit initial condition.
In particular, vslNewStreamEx may be used to initialize the state table in Generalized Feedback
Shift Register Generators (GFSRs). A more detailed description of this issue can be found in
VSL Notes.

This function is also used to pass user-defined initialization parameters of quasi-random number
generators into the library. See VSL Notes for the format for their passing and registration in
VSL.

NOTE. This function is not applicable for abstract basic random number generators.
Please use vsliNewAbstractStream, vslsNewAbstractStream or
vsldNewAbstractStream to utilize integer, single-precision or double-precision external
random data respectively.

Input Parameters

DescriptionTypeName

Index of the basic generator to initialize the stream.
See Table 10-2 for specific value.

FORTRAN: INTEGER,
INTENT(IN)

C: int

brng

Number of initial conditions contained in paramsFORTRAN: INTEGER,
INTENT(IN)

n

C: unsigned int

Array of initial conditions necessary for the basic
generator brng to initialize the stream. In the case
of a quasi-random number generator only the first

FORTRAN: INTEGER,
INTENT(IN)

C: const unsigned int

params

element in params parameter is used to set the
dimension. If the dimension is greater than the
dimension that brng can support or is less than 1,
then the dimension is assumed to be equal to 1.

2298

10 Intel® Math Kernel Library Reference Manual

Output Parameters

DescriptionTypeName

Stream state descriptorFORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(OUT)

stream

C: VSLStreamStatePtr*

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

BRNG index is invalid.VSL_ERROR_INVALID_BRNG_INDEX

System cannot allocate memory for stream.VSL_ERROR_MEM_FAILURE

iNewAbstractStream
Creates and initializes an abstract random stream
for integer arrays.

Syntax

Fortran:

status = vslinewabstractstream(stream, n, ibuf, icallback)

C:

status = vsliNewAbstractStream(&stream, n, ibuf, icallback);

Description

This function creates a new abstract stream and associates it with an integer array ibuf and
user's callback function icallback that is intended for updating of ibuf content.

Input Parameters

DescriptionTypeName

Size of the array ibufFORTRAN: INTEGER,
INTENT(IN)

n

2299

Statistical Functions 10

DescriptionTypeName

C: int

Array of n 32-bit integersFORTRAN: INTEGER,
INTENT(IN)

ibuf

C: unsigned int*

FORTRAN: Address of the callback function used for
ibuf update

FORTRAN: See Note below

C: See Note below

icallback

C: Pointer to the callback function used for ibuf
update

Output Parameters

DescriptionTypeName

Descriptor of the stream state structureFORTRAN:
TYPE(VSL_STREAM_STATE),
TINTENT(OUT)

stream

C: VSLStreamStatePtr*

NOTE. Format of the callback function in Fortran:

INTEGER FUNCTION IUPDATEFUNC[C](stream, n, ibuf, nmin, nmax, idx)

TYPE(VSL_STREAM_STATE),POINTER :: stream[reference]

INTEGER(KIND=4),INTENT(IN) :: n[reference]

INTEGER(KIND=4),INTENT(OUT) :: ibuf[reference](0:n-1)

INTEGER(KIND=4),INTENT(IN) :: nmin[reference]

INTEGER(KIND=4),INTENT(IN) :: nmax[reference]

INTEGER(KIND=4),INTENT(IN) :: idx[reference]

Format of the callback function in C:

int iUpdateFunc(VSLStreamStatePtrstream, int* n, unsigned int ibuf[],
int* nmin, int* nmax, int* idx);

2300

10 Intel® Math Kernel Library Reference Manual

The callback function returns the number of elements in the array actually updated by the
function. Table 10-5 gives the description of the callback function parameters.

Table 10-5 icallback Callback Function Parameters

Short DescriptionParameters

Abstract stream descriptorstream

Size of ibufn

Array of random numbers associated with the stream
stream

ibuf

Minimal quantity of numbers to updatenmin

Maximal quantity of numbers that can be updatednmax

Position in cyclic buffer ibuf to start update 0 ≤ idx
< n.

idx

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

Parameter n is not positive.VSL_ERROR_BAD_ARG

System cannot allocate memory for stream.VSL_ERROR_MEM_FAILURE

Either buffer or callback function parameter is a NULL
pointer.

VSL_ERROR_NULL_PTR

dNewAbstractStream
Creates and initializes an abstract random stream
for double precision floating-point arrays.

Syntax

Fortran:

status = vsldnewabstractstream(stream, n, dbuf, a, b, dcallback)

2301

Statistical Functions 10

C:

status = vsldNewAbstractStream(&stream, n, dbuf, a, b, dcallback);

Description

This function creates a new abstract stream for double precision floating-point arrays with
random numbers of the uniform distribution over interval (a,b). The function associates the
stream with a double precision array dbuf and user's callback function dcallback that is
intended for updating of dbuf content.

Input Parameters

DescriptionTypeName

Size of the array dbufFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Array of n double precision floating-point random
numbers with uniform distribution over interval (a,b)

FORTRAN: DOUBLE
PRECISION, INTENT(IN)

C: double*

dbuf

Left boundary aFORTRAN: DOUBLE
PRECISION, INTENT(IN)

a

C: double

Right boundary bFORTRAN: DOUBLE
PRECISION, INTENT(IN)

b

C: double

FORTRAN: Address of the callback function used for
update of the array dbuf

FORTRAN: See Note below

C: See Note below

dcallback

C: Pointer to the callback function used for update of
the array dbuf

2302

10 Intel® Math Kernel Library Reference Manual

Output Parameters

DescriptionTypeName

Descriptor of the stream state structureFORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(OUT)

stream

C: VSLStreamStatePtr*

NOTE. Format of the callback function in Fortran:

INTEGER FUNCTION DUPDATEFUNC[C](stream, n, dbuf, nmin, nmax, idx)

TYPE(VSL_STREAM_STATE),POINTER :: stream[reference]

INTEGER(KIND=4),INTENT(IN) :: n[reference]

REAL(KIND=8), INTENT(OUT) :: dbuf[reference](0:n-1)

INTEGER(KIND=4),INTENT(IN) :: nmin[reference]

INTEGER(KIND=4),INTENT(IN) :: nmax[reference]

INTEGER(KIND=4),INTENT(IN) :: idx[reference]

Format of the callback function in C:

int dUpdateFunc(VSLStreamStatePtr stream, int* n, double dbuf[], int*
nmin, int* nmax, int* idx);

The callback function returns the number of elements in the array actually updated by the
function. Table 10-6 gives the description of the callback function parameters.

dcallback Callback Function Parameters

Short DescriptionParameters

Abstract stream descriptorstream

Size of dbufn

Array of random numbers associated with the stream
stream

dbuf

2303

Statistical Functions 10

Short DescriptionParameters

Minimal quantity of numbers to updatenmin

Maximal quantity of numbers that can be updatednmax

Position in cyclic buffer dbuf to start update 0 ≤ idx
< n.

idx

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

Parameter n is not positive.VSL_ERROR_BAD_ARG

System cannot allocate memory for stream.VSL_ERROR_MEM_FAILURE

Either buffer or callback function parameter is a NULL
pointer.

VSL_ERROR_NULL_PTR

sNewAbstractStream
Creates and initializes an abstract random stream
for single precision floating-point arrays.

Syntax

Fortran:

status = vslsnewabstractstream(stream, n, sbuf, a, b, scallback)

C:

status = vslsNewAbstractStream(&stream, n, sbuf, a, b, scallback);

Description

This function creates a new abstract stream for single precision floating-point arrays with
random numbers of the uniform distribution over interval (a,b). The function associates the
stream with a single precision array sbuf and user’s callback function scallback that is intended
for updating of sbuf content.

2304

10 Intel® Math Kernel Library Reference Manual

Input Parameters

DescriptionTypeName

Size of the array sbufFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Array of n single precision floating-point random
numbers with uniform distribution over interval (a,b)

FORTRAN: REAL,
INTENT(IN)

C: float*

sbuf

Left boundary aFORTRAN: REAL,
INTENT(IN)

a

C: float

Right boundary bFORTRAN: REAL,
INTENT(IN)

b

C: float

FORTRAN: Address of the callback function used for
update of the array sbuf

FORTRAN: See Note below

C: See Note below

scallback

C: Pointer to the callback function used for update
of the array sbuf

Output Parameters

DescriptionTypeName

Descriptor of the stream state structureFORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(OUT)

stream

C: VSLStreamStatePtr*

2305

Statistical Functions 10

NOTE. Format of the callback function in Fortran:

INTEGER FUNCTION SUPDATEFUNC[C](stream, n, sbuf, nmin, nmax, idx)

TYPE(VSL_STREAM_STATE),POINTER :: stream[reference]

INTEGER(KIND=4),INTENT(IN) :: n[reference]

REAL(KIND=4), INTENT(OUT) :: sbuf[reference](0:n-1)

INTEGER(KIND=4),INTENT(IN) :: nmin[reference]

INTEGER(KIND=4),INTENT(IN) :: nmax[reference]

INTEGER(KIND=4),INTENT(IN) :: idx[reference]

Format of the callback function in C:

int sUpdateFunc(VSLStreamStatePtr stream, int* n, float sbuf[], int*
nmin, int* nmax, int* idx);

The callback function returns the number of elements in the array actually updated by the
function. Table 10-7 gives the description of the callback function parameters.

Table 10-7 scallback Callback Function Parameters

Short DescriptionParameters

Abstract stream descriptorstream

Size of sbufn

Array of random numbers associated with the stream
stream

sbuf

Minimal quantity of numbers to updatenmin

Maximal quantity of numbers that can be updatednmax

Position in cyclic buffer sbuf to start update 0 ≤ idx
< n.

idx

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

2306

10 Intel® Math Kernel Library Reference Manual

Parameter n is not positive.VSL_ERROR_BAD_ARG

System cannot allocate memory for stream.VSL_ERROR_MEM_FAILURE

Either buffer or callback function parameter is a NULL
pointer.

VSL_ERROR_NULL_PTR

DeleteStream
Deletes a random stream.

Syntax

Fortran:

status = vsldeletestream(stream)

C:

status = vslDeleteStream(&stream);

Description

This function deletes the random stream created by one of the initialization functions.

Input/Output Parameters

DescriptionTypeName

FORTRAN: Stream state descriptor. Must have
non-zero value. After the stream is successfully
deleted, the descriptor becomes invalid.

FORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(OUT)

stream

C: Stream state descriptor. Must have non-zero value.
After the stream is successfully deleted, the pointer
is set to NULL.

C: VSLStreamStatePtr*

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

srcstream parameter is a NULL pointer.VSL_ERROR_NULL_PTR

srcstream is not a valid random stream.VSL_ERROR_BAD_STREAM

System cannot allocate memory for newstream.VSL_ERROR_MEM_FAILURE

2307

Statistical Functions 10

CopyStream
Creates a copy of a random stream.

Syntax

Fortran:

status = vslcopystream(newstream, srcstream)

C:

status = vslCopyStream(&newstream, srcstream);

Description

The function creates an exact copy of srcstream and stores its descriptor to newstream.

Input Parameters

DescriptionTypeName

FORTRAN: Descriptor of the stream to be copiedFORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(IN)

srcstream

C: Pointer to the stream state structure to be copied

C: VSLStreamStatePtr

Output Parameters

DescriptionTypeName

Copied stream descriptorFORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(OUT)

newstream

C: VSLStreamStatePtr*

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

srcstream parameter is a NULL pointer.VSL_ERROR_NULL_PTR

srcstream is not a valid random stream.VSL_ERROR_BAD_STREAM

2308

10 Intel® Math Kernel Library Reference Manual

System cannot allocate memory for newstream.VSL_ERROR_MEM_FAILURE

CopyStreamState
Creates a copy of a random stream state.

Syntax

Fortran:

status = vslcopystreamstate(deststream, srcstream)

C:

status = vslCopyStreamState(deststream, srcstream);

Description

The function copies a stream state from srcstream to the existing deststream stream. Both
the streams should be generated by the same basic generator. En error message is generated
when the index of the BRNG that produced deststream stream differs from the index of the
BRNG that generated srcstream stream.

Unlike CopyStream function, which creates a new stream and copies both the stream state
and other data from srcstream, the function CopyStreamState copies only srcstream stream
state data to the generated deststream stream.

Input Parameters

DescriptionTypeName

FORTRAN: Descriptor of the destination stream
where the state of scrstream stream is copied

FORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(IN)

srcstream

C: Pointer to the stream state structure, from which
the state structure is copiedC: VSLStreamStatePtr

2309

Statistical Functions 10

Output Parameters

DescriptionTypeName

FORTRAN: Descriptor of the stream with the state
to be copied

FORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(OUT)

deststream

C: Pointer to the stream state structure where the
stream state is copiedC: VSLStreamStatePtr

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

Either srcstream or deststream is a NULL
pointer.

VSL_ERROR_NULL_PTR

Either srcstream or deststream is not a valid
random stream.

VSL_ERROR_BAD_STREAM

BRNG associated with srcstream is not compatible
with BRNG associated with deststream.

VSL_ERROR_BRNGS_INCOMPATIBLE

SaveStreamF
Writes random stream descriptive data to binary
file.

Syntax

Fortran:

errstatus = vslsavestreamf(stream, fname)

C:

errstatus = vslSaveStreamF(stream, fname);

Description

This function writes the random stream descriptive data to the binary file. Random stream
descriptive data is saved to the binary file with the name fname. Random stream stream must
be a valid stream created by NewStream-like or CopyStream-like service routines. If the stream
cannot be saved to the file, errstatus has a non-zero value. Random stream can be read from
the binary file using LoadStreamF function.

2310

10 Intel® Math Kernel Library Reference Manual

Input Parameters

DescriptionTypeName

Random stream to be written to the fileFORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(IN)

stream

C: VSLStreamStatePtr

FORTRAN: File name specified as a C-style
null-terminated string

FORTRAN: CHARACTER(*),
INTENT(IN)

fname

C: File name specified as a Fortran-style character
string

C: char*

Output Parameters

DescriptionTypeName

Error status of the operationFORTRAN: INTEGER

C: int

errstatus

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

Either fname or stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Indicates an error in opening the file.VSL_ERROR_FILE_OPEN

Indicates an error in writing the file.VSL_ERROR_FILE_WRITE

Indicates an error in closing the file.VSL_ERROR_FILE_CLOSE

System cannot allocate memory for internal needs.VSL_ERROR_MEM_FAILURE

2311

Statistical Functions 10

LoadStreamF
Creates new stream and reads stream descriptive
data from binary file.

Syntax

Fortran:

errstatus = vslloadstreamf(stream, fname)

C:

errstatus = vslLoadStreamF(&stream, fname);

Description

This function creates a new stream and reads stream descriptive data from the binary file. A
new random stream is created using the stream descriptive data from the binary file with the
name fname. If the stream cannot be read (for example, I/O error occurs or the file format is
invalid), errstatus has a non-zero value. To save random stream to the file, use SaveStreamF
function.

Input Parameters

DescriptionTypeName

FORTRAN: File name specified as a C-style
null-terminated string

FORTRAN: CHARACTER(*),
INTENT(IN)

fname

C: File name specified as a Fortran-style character
string

C: char*

Output Parameters

DescriptionTypeName

FORTRAN: Descriptor of a new random streamFORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(OUT)

stream

C: Pointer to a new random stream

C: VSLStreamStatePtr*

2312

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Error status of the operationFORTRAN: INTEGER

C: int

errstatus

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

fname is a NULL pointer.VSL_ERROR_NULL_PTR

Indicates an error in opening the file.VSL_ERROR_FILE_OPEN

Indicates an error in writing the file.VSL_ERROR_FILE_WRITE

Indicates an error in closing the file.VSL_ERROR_FILE_CLOSE

System cannot allocate memory for internal needs.VSL_ERROR_MEM_FAILURE

Unknown file format.VSL_ERROR_BAD_FILE_FORMAT

File format version is unsupported.VSL_ERROR_UNSUPPORTED_FILE_VER

LeapfrogStream
Initializes a stream using the leapfrog method.

Syntax

Fortran:

status = vslleapfrogstream(stream, k, nstreams)

C:

status = vslLeapfrogStream(stream, k, nstreams);

Description

The function allows generating random numbers in a random stream with non-unit stride. This
feature is particularly useful in distributing random numbers from original stream across
nstreams buffers without generating the original random sequence with subsequent manual
distribution. One of the important applications of the leapfrog method is splitting the original
sequence into non-overlapping subsequences across nstreams computational nodes. The

2313

Statistical Functions 10

function initializes the original random stream (see Figure 10-1) to generate random numbers

for the computational node k, 0 ≤ k < nstreams, where nstreams is the largest number of
computational nodes used.

Figure 10-1 Leapfrog Method

The leapfrog method is supported only for those basic generators that allow splitting elements
by the leapfrog method, which is more efficient than simply generating them by a generator
with subsequent manual distribution across computational nodes. See VSL Notes for details.

For quasi-random basic generators the leapfrog method allows generating individual components
of quasi-random vectors instead of whole quasi-random vectors. In this case nstreams
parameter should be equal to the dimension of the quasi-random vector while k parameter

should be the index of a component to be generated (0 ≤ k < nstreams). Other parameters
values are not allowed.

The following code examples illustrate the initialization of three independent streams using the
leapfrog method:

2314

10 Intel® Math Kernel Library Reference Manual

Example 10-1 FORTRAN Code for Leapfrog Method
...

TYPE(VSL_STREAM_STATE) ::stream1

TYPE(VSL_STREAM_STATE) ::stream2

TYPE(VSL_STREAM_STATE) ::stream3

! Creating 3 identical streams

status = vslnewstream(stream1, VSL_BRNG_MCG31, 174)

status = vslcopystream(stream2, stream1)

status = vslcopystream(stream3, stream1)

! Leapfrogging the streams

status = vslleapfrogstream(stream1, 0, 3)

status = vslleapfrogstream(stream2, 1, 3)

status = vslleapfrogstream(stream3, 2, 3)

! Generating random numbers

...

! Deleting the streams

status = vsldeletestream(stream1)

status = vsldeletestream(stream2)

status = vsldeletestream(stream3)

...

2315

Statistical Functions 10

Example 10-2 C Code for Leapfrog Method
...

VSLStreamStatePtr stream1;

VSLStreamStatePtr stream2;

VSLStreamStatePtr stream3;

/* Creating 3 identical streams */

status = vslNewStream(&stream1, VSL_BRNG_MCG31, 174);

status = vslCopyStream(&stream2, stream1);

status = vslCopyStream(&stream3, stream1);

/* Leapfrogging the streams

*/

status = vslLeapfrogStream(stream1, 0, 3);

status = vslLeapfrogStream(stream2, 1, 3);

status = vslLeapfrogStream(stream3, 2, 3);

/* Generating random numbers

*/

...

/* Deleting the streams

*/

status = vslDeleteStream(&stream1);

status = vslDeleteStream(&stream2);

status = vslDeleteStream(&stream3);

...

Input Parameters

DescriptionTypeName

FORTRAN: Descriptor of the stream to which leapfrog
method is applied

FORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(IN)

stream

2316

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

C: Pointer to the stream state structure to which
leapfrog method is applied

C: VSLStreamStatePtr

Index of the computational node, or stream numberFORTRAN: INTEGER,
INTENT(IN)

k

C: int

Largest number of computational nodes, or strideFORTRAN: INTEGER,
INTENT(IN)

nstreams

C: int

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

BRNG does not support Leapfrog method.VSL_ERROR_LEAPFROG_UNSUPPORTED

SkipAheadStream
Initializes a stream using the block-splitting
method.

Syntax

Fortran:

status = vslskipaheadstream(stream, nskip)

C:

status = vslSkipAheadStream(stream, nskip);

Description

This function skips a given number of elements in a random stream. This feature is particularly
useful in distributing random numbers from original random stream across different
computational nodes. If the largest number of random numbers used by a computational node
is nskip, then the original random sequence may be split by SkipAheadStream into

2317

Statistical Functions 10

non-overlapping blocks of nskip size so that each block corresponds to the respective
computational node. The number of computational nodes is unlimited. This method is known
as the block-splitting method or as the skip-ahead method. (see Figure 10-2).

Figure 10-2 Block-Splitting Method

The skip-ahead method is supported only for those basic generators that allow skipping elements
by the skip-ahead method, which is more efficient than simply generating them by generator
with subsequent manual skipping. See VSL Notes for details.

Please note that for quasi-random basic generators the skip-ahead method works with
components of quasi-random vectors rather than with whole quasi-random vectors. Thus to
skip NS quasi-random vectors, set nskip parameter equal to the NS*DIMEN, where DIMEN is
the dimension of quasi-random vector.

The following code examples illustrate how to initialize three independent streams using
SkipAheadStream function:

2318

10 Intel® Math Kernel Library Reference Manual

Example 10-3 FORTRAN Code for Block-Splitting Method
...

type(VSL_STREAM_STATE) ::stream1

type(VSL_STREAM_STATE) ::stream2

type(VSL_STREAM_STATE) ::stream3

! Creating the 1st stream

status = vslnewstream(stream1, VSL_BRNG_MCG31, 174)

! Skipping ahead by 7 elements the 2nd stream

status = vslcopystream(stream2, stream1);

status = vslskipaheadstream(stream2, 7);

! Skipping ahead by 7 elements the 3rd stream

status = vslcopystream(stream3, stream2);

status = vslskipaheadstream(stream3, 7);

! Generating random numbers

...

! Deleting the streams

status = vsldeletestream(stream1)

status = vsldeletestream(stream2)

status = vsldeletestream(stream3)

...

2319

Statistical Functions 10

Example 10-4 C Code for Block-Splitting Method
VSLStreamStatePtr stream1;

VSLStreamStatePtr stream2;

VSLStreamStatePtr stream3;

/* Creating the 1st stream

*/

status = vslNewStream(&stream1, VSL_BRNG_MCG31, 174);

/* Skipping ahead by 7 elements the 2nd stream */

status = vslCopyStream(&stream2, stream1);

status = vslSkipAheadStream(stream2, 7);

/* Skipping ahead by 7 elements the 3rd stream */

status = vslCopyStream(&stream3, stream2);

status = vslSkipAheadStream(stream3, 7);

/* Generating random numbers

*/

...

/* Deleting the streams

*/

status = vslDeleteStream(&stream1);

status = vslDeleteStream(&stream2);

status = vslDeleteStream(&stream3);

...

Input Parameters

DescriptionTypeName

FORTRAN: Descriptor of the stream to which
block-splitting method is applied

FORTRAN:
TYPE(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure to which
block-splitting method is appliedC: VSLStreamStatePtr

2320

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Number of skipped elementsFORTRAN: INTEGER,
INTENT(IN)

nskip

C: int

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

BRNG does not support Skip-Ahead method.VSL_ERROR_SKIPAHEAD_UNSUPPORTED

GetStreamStateBrng
Returns index of a basic generator used for
generation of a given random stream.

Syntax

Fortran:

brng = vslgetstreamstatebrng(stream)

C:

brng = vslGetStreamStateBrng(stream);

Description

This function retrieves the index of a basic generator used for generation of a given random
stream.

Input Parameters

DescriptionTypeName

FORTRAN: Descriptor of the stream stateFORTRAN:
TYPE(VSL_STREAM_STATE),
TINTENT(IN)

stream

C: Pointer to the stream state structure

2321

Statistical Functions 10

DescriptionTypeName

C: VSLStreamStatePtr

Output Parameters

DescriptionTypeName

Index of the basic generator assigned for the
generation of stream ; negative in case of an error

FORTRAN: INTEGER

C: int

brng

Return Values

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

GetNumRegBrngs
Obtains the number of currently registered basic
generators.

Syntax

Fortran:

nregbrngs = vslgetnumregbrngs()

C:

nregbrngs = vslGetNumRegBrngs(void);

Description

This function obtains the number of currently registered basic generators. Whenever user
registers a user-designed basic generator, the number of registered basic generators is
incremented. The maximum number of basic generators that can be registered is determined
by VSL_MAX_REG_BRNGS parameter.

2322

10 Intel® Math Kernel Library Reference Manual

Output Parameters

DescriptionTypeName

Number of basic generators registered at the moment
of the function call

FORTRAN: INTEGER

C: int

nregbrngs

Distribution Generators

VSL routines are used to generate random numbers with different types of distribution. Each
function group is introduced below by the type of underlying distribution and contains a short
description of its functionality, as well as specifications of the call sequence for both FORTRAN
and C-interface and the explanation of input and output parameters. Table 10-8 and Table
10-9 list the random number generator routines, together with used data types, output
distributions, and sets correspondence between data types of the generator routines and called
basic random number generators.

Table 10-8 Continuous Distribution Generators

DescriptionBRNG
Data Type

Data
Types

Type of
Distribution

Uniform continuous distribution on the interval
[a,b].

s, ds, dUniform

Normal (Gaussian) distribution.s, ds, dGaussian

Multivariate normal (Gaussian) distribution.s, ds, dGaussianMV

Exponential distribution.s, ds, dExponential

Laplace distribution (double exponential
distribution).

s, ds, dLaplace

Weibull distribution.s, ds, dWeibull

Cauchy distribution.s, ds, dCauchy

Rayleigh distribution.s, ds, dRayleigh

Lognormal distribution.s, ds, dLognormal

2323

Statistical Functions 10

DescriptionBRNG
Data Type

Data
Types

Type of
Distribution

Gumbel (extreme value) distribution.s, ds, dGumbel

Gamma distribution.s, ds, dGamma

Beta distribution.s, ds, dBeta

Table 10-9 Discrete Distribution Generators

DescriptionBRNG Data TypeData
Types

Type of
Distribution

Uniform discrete
distribution on the
interval [a,b).

diUniform

Generator of integer
random values with
uniform bit
distribution.

iiUniformBits

Bernoulli distribution.siBernoulli

Geometric distribution.siGeometric

Binomial distribution.diBinomial

Hypergeometric
distribution.

diHypergeometric

Poisson distribution.s (for
VSL_METHOD_IPOISSON_POISNORM)

iPoisson

s (for distribution parameter λ≥ 27) and

d (for λ < 27) (for
VSL_METHOD_IPOISSON_PTPE)

Poisson distribution
with varying mean.

siPoissonV

2324

10 Intel® Math Kernel Library Reference Manual

DescriptionBRNG Data TypeData
Types

Type of
Distribution

Negative binomial
distribution, or Pascal
distribution.

diNegBinomial

The library provides two modes of random number generation, accurate and fast. Accurate
generation mode is intended for the applications that are highly demanding to accuracy of
calculations. When used in this mode, the generators produce random numbers lying completely
within definitional domain for all values of the distribution parameters. For example, random
numbers obtained from the generator of continuous distribution that is uniform on interval
[a,b] belong to this interval irrespective of what a and b values may be. Fast mode provides
high performance of generation and also guaranties that generated random numbers belong
to the definitional domain except for some specific values of distribution parameters. The
generation mode is set by specifying relevant value of the method parameter in generator
routines. List of distributions that support accurate mode of generation is given in the table
below.

Distribution Generators Supporting Accurate Mode

Data TypesType of Distribution

s, dUniform

s, dExponential

s, dWeibull

s, dRayleigh

s, dLognormal

s, dGamma

s, dBeta

See additional details about accurate and fast mode of random number generation in VSL Notes.

Continuous Distributions

This section describes routines for generating random numbers with continuous distribution.

2325

Statistical Functions 10

Uniform
Generates random numbers with uniform
distribution.

Syntax

Fortran:

status = vsrnguniform(method, stream, n, r, a, b)

status = vdrnguniform(method, stream, n, r, a, b)

C:

status = vsRngUniform(method, stream, n, r, a, b);

status = vdRngUniform(method, stream, n, r, a, b);

Description

This function generates random numbers uniformly distributed over the interval [a, b], where

a, b are the left and right bounds of the interval, respectively, and a, b∈R ; a > b.

The probability density function is given by:

The cumulative distribution function is as follows:

2326

10 Intel® Math Kernel Library Reference Manual

Input Parameters

DescriptionTypeName

Generation method; the specific values are as follows:

VSL_METHOD_SUNIFORM_STD

VSL_METHOD_DUNIFORM_STD

VSL_METHOD_SUNIFORM_STD_ACCURATE

VSL_METHOD_DUNIFORM_STD_ACCURATE

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

Standard method.

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Left bound aFORTRAN: REAL,
INTENT(IN) for
vsrnguniform

a

DOUBLE PRECISION,
INTENT(IN) for
vdrnguniform

C: float for vsRngUniform

double for vdRngUniform

Right bound bFORTRAN: REAL,
INTENT(IN) for
vsrnguniform

b

2327

Statistical Functions 10

DescriptionTypeName

DOUBLE PRECISION,
INTENT(IN) for
vdrnguniform

C: float for vsRngUniform

double for vdRngUniform

Output Parameters

DescriptionTypeName

Vector of n random numbers uniformly distributed
over the interval [a,b]

FORTRAN: REAL,
INTENT(OUT) for
vsrnguniform

r

DOUBLE PRECISION,
INTENT(OUT) for
vdrnguniform

C: float* for vsRngUniform

double* for vdRngUniform

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

2328

10 Intel® Math Kernel Library Reference Manual

Gaussian
Generates normally distributed random numbers.

Syntax

Fortran:

status = vsrnggaussian(method, stream, n, r, a, sigma)

status = vdrnggaussian(method, stream, n, r, a, sigma)

C:

status = vsRngGaussian(method, stream, n, r, a, sigma);

status = vdRngGaussian(method, stream, n, r, a, sigma);

Description

This function generates random numbers with normal (Gaussian) distribution with mean value

a and standard deviation σ, where

a, σ∈R ; σ > 0.

The probability density function is given by:

The cumulative distribution function is as follows:

2329

Statistical Functions 10

The cumulative distribution function Fa,σ(x) can be expressed in terms of standard normal

distribution Φ(x) as

Fa,σ(x) = Φ((x - a)/σ)

Input Parameters

DescriptionTypeName

Generation method. The specific values are as follows:

VSL_METHOD_SGAUSSIAN_BOXMULLER

VSL_METHOD_SGAUSSIAN_BOXMULLER2

VSL_METHOD_SGAUSSIAN_ICDF

VSL_METHOD_DGAUSSIAN_BOXMULLER

VSL_METHOD_DGAUSSIAN_BOXMULLER2

VSL_METHOD_DGAUSSIAN_ICDF

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

See brief description of the methods BOXMULLER,
BOXMULLER2, and ICDF in Table 10-1

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Mean value aFORTRAN: REAL,
INTENT(IN) for
vsrnggaussian

a

DOUBLE PRECISION,
INTENT(IN) for
vdrnggaussian

C: float for vsRngGaussian

2330

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

double for vdRngGaussian

Standard deviation σFORTRAN: REAL,
INTENT(IN) for
vsrnggaussian

sigma

DOUBLE PRECISION,
INTENT(IN) for
vdrnggaussian

C: float for vsRngGaussian

double for vdRngGaussian

Output Parameters

DescriptionTypeName

Vector of n normally distributed random numbersFORTRAN: REAL,
INTENT(OUT) for
vsrnggaussian

r

DOUBLE PRECISION,
INTENT(OUT) for
vdrnggaussian

C: float* for
vsRngGaussian

double* for vdRngGaussian

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

2331

Statistical Functions 10

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

GaussianMV
Generates random numbers from multivariate
normal distribution.

Syntax

Fortran:

status = vsrnggaussianmv(method, stream, n, r, dimen, mstorage, a, t)

status = vdrnggaussianmv(method, stream, n, r, dimen, mstorage, a, t)

C:

status = vsRngGaussianMV(method, stream, n, r, dimen, mstorage, a, t);

status = vdRngGaussianMV(method, stream, n, r, dimen, mstorage, a, t);

Description

This function generates random numbers with d-variate normal (Gaussian) distribution with

mean value a and variance-covariance matrix C, where a∈Rd; C is a d×d symmetric
positive-definite matrix.

The probability density function is given by:

where x∈Rd .

Matrix C can be represented as C = TTT, where T is a lower triangular matrix - Cholesky factor
of C.

2332

10 Intel® Math Kernel Library Reference Manual

Instead of variance-covariance matrix C the generation routines require Cholesky factor of C
in input. To compute Cholesky factor of matrix C, the user may call MKL LAPACK routines for
matrix factorization: ?potrf or ?pptrf for v?RngGaussianMV/v?rnggaussianmv routines (?
means either s or d for single and double precision respectively). See Application Notes for
more details.

Input Parameters

DescriptionTypeName

Generation method. The specific values are as follows:

VSL_METHOD_SGAUSSIANMV_BOXMULLER

VSL_METHOD_SGAUSSIANMV_BOXMULLER2

VSL_METHOD_SGAUSSIANMV_ICDF

VSL_METHOD_DGAUSSIANMV_BOXMULLER

VSL_METHOD_DGAUSSIANMV_BOXMULLER2

VSL_METHOD_DGAUSSIANMV_ICDF

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

See brief description of the methods BOXMULLER,
BOXMULLER2, and ICDF in Table 10-1

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Dimension d (d ≥ 1) of output random vectorsFORTRAN: INTEGER,
INTENT(IN)

dimen

C: int

FORTRAN: Matrix storage scheme for upper
triangular matrix TT. The routine supports three
matrix storage schemes:

FORTRAN: INTEGER,
INTENT(IN)

C: int

mstorage

2333

Statistical Functions 10

DescriptionTypeName

• VSL_MATRIX_STORAGE_FULL— all d x d elements
of the matrix TT are passed, however, only the
upper triangle part is actually used in the routine.

• VSL_MATRIX_STORAGE_PACKED— upper triangle
elements of TT are packed by rows into a
one-dimensional array.

• VSL_MATRIX_STORAGE_DIAGONAL— only diagonal
elements of TT are passed.

C: Matrix storage scheme for lower triangular matrix
T. The routine supports three matrix storage schemes:

• VSL_MATRIX_STORAGE_FULL— all d x d elements
of the matrix T are passed, however, only the
lower triangle part is actually used in the routine.

• VSL_MATRIX_STORAGE_PACKED— lower triangle
elements of T are packed by rows into a
one-dimensional array.

• VSL_MATRIX_STORAGE_DIAGONAL— only diagonal
elements of T are passed.

Mean vector a of dimension dFORTRAN: REAL,
INTENT(IN) for
vsrnggaussianmv

a

DOUBLE PRECISION,
INTENT(IN) for
vdrnggaussianmv

C: float* for
vsRngGaussianMV

double* for
vdRngGaussianMV

2334

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

FORTRAN: Elements of the upper triangular matrix
passed according to the matrix TT storage scheme
mstorage.

FORTRAN: REAL,
INTENT(IN) for
vsrnggaussianmv

t

DOUBLE PRECISION,
INTENT(IN) for
vdrnggaussianmv

C: Elements of the lower triangular matrix passed
according to the matrix T storage scheme mstorage.

C: float* for
vsRngGaussianMV

double* for
vdRngGaussianMV

Output Parameters

DescriptionTypeName

Array of n random vectors of dimension dimenFORTRAN: REAL,
INTENT(OUT) for
vsrnggaussianmv

r

DOUBLE PRECISION,
INTENT(OUT) for
vdrnggaussianmv

C: float* for
vsRngGaussianMV

double* for
vdRngGaussianMV

Application Notes

Since matrices are stored in Fortran by columns, while in C they are stored by rows, the usage
of MKL factorization routines (assuming Fortran matrices storage) in combination with
multivariate normal RNG (assuming C matrix storage) is slightly different in C and Fortran. The
following tables help in using these routines in C and Fortran. For further information please
refer to the appropriate VSL example file.

2335

Statistical Functions 10

Using Cholesky Factorization Routines in Fortran

Result of
Factorization
as Input
Argument
for RNG

UPLO
Parameter
in
Factorization
Routine

Factorization
Routine

Variance-Covariance
Matrix Argument

Matrix Storage Scheme

Upper
triangle of
TT. Lower
triangle is
not used.

‘U’spotrf for
vsrnggaussianmv

dpotrf for
vdrnggaussianmv

C in Fortran
two-dimensional
array

VSL_MATRIX_STORAGE_FULL

Upper
triangle of TT

packed by

‘L’spptrf for
vsrnggaussianmv

dpptrf for
vdrnggaussianmv

Lower triangle of C
packed by columns
into
one-dimensional
array

VSL_MATRIX_STORAGE_PACKED

rows into
one-dimensional
array.

Using Cholesky Factorization Routines in C

Result of
Factorization
as Input
Argument
for RNG

UPLO
Parameter
in
Factorization
Routine

Factorization
Routine

Variance-Covariance
Matrix Argument

Matrix Storage Scheme

Upper
triangle of
TT. Lower
triangle is
not used.

‘U’spotrf for
vsRngGaussianMV

dpotrf for
vdRngGaussianMV

C in C
two-dimensional
array

VSL_MATRIX_STORAGE_FULL

Upper
triangle of TT

packed by

‘L’spptrf for
vsRngGaussianMV

dpptrf for
vdRngGaussianMV

Lower triangle of C
packed by columns
into
one-dimensional
array

VSL_MATRIX_STORAGE_PACKED

2336

10 Intel® Math Kernel Library Reference Manual

Result of
Factorization
as Input
Argument
for RNG

UPLO
Parameter
in
Factorization
Routine

Factorization
Routine

Variance-Covariance
Matrix Argument

Matrix Storage Scheme

rows into
one-dimensional
array.

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Exponential
Generates exponentially distributed random
numbers.

Syntax

Fortran:

status = vsrngexponential(method, stream, n, r, a, beta)

status = vdrngexponential(method, stream, n, r, a, beta)

C:

status = vsRngExponential(method, stream, n, r, a, beta);

status = vdRngExponential(method, stream, n, r, a, beta);

2337

Statistical Functions 10

Description

This function generates random numbers with exponential distribution that has displacement

a and scalefactor β, where a, β∈R ; β > 0.

The probability density function is given by:

The cumulative distribution function is as follows:

Input Parameters

DescriptionTypeName

Generation method. The specific values are as follows:

VSL_METHOD_SEXPONENTIAL_ICDF

VSL_METHOD_DEXPONENTIAL_ICDF

VSL_METHOD_SEXPONENTIAL_ICDF_ACCURATE

VSL_METHOD_DEXPONENTIAL_ICDF_ACCURATE

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

Inverse cumulative distribution function method

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

2338

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Displacement aFORTRAN: REAL,
INTENT(IN) for
vsrngexponential

a

DOUBLE PRECISION,
INTENT(IN) for
vdrngexponential

C: float for
vsRngExponential

C: double for
vdRngExponential

Scalefactor βFORTRAN: REAL,
INTENT(IN) for
vsrngexponential

beta

DOUBLE PRECISION,
INTENT(IN) for
vdrngexponential

C: float for
vsRngExponential

double for
vdRngExponential

Output Parameters

DescriptionTypeName

Vector of n exponentially distributed random numbersFORTRAN: REAL,
INTENT(OUT) for
vsrngexponential

r

2339

Statistical Functions 10

DescriptionTypeName

DOUBLE PRECISION,
INTENT(OUT) for
vdrngexponential

C: float* for
vsRngExponential

double* for
vdRngExponential

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Laplace
Generates random numbers with Laplace
distribution.

Syntax

Fortran:

status = vsrnglaplace(method, stream, n, r, a, beta)

status = vdrnglaplace(method, stream, n, r, a, beta)

C:

status = vsRngLaplace(method, stream, n, r, a, beta);

status = vdRngLaplace(method, stream, n, r, a, beta);

2340

10 Intel® Math Kernel Library Reference Manual

Description

This function generates random numbers with Laplace distribution with mean value (or average)

a and scalefactor β, where a, β∈R ; β > 0. The scalefactor value determines the standard
deviation as

The probability density function is given by:

The cumulative distribution function is as follows:

Input Parameters

DescriptionTypeName

Generation method. The specific values are as follows:

VSL_METHOD_SLAPLACE_ICDF

VSL_METHOD_DLAPLACE_ICDF

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

Inverse cumulative distribution function method

2341

Statistical Functions 10

DescriptionTypeName

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Mean value aFORTRAN: REAL,
INTENT(IN) for
vsrnglaplace

a

DOUBLE PRECISION,
INTENT(IN) for
vdrnglaplace

C: float for vsRngLaplace

double for vdRngLaplace

Scalefactor βFORTRAN: REAL,
INTENT(IN) for
vsrnglaplace

beta

DOUBLE PRECISION,
INTENT(IN) for
vdrnglaplace

C: float for vsRngLaplace

double for vdRngLaplace

Output Parameters

DescriptionTypeName

Vector of n Laplace distributed random numbersFORTRAN: REAL,
INTENT(OUT) for
vsrnglaplace

r

2342

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

DOUBLE PRECISION,
INTENT(OUT) for
vdrnglaplace

C: float* for vsRngLaplace

double* for vdRngLaplace

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Weibull
Generates Weibull distributed random numbers.

Syntax

Fortran:

status = vsrngweibull(method, stream, n, r, alpha, a, beta)

status = vdrngweibull(method, stream, n, r, alpha, a, beta)

C:

status = vsRngWeibull(method, stream, n, r, alpha, a, beta);

status = vdRngWeibull(method, stream, n, r, alpha, a, beta);

Description

This function generates Weibull distributed random numbers with displacement a, scalefactor

β, and shape α, where α, β, a∈R ; α > 0 , β > 0.

2343

Statistical Functions 10

The probability density function is given by:

The cumulative distribution function is as follows:

Input Parameters

DescriptionTypeName

Generation method. The specific values are as follows:

VSL_METHOD_SWEIBULL_ICDF

VSL_METHOD_DWEIBULL_ICDF

VSL_METHOD_SWEIBULL_ICDF_ACCURATE

VSL_METHOD_DWEIBULL_ICDF_ACCURATE

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

Inverse cumulative distribution function method

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

2344

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Shape αFORTRAN: REAL,
INTENT(IN) for
vsrngweibull

alpha

DOUBLE PRECISION,
INTENT(IN) for
vdrngweibull

C: float for vsRngWeibull

double for vdRngWeibull

Displacement aFORTRAN: REAL,
INTENT(IN) for
vsrngweibull

a

DOUBLE PRECISION,
INTENT(IN) for
vdrngweibull

C: float for vsRngWeibull

double for vdRngWeibull

Scalefactor βFORTRAN: REAL,
INTENT(IN) for
vsrngweibull

beta

DOUBLE PRECISION,
INTENT(IN) for
vdrngweibull

C: float for vsRngWeibull

double for vdRngWeibull

2345

Statistical Functions 10

Output Parameters

DescriptionTypeName

Vector of n Weibull distributed random numbersFORTRAN: REAL,
INTENT(OUT) for
vsrngweibull

r

DOUBLE PRECISION,
INTENT(OUT) for
vdrngweibull

C: float* for vsRngWeibull

double* for vdRngWeibull

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Cauchy
Generates Cauchy distributed random values.

Syntax

Fortran:

status = vsrngcauchy(method, stream, n, r, a, beta)

status = vdrngcauchy(method, stream, n, r, a, beta)

2346

10 Intel® Math Kernel Library Reference Manual

C:

status = vsRngCauchy(method, stream, n, r, a, beta);

status = vdRngCauchy(method, stream, n, r, a, beta);

Description

This function generates Cauchy distributed random numbers with displacement a and scalefactor

β, where a, β∈R ; β > 0.

The probability density function is given by:

The cumulative distribution function is as follows:

Input Parameters

DescriptionTypeName

Generation method. The specific values are as follows:

VSL_METHOD_SCAUCHY_ICDF

VSL_METHOD_DCAUCHY_ICDF

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

Inverse cumulative distribution function method

2347

Statistical Functions 10

DescriptionTypeName

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Displacement aFORTRAN: REAL,
INTENT(IN) for vsrngcauchy

a

DOUBLE PRECISION,
INTENT(IN) for vdrngcauchy

C: float for vsRngCauchy

double for vdRngCauchy

Scalefactor βFORTRAN: REAL,
INTENT(IN) for vsrngcauchy

beta

DOUBLE PRECISION,
INTENT(IN) for vdrngcauchy

C: float for vsRngCauchy

double for vdRngCauchy

Output Parameters

DescriptionTypeName

Vector of n Cauchy distributed random numbersFORTRAN: REAL,
INTENT(OUT) for
vsrngcauchy

r

DOUBLE PRECISION,
INTENT(OUT) for
vdrngcauchy

2348

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

C: float* for vsRngCauchy

double* for vdRngCauchy

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Rayleigh
Generates Rayleigh distributed random values.

Syntax

Fortran:

status = vsrngrayleigh(method, stream, n, r, a, beta)

status = vdrngrayleigh(method, stream, n, r, a, beta)

C:

status = vsRngRayleigh(method, stream, n, r, a, beta);

status = vdRngRayleigh(method, stream, n, r, a, beta);

Description

This function generates Rayleigh distributed random numbers with displacement a and scalefactor

β, where a, β∈R ; β > 0.

Rayleigh distribution is a special case of Weibull distribution, where the shape parameter α
= 2.

2349

Statistical Functions 10

The probability density function is given by:

The cumulative distribution function is as follows:

Input Parameters

DescriptionTypeName

Generation method. The specific values are as follows:

VSL_METHOD_SRAYLEIGH_ICDF

VSL_METHOD_DRAYLEIGH_ICDF

VSL_METHOD_SRAYLEIGH_ICDF_ACCURATE

VSL_METHOD_DRAYLEIGH_ICDF_ACCURATE

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

Inverse cumulative distribution function method

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

2350

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Displacement aFORTRAN: REAL,
INTENT(IN) for
vsrngrayleigh

a

DOUBLE PRECISION,
INTENT(IN) for
vdrngrayleigh

C: float for vsRngRayleigh

double for vdRngRayleigh

Scalefactor βFORTRAN: REAL,
INTENT(IN) for
vsrngrayleigh

beta

DOUBLE PRECISION,
INTENT(IN) for
vdrngrayleigh

C: float for vsRngRayleigh

double for vdRngRayleigh

Output Parameters

DescriptionTypeName

Vector of n Rayleigh distributed random numbersFORTRAN: REAL,
INTENT(OUT) for
vsrngrayleigh

r

DOUBLE PRECISION,
INTENT(OUT) for
vdrngrayleigh

2351

Statistical Functions 10

DescriptionTypeName

C: float* for
vsRngRayleigh

double* for vdRngRayleigh

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Lognormal
Generates lognormally distributed random
numbers.

Syntax

Fortran:

status = vsrnglognormal(method, stream, n, r, a, sigma, b, beta)

status = vdrnglognormal(method, stream, n, r, a, sigma, b, beta)

C:

status = vsRngLognormal(method, stream, n, r, a, sigma, b, beta);

status = vdRngLognormal(method, stream, n, r, a, sigma, b, beta);

Description

This function generates lognormally distributed random numbers with average of distribution

a and standard deviation σ of subject normal distribution, displacement b, and scalefactor β,

where a, σ, b, β∈R ; σ > 0 , β > 0.

2352

10 Intel® Math Kernel Library Reference Manual

The probability density function is given by:

The cumulative distribution function is as follows:

Input Parameters

DescriptionTypeName

Generation method. The specific values are as follows:

VSL_METHOD_SLOGNORMAL_ICDF

VSL_METHOD_DLOGNORMAL_ICDF

VSL_METHOD_SLOGNORMAL_ICDF_ACCURATE

VSL_METHOD_DLOGNORMAL_ICDF_ACCURATE

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

Inverse cumulative distribution function method

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

2353

Statistical Functions 10

DescriptionTypeName

C: int

Average a of the subject normal distributionFORTRAN: REAL,
INTENT(IN) for
vsrnglognormal

a

DOUBLE PRECISION,
INTENT(IN) for
vdrnglognormal

C: float for
vsRngLognormal

double for vdRngLognormal

Standard deviation σ of the subject normal distributionFORTRAN: REAL,
INTENT(IN) for
vsrnglognormal

sigma

DOUBLE PRECISION,
INTENT(IN) for
vdrnglognormal

C: float for
vsRngLognormal

double for vdRngLognormal

Displacement bFORTRAN: REAL,
INTENT(IN) for
vsrnglognormal

b

DOUBLE PRECISION,
INTENT(IN) for
vdrnglognormal

C: float for
vsRngLognormal

double for vdRngLognormal

2354

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Scalefactor βFORTRAN: REAL,
INTENT(IN) for
vsrnglognormal

beta

DOUBLE PRECISION,
INTENT(IN) for
vdrnglognormal

C: float for
vsRngLognormal

double for vdRngLognormal

Output Parameters

DescriptionTypeName

Vector of n lognormally distributed random numbersFORTRAN: REAL,
INTENT(OUT) for
vsrnglognormal

r

DOUBLE PRECISION,
INTENT(OUT) for
vdrnglognormal

C: float* for
vsRngLognormal

double* for vdRngLognormal

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

2355

Statistical Functions 10

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Gumbel
Generates Gumbel distributed random values.

Syntax

Fortran:

status = vsrnggumbel(method, stream, n, r, a, beta)

status = vdrnggumbel(method, stream, n, r, a, beta)

C:

status = vsRngGumbel(method, stream, n, r, a, beta);

status = vdRngGumbel(method, stream, n, r, a, beta);

Description

This function generates Gumbel distributed random numbers with displacement a and scalefactor

β, where a, β∈R ; β > 0.

The probability density function is given by:

The cumulative distribution function is as follows:

2356

10 Intel® Math Kernel Library Reference Manual

Input Parameters

DescriptionTypeName

Generation method. The specific values are as follows:

VSL_METHOD_SGUMBEL_ICDF

VSL_METHOD_DGUMBEL_ICDF

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

Inverse cumulative distribution function method

FORTRAN: Descriptor of the stream state structureFORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Displacement aFORTRAN: REAL,
INTENT(IN) for vsrnggumbel

a

DOUBLE PRECISION,
INTENT(IN) for vdrnggumbel

C: float for vsRngGumbel

double for vdRngGumbel

Scalefactor βFORTRAN: REAL,
INTENT(IN) for vsrnggumbel

beta

DOUBLE PRECISION,
INTENT(IN) for vdrnggumbel

C: float for vsRngGumbel

double for vdRngGumbel

2357

Statistical Functions 10

Output Parameters

DescriptionTypeName

Vector of n random numbers with Gumbel distributionFORTRAN: REAL,
INTENT(OUT) for
vsrnggumbel

r

DOUBLE PRECISION,
INTENT(OUT) for
vdrnggumbel

C: float* for vsRngGumbel

double* for vdRngGumbel

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Gamma
Generates gamma distributed random values.

Syntax

Fortran:

status = vsrnggamma(method, stream, n, r, alpha, a, beta)

status = vdrnggamma(method, stream, n, r, alpha, a, beta)

2358

10 Intel® Math Kernel Library Reference Manual

C:

status = vsRngGamma(method, stream, n, r, alpha, a, beta);

status = vdRngGamma(method, stream, n, r, alpha, a, beta);

Description

This function generates random numbers with gamma distribution that has shape parameter

α, displacement a, and scale parameter β, where α, β, and a∈R ; α > 0, β > 0.

The probability density function is given by:

where Γ(α) is the complete gamma function.

The cumulative distribution function is as follows:

2359

Statistical Functions 10

Input Parameters

DescriptionTypeName

Generation method. The specific values are as follows:

VSL_METHOD_SGAMMA_GNORM

VSL_METHOD_DGAMMA_GNORM

VSL_METHOD_SGAMMA_GNORM_ACCURATE

VSL_METHOD_DGAMMA_GNORM_ACCURATE

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

Acceptance/rejection method using random numbers
with Gaussian distribution. See brief description of
the method GNORM in Table 10-1

FORTRAN: Descriptor of the stream state structureFORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Shape αFORTRAN: REAL,
INTENT(IN) for vsrnggamma

alpha

DOUBLE PRECISION,
INTENT(IN) for vdrnggamma

C: float for vsRngGamma

double for vdRngGamma

Displacement aFORTRAN: REAL,
INTENT(IN) for vsrnggamma

a

DOUBLE PRECISION,
INTENT(IN) for vdrnggamma

C: float for vsRngGamma

2360

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

double for vdRngGamma

Scalefactor βFORTRAN: REAL,
INTENT(IN) for vsrnggamma

beta

DOUBLE PRECISION,
INTENT(IN) for vdrnggamma

C: float for vsRngGamma

double for vdRngGamma

Output Parameters

DescriptionTypeName

Vector of n random numbers with gamma distributionFORTRAN: REAL,
INTENT(OUT) for vsrnggamma

r

DOUBLE PRECISION,
INTENT(OUT) for vdrnggamma

C: float* for vsRngGamma

double* for vdRngGamma

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

2361

Statistical Functions 10

Beta
Generates beta distributed random values.

Syntax

Fortran:

status = vsrngbeta(method, stream, n, r, p, q, a, beta)

status = vdrngbeta(method, stream, n, r, p, q, a, beta)

C:

status = vsRngBeta(method, stream, n, r, p, q, a, beta);

status = vdRngBeta(method, stream, n, r, p, q, a, beta);

Description

This function generates random numbers with beta distribution that has shape parameters p

and q, displacement a, and scale parameter β, where p, q, a, and β∈R ; p > 0, q > 0, β
> 0.

The probability density function is given by:

where B(p, q) is the complete beta function.

The cumulative distribution function is as follows:

2362

10 Intel® Math Kernel Library Reference Manual

Input Parameters

DescriptionTypeName

Generation method. The specific values are as follows:

VSL_METHOD_SBETA_CJA

VSL_METHOD_DBETA_CJA

VSL_METHOD_SBETA_CJA_ACCURATE

VSL_METHOD_DBETA_CJA_ACCURATE

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

See brief description of the method CJA in Table 10-1

FORTRAN: Descriptor of the stream state structureFORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Shape pFORTRAN: REAL,
INTENT(IN) for vsrngbeta

p

DOUBLE PRECISION,
INTENT(IN) for vdrngbeta

C: float for vsRngBeta

double for vdRngBeta

2363

Statistical Functions 10

DescriptionTypeName

Shape qFORTRAN: REAL,
INTENT(IN) for vsrngbeta

q

DOUBLE PRECISION,
INTENT(IN) for vdrngbeta

C: float for vsRngBeta

double for vdRngBeta

Displacement aFORTRAN: REAL,
INTENT(IN) for vsrngbeta

a

DOUBLE PRECISION,
INTENT(IN) for vdrngbeta

C: float for vsRngBeta

double for vdRngBeta

Scalefactor βFORTRAN: REAL,
INTENT(IN) for vsrngbeta

beta

DOUBLE PRECISION,
INTENT(IN) for vdrngbeta

C: float for vsRngBeta

double for vdRngBeta

Output Parameters

DescriptionTypeName

Vector of n random numbers with beta distributionFORTRAN: REAL,
INTENT(OUT) for vsrngbeta

r

DOUBLE PRECISION,
INTENT(OUT) for vdrngbeta

C: float* for vsRngBeta

double* for vdRngBeta

2364

10 Intel® Math Kernel Library Reference Manual

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Discrete Distributions

This section describes routines for generating random numbers with discrete distribution.

Uniform
Generates random numbers uniformly distributed
over the interval [a, b).

Syntax

Fortran:

status = virnguniform(method, stream, n, r, a, b)

C:

status = viRngUniform(method, stream, n, r, a, b);

Description

This function generates random numbers uniformly distributed over the interval [a, b), where

a, b are the left and right bounds of the interval respectively, and a, b∈Z; a < b.

The probability distribution is given by:

2365

Statistical Functions 10

The cumulative distribution function is as follows:

Input Parameters

DescriptionTypeName

Generation method; dummy and set to 0 in case of
uniform distribution. The specific value is as follows:

VSL_METHOD_IUNIFORM_STD

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

Standard method. Currently there is only one method
for this distribution generator.

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Left interval bound aFORTRAN: INTEGER,
INTENT(IN)

a

C: int

Right interval bound bFORTRAN: INTEGER,
INTENT(IN)

b

2366

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

C: int

Output Parameters

DescriptionTypeName

Vector of n random numbers uniformly distributed
over the interval [a,b)

FORTRAN: INTEGER,
INTENT(OUT)

C: int*

r

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

UniformBits
Generates integer random values with uniform bit
distribution.

Syntax

Fortran:

status = virnguniformbits(method, stream, n, r)

C:

status = viRngUniformBits(method, stream, n, r);

2367

Statistical Functions 10

Description

This function generates integer random values with uniform bit distribution.The generators of
uniformly distributed numbers can be represented as recurrence relations over integer values
in modular arithmetic. Apparently, each integer can be treated as a vector of several bits. In
a truly random generator, these bits are random, while in pseudorandom generators this
randomness can be violated. For example, a well known drawback of linear congruential
generators is that lower bits are less random than higher bits (for example, see [Knuth81]).
For this reason, care should be taken when using this function. Typically, in a 32-bit LCG only
24 higher bits of an integer value can be considered random. See VSL Notes for details.

Input Parameters

DescriptionTypeName

Generation method; dummy and set to 0. The specific
value is as follows:

VSL_METHOD_IUNIFORMBITS_STD

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

Standard method. Currently there is only one method
for this distribution generator.

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Output Parameters

DescriptionTypeName

FORTRAN: Vector of n random integer numbers. If
the stream was generated by a 64 or a 128-bit
generator, each integer value is represented by two

FORTRAN: INTEGER,
INTENT(OUT)

C: unsigned int*

r

or four elements of r respectively. The number of
bytes occupied by each integer is contained in the

2368

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

field wordsize of the structure
VSL_BRNG_PROPERTIES. The total number of bits that
are actually used to store the value are contained in
the field nbits of the same structure. See Advanced
Service Routines for a more detailed discussion of
VSLBrngProperties.

C: Vector of n random integer numbers. If the stream
was generated by a 64 or a 128-bit generator, each
integer value is represented by two or four elements
of r respectively. The number of bytes occupied by
each integer is contained in the field WordSize of the
structure VSLBrngProperties. The total number of
bits that are actually used to store the value are
contained in the field NBits of the same structure.
See Advanced Service Routines for a more detailed
discussion of VSLBrngProperties.

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Bernoulli
Generates Bernoulli distributed random values.

Syntax

Fortran:

status = virngbernoulli(method, stream, n, r, p)

2369

Statistical Functions 10

C:

status = viRngBernoulli(method, stream, n, r, p);

Description

This function generates Bernoulli distributed random numbers with probability p of a single trial
success, where

p∈R; 0 ≤ p ≤ 1.

A variate is called Bernoulli distributed, if after a trial it is equal to 1 with probability of success
p, and to 0 with probability 1 — p.

The probability distribution is given by:

P(X = 1) = p

P(X = 0) = 1 - p

The cumulative distribution function is as follows:

Input Parameters

DescriptionTypeName

Generation method. The specific value is as follows:

VSL_METHOD_IBERNOULLI_ICDF

FORTRAN: INTEGER,
INTENT(IN)

method

C: int Inverse cumulative distribution function method.

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

2370

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Success probability p of a trialFORTRAN: DOUBLE
PRECISION, INTENT(IN)

p

C: double

Output Parameters

DescriptionTypeName

Vector of n Bernoulli distributed random valuesFORTRAN: INTEGER,
INTENT(OUT)

r

C: int*

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Geometric
Generates geometrically distributed random values.

Syntax

Fortran:

status = virnggeometric(method, stream, n, r, p)

2371

Statistical Functions 10

C:

status = viRngGeometric(method, stream, n, r, p);

Description

This function generates geometrically distributed random numbers with probability p of a single

trial success, where p∈R; 0 < p < 1.

A geometrically distributed variate represents the number of independent Bernoulli trials
preceding the first success. The probability of a single Bernoulli trial success is p.

The probability distribution is given by:

P(X = k) = p·(1 - p)k, k∈ {0,1,2, ... }.

The cumulative distribution function is as follows:

Input Parameters

DescriptionTypeName

Generation method. The specific value is as follows:

VSL_METHOD_IGEOMETRIC_ICDF

FORTRAN: INTEGER,
INTENT(IN)

method

C: int Inverse cumulative distribution function method.

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

2372

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Success probability p of a trialFORTRAN: DOUBLE
PRECISION, INTENT(IN)

p

C: double

Output Parameters

DescriptionTypeName

Vector of n geometrically distributed random valuesFORTRAN: INTEGER,
INTENT(OUT)

r

C: int*

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Binomial
Generates binomially distributed random numbers.

Syntax

Fortran:

status = virngbinomial(method, stream, n, r, ntrial, p)

C:

status = viRngBinomial(method, stream, n, r, ntrial, p);

2373

Statistical Functions 10

Description

This function generates binomially distributed random numbers with number of independent

Bernoulli trials m, and with probability p of a single trial success, where p∈R; 0 ≤ p ≤ 1,

m∈N.

A binomially distributed variate represents the number of successes in m independent Bernoulli
trials with probability of a single trial success p.

The probability distribution is given by:

The cumulative distribution function is as follows:

Input Parameters

DescriptionTypeName

Generation method. The specific value is as follows:

VSL_METHOD_IBINOMIAL_BTPE

FORTRAN: INTEGER,
INTENT(IN)

method

C: int See brief description of the BTPE method in Table
10-1 .

2374

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Number of independent trials mFORTRAN: INTEGER,
INTENT(IN)

ntrials

C: int

Success probability p of a single trialFORTRAN: DOUBLE
PRECISION, INTENT(IN)

p

C: double

Output Parameters

DescriptionTypeName

Vector of n binomially distributed random valuesFORTRAN: INTEGER,
INTENT(OUT)

r

C: int*

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

2375

Statistical Functions 10

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Hypergeometric
Generates hypergeometrically distributed random
values.

Syntax

Fortran:

status = virnghypergeometric(method, stream, n, r, l, s, m)

C:

status = viRngHypergeometric(method, stream, n, r, l, s, m);

Description

This function generates hypergeometrically distributed random values with lot size l, size of

sampling s, and number of marked elements in the lot m, where l, m, s∈N∪{0}; l ≥ max(s,
m).

Consider a lot of l elements comprising m “marked” and l-m “unmarked“ elements. A trial
sampling without replacement of exactly s elements from this lot helps to define the
hypergeometric distribution, which is the probability that the group of s elements contains
exactly k marked elements.

The probability distribution is given by:)

, k∈ {max(0, s + m - l), ..., min(s, m)}

The cumulative distribution function is as follows:

2376

10 Intel® Math Kernel Library Reference Manual

Input Parameters

DescriptionTypeName

Generation method. The specific value is as follows:

VSL_METHOD_IHYPERGEOMETRIC_H2PE

FORTRAN: INTEGER,
INTENT(IN)

method

C: int See brief description of the H2PE method in Table
10-1

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Lot size lFORTRAN: INTEGER,
INTENT(IN)

l

C: int

Size of sampling without replacement sFORTRAN: INTEGER,
INTENT(IN)

s

C: int

Number of marked elements mFORTRAN: INTEGER,
INTENT(IN)

m

2377

Statistical Functions 10

DescriptionTypeName

C: int

Output Parameters

DescriptionTypeName

Vector of n hypergeometrically distributed random
values

FORTRAN: INTEGER,
INTENT(OUT)

C: int*

r

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Poisson
Generates Poisson distributed random values.

Syntax

Fortran:

status = virngpoisson(method, stream, n, r, lambda)

C:

status = viRngPoisson(method, stream, n, r, lambda);

2378

10 Intel® Math Kernel Library Reference Manual

Description

This function generates Poisson distributed random numbers with distribution parameter λ,

where λ∈R; λ > 0.

The probability distribution is given by:

k∈ {0, 1, 2, ...}.

The cumulative distribution function is as follows:

Input Parameters

DescriptionTypeName

Generation method. The specific values are as follows:

VSL_METHOD_IPOISSON_PTPE

VSL_METHOD_IPOISSON_POISNORM

FORTRAN: INTEGER,
INTENT(IN)

C: int

method

See brief description of the PTPE and POISNORM
methods in Table 10-1 .

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

2379

Statistical Functions 10

DescriptionTypeName

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Distribution parameter λFORTRAN: DOUBLE
PRECISION, INTENT(IN)

lambda

C: double

Output Parameters

DescriptionTypeName

Vector of n Poisson distributed random valuesFORTRAN: INTEGER,
INTENT(OUT)

r

C: int*

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

2380

10 Intel® Math Kernel Library Reference Manual

PoissonV
Generates Poisson distributed random values with
varying mean.

Syntax

Fortran:

status = virngpoissonv(method, stream, n, r, lambda)

C:

status = viRngPoissonV(method, stream, n, r, lambda);

Description

This function generates n Poisson distributed random numbers xi(i = 1, ..., n) with distribution

parameter λi, where λi∈R; λi > 0.

The probability distribution is given by:

The cumulative distribution function is as follows:

2381

Statistical Functions 10

Input Parameters

DescriptionTypeName

Generation method. The specific value is as follows:

VSL_METHOD_IPOISSONV_POISNORM

FORTRAN: INTEGER,
INTENT(IN)

method

C: int See brief description of the POISNORM method in Table
10-1

FORTRAN: Descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: Pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

Array of n distribution parameters λiFORTRAN: DOUBLE
PRECISION, INTENT(IN)

lambda

C: double*

Output Parameters

DescriptionTypeName

Vector of n Poisson distributed random valuesFORTRAN: INTEGER,
INTENT(OUT)

r

C: int*

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

2382

10 Intel® Math Kernel Library Reference Manual

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

NegBinomial
Generates random numbers with negative binomial
distribution.

Syntax

Fortran:

status = virngnegbinomial(method, stream, n, r, a, p)

C:

status = viRngNegbinomial(method, stream, n, r, a, p);

Description

This function generates random numbers with negative binomial distribution and distribution

parameters a and p, where p, a∈R; 0 < p < 1; a > 0.

If the first distribution parameter a∈N, this distribution is the same as Pascal distribution. If

a∈N, the distribution can be interpreted as the expected time of a-th success in a sequence of
Bernoulli trials, when the probability of success is p.

The probability distribution is given by:

The cumulative distribution function is as follows:

2383

Statistical Functions 10

Input Parameters

DescriptionTypeName

Generation method. The specific value is as follows:

VSL_METHOD_INEGBINOMIAL_NBAR

FORTRAN: INTEGER,
INTENT(IN)

method

C: int See brief description of the NBAR method in Table
10-1

FORTRAN: descriptor of the stream state structure.FORTRAN: TYPE
(VSL_STREAM_STATE),
INTENT(IN)

stream

C: pointer to the stream state structure

C: VSLStreamStatePtr

Number of random values to be generatedFORTRAN: INTEGER,
INTENT(IN)

n

C: int

The first distribution parameter aFORTRAN: DOUBLE
PRECISION, INTENT(IN)

a

C: double

The second distribution parameter pFORTRAN: DOUBLE
PRECISION, INTENT(IN)

p

C: double

2384

10 Intel® Math Kernel Library Reference Manual

Output Parameters

DescriptionTypeName

Vector of n random values with negative binomial
distribution.

FORTRAN: INTEGER,
INTENT(OUT)

C: int*

r

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

stream is a NULL pointer.VSL_ERROR_NULL_PTR

stream is not a valid random stream.VSL_ERROR_BAD_STREAM

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or > nmax.

VSL_ERROR_BAD_UPDATE

Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

VSL_ERROR_NO_NUMBERS

Advanced Service Routines

This section describes service routines for registering a user-designed basic generator
(RegisterBrng) and for obtaining properties of the previously registered basic generators
(GetBrngProperties). See VSL Notes (“Basic Generators” section of VSL Structure chapter)
for substantiation of the need for several basic generators including user-defined BRNGs.

2385

Statistical Functions 10

Data types

The Avdanced Service routines refer to a structure defining the properties of the basic generator.
This structure is described in Fortran as follows:
TYPE VSL_BRNG_PROPERTIES

INTEGER streamstatesize

INTEGER nseeds

INTEGER includeszero

INTEGER wordsize

INTEGER nbits

INTEGER nitstream

INTEGER sbrng

INTEGER dbrng

INTEGER ibrng

END TYPE VSL_BRNG_PROPERTIES

The C version is as follows:
typedef struct _VSLBRngProperties {

int StreamStateSize;

int NSeeds;

int IncludesZero;

int WordSize;

int NBits;

InitStreamPtr InitStream;

sBRngPtr sBRng;

dBRngPtr dBRng;

iBRngPtr iBRng;

} VSLBRngProperties;

The following table provides brief descriptions of the fields engaged in the above structure:

2386

10 Intel® Math Kernel Library Reference Manual

Table 10-12 Field Descriptions

Short DescriptionField

The size, in bytes, of the stream state structure for a given
basic generator.

FORTRAN: streamstatesize

C: StreamStateSize

The number of 32-bit initial conditions (seeds) necessary to
initialize the stream state structure for a given basic
generator.

FORTRAN: nseeds

C: NSeeds

Flag value indicating whether the generator can produce a
random 0.

FORTRAN: includeszero

C: IncludesZero

Machine word size, in bytes, used in integer-value
computations. Possible values: 4, 8, and 16 for 32, 64, and
128-bit generators, respectively.

FORTRAN: wordsize

C: WordSize

The number of bits required to represent a random value in
integer arithmetic. Note that, for instance, 48-bit random
values are stored to 64-bit (8 byte) memory locations. In

FORTRAN: nbits

C: NBits

this case, wordsize/WordSize is equal to 8 (number of
bytes used to store the random value), while nbits/NBits
contains the actual number of bits occupied by the value (in
this example, 48).

Contains the pointer to the initialization routine of a given
basic generator.

FORTRAN: initstream

C: InitStream

Contains the pointer to the basic generator of single precision
real numbers uniformly distributed over the interval (a,b)
(real in FORTRAN and float in C).

FORTRAN: sbrng

C: sBRng

Contains the pointer to the basic generator of double
precision real numbers uniformly distributed over the interval
(a,b) (double PRECISION in FORTRAN and double in C).

FORTRAN: dbrng

C: dBRng

Contains the pointer to the basic generator of integer
numbers with uniform bit distribution1 (INTEGER in FORTRAN
and unsigned int in C).

FORTRAN: ibrng

C: iBRng

1A specific generator that permits operations over single bits and bit groups of random numbers.

2387

Statistical Functions 10

RegisterBrng
Registers user-defined basic generator.

Syntax

Fortran:

brng = vslregisterbrng(properties)

C:

brng = vslRegisterBrng(&properties);

Description

An example of a registration procedure can be found in the respective directory of VSL examples.

Input Parameters

DescriptionTypeName

Pointer to the structure containing properties of the
basic generator to be registered

FORTRAN:
TYPE(VSL_BRNG_PROPERTIES),
INTENT(IN)

properties

C: VSLBrngProperties*

Output Parameters

DescriptionTypeName

Number (index) of the registered basic generator;
used for identification. Negative values indicate the
registration error.

FORTRAN: INTEGER,
INTENT(OUT)

C: int

brng

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

Registration cannot be completed due to lack
of free entries in the table of registered BRNGs.

VSL_ERROR_BRNG_TABLE_FULL

Bad value in StreamStateSize field.VSL_ERROR_BAD_STREAM_STATE_SIZE

2388

10 Intel® Math Kernel Library Reference Manual

Bad value in WordSize field.VSL_ERROR_BAD_WORD_SIZE

Bad value in NSeeds field.VSL_ERROR_BAD_NSEEDS

Bad value in NBits field.VSL_ERROR_BAD_NBITS

At least one of the fields iBrng, dBrng, sBrng or
InitStream is a NULL pointer.

VSL_ERROR_NULL_PTR

GetBrngProperties
Returns structure with properties of a given basic
generator.

Syntax

Fortran:

status = vslgetbrngproperties(brng, properties)

C:

status = vslGetBrngProperties(brng, &properties);

Input Parameters

DescriptionTypeName

Number (index) of the registered basic generator;
used for identification. See specific values in Table
10-2 . Negative values indicate the registration error.

FORTRAN: INTEGER,
INTENT(IN)

C: int

brng

Output Parameters

DescriptionTypeName

Pointer to the structure containing properties of the
generator with number brng

FORTRAN:
TYPE(VSL_BRNG_PROPERTIES),
INTENT(OUT)

properties

C: VSLBrngProperties*

2389

Statistical Functions 10

Return Values

Indicates no error, execution is successful.VSL_ERROR_OK, VSL_STATUS_OK

BRNG index is invalid.VSL_ERROR_INVALID_BRNG_INDEX

Formats for User-Designed Generators

To register a user-designed basic generator using RegisterBrng function, you need to pass
the pointer iBrng to the integer-value implementation of the generator; the pointers sBrng
and dBrng to the generator implementations for single and double precision values, respectively;
and pass the pointer InitStream to the stream initialization routine. See below
recommendations on defining such functions with input and output arguments. An example of
the registration procedure for a user-designed generator can be found in the respective directory
of VSL examples.

The respective pointers are defined as follows:
typedef int (*InitStreamPtr)(int method, void * stream, int n, const
unsigned int params[]);

typedef int (*sBRngPtr)(void * stream, int n, float r[], float a, float
b);

typedef int (*dBRngPtr)(void * stream, int n, double r[], double a, double
b);

typedef int (*iBRngPtr)(void * stream, int n, unsigned int r[]);

InitStream

C:

int MyBrngInitStream(int method, VSLStreamStatePtr stream,

int n, const unsigned int params[]);

{

/* Initialize the stream */

...

} /* MyBrngInitStream */

2390

10 Intel® Math Kernel Library Reference Manual

Description

The initialization routine of a user-designed generator must initialize stream according to the
specified initialization method, initial conditions params and the argument n. The value of
method determines the initialization method to be used.

• If method is equal to 1, the initialization is by the standard generation method, which must
be supported by all basic generators. In this case the function assumes that the stream
structure was not previously initialized. The value of n is used as the actual number of 32-bit
values passed as initial conditions through params. Note, that the situation when the actual
number of initial conditions passed to the function is not sufficient to initialize the generator
is not an error. Whenever it occurs, the basic generator must initialize the missing conditions
using default settings.

• If method is equal to 2, the generation is by the leapfrog method, where n specifies the
number of computational nodes (independent streams). Here the function assumes that the
stream was previously initialized by the standard generation method. In this case params
contains only one element, which identifies the computational node. If the generator does
not support the leapfrog method, the function must return the error code
VSL_ERROR_LEAPFROG_UNSUPPORTED.

• If method is equal to 3, the generation is by the block-splitting method. Same as above,
the stream is assumed to be previously initialized by the standard generation method;
params is not used, n identifies the number of skipped elements. If the generator does not
support the block-splitting method, the function must return the error code
VSL_ERROR_SKIPAHEAD_UNSUPPORTED.

For a more detailed description of the leapfrog and the block-splitting methods, refer to the
description of LeapfrogStream and SkipAheadStream, respectively.

Stream state structure is individual for every generator. However, each structure has a number
of fields that are the same for all the generators:

C:

typedef struct

{

unsigned int Reserved1[2];

unsigned int Reserved2[2];

[fields specific for the given generator]

} MyStreamState;

2391

Statistical Functions 10

The fields Reserved1 and Reserved2 are reserved for private needs only, and must not be
modified by the user. When including specific fields into the structure, follow the rules below:

• The fields must fully describe the current state of the generator. For example, the state of
a linear congruential generator can be identified by only one initial condition;

• If the generator can use both the leapfrog and the block-splitting methods, additional fields
should be introduced to identify the independent streams. For example, in LCG(a, c, m),
apart from the initial conditions, two more fields should be specified: the value of the
multiplier ak and the value of the increment (ak-1)c/(a-1).

For a more detailed discussion, refer to [Knuth81], and [Gentle98]. An example of the
registration procedure can be found in the respective directory of VSL examples.

iBRng

C:

void iMyBrng(VSLStreamStatePtr stream, int n,

unsigned int r[])

{

int i; /* Loop variable */

/* Generating integer random numbers */

/* Pay attention to word size needed to

store only random number */

for(i = 0; i < n; i++)

{

r[i] = ...;

}

/* Update stream state */

...

return errcode;

} /* iMyBrng */

2392

10 Intel® Math Kernel Library Reference Manual

NOTE. When using 64 and 128-bit generators, consider digit capacity to store the
numbers to the random vector r correctly. For example, storing one 64-bit value requires
two elements of r, the first to store the lower 32 bits and the second to store the higher
32 bits. Similarly, use 4 elements of r to store a 128-bit value.

sBRng

C:

void sMyBrng(VSLStreamStatePtr stream, int n, float r[],

float a, float b)

{

int i; /* Loop variable */

/* Generating float (a,b) random numbers */

for (i = 0; i < n; i++)

{

r[i] = ...;

}

/* Update stream state */

...

return errcode;

} /* sMyBrng */

2393

Statistical Functions 10

dBRng

C:

void dMyBrng(VSLStreamStatePtr stream, int n, double r[],

double a, double b)

{

int i; /* Loop variable */

/* Generating double (a,b) random numbers */

for (i = 0; i < n; i++)

{

r[i] = ...;

}

/* Update stream state */

...

return errcode;

} /* dMyBrng */

Convolution and Correlation

Overview

VSL provides a set of routines intended to perform linear convolution and correlation
transformations for single and double precision data.

For correct definition of implemented operations, see Mathematical Notation and Definitions
section.

The current implementation provides:

• Fourier algorithms for one-dimensional single and double precision data

• Fourier algorithms for multi-dimensional single and double precision data

• Direct algorithms for one-dimensional single and double precision data.

• Direct algorithms for multi-dimensional single and double precision data.

2394

10 Intel® Math Kernel Library Reference Manual

One-dimensional algorithms cover the following functions from the IBM* ESSL library:
SCONF, SCORF

SCOND, SCORD

SDCON, SDCOR

DDCON, DDCOR

SDDCON, SDDCOR.

Special wrappers are designed to simulate these ESSL functions. The wrappers are provided
as sample sources for FORTRAN and C. To reuse them, use the following directories:
${MKL}/examples/vslc/essl/vsl_wrappers

${MKL}/examples/vslf/essl/vsl_wrappers

Additionally, you can browse the examples demonstrating the calculation of the ESSL functions
through the wrappers. You can find the examples in the following directories:
${MKL}/examples/vslc/essl

${MKL}/examples/vslf/essl

Convolution and correlation API provides interfaces for FORTRAN-90 and C/89 languages. You
may use the C/89 interface also with later versions of C or C++, or FORTRAN-90 interface with
programs written in FORTRAN-95. Note that there is no FORTRAN-77 support.

For users of the C/C++ and FORTRAN languages, the mkl_vsl.h and mkl_vsl.fi headers are
provided. Both header files are found under the directory:

${MKL}/include

See more details about the FORTRAN header in Random Number Generators section of this
chapter.

Convolution and correlation API is implemented through task objects, or tasks. Task object is
a data structure, or descriptor, which holds parameters that determine the specific convolution
or correlation operation. Such parameters may be precision, type, and number of dimensions
of user data, an identifier of the computation algorithm to be used, shapes of data arrays, and
so on.

All Intel MKL convolution and correlation routines process task objects in one way or another:
either create a new task descriptor, change the parameter settings, compute mathematical
results of the convolution or correlation using the stored parameters, or perform other operations.
Accordingly, all routines are split into the following groups:

Task Constructors - routines that create a new task object descriptor and set up most common
parameters.

Task Editors - routines that can set or modify some parameter settings in the existing task
descriptor.

2395

Statistical Functions 10

Task Execution Routines - compute results of the convolution or correlation operation over the
actual input data, using the operation parameters held in the task descriptor.

Task Copy - routines used to make several copies of the task descriptor.

Task Destructors - routines that delete task objects and free the memory.

When the task is executed or copied for the first time, a special process runs which is called
task commitment. During this process, consistency of task parameters is checked and the
required work data are prepared. If the parameters are consistent, the task is tagged as
committed successfully. The task remains committed until you edit its parameters. Hence, the
task can be executed multiple times after a single commitment process. Since the task
commitment process may include costly intermediate calculations such as preparation of Fourier
transform of input data, launching the process only once can help speed up overall performance.

Naming Conventions

The names of FORTRAN routines in the convolution and correlation API are written in lowercase,
while the names of FORTRAN types and constants are written in uppercase. The names are not
case-sensitive.

In C, the names of routines, types, and constants are case-sensitive and can be lowercase and
uppercase.

The names of routines have the following structure:

vsl[datatype]{Conv|Corr}<base name> for C-interface

vsl[datatype]{conv|corr}<base name> for FORTRAN-interface

where vsl is a prefix indicating that the routine belongs to Vector Statistical Library of Intel®

MKL.

The field [datatype] is optional. If present, the symbol specifies the type of the input and
output data and can be either s (for single precision real type) or d (for double precision real
type).

The prefix Conv or Corr specifies whether the routine refers to convolution or correlation task,
respectively.

The <base name> field specifies a particular functionality that the routine is designed for, for
example, NewTask, DeleteTask.

NOTE. In this document, routines are often referred to by their base name when this
does not lead to ambiguity. In the routine reference, the full name is always used in
prototypes and code examples.

2396

10 Intel® Math Kernel Library Reference Manual

Data Types

All convolution or correlation routines use the following types for specifying data objects:

Data ObjectType

Pointer to a task descriptor for convolutionFORTRAN:
TYPE(VSL_CONV_TASK)

C: VSLConvTaskPtr

Pointer to a task descriptor for correlationFORTRAN:
TYPE(VSL_CORR_TASK)

C: VSLCorrTaskPtr

Input/output user data in single precisionFORTRAN: REAL(KIND=4)

C: float

Input/output user data in double precisionFORTRAN: REAL(KIND=8)

C: double

All other dataFORTRAN: INTEGER

C: int

Generic integer type (without specifying the byte size) is used for all integer data.

NOTE. The actual size of the generic integer type is platform-dependent. The appropriate
byte size for integers must be chosen at the stage of compiling your software.

Parameters

Basic parameters held by the task descriptor are assigned values when the task object is
created, copied, or modified by task editors. Parameters of the correlation or convolution task
are initially set up by task constructors when the task object is created. Parameter changes or
additional settings are made by task editors. More parameters which define location of the data
being convolved need to be specified when the task execution routine is invoked.

2397

Statistical Functions 10

According to how the parameters are passed or assigned values, all of them can be categorized
as either explicit (directly passed as routine parameters when a task object is created or
executed) or optional (assigned some default or implicit values during task construction).

The following table lists all applicable parameters used in the Intel MKL convolution and
correlation API.

Table 10-13 Convolution and Correlation Task Parameters

DescriptionDefault Value
Label

TypeCategoryName

Specifies whether the task relates to
convolution or correlation

Implied by the
constructor
name

integerexplicitjob

Specifies the type (real or complex) of
the input/output data. Set to real in the
current version.

Implied by the
constructor
name

integerexplicittype

Specifies precision (single or double) of
the input/output data to be provided in
arrays x,y,z.

Implied by the
constructor
name

integerexplicitprecision

Specifies whether the task relates to
computing linear or circular
convolution/correlation

“linear”integeroptionalkind

Specifies whether the
convolution/correlation computation
should be done via Fourier transforms,

Noneintegerexplicitmode

or by a direct method, or by
automatically choosing between the
two. See SetMode for the list of named
constants for this parameter.

Hints at a particular computation
method if several methods are available
for the given mode. Setting this

“auto“integeroptionalmethod

parameter to “auto” means that
software will choose the best available
method.

2398

10 Intel® Math Kernel Library Reference Manual

DescriptionDefault Value
Label

TypeCategoryName

Specifies precision of internal
calculations. Can enforce double
precision calculations even when

Set equal to the
value of
precision

integeroptionalinternal_precision

input/output data are single precision.
See SetInternalPrecision for the
list of named constants for this
parameter.

Specifies the rank (number of
dimensions) of the user data provided
in arrays x,y,z. Can be in the range
from 1 to 7.

Noneintegerexplicitdims

Specify input data arrays. See Data
Allocation for more information.

Nonereal
arrays

explicitx,y

Specifies output data array. See Data
Allocation for more information.

Nonereal
array

explicitz

Define shapes of the arrays x, y, z. See
Data Allocation for more information.

Noneinteger
arrays

explicitxshape,
yshape,
zshape

Define strides within arrays x, y, z, that
is specify the physical location of the
input and output data in these arrays.
See Data Allocation for more
information.

Noneinteger
arrays

explicitxstride,
ystride,
zstride

Defines the first element of the
mathematical result that will be stored
to output array z. See SetStart and
Data Allocation for more information.

Undefinedinteger
array

optionalstart

Defines how to thin out the
mathematical result that will be stored
to output array z. See SetDecimation
and Data Allocation for more
information.

Undefinedinteger
array

optionaldecimation

2399

Statistical Functions 10

Users of the C or C++ language may pass the NULL pointer instead of either or all of the
parameters xstride, ystride, or zstride for multi-dimensional calculations. In this case,
the software assumes the dense data allocation for the arrays x, y, or z due to the
FORTRAN-style “by columns” representation of multi-dimensional arrays.

Task Status and Error Reporting

Task status is an integer value which is zero if no error has been detected while processing the
task, or a specific non-zero error code otherwise. Negative status values are used for errors,
and positive values are reserved for warnings.

An error can be caused by bad parameter values, system fault like memory allocation failure,
or can be an internal error self-detected by the software.

Each task descriptor contains the current status of the task. When creating a task object,
constructor assigns the VSL_STATUS_OK status to the task. When processing the task afterwards,
other routines such as editors of executors can change the task status if an error occurs and
write a corresponding error code into the task status field.

Note that at the stage of creating a task or editing its parameters, the set of parameters may
be inconsistent. The parameter consistency check is only performed during the task commitment
operation which is implicitly invoked before task execution or task copying. If an error is detected
at this stage, task execution or task copying is terminated and the task descriptor saves the
corresponding error code. Once an error occurs, any further attempts to process that task
descriptor will be terminated and the task will keep the same error code.

Normally, every convolution or correlation function (except DeleteTask) returns the status
assigned to the task while performing the function operation.

The status codes are given symbolic names defined in the respective header files. For C/C++,
these names are defined as macros via #define statements, and for FORTRAN as integer
constants via PARAMETER operators.

If there is no error, the VSL_STATUS_OK is returned, which is defined as zero:

#define, VSL_STATUS_OK 0C/C++:

INTEGER,PARAMETER:: VSL_STATUS_OK = 0F90/F95:

In case of an error, a non-zero error code is returned, which signals about the origin of the
failure. The following status codes for the convolution/correlation error codes are pre-defined
in the header files for both C/C++ and FORTRAN languages.

Convolution/Correlation Status Codes and Messages

MessageStatus Code

Requested functionality is not implemented.VSL_CC_ERROR_NOT_IMPLEMENTED,

2400

10 Intel® Math Kernel Library Reference Manual

MessageStatus Code

Memory allocation failure.VSL_CC_ERROR_ALLOCATION_FAILURE

Task descriptor is corrupted.VSL_CC_ERROR_BAD_DESCRIPTOR

A service function has failed.VSL_CC_ERROR_SERVICE_FAILURE

Failure while editing the task.VSL_CC_ERROR_EDIT_FAILURE

You cannot edit this parameter.VSL_CC_ERROR_EDIT_PROHIBITED

Task committment has failed.VSL_CC_ERROR_COMMIT_FAILURE

Failure while copying the task.VSL_CC_ERROR_COPY_FAILURE

Failure while deleting the task.VSL_CC_ERROR_DELETE_FAILURE

Bad argument or task parameter.VSL_CC_ERROR_BAD_ARGUMENT

Bad parameter: job.VSL_CC_ERROR_JOB

Bad parameter: kind.SL_CC_ERROR_KIND

Bad parameter: mode.VSL_CC_ERROR_MODE

Bad parameter: method.VSL_CC_ERROR_METHOD

Bad parameter: type.VSL_CC_ERROR_TYPE

Bad parameter: external_precision.VSL_CC_ERROR_EXTERNAL_PRECISION

Bad parameter: internal_precision.VSL_CC_ERROR_INTERNAL_PRECISION

Incompatible external/internal precisions.VSL_CC_ERROR_PRECISION

Bad parameter: dims.VSL_CC_ERROR_DIMS

Bad parameter: xshape.VSL_CC_ERROR_XSHAPE

Bad parameter: yshape.VSL_CC_ERROR_YSHAPE

2401

Statistical Functions 10

MessageStatus Code

Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer, that
is, < 0 or >nmax.

Bad parameter: zshape.VSL_CC_ERROR_ZSHAPE

Bad parameter: xstride.VSL_CC_ERROR_XSTRIDE

Bad parameter: ystride.VSL_CC_ERROR_YSTRIDE

Bad parameter: zstride.VSL_CC_ERROR_ZSTRIDE

Bad parameter: x.VSL_CC_ERROR_X

Bad parameter: y.VSL_CC_ERROR_Y

Bad parameter: z.VSL_CC_ERROR_Z

Bad parameter: start.VSL_CC_ERROR_START

Bad parameter: decimation.VSL_CC_ERROR_DECIMATION

Some other error.VSL_CC_ERROR_OTHER

Task Constructors

Task constructors are routines intended for creating a new task descriptor and setting up basic
parameters. This means that no additional parameter adjustment is typically required and other
routines can use the task object.

Intel® MKL implementation of the convolution and correlation API provides two different forms
of constructors: a general form and an X-form. X-form constructors work in the same way as
the general form but also assign particular data to the first operand vector used in convolution
or correlation operation (stored in array x).

Using X-form constructors is recommended when you need to compute multiple convolutions
or correlations with the same data vector held in array x against different vectors held in array
y. This helps improve performance by eliminating unnecessary overhead in repeated computation
of intermediate data required for the operation.

2402

10 Intel® Math Kernel Library Reference Manual

For each constructor routine there is also an associated one-dimensional version which exploits
the algorithmic and computational benefits provided by the simplicity of the data structures for
one-dimensional case.

NOTE. If constructor fails to create a task descriptor, it returns NULL task pointer.

The Table 10-14 lists available task constructors:

Table 10-14 Task Constructors

DescriptionRoutine

Creates a new convolution or correlation task descriptor
for a multidimensional case.

NewTask

Creates a new convolution or correlation task descriptor
for a one-dimensional case.

NewTask1D

Creates a new convolution or correlation task descriptor
as an X-form for a multidimensional case.

NewTaskX

Creates a new convolution or correlation task descriptor
as an X-form for a one-dimensional case.

NewTaskX1D

NewTask
Creates a new convolution or correlation task
descriptor for multidimensional case.

Syntax

Fortran:

status = vslsconvnewtask(task, mode, dims, xshape, yshape, zshape)

status = vsldconvnewtask(task, mode, dims, xshape, yshape, zshape)

status = vslscorrnewtask(task, mode, dims, xshape, yshape, zshape)

status = vsldcorrnewtask(task, mode, dims, xshape, yshape, zshape)

2403

Statistical Functions 10

C:

status = vslsConvNewTask(task, mode, dims, xshape, yshape, zshape);

status = vsldConvNewTask(task, mode, dims, xshape, yshape, zshape);

status = vslsCorrNewTask(task, mode, dims, xshape, yshape, zshape);

status = vsldCorrNewTask(task, mode, dims, xshape, yshape, zshape);

Description

Each NewTask constructor creates a new convolution or correlation task descriptor with the
user specified values for explicit parameters. The optional parameters are set to their default
values (see Table 10-13).

The parameters xshape, yshape, and zshape define the shapes of the input and output data
provided by the arrays x, y, and z, respectively. Each shape parameter is an array of integers
with its length equal to the value of dims. You explicitly assign the shape parameters when
calling the constructor. If the value of the parameter dims is 1, then xshape, yshape, zshape
are equal to the number of elements read from the arrays x and y or stored to the array z.
Note that values of shape parameters may differ from physical shapes of arrays x, y, and z if
non-trivial strides are assigned.

If constructor fails to create a task descriptor, it returns NULL task pointer.

Input Parameters

DescriptionTypeName

Specifies whether convolution/correlation calculation
must be performed by using a direct algorithm or
through Fourier transform of the input data. See Table
10-16 for a list of possible values.

FORTRAN: INTEGER

C: int

mode

Rank of user data. Specifies number of dimensions
for the input and output arrays x, y, and z used during
the execution stage. Must be in the range from 1 to
7. The value is explicitly assigned by the constructor.

FORTRAN: INTEGER

C: int

dims

Defines the shape of the input data for the source
array x. See Data Allocation for more information.

FORTRAN: INTEGER,
DIMENSION(*)

C: int[]

xshape

2404

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Defines the shape of the input data for the source
array y. See Data Allocation for more information.

FORTRAN: INTEGER,
DIMENSION(*)

C: int[]

yshape

Defines the shape of the output data to be stored in
array z. See Data Allocation for more information.

FORTRAN: INTEGER,
DIMENSION(*)

C: int[]

zshape

Output Parameters

DescriptionTypeName

Pointer to the task descriptor if created successfully
or NULL pointer otherwise.

FORTRAN:
TYPE(VSL_CONV_TASK) for
vslsconvnewtask,
vsldconvnewtask

task

TYPE(VSL_CORR_TASK) for
vslscorrnewtask,
vsldcorrnewtask

C: VSLConvTaskPtr* for
vslsConvNewTask,
vsldConvNewTask

VSLCorrTaskPtr* for
vslsCorrNewTask,
vsldCorrNewTask

Set to VSL_STATUS_OK if the task is created
successfully or set to non-zero error code otherwise.

FORTRAN: INTEGER

C: int

status

2405

Statistical Functions 10

NewTask1D
Creates a new convolution or correlation task
descriptor for one-dimensional case.

Syntax

Fortran:

status = vslsconvnewtask1d(task, mode, xshape, yshape, zshape)

status = vsldconvnewtask1d(task, mode, xshape, yshape, zshape)

status = vslscorrnewtask1d(task, mode, xshape, yshape, zshape)

status = vsldcorrnewtask1d(task, mode, xshape, yshape, zshape)

C:

status = vslsConvNewTask1D(task, mode, xshape, yshape, zshape);

status = vsldConvNewTask1D(task, mode, xshape, yshape, zshape);

status = vslsCorrNewTask1D(task, mode, xshape, yshape, zshape);

status = vsldCorrNewTask1D(task, mode, xshape, yshape, zshape);

Description

Each NewTask1D constructor creates a new convolution or correlation task descriptor with the
user specified values for explicit parameters. The optional parameters are set to their default
values (see Table 10-13). Unlike NewTask, these routines represent a special one-dimensional
version of the constructor which assumes that the value of the parameter dims is 1. The
parameters xshape, yshape, and zshape are equal to the number of elements read from the
arrays x and y or stored to the array z. You explicitly assign the shape parameters when calling
the constructor.

Input Parameters

DescriptionTypeName

Specifies whether convolution/correlation calculation
must be performed by using a direct algorithm or
through Fourier transform of the input data. See Table
10-16 for a list of possible values.

FORTRAN: INTEGER

C: int

mode

2406

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Defines the length of the input data sequence for the
source array x. See Data Allocation for more
information.

FORTRAN: INTEGER

C: int

xshape

Defines the length of the input data sequence for the
source array y. See Data Allocation for more
information.

FORTRAN: INTEGER

C: int

yshape

Defines the length of the output data sequence to be
stored in array z. See Data Allocation for more
information.

FORTRAN: INTEGER

C: int

zshape

Output Parameters

DescriptionTypeName

Pointer to the task descriptor if created successfully
or NULL pointer otherwise.

FORTRAN:
TYPE(VSL_CONV_TASK) for
vslsconvnewtask1d,
vsldconvnewtask1d

task

TYPE(VSL_CORR_TASK) for
vslscorrnewtask1d,
vsldcorrnewtask1d

C: VSLConvTaskPtr* for
vslsConvNewTask1D,
vsldConvNewTask1D

VSLCorrTaskPtr* for
vslsCorrNewTask1D,
vsldCorrNewTask1D

Set to VSL_STATUS_OK if the task is created
successfully or set to non-zero error code otherwise.

FORTRAN: INTEGER

C: int

status

2407

Statistical Functions 10

NewTaskX
Creates a new convolution or correlation task
descriptor for multidimensional case and assigns
source data to the first operand vector.

Syntax

Fortran:

status = vslsconvnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)

status = vsldconvnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)

status = vslscorrnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)

status = vsldcorrnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)

C:

status = vslsConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x,
xstride);

status = vsldConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x,
xstride);

status = vslsCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x,
xstride);

status = vsldCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x,
xstride);

Description

Each NewTaskX constructor creates a new convolution or correlation task descriptor with the
user specified values for explicit parameters. The optional parameters are set to their default
values (see Table 10-13).

Unlike NewTask, these routines represent the so called X-form version of the constructor, which
means that in addition to creating the task descriptor they assign particular data to the first
operand vector in array x used in convolution or correlation operation. The task descriptor
created by the NewTaskX constructor keeps the pointer to the array x all the time, that is, until
the task object is deleted by one of the destructor routines (see DeleteTask).

2408

10 Intel® Math Kernel Library Reference Manual

Using this form of constructors is recommended when you need to compute multiple convolutions
or correlations with the same data vector in array x against different vectors in array y. This
helps improve performance by eliminating unnecessary overhead in repeated computation of
intermediate data required for the operation.

The parameters xshape, yshape, and zshape define the shapes of the input and output data
provided by the arrays x, y, and z, respectively. Each shape parameter is an array of integers
with its length equal to the value of dims. You explicitly assign the shape parameters when
calling the constructor. If the value of the parameter dims is 1, then xshape, yshape, and
zshape are equal to the number of elements read from the arrays x and y or stored to the
array z. Note that values of shape parameters may differ from physical shapes of arrays x, y,
and z if non-trivial strides are assigned.

The stride parameter xstride specifies the physical location of the input data in the array x.
In a one-dimensional case, stride is an interval between locations of consecutive elements of
the array. For example, if the value of the parameter xstride is s, then only every sth element
of the array x will be used to form the input sequence. The stride value must be positive or
negative but not zero.

Input Parameters

DescriptionTypeName

Specifies whether convolution/correlation calculation
must be performed by using a direct algorithm or
through Fourier transform of the input data. See Table
10-16 for a list of possible values.

FORTRAN: INTEGER

C: int

mode

Rank of user data. Specifies number of dimensions
for the input and output arrays x, y, and z used during
the execution stage. Must be in the range from 1 to
7. The value is explicitly assigned by the constructor.

FORTRAN: INTEGER

C: int

dims

Defines the shape of the input data for the source
array x. See Data Allocation for more information.

FORTRAN: INTEGER,
DIMENSION(*)

C: int[]

xshape

Defines the shape of the input data for the source
array y. See Data Allocation for more information.

FORTRAN: INTEGER,
DIMENSION(*)

C: int[]

yshape

2409

Statistical Functions 10

DescriptionTypeName

Defines the shape of the output data to be stored in
array z. See Data Allocation for more information.

FORTRAN: INTEGER,
DIMENSION(*)

C: int[]

zshape

Pointer to the array containing input data for the first
operand vector. See Data Allocation for more
information.

FORTRAN: REAL(KIND=4),
DIMENSION (*) for single
precision flavors,

REAL(KIND=8), DIMENSION
(*) for double precision
flavors

x

C: float[] for single
precision flavors

double[] for double precision
flavors

Strides for input data in the array x.FORTRAN: INTEGER,
DIMENSION (*)

xstride

C: int[]

Output Parameters

DescriptionTypeName

Pointer to the task descriptor if created successfully
or NULL pointer otherwise.

FORTRAN:
TYPE(VSL_CONV_TASK) for
vslsconvnewtaskx,
vsldconvnewtaskx

task

TYPE(VSL_CORR_TASK) for
vslscorrnewtaskx,
vsldcorrnewtaskx

C: VSLConvTaskPtr* for
vslsConvNewTaskX,
vsldConvNewTaskX

2410

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

VSLCorrTaskPtr* for
vslsCorrNewTaskX,
vsldCorrNewTaskX

Set to VSL_STATUS_OK if the task is created
successfully or set to non-zero error code otherwise.

FORTRAN: INTEGER

C: int

status

NewTaskX1D
Creates a new convolution or correlation task
descriptor for one-dimensional case and assigns
source data to the first operand vector.

Syntax

Fortran:

status = vslsconvnewtaskx1d(task, mode, xshape, yshape, zshape, x, xstride)

status = vsldconvnewtaskx1d(task, mode, xshape, yshape, zshape, x, xstride)

status = vslscorrnewtaskx1d(task, mode, xshape, yshape, zshape, x, xstride)

status = vsldcorrnewtaskx1d(task, mode, xshape, yshape, zshape, x, xstride)

C:

status = vslsConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);

status = vsldConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);

status = vslsCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);

status = vsldCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);

Description

Each NewTaskX1D constructor creates a new convolution or correlation task descriptor with the
user specified values for explicit parameters. The optional parameters are set to their default
values (see Table 10-13).

2411

Statistical Functions 10

These routines represent a special one-dimensional version of the so called X-form of the
constructor. This assumes that the value of the parameter dims is 1 and that in addition to
creating the task descriptor, constructor routines assign particular data to the first operand
vector in array x used in convolution or correlation operation. The task descriptor created by
the NewTaskX1D constructor keeps the pointer to the array x all the time, that is, until the task
object is deleted by one of the destructor routines (see DeleteTask).

Using this form of constructors is recommended when you need to compute multiple convolutions
or correlations with the same data vector in array x against different vectors in array y. This
helps improve performance by eliminating unnecessary overhead in repeated computation of
intermediate data required for the operation.

The parameters xshape, yshape, and zshape are equal to the number of elements read from
the arrays x and y or stored to the array z. You explicitly assign the shape parameters when
calling the constructor.

The stride parameters xstride specifies the physical location of the input data in the array x
and is an interval between locations of consecutive elements of the array. For example, if the
value of the parameter xstride is s, then only every sth element of the array x will be used
to form the input sequence. The stride value must be positive or negative but not zero.

Input Parameters

DescriptionTypeName

Specifies whether convolution/correlation calculation
must be performed by using a direct algorithm or
through Fourier transform of the input data. See Table
10-16 for a list of possible values.

FORTRAN: INTEGER

C: int

mode

Defines the length of the input data sequence for the
source array x. See Data Allocation for more
information.

FORTRAN: INTEGER

C: int

xshape

Defines the length of the input data sequence for the
source array y. See Data Allocation for more
information.

FORTRAN: INTEGER

C: int

yshape

Defines the length of the output data sequence to be
stored in array z. See Data Allocation for more
information.

FORTRAN: INTEGER

C: int

zshape

2412

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Pointer to the array containing input data for the first
operand vector. See Data Allocation for more
information.

FORTRAN: REAL(KIND=4),
DIMENSION (*) for single
precision flavors,

REAL(KIND=8),DIMENSION
(*) for double precision
flavors

x

C: float[] for single
precision flavors

double[] for double precision
flavors

Stride for input data sequence in the arrayx.FORTRAN: INTEGER

C: int

xstride

Output Parameters

DescriptionTypeName

Pointer to the task descriptor if created successfully
or NULL pointer otherwise.

FORTRAN:
TYPE(VSL_CONV_TASK) for
vslsconvnewtaskx1d,
vsldconvnewtaskx1d

task

TYPE(VSL_CORR_TASK) for
vslscorrnewtaskx1d,
vsldcorrnewtaskx1d

C: VSLConvTaskPtr* for
vslsConvNewTaskX1D,
vsldConvNewTaskX1D

VSLCorrTaskPtr* for
vslsCorrNewTaskX1D,
vsldCorrNewTaskX1D

2413

Statistical Functions 10

DescriptionTypeName

Set to VSL_STATUS_OK if the task is created
successfully or set to non-zero error code otherwise.

FORTRAN: INTEGER

C: int

status

Task Editors

Task editors in convolution and correlation API of the Intel MKL are routines intended for setting
up or changing the following task parameters (see Table 10-13):

• mode

• internal_precision

• start

• decimation.

For setting up or changing each of the above parameters, a separate routine exists.

NOTE. Fields of the task descriptor structure are accessible only through the set of task
editor routines provided with the software.

After applying any of the editor routines to change the task descriptor settings, the task loses
its commitment status and will go through the full commitment process again during the next
execution or copy operation. This is motivated by the fact that the currently stored work data
computed during the last commitment process may become invalid with respect to new
parameter settings. For more information about task commitment, see Overview.

Table 10-15 lists available task editors.

Table 10-15 Task Editors

DescriptionRoutine

Changes the value of the parameter mode for the operation
of convolution or correlation.

SetMode

Changes the value of the parameter internal_precision
for the operation of convolution or correlation.

SetInternalPrecision

Sets the value of the parameter start for the operation of
convolution or correlation.

SetStart

2414

10 Intel® Math Kernel Library Reference Manual

DescriptionRoutine

Sets the value of the parameter decimation for the
operation of convolution or correlation.

SetDecimation

NOTE. You can use the NULL task pointer in calls to editor routines. In this case, the
routine will be terminated and no system crash will occur.

SetMode
Changes the value of the parameter mode in the
convolution or correlation task descriptor.

Syntax

Fortran:

status = vslconvsetmode(task, newmode)

status = vslcorrsetmode(task, newmode)

C:

status = vslConvSetMode(task, newmode);

status = vslCorrSetMode(task, newmode);

Description

The routine changes the value of the parameter mode for the operation of convolution or
correlation. This parameter defines whether the computation should be done via Fourier
transforms of the input/output data or using a direct algorithm. Initial value for mode is assigned
by a task constructor.

Predefined values for the mode parameter are as follows:

Table 10-16 Values of mode parameter

PurposeValue

Compute convolution by using fast Fourier transform.VSL_CONV_MODE_FFT

2415

Statistical Functions 10

PurposeValue

Compute correlation by using fast Fourier transform.VSL_CORR_MODE_FFT

Compute convolution directly.VSL_CONV_MODE_DIRECT

Compute correlation directly.VSL_CORR_MODE_DIRECT

Automatically choose direct or Fourier mode for convolution.VSL_CONV_MODE_AUTO

Automatically choose direct or Fourier mode for correlation.VSL_CORR_MODE_AUTO

Input Parameters

DescriptionTypeName

Pointer to the task descriptor.FORTRAN:
TYPE(VSL_CONV_TASK) for
vslconvsetmode

task

TYPE(VSL_CORR_TASK) for
vslcorrsetmode

C: VSLConvTaskPtr for
vslConvSetMode

VSLCorrTaskPtr for
vslCorrSetMode

New value of the parameter mode.FORTRAN: INTEGER

C: int

newmode

Output Parameters

DescriptionTypeName

Current status of the task.FORTRAN: INTEGER

C: int

status

2416

10 Intel® Math Kernel Library Reference Manual

SetInternalPrecision
Changes the value of the parameter
internal_precision in the convolution or
correlation task descriptor.

Syntax

Fortran:

status = vslconvsetinternalprecision(task, precision)

status = vslcorrsetinternalprecision(task, precision)

C:

status = vslConvSetInternalPrecision(task, precision);

status = vslCorrSetInternalPrecision(task, precision);

Description

The routine changes the value of the parameter internal_precision for the operation of
convolution or correlation. This parameter defines whether the internal computations of the
convolution or correlation result should be done in single or double precision. Initial value for
internal_precision is assigned by a task constructor and set to either “single” or “double”
according to the particular flavor of the constructor used.

Changing the internal_precision can be useful if the default setting of this parameter was
“single” but you want to calculate the result with double precision even if input and output data
are represented in single precision.

Predefined values for the internal_precision input parameter are as follows:

Table 10-17 Values of internal_precision Parameter

PurposeValue

Compute convolution with single precision.VSL_CONV_PRECISION_SINGLE

Compute correlation with single precision.VSL_CORR_PRECISION_SINGLE

Compute convolution with double precision.VSL_CONV_PRECISION_DOUBLE

Compute correlation with double precision.VSL_CORR_PRECISION_DOUBLE

2417

Statistical Functions 10

Input Parameters

DescriptionTypeName

Pointer to the task descriptor.FORTRAN:
TYPE(VSL_CONV_TASK) for
vslconvsetinternalprecision

task

TYPE(VSL_CORR_TASK) for
vslcorrsetinternalprecision

C: VSLConvTaskPtr for
vslConvSetInternalPrecision

VSLCorrTaskPtr for
vslCorrSetInternalPrecision

New value of the parameter internal_precision.FORTRAN: INTEGER

C: int

precision

Output Parameters

DescriptionTypeName

Current status of the task.FORTRAN: INTEGER

C: int

status

SetStart
Changes the value of the parameter start in the
convolution or correlation task descriptor.

Syntax

Fortran:

status = vslconvsetstart(task, start)

status = vslcorrsetstart(task, start)

2418

10 Intel® Math Kernel Library Reference Manual

C:

status = vslConvSetStart(task, start);

status = vslCorrSetStart(task, start);

Description

The routine sets the value of the parameter start for the operation of convolution or correlation.
In a one-dimensional case, this parameter points to the first element in the mathematical result
that should be stored in the output array. In a multidimensional case, start is an array of
indices and its length is equal to the number of dimensions specified by the parameter dims.
For more information about the definition and effect of this parameter, see Data Allocation.

During the initial task descriptor construction, the default value for start is undefined and this
parameter is not used. Hence, the only way to set and use the start parameter is via assigning
it some value by one of the SetStart routines.

Input Parameters

DescriptionTypeName

Pointer to the task descriptor.FORTRAN:
TYPE(VSL_CONV_TASK) for
vslconvsetstart

task

TYPE(VSL_CORR_TASK) for
vslcorrsetstart

C: VSLConvTaskPtr for
vslConvSetStart

VSLCorrTaskPtr for
vslCorrSetStart

New value of the parameter start.FORTRAN: INTEGER,
DIMENSION (*)

start

C: int[]

2419

Statistical Functions 10

Output Parameters

DescriptionTypeName

Current status of the task.FORTRAN: INTEGER

C: int

status

SetDecimation
Changes the value of the parameter decimation
in the convolution or correlation task descriptor.

Syntax

Fortran:

status = vslconvsetdecimation(task, decimation)

status = vslcorrsetdecimation(task, decimation)

C:

status = vslConvSetDecimation(task, decimation);

status = vslCorrSetDecimation(task, decimation);

Description

The routine sets the value of the parameter decimation for the operation of convolution or
correlation.

This parameter determines how to thin out the mathematical result of convolution or correlation
before writing it into the output data array. For example, in a one-dimensional case, if
decimation = d >1, only every d-th element of the mathematical result is written to the output
array z. In a multidimensional case, decimation is an array of indices and its length is equal
to the number of dimensions specified by the parameter dims. For more information about the
definition and effect of this parameter, see Data Allocation.

During the initial task descriptor construction, the default value for decimation is undefined
and this parameter is not used. Hence, the only way to set and use the decimation parameter
is via assigning it some value by one of the SetDecimation routines.

2420

10 Intel® Math Kernel Library Reference Manual

Input Parameters

DescriptionTypeName

Pointer to the task descriptor.FORTRAN:
TYPE(VSL_CONV_TASK) for
vslconvsetdecimation

task

TYPE(VSL_CORR_TASK) for
vslcorrsetdecimation

C: VSLConvTaskPtr for
vslConvSetDecimation

VSLCorrTaskPtr for
vslCorrSetDecimation

New value of the parameter decimation.FORTRAN: INTEGER,
DIMENSION (*)

decimation

C: int[]

Output Parameters

DescriptionTypeName

Current status of the task.FORTRAN: INTEGER

C: int

status

Task Execution Routines

Task execution routines compute convolution or correlation results based on parameters held
by the task descriptor and on the supplied user data for input vectors.

Once created and adjusted, the task can be executed multiple times by applying to different
input/output data of the same type, precision, and shape.

Intel MKL implementation of the convolution and correlation API provides two different forms
of execution routines: a general form and an X-form. General form executors use the task
descriptor created by the general form constructor and expect to get two source data arrays x
and y on input. Alternatively, X-form executors use the task descriptor created by the X-form
constructor and expect to get only one source data array y on input because the first array x
has been already specified on the construction stage.

2421

Statistical Functions 10

When the task is executed for the first time, the execution routine includes task commitment
operation, which involves two basic steps: parameters consistency check and preparation of
auxiliary data (for example, this might be the calculation of Fourier transform for input data).

For each execution routine there is also an associated one-dimensional version which exploits
the algorithmic and computational benefits provided by the simplicity of the data structures for
one-dimensional case.

NOTE. You can use the NULL task pointer in calls to execution routines. In this case,
the routine will be terminated and no system crash will occur.

If the task is executed successfully, the execution routine returns zero status code. If an error
is detected, the execution routine returns an error code which signals that a specific error has
occurred. In particular, an error status code is returned in the following cases:

• if the task pointer is NULL,

• if the task descriptor is corrupted,

• if calculation has failed for some other reason.

NOTE. Intel® MKL does not control floating-point erros, like overflow or gradual underflow,
or operations with NaNs, etc.

If an error occurs, the task descriptor stores the error code.

The table below lists all task execution routines.

Table 10-18 Task Execution Routines

DescriptionRoutine

Computes convolution or correlation for a multidimensional case.Exec

Computes convolution or correlation for a one-dimensional case.Exec1D

Computes convolution or correlation as X-form for a multidimensional case.ExecX

Computes convolution or correlation as X-form for a one-dimensional case.ExecX1D

2422

10 Intel® Math Kernel Library Reference Manual

Exec
Computes convolution or correlation for
multidimensional case.

Syntax

Fortran:

status = vslsconvexec(task, x, xstride, y, ystride, z, zstride)

status = vsldconvexec(task, x, xstride, y, ystride, z, zstride)

status = vslscorrexec(task, x, xstride, y, ystride, z, zstride)

status = vsldcorrexec(task, x, xstride, y, ystride, z, zstride)

C:

status = vslsConvExec(task, x, xstride, y, ystride, z, zstride);

status = vsldConvExec(task, x, xstride, y, ystride, z, zstride);

status = vslsCorrExec(task, x, xstride, y, ystride, z, zstride);

status = vsldCorrExec(task, x, xstride, y, ystride, z, zstride);

Description

Each of the Exec routines computes convolution or correlation of the data provided by the
arrays x and y and then stores the results in the array z. Parameters of the operation are read
from the task descriptor created previously by a corresponding NewTask constructor and pointed
to by task. If task is NULL, no operation is done.

The stride parameters xstride, ystride, and zstride specify the physical location of the
input and output data in the arrays x, y, and z, respectively. In a one-dimensional case, stride
is an interval between locations of consecutive elements of the array. For example, if the value
of the parameter zstride is s, then only every sth element of the array z will be used to store
the output data. The stride value must be positive or negative but not zero.

2423

Statistical Functions 10

Input Parameters

DescriptionTypeName

Pointer to the task descriptor.FORTRAN:
TYPE(VSL_CONV_TASK) for
vslsconvexec and
vsldconvexec

task

TYPE(VSL_CORR_TASK) for
vslscorrexec and
vsldcorrexec

C: VSLConvTaskPtr for
vslsConvExec and
vsldConvExec

VSLCorrTaskPtr for
vslsCorrExec and
vsldCorrExec

Pointers to arrays containing input data. See Data
Allocation for more information.

FORTRAN: REAL(KIND=4),
DIMENSION(*) for
vslsconvexec and
vslscorrexec

x , y

REAL(KIND=8),
DIMENSION(*) for
vsldconvexec and
vsldcorrexec

C: float[] for
vslsConvExec and
vslsCorrExec

double[] for vsldConvExec
and vsldCorrExec

Strides for input and output data. For more
information, see Data Allocation.

FORTRAN: INTEGER,
DIMENSION(*)

C: int[]

xstride,
ystride,
zstride

2424

10 Intel® Math Kernel Library Reference Manual

Output Parameters

DescriptionTypeName

Pointer to the array that stores output data. See Data
Allocation for more information.

FORTRAN: REAL(KIND=4),
DIMENSION(*) for
vslsconvexec and
vslscorrexec

z

REAL(KIND=8),
DIMENSION(*) for
vsldconvexec and
vsldcorrexec

C: float[] for
vslsConvExec and
vslsCorrExec

double[] for vsldConvExec
and vsldCorrExec

Set to VSL_STATUS_OK if the task is executed
successfully or set to non-zero error code otherwise.

FORTRAN: INTEGER

C: int

status

Exec1D
Computes convolution or correlation for
one-dimensional case.

Syntax

Fortran:

status = vslsconvexec1d(task, x, xstride, y, ystride, z, zstride)

status = vsldconvexec1d(task, x, xstride, y, ystride, z, zstride)

status = vslscorrexec1d(task, x, xstride, y, ystride, z, zstride)

status = vsldcorrexec1d(task, x, xstride, y, ystride, z, zstride)

2425

Statistical Functions 10

C:

status = vslsConvExec1D(task, x, xstride, y, ystride, z, zstride);

status = vsldConvExec1D(task, x, xstride, y, ystride, z, zstride);

status = vslsCorrExec1D(task, x, xstride, y, ystride, z, zstride);

status = vsldCorrExec1D(task, x, xstride, y, ystride, z, zstride);

Description

Each of the Exec1D routines computes convolution or correlation of the data provided by the
arrays x and y and then stores the results in the array z. These routines represent a special
one-dimensional version of the operation, assuming that the value of the parameter dims is
1. Using this version of execution routines can help speed up performance in case of
one-dimensional data.

Parameters of the operation are read from the task descriptor created previously by a
corresponding NewTask1D constructor and pointed to by task. If task is NULL, no operation
is done.

Input Parameters

DescriptionTypeName

Pointer to the task descriptor.FORTRAN:
TYPE(VSL_CONV_TASK) for
vslsconvexec1d and
vsldconvexec1d

task

TYPE(VSL_CORR_TASK) for
vslscorrexec1d and
vsldcorrexec1d

C: VSLConvTaskPtr for
vslsConvExec1D and
vsldConvExec1D

VSLCorrTaskPtr for
vslsCorrExec1D and
vsldCorrExec1D

2426

10 Intel® Math Kernel Library Reference Manual

DescriptionTypeName

Pointers to arrays containing input data. See Data
Allocation for more information.

FORTRAN: REAL(KIND=4),
DIMENSION(*) for
vslsconvexec1d and
vslscorrexec1d

x, y

REAL(KIND=8),
DIMENSION(*) for
vsldconvexec1d and
vsldcorrexec1d

C: float[] for
vslsConvExec1D and
vslsCorrExec1D

double[] for vsldConvExe1D
and vsldCorrExec1D

Strides for input and output data. For more
information, see stride parameters.

FORTRAN: INTEGER

C: int

xstride,
ystride,
zstride

Output Parameters

DescriptionTypeName

Pointer to the array that stores output data. See Data
Allocation for more information.

FORTRAN: REAL(KIND=4),
DIMENSION(*) for
vslsconvexec1d and
vslscorrexec1d

z

REAL(KIND=8),
DIMENSION(*) for
vsldconvexec1d and
vsldcorrexec1d

C: float[] for
vslsConvExec1D and
vslsCorrExec1D

2427

Statistical Functions 10

DescriptionTypeName

double[] for
vsldConvExec1D and
vsldCorrExec1D

Set to VSL_STATUS_OK if the task is executed
successfully or set to non-zero error code otherwise.

FORTRAN: INTEGER

C: int

status

ExecX
Computes convolution or correlation for
multidimensional case with the fixed first operand
vector.

Syntax

Fortran:

status = vslsconvexecx(task, y, ystride, z, zstride)

status = vsldconvexecx(task, y, ystride, z, zstride)

status = vslscorrexecx(task, y, ystride, z, zstride)

status = vsldcorrexecx(task, y, ystride, z, zstride)

C:

status = vslsConvExecX(task, y, ystride, z, zstride);

status = vsldConvExecX(task, y, ystride, z, zstride);

status = vslsCorrExecX(task, y, ystride, z, zstride);

status = vsldCorrExecX(task, y, ystride, z, zstride);

Description

Each of the ExecX routines computes convolution or correlation of the data provided by the
arrays x and y and then stores the results in the array z. These routines represent a special
version of the operation, which assumes that the first operand vector was set on the task
construction stage and the task object keeps the pointer to the array x.

2428

10 Intel® Math Kernel Library Reference Manual

Parameters of the operation are read from the task descriptor created previously by a
corresponding NewTaskX constructor and pointed to by task. If task is NULL, no operation is
done.

Using this form of execution routines is recommended when you need to compute multiple
convolutions or correlations with the same data vector in array x against different vectors in
array y. This helps improve performance by eliminating unnecessary overhead in repeated
computation of intermediate data required for the operation.

Input Parameters

DescriptionTypeName

Pointer to the task descriptor.FORTRAN:
TYPE(VSL_CONV_TASK) for
vslsconvexecx and
vsldconvexecx

task

TYPE(VSL_CORR_TASK) for
vslscorrexecx and
vsldcorrexecx

C: VSLConvTaskPtr for
vslsConvExecX and
vsldConvExecX

VSLCorrTaskPtr for
vslsCorrExecX and
vsldCorrExecX

Pointer to array containing input data (for the second
operand vector). See Data Allocation for more
information.

FORTRAN: REAL(KIND=4),
DIMENSION(*) for
vslsconvexecx and
vslscorrexecx

x ,y

REAL(KIND=8),
DIMENSION(*) for
vsldconvexecx and
vsldcorrexecx

C: float[] for
vslsConvExecX and
vslsCorrExecX

2429

Statistical Functions 10

DescriptionTypeName

double[] for vsldConvExeX
and vsldCorrExecX

Strides for input and output data. For more
information, see stride parameters.

FORTRAN: INTEGER,
DIMENSION(*)

C: int[]

ystride
,zstride

Output Parameters

DescriptionTypeName

Pointer to the array that stores output data. See Data
Allocation for more information.

FORTRAN: REAL(KIND=4),
DIMENSION(*) for
vslsconvexecx and
vslscorrexecx

z

REAL(KIND=8),
DIMENSION(*) for
vsldconvexecx and
vsldcorrexecx

C: float[] for
vslsConvExecX and
vslsCorrExecX

double[] for vsldConvExecX
and vsldCorrExecX

Set to VSL_STATUS_OK if the task is executed
successfully or set to non-zero error code otherwise.

FORTRAN: INTEGER

C: int

status

2430

10 Intel® Math Kernel Library Reference Manual

ExecX1D
Computes convolution or correlation for
one-dimensional case with the fixed first operand
vector.

Syntax

Fortran:

status = vslsconvexecx1d(task, y, ystride, z, zstride)

status = vsldconvexecx1d(task, y, ystride, z, zstride)

status = vslscorrexecx1d(task, y, ystride, z, zstride)

status = vsldcorrexecx1d(task, y, ystride, z, zstride)

C:

status = vslsConvExecX1D(task, y, ystride, z, zstride);

status = vsldConvExecX1D(task, y, ystride, z, zstride);

status = vslsCorrExecX1D(task, y, ystride, z, zstride);

status = vsldCorrExecX1D(task, y, ystride, z, zstride);

Description

Each of the ExecX1D routines computes convolution or correlation of one-dimensional (assuming
that dims =1)data provided by the arrays x and y and then stores the results in the array z.
These routines represent a special version of the operation, which expects that the first operand
vector was set on the task construction stage.

Parameters of the operation are read from the task descriptor created previously by a
corresponding NewTaskX1D constructor and pointed to by task. If task is NULL, no operation
is done.

Using this form of execution routines is recommended when you need to compute multiple
one-dimensional convolutions or correlations with the same data vector in array x against
different vectors in array y. This helps improve performance by eliminating unnecessary overhead
in repeated computation of intermediate data required for the operation.

2431

Statistical Functions 10

Input Parameters

DescriptionTypeName

Pointer to the task descriptor.FORTRAN:
TYPE(VSL_CONV_TASK) for
vslsconvexecx1d and
vsldconvexecx1d

task

TYPE(VSL_CORR_TASK) for
vslscorrexecx1d and
vsldcorrexecx1d

C: VSLConvTaskPtr for
vslsConvExecX1D and
vsldConvExecX1D

VSLCorrTaskPtr for
vslsCorrExecX1D and
vsldCorrExecX1D

Pointer to array containing input data (for the second
operand vector). See Data Allocation for more
information.

FORTRAN: REAL(KIND=4),
DIMENSION(*) for
vslsconvexecx1d and
vslscorrexecx1d

x , y

REAL(KIND=8),
DIMENSION(*) for
vsldconvexecx1d and
vsldcorrexecx1d

C: float[] for
vslsConvExecX1D and
vslsCorrExecX1D

double[] for
vsldConvExeX1D and
vsldCorrExecX1D

Strides for input and output data. For more
information, see stride parameters.

FORTRAN: INTEGER

C: int

ystride,
zstride

2432

10 Intel® Math Kernel Library Reference Manual

Output Parameters

DescriptionTypeName

Pointer to the array that stores output data. See Data
Allocation for more information.

FORTRAN: REAL(KIND=4),
DIMENSION(*) for
vslsconvexecx1d and
vslscorrexecx1d

z

REAL(KIND=8),
DIMENSION(*) for
vsldconvexecx1d and
vsldcorrexec1d

C: float[] for
vslsConvExecX1D and
vslsCorrExecX1D

double[] for
vsldConvExecX1D and
vsldCorrExecX1D

Set to VSL_STATUS_OK if the task is executed
successfully or set to non-zero error code otherwise.

FORTRAN: INTEGER

C: int

status

Task Destructors

Task destructors are routines designed for deleting task objects and deallocating memory.

DeleteTask
Destroys the task object and frees the memory.

Syntax

Fortran:

errcode = vslconvdeletetask(task)

errcode = vslcorrdeletetask(task)

2433

Statistical Functions 10

C:

errcode = vslConvDeleteTask(task);

errcode = vslCorrDeleteTask(task);

Description

Given a pointer to a task descriptor, this routine deletes the task descriptor object and frees
the memory allocated for the data structure. If the task holds a work memory, the latter is also
freed. The task pointer is set to NULL.

Note that if by some reason the task was not deleted successfully, the routine returns an error
code. This error code has no relation to the task status code and does not change it.

NOTE. You can use the NULL task pointer in calls to destructor routines. In this case,
the routine will be terminated and no system crash will occur.

Input Parameters

DescriptionTypeName

Pointer to the task descriptor.FORTRAN:
TYPE(VSL_CONV_TASK) for
vslconvdeletetask

task

TYPE(VSL_CORR_TASK) for
vslcorrdeletetask

C: VSLConvTaskPtr* for
vslConvDeleteTask

VSLCorrTaskPtr* for
vslCorrDeleteTask

Output Parameters

DescriptionTypeName

Contains 0 if the task object is deleted successfully.
Contains error code if an error occurred.

FORTRAN: INTEGER

C: int

errcode

2434

10 Intel® Math Kernel Library Reference Manual

Task Copy

The routines are designed for copying convolution and correlation task descriptors.

CopyTask
Copies a descriptor for convolution or correlation
task.

Syntax

Fortran:

status = vslconvcopytask(newtask, srctask)

status = vslcorrcopytask(newtask, srctask)

C:

status = vslConvCopyTask(newtask, srctask);

status = vslCorrCopyTask(newtask, srctask);

Description

If a task object srctask already exists, you can use an appropriate CopyTask routine to make
its copy in newtask. After the copy operation, both source and new task objects will become
committed (see Overview for information about task commitment). If the source task was not
previously committed, the commitment operation for this task is implicitly invoked before
copying starts. If an error occurs during source task commitment, the task stores the error
code in the status field. If an error occurs during copy operation, the routine returns a NULL
pointer instead of a reference to a new task object.

Input Parameters

DescriptionTypeName

Pointer to the source task descriptor.FORTRAN:
TYPE(VSL_CONV_TASK) for
vslconvcopytask

srctask

TYPE(VSL_CORR_TASK) for
vslcorrcopytask

2435

Statistical Functions 10

DescriptionTypeName

C: VSLConvTaskPtr for
vslConvCopyTask

VSLCorrTaskPtr for
vslCorrCopyTask

Output Parameters

DescriptionTypeName

Pointer to the new task descriptor.FORTRAN:
TYPE(VSL_CONV_TASK) for
vslconvcopytask

newtask

TYPE(VSL_CORR_TASK) for
vslcorrcopytask

C: VSLConvTaskPtr* for
vslConvCopyTask

VSLCorrTaskPtr* for
vslCorrCopyTask

Current status of the source task.FORTRAN: INTEGER

C: int

status

Usage Examples

This section demonstrates how you can use the Intel MKL routines to perform some common
convolution and correlation operations both for single threaded and multiple threaded
calculations. The following two sample functions scond1 and sconf1 simulate the convolution
and correlation functions SCOND and SCONF found in IBM ESSL* library. The functions assume
single threaded calculations and can be used with C or C++ compilers.

2436

10 Intel® Math Kernel Library Reference Manual

Example 10-5 Function scond1 for Single Threaded Calculations
#include "mkl_vsl.h"

int scond1(

float h[], int inch,

float x[], int incx,

float y[], int incy,

int nh, int nx, int iy0, int ny)

{

int status;

VSLConvTaskPtr task;

vslsConvNewTask1D(&task,VSL_CONV_MODE_DIRECT,nh,nx,ny);

vslConvSetStart(task, &iy0);

status = vslsConvExec1D(task, h,inch, x,incx, y,incy);

vslConvDeleteTask(&task);

return status;

}

Example 10-6 Function sconf1 for Single Threaded Calculations
#include "mkl_vsl.h"

int sconf1(

int init,

float h[], int inc1h,

float x[], int inc1x, int inc2x,

float y[], int inc1y, int inc2y,

int nh, int nx, int m, int iy0, int ny,

void* aux1, int naux1, void* aux2, int naux2)

{

int status;

/* assume that aux1!=0 and naux1 is big enough */

2437

Statistical Functions 10

VSLConvTaskPtr* task = (VSLConvTaskPtr*)aux1;

if (init != 0)

/* initialization: */

status = vslsConvNewTaskX1D(task,VSL_CONV_MODE_FFT,

nh,nx,ny, h,inc1h);

if (init == 0) {

/* calculations: */

int i;

vslConvSetStart(*task, &iy0);

for (i=0; i<m; i++) {

float* xi = &x[inc2x * i];

float* yi = &y[inc2y * i];

/* task is implicitly committed at i==0 */

status = vslsConvExecX1D(*task, xi, inc1x, yi, inc1y);

};

};

vslConvDeleteTask(task);

return status;

}

Using Multiple Threads

For functions such as sconf1 described in the previous example, parallel calculations may be
more preferable instead of cycling. If m>1, you can use multiple threads for invoking the task
execution against different data sequences. For such cases, use task copy routines to create m
copies of the task object before the calculations stage and then run these copies with different
threads. Ensure that you make all necessary parameter adjustments for the task (using Task
Editors) before copying it.

2438

10 Intel® Math Kernel Library Reference Manual

The sample code for that can look like following:

if (init == 0) {

int i, status, ss[M];

VSLConvTaskPtr tasks[M];

/* assume that M is big enough */

. . .

vslConvSetStart(*task, &iy0);

. . .

for (i=0; i<m; i++)

/* implicit commitment at i==0 */

vslConvCopyTask(&tasks[i],*task);

. . .

Then, m threads may be started to execute different copies of the task:

. . .

float* xi = &x[inc2x * i];

float* yi = &y[inc2y * i];

ss[i]=vslsConvExecX1D(tasks[i], xi,inc1x, yi,inc1y);

. . .

And finally, after all threads have finished the calculations, overall status ought to be collected
from all task objects. The following code assumes signaling the first error found, if any:

. . .

for (i=0; i<m; i++) {

status = ss[i];

if (status != 0) /* 0 means "OK" */

break;

};

return status;

}; /* end if init==0 */

2439

Statistical Functions 10

Execution routines modify the task internal state (fields of the task structure). Such modifications
may conflict with each other if different threads work with the same task object simultaneously.
This is the reason why different threads must use different copies of the task.

Mathematical Notation and Definitions

The following notation is necessary to explain the underlying mathematical definitions used in
the text:

The set of real numbers.R = (-∞, +∞)
The set of integer numbers.Z = {0, ±1, ±2, ...}
The set of N-dimensional series of integer numbers.ZN = Z× ... ×Z
N-dimensional series of integers.p = (p1, ..., pN) ∈ ZN

Function u with arguments from ZN and values from R.u:ZN→R
The value of the function u for the argument (p1, ..., pN).u(p) = u(p1, ..., pN)
Function w is the convolution of the functions u, v.w = u*v
Function w is the correlation of the functions u, v.w = u•v

Given series p, q ∈ ZN:

• series r = p + q is defined as rn = pn + qn for every n=1,...,N

• series r = p - q is defined as rn = pn - qn for every n=1,...,N

• series r = sup{p, q} is defines as rn = max{pn, qn} for every n=1,...,N

• series r = inf{p, q} is defined as rn = min{pn, qn} for every n=1,...,N

• inequality p ≤ q means that pn ≤ qn for every n=1,...,N.

A function u(p) is called a finite function if there exist series Pmin, Pmax ∈ ZN such that:

u(p) ≠ 0

implies

Pmin ≤ p ≤ Pmax.

Operations of convolution and correlation are only defined for finite functions.

Consider functions u, v and series Pmin, PmaxQmin, Qmax ∈ ZN such that:

u(p) ≠ 0 implies Pmin ≤ p ≤ Pmax.

2440

10 Intel® Math Kernel Library Reference Manual

v(q) ≠ 0 implies Qmin ≤ q ≤ Qmax.

Definitions of linear correlation and linear convolution for functions u and v are given below.

Linear Convolution

If function w = u*v is the convolution of u and v, then:

w(r) ≠ 0 implies Rmin ≤ r ≤ Rmax,

where Rmin = Pmin + Qmin and Rmax = Pmax + Qmax.

If Rmin ≤ r ≤ Rmax, then:

w(r) = ∑u(t)·v(r−t) is the sum for all t ∈ ZN such that Tmin ≤ t ≤ Tmax,

where Tmin = sup{Pmin, r − Qmax} and Tmax = inf{Pmax, r − Qmin}.

Linear Correlation

If function w = u • v is the correlation of u and v, then:

w(r) ≠ 0 implies Rmin ≤ r ≤ Rmax,

where Rmin = Qmin - Pmax and Rmax = Qmax - Pmin.

If Rmin ≤ r ≤ Rmax, then:

w(r) = ∑u(t)·v(r+t) is the sum for all t ∈ ZN such that Tmin ≤ t ≤ Tmax,

where Tmin = sup{Pmin, Qmin − r} and Tmax = inf{Pmax, Qmax − r}.

Representation of the functions u, v, w as the input/output data for the Intel MKL convolution
and correlation functions is described in the Data Allocation section below.

Data Allocation

This section explains the relation between:

• mathematical finite functions u, v, w introduced in the section Mathematical Notation and
Definitions;

2441

Statistical Functions 10

• multi-dimensional input and output data vectors representing the functions u, v, w;

• arrays u, v, w used to store the input and output data vectors in computer memory

The convolution and correlation routine parameters that determine the allocation of input and
output data are the following:

• Data arrays x, y, z

• Shape arrays xshape, yshape, zshape

• Strides within arrays xstride, ystride, zstride

• Parameters start, decimation

Finite Functions and Data Vectors

The finite functions u(p), v(q), and w(r) introduced above are represented as multi-dimensional
vectors of input and output data:

inputu(i1,...,idims) for u(p1,...,pN)

inputv(j1,...,jdims) for v(q1,...,qN)

output(k1,...,kdims) for w(r1,...,rN).

Parameter dims represents the number of dimensions and is equal to N.

The parameters xshape, yshape, and zshape define the shapes of input/output vectors:

inputu(i1,...,idims) is defined if 1 ≤ in ≤ xshape(n) for every n=1,...,dims

inputv(j1,...,jdims) is defined if 1 ≤ jn ≤ yshape(n) for every n=1,...,dims

output(k1,...,kdims) is defined if 1 ≤ kn ≤ zshape(n) for every n=1,...,dims.

Relation between the input vectors and the functions u and v is defined by the following formulas:

inputu(i1,...,idims)= u(p1,...,pN), where pn = Pn
min + (in-1) for every n

inputv(j1,...,jdims)= v(q1,...,qN), where qn=Qn
min + (jn-1) for every n.

Relation between the output vector and the function w(r) is similar (but only in the case when
parameters start and decimation are not defined):

output(k1,...,kdims)= w(r1,...,rN), where rn=Rn
min + (kn-1) for every n.

If the parameter start is defined, it must belong to the interval Rn
min ≤ start(n) ≤ Rn

max.
If defined, the start parameter replaces Rmin in the formula:

2442

10 Intel® Math Kernel Library Reference Manual

output(k1,...,kdims)=w(r1,...,rN), where rn=start(n) + (kn-1)

If the parameter decimation is defined, it changes the relation according to the following
formula:

output(k1,...,kdims)=w(r1,...,rN), where rn= Rn
min + (kn-1)*decimation(n)

If both parameters start and decimation are defined, the formula is as follows:

output(k1,...,kdims)=w(r1,...,rN), where rn=start(n) + (kn-1)*decimation(n)

The convolution and correlation software checks the values of zshape, start, and decimation
during task commitment. If rn exceeds Rn

max for some kn,n=1,...,dims, an error is raised.

Allocation of Data Vectors

Both parameter arrays x and y contain input data vectors in memory, while array z is intended
for storing output data vector. To access the memory, the convolution and correlation software
uses only pointers to these arrays and ignores the array shapes.

For parameters x, y, and z, you can provide one-dimensional arrays with the requirement that
actual length of these arrays be sufficient to store the data vectors.

The allocation of the input and output data inside the arrays x, y, and z is described below

assuming that the arrays are one-dimensional. Given multi-dimensional indices i, j, k ∈ ZN,

one-dimensional indices e, f, g ∈ Z are defined such that:

inputu(i1,...,idims) is allocated at x(e)

inputv(j1,...,jdims) is allocated at y(f)

output(k1,...,kdims) is allocated at z(g).

The indices e, f, and g are defined as follows:

e = 1 + ∑xstride(n)·dx(n) (the sum is for all n=1,...,dims)

f = 1 + ∑ystride(n)·dy(n) (the sum is for all n=1,...,dims)

g = 1 + ∑zstride(n)·dz(n) (the sum is for all n=1,...,dims)

The distances dx(n), dy(n), and dz(n) depend on the signum of the stride:

dx(n) = in-1 if xstride(n)>0, or dx(n) = in-xshape(n) if xstride(n)<0

dy(n) = jn-1 if ystride(n)>0, or dy(n) = jn-yshape(n) if ystride(n)<0

2443

Statistical Functions 10

dz(n) = kn-1 if zstride(n)>0, or dz(n) = kn-zshape(n) if zstride(n)<0

The definitions of indices e, f, and g assume that indexes for arrays x, y, and z are started
from unity:

x(e) is defined for e=1,...,length(x)

y(f) is defined for f=1,...,length(y)

z(g) is defined for g=1,...,length(z)

Below is a detailed explanation about how elements of the multi-dimensional output vector are
stored in the array z for one-dimensional and two-dimensional cases.

One-dimensional case. If dims=1, then zshape is the number of the output values to be
stored in the array z. The actual length of array z may be greater than zshape elements.

If zstride>1, output values are stored with the stride: output(1) is stored to z(1), output(2)
is stored to z(1+zstride), and so on. Hence, the actual length of z must be at least
1+zstride*(zshape-1) elements or more.

If zstride<0, it still defines the stride between elements of array z. However, the order of the
used elements is the opposite. For the k-th output value, output(k) is stored in
z(1+|zstride|*(zshape-k)), where |zstride| is the absolute value of zstride. The actual
length of the array z must be at least 1+|zstride|*(zshape - 1) elements.

Two-dimensional case. If dims=2, the output data is a two-dimensional matrix. The value
zstride(1) defines the stride inside matrix columns, that is, the stride between the output(k1,
k2) and output(k1+1, k2) for every pair of indices k1, k2. On the other hand, zstride(2)
defines the stride between columns, that is, the stride between output(k1,k2) and
output(k1,k2+1).

If zstride(2) is greater than zshape(1), this causes sparse allocation of columns. If the
value of zstride(2) is smaller than zshape(1), this may result in the transposition of the
output matrix. For example, if zshape = (2,3), you can define zstride = (3,1) to allocate
output values like transposed matrix of the shape 3x2.

Whether zstride assumes this kind of transformations or not, you need to ensure that different
elements output (k1, ...,kdims) will be stored in different locations z(g).

2444

10 Intel® Math Kernel Library Reference Manual

11Fourier Transform Functions

This chapter describes the following implementations of Discrete Fourier transform functions available in
Intel® MKL:

• Discrete Fourier transform (DFT) functions for single-processor or shared-memory systems (see DFT
Functions below)

• Cluster DFT Functions for distributed-memory architectures (available with Intel® MKL Cluster Edition
only).

Both these groups of DFT functions present a uniform and easy-to-use Applications Programmer Interface
providing fast computation of DFT via the Fast Fourier Transform (FFT) algorithm.

NOTE. DFT functions support arbitrary lengths.

These routines offer broad functionality and high performance not only for radix 2 but also
for 3, 5, 7, 11, and other radices.

DFT Functions
The Discrete Fourier Transform function library of Intel MKL provides one-dimensional,
two-dimensional, and multi-dimensional (up to the order of 7) routines and both Fortran and C
interfaces for all transform functions.

The full list of DFT functions implemented in Intel MKL is given in the table below:

Table 11-1 DFT Functions in Intel MKL

OperationFunction Name

Descriptor Manipulation Functions

Allocates memory for the descriptor data structure and
instantiates it with default configuration settings.

DftiCreateDescriptor

Performs all initialization that facilitates the actual DFT
computation.

DftiCommitDescriptor

Copies an existing descriptor.DftiCopyDescriptor

2445

OperationFunction Name

Frees memory allocated for a descriptor.DftiFreeDescriptor

DFT Computation Functions

Computes the forward DFT.DftiComputeForward

Computes the backward DFT.DftiComputeBackward

Descriptor Configuration Functions

Sets one particular configuration parameter with the specified
configuration value.

DftiSetValue

Gets the configuration value of one particular configuration
parameter.

DftiGetValue

Status Checking Functions

Checks if the status reflects an error of a predefined class.DftiErrorClass

Generates an error message.DftiErrorMessage

Description of DFT functions is followed by discussion of configuration settings (see Configuration
Settings) and various configuration parameters used.

Computing DFT

DFT functions described later in this chapter are implemented in Fortran and C interface. Fortran
stands for Fortran 95. DFT interface relies critically on many modern features offered in Fortran
95 that have no counterpart in Fortran 77

NOTE. Following the explicit function interface in Fortran, data array must be defined
as one-dimensional for any transformation type.

The materials presented in this chapter assume the availability of native complex types in C as
they are specified in C9X.

You can find example code that uses DFT interface functions to compute transform results in
Fourier Transform Functions Code Examples section in the Appendix C.

2446

11 Intel® Math Kernel Library Reference Manual

For most common situations, we expect a DFT computation can be effected by four function
calls. The approach adopted in Intel MKL for DFT computation uses one single data structure,
the descriptor, to record flexible configuration whose parameters can be changed independently.
This results in enhanced functionality and ease of use.

The record of type DFTI_DESCRIPTOR, when created, contains information about the length
and domain of the DFT to be computed, as well as the setting of a rather large number of
configuration parameters. The default settings for all of these parameters include, for example,
the following:

• the DFT to be computed does not have a scale factor;

• there is only one set of data to be transformed;

• the data is stored contiguously in memory;

• the computed result overwrites (in place) the input data; etc.

Should any one of these many default settings be inappropriate, they can be changed
one-at-a-time through the function DftiSetValue as illustrated in the Example C-20 and
Example C-21.

DFT Interface

To use the DFT functions, you need to access the module MKL_DFTI through the "use" statement
in Fortran; or access the header file mkl_dfti.h through "include" in C.

The Fortran interface provides a derived type DFTI_DESCRIPTOR; a number of named constants
representing various names of configuration parameters and their possible values; and a number
of overloaded functions through the generic functionality of Fortran 95.

The C interface provides a structure type DFTI_DESCRIPTOR, a macro definition

#define DFTI_DESCRIPTOR_HANDLE DFTI_DESCRIPTOR *;

a number of named constants of two enumeration types DFTI_CONFIG_PARAM and
DFTI_CONFIG_VALUE; and a number of functions, some of which accept different number of
input arguments.

NOTE. Some of the DFT functions and/or functionality described in the subsequent
sections of this chapter may not be supported by the currently available implementation
of the library. You can find the complete list of the implementation-specific exceptions
in the release notes to your version of the library.

There are four main categories of DFT functions in Intel MKL:

2447

Fourier Transform Functions 11

1. Descriptor Manipulation. There are four functions in this category. The first one,
DftiCreateDescriptor, creates a DFT descriptor whose storage is allocated dynamically
by the routine. This function configures the descriptor with default settings corresponding
to a few input values supplied by the user.

The second, DftiCommitDescriptor, "commits" the descriptor to all its setting. In practice,
this usually means that all the necessary precomputation will be performed. This may include
factorization of the input length and computation of all the required twiddle factors. The
third function, DftiCopyDescriptor, makes an extra copy of a descriptor, and the fourth
function, DftiFreeDescriptor, frees up all the memory allocated for the descriptor
information.

2. DFT Computation. There are two functions in this category. The first, DftiComputeForward,
effects a forward DFT computation, and the second function, DftiComputeBackward,
performs a backward DFT computation.

3. Descriptor configuration. There are two functions in this category. One function,
DftiSetValue, sets one specific value to one of the many configuration parameters that
are changeable (a few are not); the other, DftiGetValue, gets the current value of any
one of these configuration parameters (all are readable). These parameters, though many,
are handled one-at-a-time.

4. Status Checking. The functions described in the three categories above return an integer
value denoting the status of the operation. In particular, a non-zero return value always
indicates a problem of some sort. Envisioned to be further enhanced in later releases of
Intel MKL, DFT interface at present provides for one logical status class function,
DftiErrorClass, and a simple status message generation function, DftiErrorMessage.

Status Checking Functions

All of the descriptor manipulation, DFT computation, and descriptor configuration functions
return an integer value denoting the status of the operation. Two functions serve to check the
status. The first function is a logical function that checks if the status reflects an error of a
predefined class, and the second is an error message function that returns a character string.

2448

11 Intel® Math Kernel Library Reference Manual

ErrorClass
Checks if the status reflects an error of a
predefined class.

Syntax

Fortran:

Predicate = DftiErrorClass(Status, Error_Class)

C:

predicate = DftiErrorClass(status, error_class);

Description

DFT interface in Intel MKL provides a set of predefined error class listed in Table 11-2. These
are named constants and have the type INTEGER in Fortran and long in C.

Table 11-2 Predefined Error Class

CommentsNamed Constants

No errorDFTI_NO_ERROR

Usually associated with memory allocationDFTI_MEMORY_ERROR

Invalid settings of one or more configuration parametersDFTI_INVALID_CONFIGURATION

Inconsistent configuration or input parametersDFTI_INCONSISTENT_CONFIGURATION

Number of OMP threads in the computation function is not
equal to the number of OMP threads in the initialization stage
(commit function)

DFTI_NUMBER_OF_THREADS_ERROR

Usually associated with OMP routine's error return valueDFTI_MULTITHREADED_ERROR

Descriptor is unusable for computationDFTI_BAD_DESCRIPTOR

Unimplemented legitimate settings; implementation dependentDFTI_UNIMPLEMENTED

Internal library errorDFTI_MKL_INTERNAL_ERROR

2449

Fourier Transform Functions 11

CommentsNamed Constants

Length of one of dimensions exceeds 232 -1 (4 bytes).DFTI_1D_LENGTH_EXCEEDS_INT32

Note that the correct usage is to check if the status returns .TRUE. or .FALSE. through the
use of DftiErrorClass with a specific error class. Direct comparison of a status with the
predefined class is an incorrect usage. see Example C-22 on a correct use of the status checking
functions.

Interface and Prototype
//Fortran interface

INTERFACE DftiErrorClass

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_8(Status, Error_Class)

LOGICAL some_actual_function_8

INTEGER, INTENT(IN) :: Status, Error_Class

END FUNCTION some_actual_function_8

END INTERFACE DftiErrorClass

/* C prototype */

long DftiErrorClass(long , long);

2450

11 Intel® Math Kernel Library Reference Manual

ErrorMessage
Generates an error message.

Syntax

Fortran:

ERROR_MESSAGE = DftiErrorMessage(Status)

C:

error_message = DftiErrorMessage(status);

Description

The error message function generates an error message character string. The maximum length
of the string in Fortran is given by the named constant DFTI_MAX_MESSAGE_LENGTH. The actual
error message is implementation dependent. In Fortran, the user needs to use a character
string of length DFTI_MAX_MESSAGE_LENGTH as the target. In C, the function returns a pointer
to a character string, that is, a character array with the delimiter ' 0'.

Example C-22 shows how this function can be implemented.

Interface and Prototype
//Fortran interface

INTERFACE DftiErrorMessage

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_9(Status, Error_Class)

CHARACTER(LEN=DFTI_MAX_MESSAGE_LENGTH) some_actual_function_9(Status)

INTEGER, INTENT(IN) :: Status

END FUNCTION some_actual_function_9

END INTERFACE DftiErrorMessage

2451

Fourier Transform Functions 11

/* C prototype */

char *DftiErrorMessage(long);

Descriptor Manipulation Functions

There are four functions in this category: create a descriptor, commit a descriptor, copy a
descriptor, and free a descriptor.

CreateDescriptor
Allocates memory for the descriptor data structure
and instantiates it with default configuration
settings.

Syntax

Fortran:

Status = DftiCreateDescriptor(Desc_Handle, &

Precision, &

Forward_Domain, &

Dimension, &

Length)

C:

status = DftiCreateDescriptor(&desc_handle, precision, forward_domain,
dimension, length);

Description

This function allocates memory for the descriptor data structure and instantiates it with all the
default configuration settings with respect to the precision, domain, dimension, and length of
the desired transform. The domain is understood to be the domain of the forward transform.
Since memory is allocated dynamically, the result is actually a pointer to the created descriptor.
This function is slightly different from the "initialization" routine in more traditional software
packages or libraries used for computing DFT. In all likelihood, this function will not perform

2452

11 Intel® Math Kernel Library Reference Manual

any significant computation work such as twiddle factors computation, as the default
configuration settings can still be changed upon user's request through the value setting function
DftiSetValue.

The precision and (forward) domain are specified through named constants provided in DFT
interface for the configuration values. The choices for precision are DFTI_SINGLE and
DFTI_DOUBLE; and the choices for (forward) domain are DFTI_COMPLEX and DFTI_REAL. See
Table 11-5 for the complete table of named constants for configuration values.

Dimension is a simple positive integer indicating the dimension of the transform. Length is
either a simple positive integer for one-dimensional transform, or an integer array (pointer in
C) containing the positive integers corresponding to the lengths dimensions for multi-dimensional
transform.

The function returns DFTI_NO_ERROR when completes successfully. See Status Checking
Functions for more information on returned status.

Interface and Prototype
!Fortran interface.

INTERFACE DftiCreateDescriptor

!Note that the body provided here is to illustrate the different

!argument list and types of dummy arguments. The interface

!does not guarantee what the actual function names are.

!Users can only rely on the function name following the keyword INTERFACE

FUNCTION some_actual_function_1D(Desc_Handle, Prec, Dom, Dim, Length)

INTEGER :: some_actual_function_1D

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Prec, Dom

INTEGER, INTENT(IN) :: Dim, Length

END FUNCTION some_actual_function_1D

2453

Fourier Transform Functions 11

FUNCTION some_actual_function_HIGHD(Desc_Handle, Prec, Dom, Dim, Length)

INTEGER :: some_actual_function_HIGHD

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Prec, Dom

INTEGER, INTENT(IN) :: Dim, Length(*)

END FUNCTION some_actual_function_HIGHD

END INTERFACE DftiCreateDescriptor

Note that the function is overloaded as the actual argument for Length can be a scalar or a a
rank-one array.

/* C prototype */

long DftiCreateDescriptor(DFTI_DESCRIPTOR_HANDLE *,

DFTI_CONFIG_PARAM ,

DFTI_CONFIG_PARAM ,

long , ...);

The variable arguments facility is used to cope with the argument for lengths that can be a
scalar (long), or an array (long *).

CommitDescriptor
Performs all initialization that facilitates the actual
DFT computation.

Syntax

Fortran:

Status = DftiCommitDescriptor(Desc_Handle)

C:

status = DftiCommitDescriptor(desc_handle);

2454

11 Intel® Math Kernel Library Reference Manual

Description

The interface requires a function that commits a previously created descriptor be invoked before
the descriptor can be used for DFT computations. Typically, this committal performs all
initialization that facilitates the actual DFT computation. For a modern implementation, it may
involve exploring many different factorizations of the input length to search for highly efficient
computation method.

Any changes of configuration parameters of a committed descriptor via the set value function
(see Descriptor Configuration) requires a re-committal of the descriptor before a computation
function can be invoked. Typically, this committal function call is immediately followed by a
computation function call (see DFT Computation).

The function returns DFTI_NO_ERROR when completes successfully. See Status Checking
Functions for more information on returned status.

Interface and Prototype
! Fortran interface

INTERFACE DftiCommitDescriptor

!Note that the body provided here is to illustrate the different

!argument list and types of dummy arguments. The interface

!does not guarantee what the actual function names are.

!Users can only rely on the function name following the

!keyword INTERFACE

FUNCTION some_actual function_1 (Desc_Handle)

INTEGER :: some_actual function_1

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

END FUNCTION some_actual function_1

END INTERFACE DftiCommitDescriptor

/* C prototype */

long DftiCommitDescriptor(DFTI_DESCRIPTOR_HANDLE);

2455

Fourier Transform Functions 11

CopyDescriptor
Copies an existing descriptor.

Syntax

Fortran:

Status = DftiCopyDescriptor(Desc_Handle_Original, Desc_Handle_Copy)

C:

status = DftiCopyDescriptor(desc_handle_original, &desc_handle_copy);

Description

This function makes a copy of an existing descriptor and provides a pointer to it. The purpose
is that all information of the original descriptor will be maintained even if the original is destroyed
via the free descriptor function DftiFreeDescriptor.

The function returns DFTI_NO_ERROR when completes successfully. See Status Checking
Functions for more information on returned status.

Interface and Prototype
! Fortran interface

INTERFACE DftiCopyDescriptor

! Note that the body provided here is to illustrate the different

!argument list and types of dummy arguments. The interface

!does not guarantee what the actual function names are.

!Users can only rely on the function name following the

!keyword INTERFACE

FUNCTION some_actual_function_2(Desc_Handle_Original,

Desc_Handle_Copy)

INTEGER :: some_actual_function_2

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Original, Desc_Handle_Copy

END FUNCTION some_actual_function_2

END INTERFACE DftiCopyDescriptor

2456

11 Intel® Math Kernel Library Reference Manual

/* C prototype */

long DftiCopyDescriptor(DFTI_DESCRIPTOR_HANLDE, DFTI_DESCRIPTOR_HANDLE *
);

FreeDescriptor
Frees memory allocated for a descriptor.

Syntax

Fortran:

Status = DftiFreeDescriptor(Desc_Handle)

C:

status = DftiFreeDescriptor(&desc_handle);

Description

This function frees up all memory space allocated for a descriptor.

NOTE. Memory allocation/deallocation inside Intel MKL is managed by Intel MKL Memory
Manager. So, even after successful completion of FreeDescriptor, the memory space
may continue being allocated for the application because the Memory Manager sometimes
doesn’t return the memory space to OS but considers the space free and can reuse it
for future memory allocation. See Example “MKL_FreeBuffers Usage with DFT Functions”
in the description of the service function FreeBuffers on how to use Intel MKL Memory
Manager and actually release memory.

The function returns DFTI_NO_ERROR when completes successfully. See Status Checking
Functions for more information on returned status.

2457

Fourier Transform Functions 11

Interface and Prototype
! Fortran interface

INTERFACE DftiFreeDescriptor

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_3(Desc_Handle)

INTEGER :: some_actual_function_3

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

END FUNCTION some_actual_function_3

END INTERFACE DftiFreeDescriptor

/* C prototype */

long DftiFreeDescriptor(DFTI_DESCRIPTOR_HANDLE *);

DFT Computation Functions

There are two functions in this category: compute the forward transform, and compute the
backward transform.

ComputeForward
Computes the forward DFT.

Syntax

Fortran:

Status = DftiComputeForward(Desc_Handle, X_inout)

Status = DftiComputeForward(Desc_Handle, X_in, X_out)

2458

11 Intel® Math Kernel Library Reference Manual

C:

status = DftiComputeForward(desc_handle, x_inout);

status = DftiComputeForward(desc_handle, x_in, x_out);

Description

As soon as a descriptor is configured and committed successfully, actual computation of DFT
can be performed. The DftiComputeForward function computes the forward DFT.

This is the transform using the factor e-i2π/n. Because of the flexibility in configuration, input

data can be represented in various ways as well as output result can be placed differently.
Consequently, the number of input parameters as well as their type vary. This variation is
accommodated by the generic function facility of Fortran 95. Data and result parameters are
all declared as assumed-size rank-1 array DIMENSION(0:*).

The function returns DFTI_NO_ERROR when completes successfully. See Status Checking
Functions for more information on returned status.

2459

Fourier Transform Functions 11

Interface and Prototype
//Fortran interface.

INTERFACE DftiComputeFoward

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

// One argument single precision complex

FUNCTION some_actual_function_4_C(Desc_Handle, X)

INTEGER :: some_actual_function_4_C

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX, INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_4_C

// One argument double precision complex

FUNCTION some_actual_function_4_Z(Desc_Handle, X)

INTEGER :: some_actual_function_4_Z

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX (Kind((0D0,0D0))), INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_4_Z

// One argument single precision real

FUNCTION some_actual_function_4_R(Desc_Handle, X)

INTEGER :: some_actual_function_4_R

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL, INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_4_R

// One argument double precision real

...

2460

11 Intel® Math Kernel Library Reference Manual

// Two argument single precision complex

...

...

FUNCTION some_actual_function_4_CC(Desc_Handle, X_In, Y_Out)

INTEGER :: some_actual_function_4_CC

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX, INTENT(IN) :: X_In(*)

COMPLEX, INTENT(OUT) :: Y_Out(*)

END FUNCTION some_actual_function_4_CC

END INTERFACE DftiComputeFoward

/* C prototype */

long DftiComputeForward(DFTI_DESCRIPTOR_HANDLE,

void *,

...);

The implementations of DFT interface expect the data be treated as data stored linearly in
memory with a regular "stride" pattern (discussed more fully in Strides, see also [3]). The
function expects the starting address of the first element. Hence we use the assume-size
declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly how many arguments
and of what type should be present. The implementation could use this information to check
against possible input inconsistency.

2461

Fourier Transform Functions 11

ComputeBackward
Computes the backward DFT.

Syntax

Fortran:

Status = DftiComputeBackward(Desc_Handle, X_inout)

Status = DftiComputeBackward(Desc_Handle, X_in, X_out)

C:

status = DftiComputeBackward(desc_handle, x_inout);

status = DftiComputeBackward(desc_handle, x_in, x_out);

Description

As soon as a descriptor is configured and committed successfully, actual computation of DFT
can be performed. The DftiComputeBackward function computes the backward DFT.

This is the transform using the factor ei2π/n. Because of the flexibility in configuration, input

data can be represented in various ways as well as output result can be placed differently.
Consequently, the number of input parameters as well as their type vary. This variation is
accommodated by the generic function facility of Fortran 95. Data and result parameters are
all declared as assumed-size rank-1 array DIMENSION(0:*). The function returns
DFTI_NO_ERROR when completes successfully. See Status Checking Functions for more
information on returned status.

2462

11 Intel® Math Kernel Library Reference Manual

Interface and Prototype

INTERFACE DftiComputeBackward

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

// One argument single precision complex

FUNCTION some_actual_function_5_C(Desc_Handle, X)

INTEGER :: some_actual_function_5_C

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX, INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_5_C

// One argument double precision complex

FUNCTION some_actual_function_5_Z(Desc_Handle, X)

INTEGER :: some_actual_function_5_Z

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX (Kind((0D0,0D0))), INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_5_Z

// One argument single precision real

FUNCTION some_actual_function_5_R(Desc_Handle, X)

INTEGER :: some_actual_function_5_R

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL, INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_5_R

// One argument double precision real

...

// Two argument single precision complex

2463

Fourier Transform Functions 11

...

...

FUNCTION some_actual_function_5_CC(Desc_Handle, X_In, Y_Out)

INTEGER :: some_actual_function_5_CC

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX, INTENT(IN) :: X_In(*)

COMPLEX, INTENT(OUT) :: Y_Out(*)

END FUNCTION some_actual_function_5_CCEND INTERFACE DftiComputeBackward END
INTERFACE DftiComputeBackward

/* C prototype */

long DftiComputeBackward(DFTI_DESCRIPTOR_HANDLE,

void *,

...);

The implementations of DFT interface expect the data be treated as data stored linearly in
memory with a regular "stride" pattern (discussed more fully in Strides, see also [3]). The
function expects the starting address of the first element. Hence we use the assume-size
declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly how many arguments
and of what type should be present. The implementation could use this information to check
against possible input inconsistency.

Descriptor Configuration Functions

There are two functions in this category: the value setting function DftiSetValue sets one
particular configuration parameter to an appropriate value, and the value getting function
DftiGetValue reads the values of one particular configuration parameter. While all configuration
parameters are readable, a few of them cannot be set by user. Some of these contain fixed
information of a particular implementation such as version number, or dynamic information,
but nevertheless are derived by the implementation during execution of one of the functions.
See Configuration Settings for details.

2464

11 Intel® Math Kernel Library Reference Manual

SetValue
Sets one particular configuration parameter with
the specified configuration value.

Syntax

Fortran:

Status = DftiSetValue(Desc_Handle, &

Config_Param, &

Config_Val)

C:

status = DftiSetValue(desc_handle, config_param, config_val);

Description

This function sets one particular configuration parameter with the specified configuration value.
The configuration parameter is one of the named constants listed in Table 11-3, and the
configuration value is the corresponding appropriate type, which can be a named constant or
a native type. See Configuration Settings for details of the meaning of the setting.

The function returns DFTI_NO_ERROR when completes successfully. See Status Checking
Functions for more information on returned status.

2465

Fourier Transform Functions 11

Interface and Prototype
! Fortran interface

INTERFACE DftiSetValue

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_6_INTVAL(Desc_Handle, Config_Param, INTVAL
)

INTEGER :: some_actual_function_6_INTVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(IN) :: INTVAL

END FUNCTION some_actual_function_6_INTVAL

FUNCTION some_actual_function_6_SGLVAL(Desc_Handle, Config_Param, SGLVAL
)

INTEGER :: some_actual_function_6_SGLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL, INTENT(IN) :: SGLVAL

END FUNCTION some_actual_function_6_SGLVAL

2466

11 Intel® Math Kernel Library Reference Manual

FUNCTION some_actual_function_6_DBLVAL(Desc_Handle, Config_Param, DBLVAL
)

INTEGER :: some_actual_function_6_DBLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL (KIND(0D0)), INTENT(IN) :: DBLVAL

END FUNCTION some_actual_function_6_DBLVAL

FUNCTION some_actual_function_6_INTVEC(Desc_Handle, Config_Param, INTVEC
)

INTEGER :: some_actual_function_6_INTVEC

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(IN) :: INTVEC(*)

END FUNCTION some_actual_function_6_INTVEC

FUNCTION some_actual_function_6_CHARS(Desc_Handle, Config_Param, CHARS)

INTEGER :: some_actual_function_6_CHARS

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

CHARCTER(*), INTENT(IN) :: CHARS

END FUNCTION some_actual_function_6_CHARS

END INTERFACE DftiSetValue

/* C prototype */

long DftiSetValue(DFTI_DESCRIPTOR_HANDLE, DFTI_CONFIG_PARAM , ...);

2467

Fourier Transform Functions 11

GetValue
Gets the configuration value of one particular
configuration parameter.

Syntax

Fortran:

Status = DftiGetValue(Desc_Handle, &

Config_Param, &

Config_Val)

C:

status = DftiGetValue(desc_handle, config_param, &config_val);

Description

This function gets the configuration value of one particular configuration parameter. The
configuration parameter is one of the named constants listed in Table 11-3 and Table 11-4,
and the configuration value is the corresponding appropriate type, which can be a named
constant or a native type.

The function returns DFTI_NO_ERROR when completes successfully. See Status Checking
Functions for more information on returned status.

2468

11 Intel® Math Kernel Library Reference Manual

Interface and Prototype
! Fortran interface

INTERFACE DftiGetValue

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_7_INTVAL(Desc_Handle, Config_Param, INTVAL
)

INTEGER :: some_actual_function_7_INTVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(OUT) :: INTVAL

END FUNCTION DFTI_GET_VALUE_INTVAL

FUNCTION some_actual_function_7_SGLVAL(Desc_Handle, Config_Param, SGLVAL
)

INTEGER :: some_actual_function_7_SGLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL, INTENT(OUT) :: SGLVAL

END FUNCTION some_actual_function_7_SGLVAL

2469

Fourier Transform Functions 11

FUNCTION some_actual_function_7_DBLVAL(Desc_Handle, Config_Param, DBLVAL
)

INTEGER :: some_actual_function_7_DBLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL (KIND(0D0)), INTENT(OUT) :: DBLVAL

END FUNCTION some_actual_function_7_DBLVAL

FUNCTION some_actual_function_7_INTVEC(Desc_Handle, Config_Param, INTVEC
)

INTEGER :: some_actual_function_7_INTVEC

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(OUT) :: INTVEC(*)

END FUNCTION some_actual_function_7_INTVEC

FUNCTION some_actual_function_7_INTPNT(Desc_Handle, Config_Param, INTPNT
)

INTEGER :: some_actual_function_7_INTPNT

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, DIMENSION(*), POINTER :: INTPNT

END FUNCTION some_actual_function_7_INTPNT

FUNCTION some_actual_function_7_CHARS(Desc_Handle, Config_Param, CHARS)

INTEGER :: some_actual_function_7_CHARS

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

CHARCTER(*), INTENT(OUT):: CHARS

END FUNCTION some_actual_function_7_CHARS

END INTERFACE DftiGetValue

2470

11 Intel® Math Kernel Library Reference Manual

/* C prototype */

long DftiGetValue(DFTI_DESCRIPTOR_HANDLE,

DFTI_CONFIG_PARAM ,

...);

Configuration Settings

Each of the configuration parameters is identified by a named constant in the MKL_DFTI module.
In C, these named constants have the enumeration type DFTI_CONFIG_PARAM. The list of
configuration parameters whose values can be set by user is given in Table 11-3; the list of
configuration parameters that are read-only is given in Table 11-4. All parameters are readable.
Most of these parameters are self-explanatory, while some others are discussed more fully in
the description of the relevant functions.

Table 11-3 Settable Configuration Parameters

CommentsValue TypeNamed Constants

Most common configurations, no default, must be set explicitly

Precision of computationNamed constantDFTI_PRECISION

Domain for the forward
transform

Named constantDFTI_FORWARD_DOMAIN

Dimension of the transformInteger scalarDFTI_DIMENSION

Lengths of each dimensionInteger
scalar/array

DFTI_LENGTHS

Common configurations including multiple transform and data representation

For multiple number of
transforms

Integer scalarDFTI_NUMBER_OF_TRANSFORMS

Scale factor for forward
transform

Floating-point
scalar

DFTI_FORWARD_SCALE

Scale factor for backward
transform

Floating-point
scalar

DFTI_BACKWARD_SCALE

2471

Fourier Transform Functions 11

CommentsValue TypeNamed Constants

Placement of the computation
result

Named constantDFTI_PLACEMENT

Storage method, complex
domain data

Named constantDFTI_COMPLEX_STORAGE

Storage method, real domain
data

Named constantDFTI_REAL_STORAGE

Storage method, conjugate
even domain data

Named constantDFTI_CONJUGATE_EVEN_STORAGE

No longer than
DFTI_MAX_NAME_LENGTH

Character stringDFTI_DESCRIPTOR_NAME

Packed format, real domain
data

Named constantDFTI_PACKED_FORMAT

Number of user threads
employing the same descriptor
for DFT computation

Integer scalarDFTI_NUMBER_OF_USER_THREADS

Configurations regarding stride of data

Multiple transforms, distance
of first elements

Integer scalarDFTI_INPUT_DISTANCE

Multiple transforms, distance
of first elements

Integer scalarDFTI_OUTPUT_DISTANCE

Stride information of input dataInteger arrayDFTI_INPUT_STRIDES

Stride information of output
data

Integer arrayDFTI_OUTPUT_STRIDES

Advanced configuration

Scrambling of data orderNamed constantDFTI_ORDERING

Scrambling of dimensionNamed constantDFTI_TRANSPOSE

2472

11 Intel® Math Kernel Library Reference Manual

Table 11-4Read-Only Configuration Parameters

CommentsValue TypeNamed Constants

Whether descriptor has been committedName constantDFTI_COMMIT_STATUS

Intel MKL library version numberStringDFTI_VERSION

The configuration parameters are set by various values. Some of these values are specified by
native data types such as an integer value (for example, number of simultaneous transforms
requested), or a single-precision number (for example, the scale factor one would like to apply
on a forward transform).

Other configuration values are discrete in nature (for example, the domain of the forward
transform) and are thus provided in the DFTI module as named constants. In C, these named
constants have the enumeration type DFTI_CONFIG_VALUE. The complete list of named constants
used for this kind of configuration values is given in Table 11-5.

Table 11-5 Named Constant Configuration Values

CommentsNamed Constant

Single precisionDFTI_SINGLE

Double precisionDFTI_DOUBLE

Complex domainDFTI_COMPLEX

Real domainDFTI_REAL

Output overwrites inputDFTI_INPLACE

Output does not overwrite inputDFTI_NOT_INPLACE

Storage method (see Storage schemes)DFTI_COMPLEX_COMPLEX

Storage method (see Storage schemes)DFTI_REAL_REAL

Storage method (see Storage schemes)DFTI_COMPLEX_REAL

Storage method (see Storage schemes)DFTI_REAL_COMPLEX

Committal status of a descriptorDFTI_COMMITTED

Committal status of a descriptorDFTI_UNCOMMITTED

2473

Fourier Transform Functions 11

CommentsNamed Constant

Data ordered in both forward and backward domainsDFTI_ORDERED

Data scrambled in backward domain (by forward transform)DFTI_BACKWARD_SCRAMBLED

Used to specify no transpositionDFTI_NONE

Packed format, real data (see Packed formats)DFTI_CCS_FORMAT

Packed format, real data (see Packed formats)DFTI_PACK_FORMAT

Packed format, real data (see Packed formats)DFTI_PERM_FORMAT

Packed format, real data (see Packed formats)DFTI_CCE_RORMAT

Number of characters for library version lengthDFTI_VERSION_LENGTH

Maximum descriptor name lengthDFTI_MAX_NAME_LENGTH

Maximum status message lengthDFTI_MAX_MESSAGE_LENGTH

Table 11-6 lists the possible values for those configuration parameters that are discrete in
nature.

Table 11-6 Settings for Discrete Configuration Parameters

Possible ValuesNamed Constant

DFTI_SINGLE, orDFTI_PRECISION

DFTI_DOUBLE (no default)

DFTI_COMPLEX, orDFTI_FORWARD_DOMAIN

DFTI_REAL

DFTI_INPLACE (default), orDFTI_PLACEMENT

DFTI_NOT_INPLACE

DFTI_COMPLEX_COMPLEX (default), orDFTI_COMPLEX_STORAGE

DFTI_REAL_REAL (default), orDFTI_REAL_STORAGE

2474

11 Intel® Math Kernel Library Reference Manual

Possible ValuesNamed Constant

DFTI_REAL_COMPLEX

DFTI_COMPLEX_COMPLEX, orDFTI_CONJUGATE_EVEN_STORAGE

DFTI_COMPLEX_REAL (default)

DFTI_CCS_FORMAT (default), orDFTI_PACKED_FORMAT

DFTI_PACK_FORMAT, or

DFTI_PERM_FORMAT, or

DFTI_CCE_FORMAT

Table 11-7 lists the default values of the settable configuration parameters.

Table 11-7 Default Configuration Values of Settable Parameters

Default ValueNamed Constants

1DFTI_NUMBER_OF_TRANSFORMS

1DFTI_NUMBER_OF_USER_THREADS

1.0DFTI_FORWARD_SCALE

1.0DFTI_BACKWARD_SCALE

DFTI_INPLACEDFTI_PLACEMENT

DFTI_COMPLEX_COMPLEXDFTI_COMPLEX_STORAGE

DFTI_REAL_REALDFTI_REAL_STORAGE

DFTI_COMPLEX_REALDFTI_CONJUGATE_EVEN_STORAGE

DFTI_CCS_FORMATDFTI_PACKED_FORMAT

no name, string of zero lengthDFTI_DESCRIPTOR_NAME

0DFTI_INPUT_DISTANCE

0DFTI_OUTPUT_DISTANCE

2475

Fourier Transform Functions 11

Default ValueNamed Constants

Tightly packed according to dimension and FFT lengthsDFTI_INPUT_STRIDES

Same as above. see Strides for detailsDFTI_OUTPUT_STRIDES

DFTI_ORDEREDDFTI_ORDERING

DFTI_NONEDFTI_TRANSPOSE

Precision of transform

The configuration parameter DFTI_PRECISION denotes the floating-point precision in which
the transform is to be carried out. A setting of DFTI_SINGLE stands for single precision, and
a setting of DFTI_DOUBLE stands for double precision. The data is meant to be presented in
this precision; the computation will be carried out in this precision; and the result will be
delivered in this precision. This is one of the four settable configuration parameters that do not
have default values. The user must set them explicitly, most conveniently at the call to descriptor
creation function DftiCreateDescriptor.

Forward domain of transform

The general form of the discrete Fourier transform is

for k1 = 0,±1,±2, ... , where σ is an arbitrary real-valued scale factor and δ = ±1. The

forward transform is defined by σ = 1 and δ = -1. In most common situations, the domain
of the forward transform, that is, the set where the input (periodic) sequence {wj1, j2, ...,

jd} belongs, can be either the set of complex-valued sequences, real-valued sequences, and
complex-valued conjugate even sequences. The configuration parameter DFTI_FORWARD_DOMAIN
indicates the domain for the forward transform. Note that this implicitly specifies the domain
for the backward transform because of mathematical property of the DFT. See Table 11-8 for
details.

2476

11 Intel® Math Kernel Library Reference Manual

Table 11-8 Correspondence of Forward and Backward Domain

Implied Backward DomainForward Domain

Complex(DFTI_COMPLEX)Complex

Conjugate Even(DFTI_REAL)Real

On transforms in the real domain, some software packages only offer one "real-to-complex"
transform. This in essence omits the conjugate even domain for the forward transform. The
forward domain configuration parameter DFTI_FORWARD_DOMAIN is the second of four
configuration parameters without default value.

Transform dimension and lengths

The dimension of the transform is a positive integer value represented in an integer scalar of
Integer data type in Fortran and long data type in C. For one-dimensional transform, the
transform length is specified by a positive integer value represented in an integer scalar of
Integer data type in Fortran and long data type in C. For multi-dimensional (≥ 2) transform,
the lengths of each of the dimension is supplied in an integer array (Integer data type in
Fortran and long data type in C). DFTI_DIMENSION and DFTI_LENGTHS are the remaining two
of four configuration parameters without default.

As mentioned, these four configuration parameters do not have default value. They are most
conveniently set at the descriptor creation function. They can only be set in the descriptor
creation function, and not by the function DftiSetValue.

Number of transforms

In some situations, the user may need to perform a number of DFT transforms of the same
dimension and lengths. The most common situation would be to transform a number of
one-dimensional data of the same length. This parameter has the default value of 1, and can
be set to positive integer value by an Integer data type in Fortran and long data type in C.
Data sets have no common elements. The distance parameter is obligatory if multiple number
is more than one.

Scale

The forward transform and backward transform are each associated with a scale factor σ of its
own with default value of 1. The user can set one or both of them via the two configuration
parameters DFTI_FORWARD_SCALE and DFTI_BACKWARD_SCALE. For example, for a

2477

Fourier Transform Functions 11

one-dimensional transform of length n, one can use the default scale of 1 for the forward
transform while setting the scale factor for backward transform to be 1/n, making the backward
transform the inverse of the forward transform.

The scale factor configuration parameter should be set by a real floating-point data type of the
same precision as the value for DFTI_PRECISION.

Placement of result

By default, the computational functions overwrite the input data with the output result. That
is, the default setting of the configuration parameter DFTI_PLACEMENT is DFTI_INPLACE. The
user can change that by setting it to DFTI_NOT_INPLACE. Data sets have no common elements.

Packed formats

The result of the forward transform (i.e. in the frequency-domain) of real data is represented
in several possible packed formats: Pack, Perm, CCS, or CCE. The data can be packed due to
the symmetry property of the DFT transform of a real data.

The CCE format stores the values of the first half of the output complex conjugate-even signal
resulted from the forward DFT. Note that the one-dimensional signal stored in CCE format is
one complex element longer. For multi-dimensional real transform, n1 * n2 * n3 * ... *
nk the size of complex matrix in CCE format is (n1/2+1)* n2 * n3 * ... * nk for Fortran
and n1 * n2 * ... * (nk/2+1) for C.

The CCS format looks like the CCE format. It is the same format as CCE for one-dimensional
transform. The CCS format is slightly different for multi-dimensional real transform. In CCS
format, the output samples of the DFT are arranged as shown in Table 11-9 for one-dimensional
DFT and in Table 11-10 for two-dimensional DFT.

The Pack format is a compact representation of a complex conjugate-symmetric sequence.
The disadvantage of this format is that it is not the natural format used by the real DFT
algorithms ("natural" in the sense that array is natural for complex DFTs). In Pack format, the
output samples of the DFT are arranged as shown in Table 11-9 for one-dimensional DFT and
in Table 11-11 for two-dimensional DFT.

The Perm format is an arbitrary permutation of the Pack format for even lengths and one is
the same as the Pack format for odd lengths. In Perm format, the output samples of the DFT
are arranged as shown in Table 11-9 for one-dimensional DFT and in Table 11-12 for
two-dimensional DFT.

Table 11-9 Packed Format Output Samples

For n = s*2

n+1nn-1n-2...3210DFT Real

2478

11 Intel® Math Kernel Library Reference Manual

For n = s*2

0Rn/2In/2-1Rn/2-1...I1R10R0CCS

Rn/2In/2-1...R2I1R1R0Pack

In/2-1Rn/2-1...I1R1Rn/2R0Perm

For n = s*2 + 1

n+1nn-1n-2n-3n-4...3210DFT Real

IsRsIs-1Rs-1Is-2...I1R10R0CCS

IsRsIs-1Rs-1...R2I1R1R0Pack

IsRsIs-1Rs-1...R2I1R1R0Perm

Note that Table 11-9 uses the following notation for complex data entries:

Rj = Re zj

Ij = Im zj

See also Table 11-13 and Table 11-14.

Table 11-10 CCS Format Output Samples (Two-Dimensional Matrix (m+2)-by-(n+2))

For m = s*2, n = k*2

0z(1,k+1)IMz(1,k)REz(1,k)...IMz(1,2)REz(1,2)0z(1,1)

0000...0000

n/un/u*REz(2,n)REz(2,n-1)...REz(2,4)REz(2,3)REz(2,2)REz(2,1)

n/un/uIMz(2,n)IMz(2,n-1)...IMz(2,4)IMz(2,3)IMz(2,2)IMz(2,1)

n/un/u.....................

n/un/uREz(m/2,n)REz(m/2,n-1)...REz(m/2,4)REz(m/2,3)REz(m/2,2)REz(m/2,1)

n/un/uIMz(m/2,n)IMz(m/2,n-1)...IMz(m/2,4)IMz(m/2,3)IMz(m/2,2)IMz(m/2,1)

2479

Fourier Transform Functions 11

For m = s*2, n = k*2

0z(m/2+1,k+1)IMz(m/2+1,k)REz(m/2+1,k)...IMz(m/2+1,2)REz(m/2+1,2)0z(m/2+1,1)

n/un/u00...0000

For m = s*2+1, n = k*2

0z(1,k+1)IMz(1,k)REz(1,k)...IMz(1,2)REz(1,2)0z(1,1)

0000...0000

n/un/uREz(2,n)REz(2,n-1)...REz(2,4)REz(2,3)REz(2,2)REz(2,1)

n/un/uIMz(2,n)IMz(2,n-1)...IMz(2,4)IMz(2,3)IMz(2,2)IMz(2,1)

n/un/u.....................

n/un/uREz(s,n)REz(s,n-1)...REz(s,4)REz(s,3)REz(s,2)REz(s,1)

n/un/uIMz(s,n)IMz(s,n-1)...IMz(s,4)IMz(s,3)IMz(s,2)IMz(s,1)

For m = s*2, n = k*2+1

IM z(1,k)REz(1,k)IMz(1,k-1)...IMz(1,2)REz(1,2)0z(1,1)

000...0000

n/u*REz(2,n)REz(2,n-1)...REz(2,4)REz(2,3)REz(2,2)REz(2,1)

n/uIMz(2,n)IMz(2,n-1)...IMz(2,4)IMz(2,3)IMz(2,2)IMz(2,1)

n/u.....................

n/uREz(m/2,n)REz(m/2,n-1)...REz(m/2,4)REz(m/2,3)REz(m/2,2)REz(m/2,1)

n/uIMz(m/2,n)IMz(m/2,n-1)...IMz(m/2,4)IMz(m/2,3)IMz(m/2,2)IMz(m/2,1)

IMz(m/2+1,k)REz(m/2+1,k)IMz(m/2+1,k-1)...IMz(m/2+1,2)REz(m/2+1,2)0z(m/2+1,1)

n/u00...0000

2480

11 Intel® Math Kernel Library Reference Manual

For m = s*2+1, n = k*2+1

IMz(1,k)REz(1,k)IMz(1,k-1)...IMz(1,2)REz(1,2)0z(1,1)

000...0000

n/uREz(2,n)REz(2,n-1)...REz(2,4)REz(2,3)REz(2,2)REz(2,1)

n/uIMz(2,n)IMz(2,n-1)...IMz(2,4)IMz(2,3)IMz(2,2)IMz(2,1)

n/u.....................

n/uREz(s,n)REz(s,n-1)...REz(s,4)REz(s,3)REz(s,2)REz(s,1)

n/uIMz(s,n)IMz(s,n-1)...IMz(s,4)IMz(s,3)IMz(s,2)IMz(s,1)

* n/u - not used.

Note that in the Table 11-10, (n+2) columns are used for even n = k*2, while n columns are
used for odd n = k*2+1. In the latter case, the first row is

z(1,1) 0 REz(1,2) IMz(1,2) ... REz(1,k) IMz(1,k)

If m is even, the (m+1)-th row is

z(m/2+1,1) 0 REz(m/2+1,2) IMz(m/2+1,2) ... REz(m/2+1,k) IMz(m/2+1,k)

Table 11-11 Pack Format Output Samples (Two-Dimensional Matrix m-by-n)

For m = s*2

z(1,k+1)IMz(1,k)...REz(1,3)IMz(1,2)REz(1,2)z(1,1)

REz(2,n)REz(2,n-1)...REz(2,4)REz(2,3)REz(2,2)REz(2,1)

IMz(2,n)IMz(2,n-1)...IMz(2,4)IMz(2,3)IMz(2,2)IMz(2,1)

.....................

REz(m/2,n)REz(m/2,n-1)...REz(m/2,4)REz(m/2,3)REz(m/2,2)REz(m/2,1)

IMz(m/2,n)IMz(m/2,n-1)...IMz(m/2,4)IMz(m/2,3)IMz(m/2,2)IMz(m/2,1)

z(m/2+1,k+1)IMz(m/2+1,k)...REz(m/2+1,3)IMz(m/2+1,2)REz(m/2+1,2)z(m/2+1,1)

2481

Fourier Transform Functions 11

For m = s*2+1

z(1,n/2+1)IMz(1,k)...REz(1,3)IMz(1,2)REz(1,2)z(1,1)

REz(2,n)REz(2,n-1)...REz(2,4)REz(2,3)REz(2,2)REz(2,1)

IMz(2,n)IMz(2,n-1)...IMz(2,4)IMz(2,3)IMz(2,2)IMz(2,1)

.....................

REz(s,n)REz(s,n-1)...REz(s,4)REz(s,3)REz(s,2)REz(s,1)

IMz(s,n)IMz(s,n-1)...IMz(s,4)IMz(s,3)IMz(s,2)IMz(s,1)

Table 11-12 Perm Format Output Samples (Two-Dimensional Matrix m-by-n)

For m = s*2

IMz(1,k)REz(1,k)...IMz(1,2)REz(1,2)z(1,k+1)z(1,1)

IMz(m/2+1,k)REz(m/2+1,k)...IMz(m/2+1,2)REz(m/2+1,2)z(m/2+1,k+1)z(m/2+1,1)

REz(2,n)REz(2,n-1)...REz(2,4)REz(2,3)REz(2,2)REz(2,1)

IMz(2,n)IMz(2,n-1)...IMz(2,4)IMz(2,3)IMz(2,2)IMz(2,1)

.....................

REz(m/2,n)REz(m/2,n-1)...REz(m/2,4)REz(m/2,3)REz(m/2,2)REz(m/2,1)

IMz(m/2,n)IMz(m/2,n-1)...IMz(m/2,4)IMz(m/2,3)IMz(m/2,2)IMz(m/2,1)

For m = s*2+1

IMz(1,k)REz(1,k)...IMz(1,2)REz(1,2)z(1,k+1)z(1,1)

REz(2,n)REz(2,n-1)...REz(2,4)REz(2,3)REz(2,2)REz(2,1)

IMz(2,n)IMz(2,n-1)...IMz(2,4)IMz(2,3)IMz(2,2)IMz(2,1)

.....................

2482

11 Intel® Math Kernel Library Reference Manual

For m = s*2+1

REz(s,n)REz(s,n-1)...REz(s,4)REz(s,3)REz(s,2)REz(s,1)

IMz(s,n)IMz(s,n-1)...IMz(s,4)IMz(s,3)IMz(s,2)IMz(s,1)

Note that in the Table 11-11 and Table 11-12, for even number of columns n = k*2, while for
odd number of columns n = k*2+1 and the first row is

z(1,1) REz(1,2) IMz(1,2) ... REz(1,k) IMz(1,k)

If m is even, the last row in Pack format and the second row in Perm format is

z(m/2+1,1) REz(m/2+1,2) IMz(m/2+1,2) ... REz(m/2+1,k) IMz(m/2+1,k)

The tables for two-dimensional DFT use Fortran-interface conventions. For C-interface specifics
in storing packed data, see Storage schemes section below. See also Table 11-15 and Table
11-16 for examples of Fortran-interface and C-interface formats.

Storage schemes

For each of the three domains DFTI_COMPLEX, DFTI_REAL, and DFTI_CONJUGATE_EVEN (for
the forward as well as the backward operator), a subset of the four storage schemes
DFTI_COMPLEX_COMPLEX, DFTI_COMPLEX_REAL, DFTI_REAL_COMPLEX, and DFTI_REAL_REAL
is provided. Specific examples are presented here to illustrate the storage schemes. See the
document [3] for the rationale behind this definition of the storage schemes.

NOTE. The data is stored in the Fortran style only, that is, the real and imaginary parts
are stored side by side.

Storage scheme for complex domain. This setting is recorded in the configuration parameter
DFTI_COMPLEX_STORAGE. The three values that can be set are DFTI_COMPLEX_COMPLEX,
DFTI_COMPLEX_REAL, and DFTI_REAL_REAL. Consider a one-dimensional n-length transform
of the form

2483

Fourier Transform Functions 11

Assume the stride has default value (unit stride) and DFTI_PLACEMENT has the default in-place
setting.

DFTI_COMPLEX_COMPLEX storage scheme (by default). A typical usage will be as follows.

COMPLEX :: X(0:n-1)

...some other code...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj, j = 0,1,...,n-1.

On output,

X(k) = zk , k = 0,1,...,n-1.

Storage scheme for the real and conjugate even domains. This setting for the storage
schemes for these domains is recorded in the configuration parameters DFTI_REAL_STORAGE
and DFTI_CONJUGATE_EVEN_STORAGE. Since a forward real domain corresponds to a conjugate
even backward domain, they are considered together. The example uses one-, two- and
three-dimensional real to conjugate even transforms. In-place computation is assumed whenever
possible (that is, when the input data type matches the output data type).

One-Dimensional Transform

Consider a one-dimensional n-length transform of the form

There is a symmetry:

For even n: z(n/2+i) = conjg(z(n/2-i)), 1≤i≤n/2-1, and moreover z(0) and z(n/2)
are real values.

For odd n: z(m+i) = conjg(z(m-i+1)), 1≤i≤m, and moreover z(0) is real value.

m = floor(n/2).

2484

11 Intel® Math Kernel Library Reference Manual

Table 11-13 Comparison of the Storage Effects of Complex-to-Complex and
Real-to-Complex DFTs for Forward Transform

N=8

Output VectorsInput Vectors

real DFTcomplex DFTReal
DFT

Complex DFT

Real DataComplex DataReal
Data

Complex Data

PermPackCCSImaginaryRealImaginaryReal

z0z0z00.000000z0w00.000000w0

z4Re(z1)0.000000Im(z1)Re(z1)w10.000000w1

Re(z1)Im(z1)Re(z1)Im(z2)Re(z2)w20.000000w2

Im(z1)Re(z2)Im(z1)Im(z3)Re(z3)w30.000000w3

Re(z2)Im(z2)Re(z2)0.000000z4w40.000000w4

Im(z2)Re(z3)Im(z2)-Im(z3)Re(z3)w50.000000w5

Re(z3)Im(z3)Re(z3)-Im(z2)Re(z2)w60.000000w6

Im(z3)z4Im(z3)-Im(z1)Re(z1)w70.000000w7

z4

0.000000

N=7

Output VectorsInput Vectors

real DFTcomplex DFTReal
DFT

Complex DFT

2485

Fourier Transform Functions 11

N=7

Real DataComplex DataReal
Data

Complex Data

PermPackCCSImaginaryRealImaginaryReal

z0z0z00.000000z0w00.000000w0

Re(z1)Re(z1)0.000000Im(z1)Re(z1)w10.000000w1

Im(z1)Im(z1)Re(z1)Im(z2)Re(z2)w20.000000w2

Re(z2)Re(z2)Im(z1)Im(z3)Re(z3)w30.000000w3

Im(z2)Im(z2)Re(z2)-Im(z3)Re(z3)w40.000000w4

Re(z3)Re(z3)Im(z2)-Im(z2)Re(z2)w50.000000w5

Im(z3)Im(z3)Re(z3)-Im(z1)Re(z1)w60.000000w6

Im(z3)

Table 11-14 Comparison of the Storage Effects of Complex-to-Complex and
Complex-to-Real DFTs for Backward Transform

N=8

Output VectorsInput Vectors

real DFTcomplex DFTReal
DFT

Complex DFT

Real DataComplex DataReal
Data

Complex Data

PermPackCCSImaginaryRealImaginaryReal

z0z0z00.000000z0w00.000000w0

2486

11 Intel® Math Kernel Library Reference Manual

N=8

z4Re(z1)0.000000Im(z1)Re(z1)w10.000000w1

Re(z1)Im(z1)Re(z1)Im(z2)Re(z2)w20.000000w2

Im(z1)Re(z2)Im(z1)Im(z3)Re(z3)w30.000000w3

Re(z2)Im(z2)Re(z2)z4w40.000000w4

Im(z2)Re(z3)Im(z2)-Im(z3)Re(z3)w50.000000w5

Re(z3)Im(z3)Re(z3)-Im(z2)Re(z2)w60.000000w6

Im(z3)z4Im(z3)-Im(z1)Re(z1)w70.00000w7

z4

0.000000

N=7

Output VectorsInput Vectors

real DFTcomplex DFTReal
DFT

Complex DFT

Real DataComplex DataReal
Data

Complex Data

PermPackCCSImaginaryRealImaginaryReal

z0z0z00.000000z0w00.000000w0

Re(z1)Re(z1)0.000000Im(z1)Re(z1)w10.000000w1

Im(z1)Im(z1)Re(z1)Im(z2)Re(z2)w20.000000w2

Re(z2)Re(z2)Im(z1)Im(z3)Re(z3)w30.000000w3

2487

Fourier Transform Functions 11

N=7

Im(z2)Im(z2)Re(z2)-Im(z3)Re(z3)w40.000000w4

Re(z3)Re(z3)Im(z2)-Im(z2)Re(z2)w50.000000w5

Im(z3)Im(z3)Re(z3)-Im(z1)Re(z1)w60.000000w6

Im(z3)

Assume that the stride has the default value (unit stride).

This complex conjugate-symmetric vector can be stored in the complex array of size m+1 or
in the real array of size 2m+2 or 2m depending on packed format.

Two-Dimensional Transform

Each of the real-to-complex routines computes the forward DFT of a two-dimensional real
matrix according to the mathematical equation

tk,l = cmplx(rk,l,0), where rk,l is a real input matrix, 0≤k≤m-1, 0 ≤l≤n-1. The mathematical

result zi,j, 0≤i≤m-1, 0≤j≤n-1, is the complex matrix of size (m,n). Each column is the
complex conjugate-symmetric vector as follows:

For even m:

for 0 ≤j≤n-1,

z(m/2+i,j) = conjg(z(m/2-i,j)),1≤i≤m/2-1.

Moreover, z(0,j) and z(m/2,j) are real values for j=0 and j=n/2.

For odd m:

for 0≤j≤n-1,

z(s+i,j) = conjg(z(s-i,j)), 1≤i≤s-1,

2488

11 Intel® Math Kernel Library Reference Manual

where s = floor(m/2).

Moreover, z(0,j) are real values for j=0 and j=n/2.

This mathematical result can be stored in the real two-dimensional array of size:

(m+2,n+2) (CCS format), or

(m,n) (Pack or Perm formats), or

(2*(m/1+1), n) (CCE format, Fortran-interface),

((m, 2*(n/2+1)) (CCE format, C-interface)

or in the complex two-dimensional array of size:

(m/2+1, n) (CCE format, Fortran-interface),

(m, n/2+1) (CCE format, C-interface)

Since the multidimensional array data are arranged differently in Fortran and C (see Strides),
the output array that holds the computational result contains complex conjugate-symmetric
columns (for Fortran) or complex conjugate-symmetric rows (for C).

The following tables give examples of output data layout in Pack format for a forward
two-dimensional real-to-complex DFT of a 6-by-4 real matrix. Note that the same layout is
used for the input data of the corresponding backward complex-to-real DFT.

Table 11-15 Fortran-interface Data Layout for a 6-by-4 Matrix

z(1,3)Im z(1,2)Re z(1,2)z(1,1)

Re z(2,4)Re z(2,3)Re z(2,2)Re z(2,1)

Im z(2,4)Im z(2,3)Im z(2,2)Im z(2,1)

Re z(3,4)Re z(3,3)Re z(3,2)Re z(3,1)

Im z(3,4)Im z(3,3)Im z(3,2)Im z(3,1)

z(4,3)Im z(4,2)Re z(4,2)z(4,1)

For the above example, the stride array is taken to be (0, 1, 6).

Table 11-16 C-interface Data Layout for a 6-by-4 Matrix

z(1,3)Im z(1,2)Re z(1,2)z(1,1)

2489

Fourier Transform Functions 11

Re z(2,3)Im z(2,2)Re z(2,2)Re z(2,1)

Im z(2,3)Im z(3,2)Re z(3,2)Im z(2,1)

Re z(3,3)Im z(4,2)Re z(4,2)Re z(3,1)

Im z(3,3)Im z(5,2)Re z(5,2)Im z(3,1)

z(4,3)Im z(6,2)Re z(6,2)z(4,1)

For the second example, the stride array is taken to be (0, 4, 1).

See also Packed formats.

Three-Dimensional Transform

Each of the real-to-complex routines computes the forward DFT of a three-dimensional real
matrix according to the mathematical equation

tp,l,s = cmplx(rp,l,s,0), where rp,l,s is a real input matrix, 0 ≤ k ≤ m-1, 0 ≤ l ≤ n-1,

0 ≤ s ≤ k-1. The mathematical result zi,j,q, 0 ≤ i ≤ m-1, 0 ≤ j ≤ n-1, 0 ≤ q ≤ k-1
is the complex matrix of size (m,n,k), which is a complex conjugate-symmetric, or conjugate
even, matrix as follows:

zm1,n1,k1 = conjg(zm-m1,n-n1,k-k1), where each dimension is periodic.

This mathematical result can be stored in the real three-dimensional array of size:

(m/2+1,n,k) (CCE format, Fortran-interface),

(m,n,k/2+1) (CCE format, C-interface).

Since the multidimensional array data are arranged differently in Fortran and C (see Strides),
the output array that holds the computational result contains complex conjugate-symmetric
columns (for Fortran) or complex conjugate-symmetric rows (for C).

2490

11 Intel® Math Kernel Library Reference Manual

NOTE. There is one packed format for 3D REAL DFT - CCE format. In both in-place and
out-of-place REAL DFT, for real data, the stride and distance parameters are in REAL
units and for complex data, they are in COMPLEX units. So, elements of input and output
data can be placed in different elements of input-output array of the in-place FFT.

1. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_REAL for conjugate even domain (by
default). It is used for 1D and 2D REAL DFT.

• A typical usage of in-place transform is as follows:

// m = floor(n/2)

REAL :: X(0:2*m+1)

...some other code...

...assuming inplace transform...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj, j = 0,1,...,n-1.

On output,

Output data stored in one of formats: Pack, Perm or CCS (see Packed formats).

CCS format: X(2*k) = Re(zk) , X(2*k+1) = Im(zk) , k = 0,1,...,m.

Pack format:

even n: X(0) = Re(z0), X(2*k-1) = Re(zk), X(2*k) = Im(zk), k = 1,...,m-1,
and X(n-1) = Re(zm)

odd n: X(0) = Re(z0), X(2*k-1) = Re(zk), X(2*k) = Im(zk), k = 1,...,m

Perm format:

even n: X(0) = Re(z0), X(1) = Re(zm), X(2*k) = Re(zk) , X(2*k+1) = Im(zk)
, k = 1,...,m-1,

odd n: X(0) = Re(z0), X(2*k-1) = Re(zk), X(2*k) = Im(zk), k = 1,...,m.

See Example C-16, Example C-17, Example C-18, and Example C-19.

Input and output data exchange the roles in the backward transform.

2491

Fourier Transform Functions 11

• A typical usage of out-of-place transform is as follows:

// m = floor(n/2)

REAL :: X(0:n-1)

REAL :: Y(0:2*m+1)

...some other code...

...assuming out-of-place transform...

Status = DftiComputeForward(Desc_Handle, X, Y)

On input, X(j) = wj, j = 0,1,...,n-1.

On output,

Output data stored in one of formats: Pack, Perm or CCS (see Packed formats).

CCS format: Y(2*k) = Re(zk) , Y(2*k+1) = Im(zk) , k = 0,1,...,m.

Pack format:

even n: Y(0) = Re(z0), Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), k = 1,...,m-1,
and Y(n-1) = Re(zm)

odd n: Y(0) = Re(z0), Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), k = 1,...,m

Perm format:

even n: Y(0) = Re(z0), Y(1) = Re(zm), Y(2*k) = Re(zk) , Y(2*k+1) = Im(zk)
, k = 1,...,m-1,

odd n: Y(0) = Re(z0), Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), k = 1,...,m.

Notice that if the stride of the output array is not set to the default value unit stride, the
real and imaginary parts of one complex element will be placed with this stride.

For example:

CCS format: Y(2*k*s) = Re(zk) , Y((2*k+1)*s) = Im(zk) , k = 0,1, ..., m,
s - stride.

See Example C-16a and Example C-17a.

Input and output data exchange the roles in the backward transform.

2. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_COMPLEX for conjugate even domain. It
is used for 1D, 2D and 3D REAL DFT. The CCE format is set by default. You must explicitly
set the storage scheme in this case, because its value is not the default one.

2492

11 Intel® Math Kernel Library Reference Manual

• A typical usage of in-place transform is as follows:

// m = floor(n/2)

REAL :: X(0:m*2)

...some other code...

...assuming in-place transform...

Status = DftiSetValue(Desc_Handle, DFTI_CONJUGATE_EVEN_STORAGE,
DFTI_COMPLEX_COMPLEX)

...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj, j = 0,1,...,n-1.

On output,

X(2*k) = Re(zk), X(2*k+1) = Im(zk), k = 0,1,...,m.

See Example C-24.

Input and output data exchange the roles in the backward transform.

• A typical usage of out-of-place transform is as follows:

// m = floor(n/2)

REAL :: X(0:n-1)

COMPLEX :: Y(0:m)

...some other code...

...assuming out-of-place transform...

Status = DftiSetValue(Desc_Handle, DFTI_CONJUGATE_EVEN_STORAGE,
DFTI_COMPLEX_COMPLEX)

...

Status = DftiComputeForward(Desc_Handle, X, Y)

On input,

X(j) = wj, j = 0,1,...,n-1.

On output,

Y(k) = zk , k = 0,1,...,m.

2493

Fourier Transform Functions 11

See Example C-24a and Example C-25

Input and output data exchange the roles in the backward transform.

3. DFTI_REAL_COMPLEX for real domain, DFTI_COMPLEX_COMPLEX for conjugate even domain.
It is not used in the current version. See Note in the “DFT Interface” section for details. A
typical usage is as follows:

// m = floor(n/2)

COMPLEX :: X(0:m)

...some other code...

...inplace transform...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj, j = 0,1,...,n-1.

That is, the imaginary parts of X(j) are zero.

On output,

Y(k) = zk, k = 0,1,...,m,

where m is floor(n/2).

Number of user threads

Customer application can be parallelized by using the following techniques:

1. You do not create threads in your application but specify the parallel mode within the DFT
module of Intel MKL. See Intel MKL User's Guide document for more information
on how to do this.

2. You create threads in application yourself and have each thread perform all stages of DFT
implementation including descriptor initialization, DFT computation, and descriptor
deallocation. In this case each descriptor is used only within its corresponding thread.

3. You create threads after initializing the DFT descriptor. This implies that threading is employed
for parallel DFT computation only, and the descriptor is freed after return from the parallel
region. In this case each thread uses the same descriptor.

For the first and second cases listed above, set the parameter DFTI_NUMBER_OF_USER_THREADS
to 1 (its default value), since each particular descriptor instance is used only in a single thread.

2494

11 Intel® Math Kernel Library Reference Manual

In case 3, you must use the DftiSetValue() function to set the
DFTI_NUMBER_OF_USER_THREADS to the actual number of DFT computation threads, because
multiple threads will be using the same descriptor. If this setting is not done, your program
will work incorrectly or fail, since the descriptor contains individual data for each thread.

1. It is not recommended to simultaneously parallelize your program and employ the
Intel MKL internal threading because this will slow down performance. Note that in
case 3 above, DFT computation is automatically initiated in a single threading mode.

2. You must not change the number of threads after the DftiCommitDescriptor()
function completed DFT initialization.

See Example C-26, Example C-27, and Example C-28 in Appendix C.

Input and output distances

DFT interface in Intel MKL allows the computation of multiple number of transforms.
Consequently, the user needs to be able to specify the data distribution of these multiple sets
of data. This is accomplished by the distance between the first data element of the consecutive
data sets. This parameter is obligatory if multiple number is more than one. The parameter is
a value of Integer data type in Fortran and long data type in C. Data sets don't have any
common elements. The following example illustrates the specification. Consider computing the
forward DFT on three 32-length complex sequences stored in X(0:31, 1), X(0:31, 2), and
X(0:31, 3). Suppose the results are to be stored in the locations Y(0:31, k), k = 1, 2, 3,
of the array Y(0:63, 3). Thus the input distance is 32, while the output distance is 64. Notice
that the data and result parameters in computation functions are all declared as assumed-size
rank-1 array DIMENSION(0:*). Therefore two-dimensional array must be transformed to
one-dimensional array by EQUIVALENCE statement or other facilities of Fortran. Here is the
code fragment:
Complex :: X_2D(0:31,3), Y_2D(0:63, 3)

Complex :: X(96), Y(192)

Equivalence (X_2D, X)

Equivalence (Y_2D, Y)

...................

Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,

2495

Fourier Transform Functions 11

DFTI_COMPLEX, 1, 32)

Status = DftiSetValue(Desc_Handle, DFTI_NUMBER_OF_TRANSFORMS, 3)

Status = DftiSetValue(Desc_Handle, DFTI_INPUT_DISTANCE, 32)

Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_DISTANCE, 64)

Status = DftiSetValue(Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiCommitDescriptor(Desc_Handle)

Status = DftiComputeForward(Desc_Handle, X, Y)

Status = DftiFreeDescriptor(Desc_Handle)

Strides

In addition to supporting transforms of multiple number of datasets, DFT interface supports
non-unit stride distribution of data within each data set. The parameter is an array of values
of Integer data type in Fortran and long data type in C. Consider the following situation where

a 32-length DFT is to be computed on the sequence xj, 0≤j<32. The actual location of these
values are in X(5), X(7), ..., X(67) of an array X(1:68). The stride accommodated by
DFT interface consists of a displacement from the first element of the data array L0, (4 in this
case), and a constant distance of consecutive elements L1 (2 in this case). Thus for the Fortran
array X

xj = X(1 + L0 + L1 * j) = X(5 + L1 * j).

2496

11 Intel® Math Kernel Library Reference Manual

This stride vector (4,2) is provided by a length-2 rank-1 integer array:
COMPLEX :: X(68)

INTEGER :: Stride(2)

...................

Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,

DFTI_COMPLEX, 1, 32)

Stride = (/ 4, 2 /)

Status = DftiSetValue(Desc_Handle, DFTI_INPUT_STRIDES, Stride)

Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_STRIDES, Stride)

Status = DftiCommitDescriptor(Desc_Handle)

Status = DftiComputeForward(Desc_Handle, X)

Status = DftiFreeDescriptor(Desc_Handle)

In general, for a d-dimensional transform, the stride is provided by a d+1-length integer vector
(L0, L1, L2, ..., Ld) with the meaning:

L0 = displacement from the first array element

L1 = distance between consecutive data elements in the first dimension

L2 = distance between consecutive data elements in the second dimension

... = ...

Ld = distance between consecutive data elements in the d-th dimension.

A d-dimensional data sequence

Xj1 , j2 , ... , jd
, 0 ≤ ji ≤ J i , 1 ≤ i ≤ d

will be stored in the rank-1 array X by the mapping

Xj1 , j2 , ... , jd
= X (first index + L0 + j1 L1 + j2 L2 + ... + jd Ld) .

For multiple transforms, the value L0 applies to the first data sequence, and Lj, j = 1, 2,...,
d apply to all the data sequences.

In the case of a single one-dimensional sequence, L1 is simply the usual stride. The default
setting of strides in the general multi-dimensional situation corresponds to the case where the
sequences are distributed tightly into the array:

2497

Fourier Transform Functions 11

Both the input data and output data have a stride associated with it. The default is set in
accordance with the data to be stored contiguously in memory in a way that is natural to the
language.

Note that in case of a real FFT, where different formats are available, the default value is not
the one that seems most natural for certain formats. For example, with the CCE format, strides
are set by default to L1 = 1, L2 = J1 for a real transform regardless. However, for a complex
matrix, slightly over half of the matrix is actually stored, and you should set strides to L1 = 1,
L2 = J1/2+1. In case of an in-place transform with the CCE data format, even for a real array,
you should set strides explicitly: L1 = 1, L2 = (J1/2+1)*2.

See Example C-23 as an illustration of how to use the configuration parameters discussed
above. See Storage schemes and Packed formats on how to define arrays for different formats.

Ordering

It is well known that a number of FFT algorithms apply an explicit permutation stage that is
time consuming [4]. The exclusion of this step is similar to applying DFT to input data whose
order is scrambled, or allowing a scrambled order of the DFT results. In applications such as
convolution and power spectrum calculation, the order of result or data is unimportant and
thus permission of scrambled order is attractive if it leads to higher performance. The following
options are available in Intel MKL:

• DFTI_ORDERED: Forward transform data ordered, backward transform data ordered (default
option).

• DFTI_BACKWARD_SCRAMBLED: Forward transform data ordered, backward transform data
scrambled.

Table 11-17 tabulates the effect on this configuration setting.

Table 11-17 Scrambled Order Transform

DftiComputeBackwardDftiComputeForward

Input → OutputInput → OutputDFTI_ORDERING

ordered → orderedordered → orderedDFTI_ORDERED

scrambled → orderedordered → scrambledDFTI_BACKWARD_SCRAMBLED

2498

11 Intel® Math Kernel Library Reference Manual

Note that meaning of the latter two options are "allow scrambled order if practical." There are
situations where in fact allowing out of order data gives no performance advantage, and thus
an implementation may choose to ignore the suggestion. Strictly speaking, the normal order
is also a scrambled order, the trivial one.

Transposition

This is an option that allows for the result of a high-dimensional transform to be presented in
a transposed manner. The default setting is DFTI_NONE and can be set to DFTI_ALLOW. Similar
to that of scrambled order, sometimes in higher dimension transform, performance can be
gained if the result is delivered in a transposed manner. DFT interface offers an option for the
output be returned in a transposed form if performance gain is possible. Since the generic stride
specification is naturally suited for representation of transposition, this option allows the strides
for the output to be possibly different from those originally specified by the user. Consider an
example where a two-dimensional result

Yj1,j2, 0 ≤ ji < ni,

is expected. Originally the user specified that the result be distributed in the (flat) array Y in
with generic strides L1 = 1 and L2 = n1. With the transposition option, the computation may
actually return the result into Y with stride L1 = n2 and L2 = 1. These strides can be obtained
from an appropriate inquiry function. Note also that in dimension 3 and above, transposition
means an arbitrary permutation of the dimension.

Cluster DFT Functions
This section describes the cluster Discrete Fourier Transform (DFT) functions implemented in
Intel MKL (available with Intel® MKL Cluster Edition for Linux* and Windows*).

Starting from version 9.0, Intel MKL provides two versions of cluster DFT interface:

• The new version, which is incompatible with the interfaces implemented in Intel MKL versions
lower than 9.0.

• The interface introduced in Intel MKL 8.1, which is supported for backward compatibility.

This section describes the new version of the cluster DFT interface. Documentation on the elder
version is available on the Web at
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/219843.htm.

The cluster DFT function library was designed to perform Discrete Fourier Transform on a
cluster, that is, a group of computers interconnected via a network. Each computer (node) in
the cluster has its own memory and processor(s). Data interchanges between the nodes are
provided by the network.

2499

Fourier Transform Functions 11

One or more processes may be running in parallel on each cluster node. To organize
communication between different processes, the cluster DFT function library uses Message
Passing Interface (MPI). Given the number of available MPI implementations (for example,
MPICH, Intel® MPI and others), Cluster DFT works with MPI via a message-passing library for
linear algebra, called BLACS, to avoid dependence on a specific MPI implementation.

The cluster Discrete Fourier Transform function library of Intel MKL provides one-dimensional,
two-dimensional, and multi-dimensional (up to the order of 7) routines and both Fortran and
C interfaces for all transform functions.

To develop applications using cluster DFT, you should have basic knowledge of and skills in
MPI programming.

The interfaces for Intel Cluster MKL DFT functions are very similar to the corresponding interfaces
for conventional MKL DFT Functions described earlier in this chapter. You can refer there for
details not explained in this section.

The full list of cluster DFT functions implemented in Intel MKL is given in Table 11-18:

Table 11-18 Cluster DFT Functions in Intel MKL

OperationFunction Name

Descriptor Manipulation Functions

Allocates memory for the descriptor data structure and
instantiates it with default configuration settings.

DftiCreateDescriptorDM

Performs all initialization that facilitates the actual DFT
computation.

DftiCommitDescriptorDM

Frees memory allocated for a descriptor.DftiFreeDescriptorDM

DFT Computation Functions

Computes the forward DFT.DftiComputeForwardDM

Computes the backward DFT.DftiComputeBackwardDM

Descriptor Configuration Functions

Sets one particular configuration parameter with the
specified configuration value.

DftiSetValueDM

Gets the configuration value of one particular
configuration parameter.

DftiGetValueDM

2500

11 Intel® Math Kernel Library Reference Manual

Computing Cluster DFT

The cluster DFT functions described later in this section are implemented in Fortran and C
interface. Fortran stands for Fortran 95.

Cluster DFT computation is performed by DftiComputeForwardDM and
DftiComputeBackwardDM functions, called in a program using MPI, which will be referred to
as MPI program. After an MPI program starts, a number of processes is created. MPI identifies
each process by its rank. The processes are independent of one another and communicate via
MPI. A function called in an MPI program is invoked in all the processes. Each process figures
out what to do using its rank. Input or output data for a cluster DFT transform is a sequence
of complex values. A cluster DFT computation function operates local part of the input data,
i.e. some part of the data to be operated in a particular process, as well as generates local part
of the output data. Each process performs its part of computations. Running in parallel and
communicating through MPI, the processes perform the entire DFT computation. DFT
computations using Intel MKL cluster DFT functions, should typically be effected by a number
of steps listed below:

1. Initiate MPI by calling MPI_Init in C/C++ or MPI_INIT in Fortran (the function must be
called prior to calling any DFT function and any MPI function).

2. Allocate memory for the descriptor by calling DftiCreateDescriptorDM.

3. Specify a value(s) of configuration parameters by a call(s) to DftiSetValueDM.

4. Obtain values of configuration parameters needed to create local data arrays; the values
are retrieved by calls to DftiGetValueDM.

5. Perform initialization that facilitates DFT computation by a call to DftiCommitDescriptorDM.

6. Create arrays for local parts of input and output data and fill the local part of input data with
values (For more information, see Distributing Data among Processes.)

7. Compute the transform by calling DftiComputeForwardDM or DftiComputeBackwardDM.

8. Gather local output data into the global array using MPI functions or employ the data
otherwise.

9. Release memory allocated for a descriptor by a call to DftiFreeDescriptorDM.

10. Finalize communication through MPI by calling MPI_Finalize in C/C++ or MPI_FINALIZE
in Fortran (the function must be called after the last call to a cluster DFT function and the
last call to an MPI function).

Several code examples of using the cluster DFT interface functions in the “Examples for Cluster
DFT Functions” section in Appendix C illustrate cluster DFT computations.

2501

Fourier Transform Functions 11

Distributing Data among Processes

Intel MKL cluster DFT stores all input and output multi-dimensional arrays (matrices) in
one-dimensional arrays (vectors). The arrays are stored in the row-major order in C/C++ and
in the column-major order in Fortran. For example, a two-dimensional matrix A of size (m,n)
will be stored in a vector B of size m*n so that

• B[i*n+j]=A[i][j] in C/C++ (i=0, ... , m-1, j=0, ... , n-1)

• B(j*m+i)=A(i,j) in Fortran (i=1, ... , m, j=1, ... , n).

NOTE. Order of FFT dimensions is the same as the order of array dimensions in the
programming language. For example, a 3-dimensional FFT with Lengths=(m,n,l) can
be computed over an array Ar[m][n][l] in C/C++ or AR(m,n,l) in Fortran.

All MPI processes involved in cluster DFT computation operate their own portions of data. These
local arrays make up the virtual global array that the fast Fourier transform is applied to. It is
your responsibility to properly allocate local arrays (if needed), fill them with initial data and
gather resulting data into an actual global array or process the resulting data otherwise. To be
able do this, you should grasp how the virtual global array is composed of the local ones.

Multi-dimensional transforms

If the dimension of transform is greater than one, cluster DFT splits data in the dimension
whose index changes most slowly, so that the parts contain all elements with several consecutive
values of this index. It is the first dimension in C and the last one in Fortran. If the global array
is two-dimensional, in C, it gives each process several consecutive rows. The term “rows” will
be used regardless of the array dimension and programming language. Local arrays are placed
in memory allocated for the virtual global array consecutively, in the order determined by
process ranks. For example, in case of two processes, during the computation of a
three-dimensional transform whose matrix has size (11,15,12), the processes may store local
arrays of sizes (6,15,12) and (5,15,12), respectively.

Let p be the number of MPI processes and the matrix of a transform to be computed have size
(m,n,l). Then, in C, each MPI process will work with local data array of size (mq , n, l), where

Σmq=m, q=0, ... , p-1. Local input arrays should contain appropriate parts of the actual global
input array. Then local output arrays will contain appropriate parts of the actual global output
array. You can figure out which particular rows of the global array the local array should contain

2502

11 Intel® Math Kernel Library Reference Manual

from the following configuration parameters of the cluster DFT interface: CDFT_LOCAL_NX,
CDFT_LOCAL_START_X, and CDFT_LOCAL_SIZE. To retrieve values of the parameters, you
should use the DftiGetValueDM function:

• CDFT_LOCAL_NX specifies how many rows of the global array the current process receives.

• CDFT_LOCAL_START_X specifies which row of the global input or output array corresponds
to the first row of the local input or output array. If A is a global array and L is the appropriate
local array, then

– L[i][j][k]=A[i+cdft_local_start_x][j][k], where i=0, ... ,mq-1, j=0, ...

, n-1, k=0, ... ,l-1 for C/C++

– L(i,j,k)=A(i,j,k+cdft_local_start_x-1), where i=1, ... ,mq , j=1, ... ,

n, k=1, ... ,l for Fortran.

Example C-29 in Appendix C shows how cluster DFT distributes data among processes for a
two-dimensional FFT computation.

One-dimensional transforms

In this case, initial and resulting data are distributed among processes differently and even the
number of elements stored in a particular process after the transform may vary compared with
the one before the transform. Each local array stores a segment of consecutive elements of
the appropriate global array. Such segment may be determined by the number of elements
and a shift with respect to the first array element. So, to specify segments of the global input
and output arrays that a particular process receives, four configuration parameters are needed.
In addition to CDFT_LOCAL_NX, and CDFT_LOCAL_START_X, the parameters CDFT_LOCAL_OUT_NX
and CDFT_LOCAL_OUT_START_X have meaningful values, which can be also retrieved using
DftiGetValueDM. The meaning of the four configuration parameters depends upon the type
of the transform, as shown in Table 11-19:

Table 11-19 Data Distribution Configuration Parameters for 1D Transforms

Backward TransformForward TransformMeaning of the Parameter

CDFT_LOCAL_OUT_NXCDFT_LOCAL_NXNumber of elements in input
array

CDFT_LOCAL_OUT_START_XCDFT_LOCAL_START_XElements shift in input array

CDFT_LOCAL_NXCDFT_LOCAL_OUT_NXNumber of elements in output
array

2503

Fourier Transform Functions 11

Backward TransformForward TransformMeaning of the Parameter

CDFT_LOCAL_START_XCDFT_LOCAL_OUT_START_XElements shift in output array

Memory size for local data

The memory size needed for local arrays cannot be just calculated from CDFT_LOCAL_NX
(CDFT_LOCAL_OUT_NX), as cluster DFT sometimes requires allocating a little bit more memory
for local data than just the size of the appropriate sub-array. The configuration parameter
CDFT_LOCAL_SIZE specifies the size of the local input and output array in data elements. In
the current implementation of cluster DFT interface, data elements are complex values, consisting
of a real and imaginary parts. Each of the local input and output arrays must have size not less
than CDFT_LOCAL_SIZE*size_of_element. If you employ a user-defined workspace for in-place
transforms (for more information, refer to Table 11-20), it must have the same size. Example
C-30 in Appendix C illustrates how cluster DFT distributes data among processes in case of a
one-dimensional FFT computation effected with a user-defined workspace.

Available Auxiliary Functions

If a global input array is located on one MPI process or you want to gather the global output
array on one MPI process, you can use functions MKL_CDFT_ScatterData and
MKL_CDFT_GatherData to distribute or gather data among processes, respectively. These
functions are defined in a file that is delivered with the Intel MKL Cluster Edition product and
located in the following subdirectory of the Intel MKL installation directory:
examples/cdftc/examples_support.c for C/C++ and examples/cdftf/examples_support.f90 for
Fortran.

Restriction on Lengths of Transforms

The algorithm that cluster DFT uses to distribute data among processes imposes a restriction
on lengths of transforms with respect to the number of MPI processes used for the DFT
computation:

• For a multi-dimensional transform, lengths of the first two dimensions in C/C++ or of the
last two dimensions in Fortran must be not less than the number of MPI processes.

• Length of a one-dimensional transform must be the product of two integers each of which
is not less than the number of MPI processes.

2504

11 Intel® Math Kernel Library Reference Manual

Non-compliance with the restriction causes an error CDFT_SPREAD_ERROR (refer to Error Codes
for details). To achieve the compliance, you can change the transform lengths and/or the
number of MPI processes, which is specified at start of an MPI program. MPI-2 enables changing
the number of processes during execution of an MPI program.

NOTE. The best performance of a one-dimensional FFT is reached when the transform
length L is a square of an integer number: L=N2.

Cluster DFT Interface

NOTE. Cluster DFT interface implemented in Intel MKL 9.0 is incompatible with previous
versions. For details, refer to Intel MKL Release Notes.

To use the cluster DFT functions, you need to access the module MKL_CDFT through the "use"
statement in Fortran; or access the header file mkl_cdfti.h through "include" in C/C++.

The Fortran interface provides a derived type DFTI_DESCRIPTOR_DM; a number of named
constants representing various names of configuration parameters and their possible values;
and a number of overloaded functions through the generic functionality of Fortran 95.

The C interface provides a structure type DFTI_DESCRIPTOR_DM_HANDLE and a number of
functions, some of which accept a different number of input arguments.

To provide communication between parallel processes through MPI, the following include
statement must be also present in your code:

• Fortran:

INCLUDE "mpif.h"

(for some MPI versions, "mpif90.h" header may be used instead).

• C/C++:

#include "mpi.h"

There are three main categories of the cluster DFT functions in Intel MKL:

2505

Fourier Transform Functions 11

1. Descriptor Manipulation. There are three functions in this category. The first one,
DftiCreateDescriptorDM, creates a DFT descriptor whose storage is allocated dynamically
by the routine. The second, DftiCommitDescriptorDM, "commits" the descriptor to all its
settings. The third function, DftiFreeDescriptorDM, frees up all the memory allocated
for the descriptor information.

2. DFT Computation. There are two functions in this category. The first one,
DftiComputeForwardDM, effects a forward DFT computation, and the second function,
DftiComputeBackwardDM, performs a backward DFT computation.

3. Descriptor Configuration. There are two functions in this category. One function,
DftiSetValueDM, sets one specific configuration value to one of the many configuration
parameters. The other, DftiGetValueDM, gets the current value of any of these configuration
parameters, all of which are readable. These parameters, though many, are handled one
at a time.

Descriptor Manipulation Functions

There are three functions in this category: create a descriptor, commit a descriptor, and free
a descriptor.

CreateDescriptorDM
Allocates memory for the descriptor data structure
and instantiates it with default configuration
settings.

Syntax

Fortran:

Status = DftiCreateDescriptorDM(comm, handle, v1, v2, dim, size)

Status = DftiCreateDescriptorDM(comm, handle, v1, v2, dim, sizes)

C/C++:

status = DftiCreateDescriptorDM(comm, &handle, v1, v2, dim, size);

status = DftiCreateDescriptorDM(comm, &handle, v1, v2, dim, sizes);

Input Parameters

MPI communicator, e.g. MPI_COMM_WORLD.comm

2506

11 Intel® Math Kernel Library Reference Manual

Precision.v1

Type of forward domain. Must be DFTI_COMPLEX for
the current version.

v2

Dimension of transform.dim

Length of transform in a one-dimensional case.size

Lengths of transform in a multi-dimensional case.sizes

Output Parameters

Pointer to the handle of transform. If the function
completes successfully, the pointer to the created
handle is stored in the variable.

handle

Description

This function allocates memory in a particular MPI process for the descriptor data structure and
instantiates it with default configuration settings with respect to the precision, domain,
dimension, and length of the desired transform. The domain is understood to be the domain
of the forward transform. The result is a pointer to the created descriptor. This function is
slightly different from the "initialization" routine DftiCommitDescriptorDM in more traditional
software packages or libraries used for computing DFT. In all likelihood, this function will not
perform any significant computation work such as twiddle factors computation, as the default
configuration settings can still be changed using the function DftiSetValueDM.

The precision is specified through named constants provided in the interface for the configuration
values. The choices for precision are DFTI_SINGLE and DFTI_DOUBLE. It corresponds to precision
of input data, output data, and computation. A setting of DFTI_SINGLE indicates single-precision
floating-point data type and a setting of DFTI_DOUBLE indicates double-precision floating-point
data type.

Dimension is a simple positive integer indicating the dimension of the transform. In C/C++
context, length is a single integer value of type long for one-dimensional transforms or an
array of integers of type long for multi-dimensional transforms. In Fortran context, length is
an integer or an array of integers.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. In this case, the pointer to
the created handle is stored in handle. If the function fails, it returns a value of another error
class constant (for the list of constants, refer to the Error Codes section).

2507

Fourier Transform Functions 11

Interface and Prototype
! Fortran Interface

INTERFACE DftiCreateDescriptorDM

INTEGER(4) FUNCTION DftiCreateDescriptorDMn(C,H,P1,P2,D,L)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: H

INTEGER(4) C,P1,P2,D,L(*)

END FUNCTION

INTEGER(4) FUNCTION DftiCreateDescriptorDM1(C,H,P1,P2,D,L)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: H

INTEGER(4) C,P1,P2,D,L

END FUNCTION

END INTERFACE

/* C/C++ prototype */

long DftiCreateDescriptorDM(MPI_Comm,DFTI_DESCRIPTOR_DM_HANDLE*,

enum DFTI_CONFIG_VALUE,enum DFTI_CONFIG_VALUE,long,...);

CommitDescriptorDM
Performs all initialization that facilitates the actual
DFT computation.

Syntax

Fortran:

Status = DftiCommitDescriptorDM(handle)

C/C++:

status = DftiCommitDescriptorDM(handle);

2508

11 Intel® Math Kernel Library Reference Manual

Input Parameters

Valid handle obtained from DftiCreateDescriptorDM.handle

Description

The cluster DFT interface requires a function that commits a previously created descriptor be
invoked before the descriptor can be used for DFT computations in a particular MPI process.
The DftiCommitDescriptorDM function performs all initialization that facilitates the actual
DFT computation. For a modern implementation, it may involve exploring many different
factorizations of the input length to search for highly efficient computation method.

Any changes of configuration parameters of a committed descriptor via the set value function
(see Descriptor Configuration) requires a re-committal of the descriptor before a computation
function can be invoked. Typically, this committal function call is immediately followed by a
computation function call (see DFT Computation).

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it
returns a value of another error class constant (for the list of constants, refer to the Error Codes
section).

Interface and Prototype
! Fortran Interface

INTERFACE DftiCommitDescriptorDM

INTEGER(4) FUNCTION DftiCommitDescriptorDM(handle);

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: handle

END FUNCTION

END INTERFACE

/* C/C++ prototype */

long DftiCommitDescriptorDM(DFTI_DESCRIPTOR_DM_HANDLE handle);

2509

Fourier Transform Functions 11

FreeDescriptorDM
Frees memory allocated for a descriptor.

Syntax

Fortran:

Status = DftiFreeDescriptorDM(handle)

C/C++:

status = DftiFreeDescriptorDM(&handle);

Input Parameters

Valid handle obtained from DftiCreateDescriptorDM.handle

Output Parameters

Descriptor handle. Memory allocated for the handle is
released on output.

handle

Description

This function frees up all memory allocated for a descriptor in a particular MPI process. Call the
DftiFreeDescriptorDM function to delete the descriptor handle. Upon successful completion
of DftiFreeDescriptorDM the descriptor handle is no longer valid.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it
returns a value of another error class constant (for the list of constants, refer to the Error Codes
section).

2510

11 Intel® Math Kernel Library Reference Manual

Interface and Prototype
! Fortran Interface

INTERFACE DftiFreeDescriptorDM

INTEGER(4) FUNCTION DftiFreeDescriptorDM(handle)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: handle

END FUNCTION

END INTERFACE

/* C/C++ prototype */

long DftiFreeDescriptorDM(DFTI_DESCRIPTOR_DM_HANDLE *handle);

DFT Computation Functions

There are two functions in this category: compute the forward transform and compute the
backward transform.

ComputeForwardDM
Computes the forward Discrete Fourier Transform.

Syntax

Fortran:

Status = DftiComputeForwardDM(handle, in_X, out_X)

Status = DftiComputeForwardDM(handle, in_out_X)

C/C++:

status = DftiComputeForwardDM(handle, in_X, out_X);

status = DftiComputeForwardDM(handle, in_out_X);

2511

Fourier Transform Functions 11

Input Parameters

Valid descriptor handle.handle

Local part of input data. Array of complex values.
Refer to the Distributing Data among Processes section
on how to allocate and initialize the array.

in_X, in_out_X

Output Parameters

Local part of output data. Array of complex values.
Refer to the Distributing Data among Processes section
on how to allocate the array.

out_X, in_out_X

Description

As soon as a descriptor is configured and committed successfully, actual computation of DFT
can be performed. The DftiComputeForwardDM function computes the forward DFT.

Forward DFT is the transform using the factor e-i2π/n. The computation is carried out by calling

the DftiComputeForward function. So, the functions have very much in common and details
not explicitly mentioned below, can be found in the description of DftiComputeForward.

The valid descriptor handle is created by DftiCreateDescriptorDM and committed by
DftiCommitDescriptorDM. Configuration parameters that the descriptor handle passes to the
function are listed in Table 11-21.

Local part of input data, as well as local part of the output data, is an appropriate sequence of
complex values (each complex value consists of two real numbers: real part and imaginary
part) that a particular process stores. See the Distributing Data among Processes section for
details.

The choices for precision of input and output data are the same as those for precision of
transform: a setting of DFTI_SINGLE indicates single-precision floating-point data type and a
setting of DFTI_DOUBLE indicates double-precision floating-point data type.

The configuration parameter DFTI_PLACEMENT informs the function whether the computation
should be in-place. If the value of this parameter is DFTI_INPLACE (default), you should call
the function with two parameters, otherwise you should supply three parameters. If
DFTI_PLACEMENT = DFTI_INPLACE and three parameters are supplied, then the third parameter
will be ignored.

2512

11 Intel® Math Kernel Library Reference Manual

CAUTION. Even in case of an out-of-place transform, local array of input data in_X
may be changed. To save data, make its copy before calling DftiComputeForwardDM.

In case of an in-place transform, DftiComputeForwardDM will dynamically allocate and then
deallocate a work buffer of the same size as the local input/output array requires.

NOTE. You can specify your own workspace of the same size through the configuration
parameter CDFT_WORKSPACE to avoid redundant memory allocation.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it
returns a value of another error class constant (for the list of constants, refer to the Error Codes
section).

2513

Fourier Transform Functions 11

Interface and Prototype
! Fortran Interface

INTERFACE DftiComputeForwardDM

INTEGER(4) FUNCTION DftiComputeForwardDM(h, in_X, out_X)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

COMPLEX(8), DIMENSION(*) :: in_x, out_X

END FUNCTION DftiComputeForwardDM

INTEGER(4) FUNCTION DftiComputeForwardDMi(h, in_out_X)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

COMPLEX(8), DIMENSION(*) :: in_out_X

END FUNCTION DftiComputeForwardDMi

INTEGER(4) FUNCTION DftiComputeForwardDMs(h, in_X, out_X)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

COMPLEX(4), DIMENSION(*) :: in_x, out_X

END FUNCTION DftiComputeForwardDMs

INTEGER(4) FUNCTION DftiComputeForwardDMis(h, in_out_X)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

COMPLEX(4), DIMENSION(*) :: in_out_X

END FUNCTION DftiComputeForwardDMis

END INTERFACE

/* C/C++ prototype */

long DftiComputeForwardDM(DFTI_DESCRIPTOR_DM_HANDLE handle, void *in_X,...);

2514

11 Intel® Math Kernel Library Reference Manual

ComputeBackwardDM
Computes the backward Discrete Fourier
Transform.

Syntax

Fortran:

Status = DftiComputeBackwardDM(handle, in_X, out_X)

Status = DftiComputeBackwardDM(handle, in_out_X)

C/C++:

status = DftiComputeBackwardDM(handle, in_X, out_X);

status = DftiComputeBackwardDM(handle, in_out_X);

Input Parameters

Valid descriptor handle.handle

Local part of input data. Array of complex values.
Refer to the Distributing Data among Processes section
on how to allocate and initialize the array.

in_X, in_out_X

Output Parameters

Local part of output data. Array of complex values.
Refer to the Distributing Data among Processes section
on how to allocate the array.

out_X, in_out_X

Description

As soon as a descriptor is configured and committed successfully, actual computation of DFT
can be performed. The DftiComputeBackwardDM function computes the backward DFT.

Backward DFT is the transform using the factor ei2π/n. The computation is carried out by calling

the DftiComputeBackward function. So, the functions have very much in common and details
not explicitly mentioned below, can be found in the description of DftiComputeBackward.

The valid descriptor handle is created by DftiCreateDescriptorDM and committed by
DftiCommitDescriptorDM. Configuration parameters that the descriptor handle passes to the
function are listed in Table 11-21.

2515

Fourier Transform Functions 11

Local part of input data, as well as local part of the output data, is an appropriate sequence of
complex values (each complex value consists of two real numbers: real part and imaginary
part) that a particular process stores. See the Distributing Data among Processes section for
details.

The choices for precision of input and output data are the same as those for precision of
transform: a setting of DFTI_SINGLE indicates single-precision floating-point data type and a
setting of DFTI_DOUBLE indicates double-precision floating-point data type.

The configuration parameter DFTI_PLACEMENT informs the function whether the computation
should be in-place. If the value of this parameter is DFTI_INPLACE (default), you should call
the function with two parameters, otherwise you should supply three parameters. If
DFTI_PLACEMENT = DFTI_INPLACE and three parameters are supplied, then the third parameter
will be ignored.

CAUTION. Even in case of an out-of-place transform, local array of input data in_X
may be changed. To save data, make its copy before calling DftiComputeBackwardDM.

In case of an in-place transform, DftiComputeBackwardDM will dynamically allocate and then
deallocate a work buffer of the same size as the local input/output array requires.

NOTE. You can specify your own workspace of the same size through the configuration
parameter CDFT_WORKSPACE to avoid redundant memory allocation.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it
returns a value of another error class constant (for the list of constants, refer to the Error Codes
section).

2516

11 Intel® Math Kernel Library Reference Manual

Interface and Prototype
! Fortran Interface

INTERFACE DftiComputeBackwardDM

INTEGER(4) FUNCTION DftiComputeBackwardDM(h, in_X, out_X)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

COMPLEX(8), DIMENSION(*) :: in_x, out_X

END FUNCTION DftiComputeBackwardDM

INTEGER(4) FUNCTION DftiComputeBackwardDMi(h, in_out_X)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

COMPLEX(8), DIMENSION(*) :: in_out_X

END FUNCTION DftiComputeBackwardDMi

INTEGER(4) FUNCTION DftiComputeBackwardDMs(h, in_X, out_X)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

COMPLEX(4), DIMENSION(*) :: in_x, out_X

END FUNCTION DftiComputeBackwardDMs

INTEGER(4) FUNCTION DftiComputeBackwardDMis(h, in_out_X)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

COMPLEX(4), DIMENSION(*) :: in_out_X

END FUNCTION DftiComputeBackwardDMis

END INTERFACE

/* C/C++ prototype */

long DftiComputeBackwardDM(DFTI_DESCRIPTOR_DM_HANDLE handle, void *in_X,...);

Descriptor Configuration Functions

There are two functions in this category: the value setting function DftiSetValueDM sets one
particular configuration parameter to an appropriate value, the value getting function
DftiGetValueDM reads the values of one particular configuration parameter.

2517

Fourier Transform Functions 11

Some configuration parameters used by cluster DFT functions originate from the conventional
DFT interface (see Configuration Settings subsection in the “DFT Functions” section for details).

Other parameters are specific for cluster DFT. Integer values of these configuration parameters
have type long in C/C++ and INTEGER(4) in Fortran. The exact type of the configuration
parameters being floating-point scalars is float or double in C/C++ and REAL(4) or REAL(8)
in Fortran. The configuration parameters whose values are identified by named constants have
the enum type in C/C++ and INTEGER in Fortran. They are defined in the mkl_cdft.h header
file in C/C++ and MKL_CDFT module in Fortran.

Names the CDFT-specific configuration parameters have prefix CDFT.

SetValueDM
Sets one particular configuration parameter with
the specified configuration value.

Syntax

Fortran:

Status = DftiSetValueDM (handle, param, value)

C/C++:

status = DftiSetValueDM (handle, param, value);

Input Parameters

Valid descriptor handle.handle

Name of a parameter to be set up in the descriptor
handle. See Table 11-20 for the list of available
names.

param

Value of a parameter.value

Description

This function sets one particular configuration parameter with the specified configuration value.
The configuration parameter is one of the named constants listed in the table below, and the
configuration value is the corresponding appropriate type. See Configuration Settings for details
of the meaning of the setting.

2518

11 Intel® Math Kernel Library Reference Manual

Table 11-20 Settable Configuration Parameters

Default
value

DescriptionType of parameterNamed constant

1.0Scale factor of forward
transform.

Floating-point scalarDFTI_FORWARD_SCALE

1.0Scale factor of backward
transform.

Floating-point scalarDFTI_BACKWARD_SCALE

DFTI_INPLACEPlacement of the computation
result.

Named constantDFTI_PLACEMENT

DFTI_ORDEREDScrambling of data order.Named constantDFTI_ORDERING

NULL
(allocate
workspace
dynamically).

Auxiliary buffer, a user-defined
workspace. Enables saving
memory during in-place
computations.

Array of an
appropriate type

DFTI_WORKSPACE

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it
returns a value of another error class constant (for the list of constants, refer to the Error Codes
section).

2519

Fourier Transform Functions 11

Interface and Prototype
! Fortran Interface

INTERFACE DftiSetValueDM

INTEGER(4) FUNCTION DftiSetValueDM(h, p, v)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

INTEGER(4) :: p, v

END FUNCTION

INTEGER(4) FUNCTION DftiSetValueDMd(h, p, v)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

INTEGER(4) :: p

REAL(8) :: v

END FUNCTION

INTEGER(4) FUNCTION DftiSetValueDMs(h, p, v)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

INTEGER(4) :: p

REAL(4) :: v

END FUNCTION

INTEGER(4) FUNCTION DftiSetValueDMsw(h, p, v)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

INTEGER(4) :: p

COMPLEX(4) :: v(*)

END FUNCTION

INTEGER(4) FUNCTION DftiSetValueDMdw(h, p, v)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

INTEGER(4) :: p

COMPLEX(8) :: v(*)

END FUNCTION

END INTERFACE

2520

11 Intel® Math Kernel Library Reference Manual

/* C/C++ prototype */

long DftiSetValueDM(DFTI_DESCRIPTOR_DM_HANDLE handle, int param,...);

GetValueDM
Gets the configuration value of one particular
configuration parameter.

Syntax

Fortran:

Status = DftiGetValueDM(handle, param, value)

C/C++:

status = DftiGetValueDM(handle, param, &value);

Input Parameters

Valid descriptor handle.handle

Name of a parameter to be retrieved from the
descriptor handle. See Table 11-21 for the list of
available names.

param

Output Parameters

Value of the parameter.value

Description

This function gets the configuration value of one particular configuration parameter. The
configuration parameter is one of the named constants listed in the table below, and the
configuration value is the corresponding appropriate type, which can be a named constant or
a native type. Possible values of the named constants can be found in Table 11-6.

2521

Fourier Transform Functions 11

Table 11-21 Retrievable Configuration Parameters

DescriptionType of parameterNamed Constant

Precision of computation, input data and
output data.

Named constantDFTI_PRECISION

Dimension of the transformInteger scalarDFTI_DIMENSION

Array of lengths of the transform.
Number of lengths corresponds to the
dimension of the transform.

Array of integer valuesDFTI_LENGTHS

Scale factor of forward transform.Floating-point scalarDFTI_FORWARD_SCALE

Scale factor of backward transform.Floating-point scalarDFTI_BACKWARD_SCALE

Placement of the computation result.Named constantDFTI_PLACEMENT

Shows whether descriptor has been
committed.

Named constantDFTI_COMMIT_STATUS

Forward domain of transforms (In the
current implementation of the cluster DFT
interface, the value is always
DFTI_COMPLEX.).

Named constantDFTI_FORWARD_DOMAIN

Scrambling of data order.Named constantDFTI_ORDERING

MPI communicator used for transforms.Type of MPI
communicator

CDFT_MPI_COMM

Necessary size of input, output, and
buffer arrays in data elements.

Integer scalarCDFT_LOCAL_SIZE

Row/element number of the global array
that corresponds to the first row/element
of the local array. For more information,
see Distributing Data among Processes.

Integer scalarCDFT_LOCAL_X_START

2522

11 Intel® Math Kernel Library Reference Manual

DescriptionType of parameterNamed Constant

The number of rows/elements of the
global array stored in the local array. For
more information, see Distributing Data
among Processes.

Integer scalarCDFT_LOCAL_NX

Element number of the appropriate global
array that corresponds to the first
element of the input or output local array
in a 1D case. For details, see Distributing
Data among Processes.

Integer scalarCDFT_LOCAL_OUT_X_START

The number of elements of the
appropriate global array that are stored
in the input or output local array in a 1D
case. For details, see Distributing Data
among Processes.

Integer scalarCDFT_LOCAL_OUT_NX

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it
returns a value of another error class constant (for the list of constants, refer to the Error Codes
section).

2523

Fourier Transform Functions 11

Interface and Prototype
! Fortran Interface

INTERFACE DftiGetValueDM

INTEGER(4) FUNCTION DftiGetValueDM(h, p, v)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

INTEGER(4) :: p, v

END FUNCTION

INTEGER(4) FUNCTION DftiGetValueDMar(h, p, v)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

INTEGER(4) :: p, v(*)

END FUNCTION

INTEGER(4) FUNCTION DftiGetValueDMd(h, p, v)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

INTEGER(4) :: p

REAL(8) :: v

END FUNCTION

INTEGER(4) FUNCTION DftiGetValueDMs(h, p, v)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

INTEGER(4) :: p

REAL(4) :: v

END FUNCTION

END INTERFACE

/* C/C++ prototype */

long DftiGetValueDM(DFTI_DESCRIPTOR_DM_HANDLE handle, int param,...);

2524

11 Intel® Math Kernel Library Reference Manual

Error Codes

All the cluster DFT functions return an integer value denoting the status of the operation. These
values are identified by named constants. Each function returns DFTI_NO_ERROR if no errors
were encountered during execution. Otherwise, a function generates an error code. In addition
to DFT error codes, CDFT has its own ones. Names of the CDFT-specific named constants have
prefix “CDFT”. Table 11-22 lists error codes that cluster DFT functions may return.

Table 11-22 Error Codes that Cluster DFT Functions Return

CommentsNamed Constants

No error.DFTI_NO_ERROR

Usually associated with memory allocation.DFTI_MEMORY_ERROR

Invalid settings of one or more configuration parameters.DFTI_INVALID_CONFIGURATION

Inconsistent configuration or input parameters.DFTI_INCONSISTENT_CONFIGURATION

Number of OMP threads in the computation function is not
equal to the number of OMP threads in the initialization stage
(commit function).

DFTI_NUMBER_OF_THREADS_ERROR

Usually associated with OMP routine's error return value.DFTI_MULTITHREADED_ERROR

Descriptor is unusable for computation.DFTI_BAD_DESCRIPTOR

Unimplemented legitimate settings; implementation
dependent.

DFTI_UNIMPLEMENTED

Internal library error.DFTI_MKL_INTERNAL_ERROR

Length of one of dimensions exceeds 232 -1 (4 bytes).DFTI_1D_LENGTH_EXCEEDS_INT32

Data cannot be distributed (For more information, see
Distributing Data among Processes.)

CDFT_SPREAD_ERROR

MPI error. Occurs when calling MPI.CDFT_MPI_ERROR

2525

Fourier Transform Functions 11

12Interval Linear Solvers

Intel® MKL Interval Linear solver routines that can be used for:

– solving systems of interval linear equations Ax = b with an interval matrix A = (aij) and interval
right-hand side vector b = (bi);

– checking properties of interval matrices.

For more information on key concepts of interval linear systems, see Appendix A, “Linear Solvers Basics”.

Routines described below are subdivided according to the problems they solve into the following groups:

Routines for Fast Solution of Interval Systems

Routines for Sharp Solution of Interval Systems

Routines for Inverting Interval Matrices

Routines for Checking Properties of Interval Matrices

Auxiliary and Utility Routines

Table 12-1 contains the full list of Intel MKL routines for solving interval linear systems.

Table 12-1 Intel MKL Interval Linear Solver Routines

DescriptionRoutine Name

Solves a triangular system of interval linear equations by backward substitution procedure.?trtrs
Solves a system of interval linear equations by interval Gauss method.?gegas
Solves a system of interval linear equations by interval Householder method.?gehss
Solves a system of interval linear equations by Krawczyk iteration method.?gekws
Solves a system of interval linear equations by interval Gauss-Seidel iteration.?gegss
Solves a system of interval linear equations by Hansen-Bliek-Rohn procedure.?gehbs
Solves a system of interval linear equations by a parameter partitioning method.?gepps
Solves a system of interval linear equations by a solution partitioning method.?gepss
Computes inverse interval matrix to a triangular interval matrix.?trtri
Computes inverse interval matrix by Schulz interval iterative procedure.?geszi
Tests regularity of an interval matrix by Ris-Beeck and Rex-Rohn criteria?gerbr
Tests regularity/singularity of an interval matrix by Rump and Rex-Rohn singular value criteria.?gesvr
Performs midpoint-inverse preconditioning of an interval linear system.?gemip

2527

Routine Naming Conventions
For the routines introduced below, the LAPACK-like naming conventions are used. Specifically,
all the routine names have the structure xxyyzzz, where the first letters xx indicate the data
types:

real interval, single precisionsi

real interval, double precisiondi

complex rectangular interval, single precisioncr

complex rectangular interval, double precisionzr

complex circular interval, single precisioncc

complex circular interval, double precisionzc

The third and fourth letters yy indicate the matrix type:

generalge

triangulartr

The last three letters zzz indicate the computational procedure performed by the routine:

backward substitution solver for triangular interval linear systemstrs

interval Gauss solver for interval linear systemsgas

interval Householder solver for interval linear systemshss

iterative Krawczyk solver for interval linear systemskws

interval Gauss-Seidel iteration solver for interval linear systemsgss

Hansen-Bliek-Rohn solver for interval linear systemshbs

parameter partitioning method-based solver for interval linear systemspps

solution partitioning method-based solver for interval linear systemspss

inverting triangular interval matrix based on backward substitutiontri

inverting general interval matrix by Schulz iterative methodszi

testing regularity/singularity of interval matrix by Ris-Beeck criterionrbr

testing regularity/singularity of interval matrix by Rump and Rex-Rohn
singular value criteria

svr

midpoint-inverse preconditioning of interval linear systemmip

2528

12 Intel® Math Kernel Library Reference Manual

The question mark in the routine group name corresponds to different character codes indicating
the data type (si, di, cr, zr, cc, or zc). For example, ?trtri denotes the group name for
either of the routines sitrtri, ditrtri, crtrtri, zrtrtri, cctrtri, or zctrtri.

Routines for Fast Solution of Interval Systems

?trtrs
Solves a triangular system of interval linear
equations by backward substitution procedure.

Syntax

call sitrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

call ditrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

call crtrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

call zrtrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

call cctrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

call zctrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

Description

The routine ?trtrs solves for X the following systems of interval linear equations with a
triangular matrix A and multiple right-hand sides stored in B:

AX = B, if trans = 'N'

ATX = B, if trans = 'T'

AHX = B, if trans = 'C' (for complex matrices only).

The routine implements backward substitution algorithm and produces optimal enclosures of
the solution sets to interval linear systems, which is due to the simple structure of the matrix
A.

Input Parameters

CHARACTER(1). Must be one of 'U' , 'L' , 'u', or 'l'.uplo
Indicates whether A is upper or lower triangular.
If uplo = 'U' or 'u', then A is upper triangular.

2529

Interval Linear Solvers 12

If uplo = 'L' or 'l', then A is lower triangular.

CHARACTER(1). Must be one of 'N', 'T', 'C', 'n', 't', or 'c'.trans
If trans = 'N' or 'n', then AX = B is solved for X.
If trans = 'T' or 't', then ATX = B is solved for X.
If trans = 'C' or 'c', then AHX = B is solved for X.

CHARACTER(1). Must be one of 'N', 'U', 'n', or 'u'.diag
If diag = 'N' or 'n', then A is not a unit triangular matrix.
If diag = 'U' or 'u', then A is unit triangular: diagonal elements of
A are assumed to be 1 and not referenced in the array a.

INTEGER. The order of A, the number of rows in B (n≥0).n

INTEGER. The number of right-hand sides (nrhs≥0).nrhs

S_INTERVAL for sitrtrs.a, b
D_INTERVAL for ditrtrs.
CR_INTERVAL for crtrtrs.
ZR_INTERVAL for zrtrtrs.
CC_INTERVAL for cctrtrs.
ZC_INTERVAL for zctrtrs.
Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.
The array b contains the matrix B , whose columns are the right-hand
sides for the systems of equations. The second dimension of a must
be at least max(1,n) and the second dimension of b must be at least
max(1,nrhs).

INTEGER. The first dimension of a, lda ≥ max(1, n).lda

INTEGER. The first dimension of b, ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER.info
If info = 0, the execution is successful.
If info > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

2530

12 Intel® Math Kernel Library Reference Manual

?gegas
Solves a system of interval linear equations by
interval Gauss method.

Syntax

call sigegas(trans, n, nrhs, a, lda, b, ldb, info)

call digegas(trans, n, nrhs, a, lda, b, ldb, info)

call crgegas(trans, n, nrhs, a, lda, b, ldb, info)

call zrgegas(trans, n, nrhs, a, lda, b, ldb, info)

call ccgegas(trans, n, nrhs, a, lda, b, ldb, info)

call zcgegas(trans, n, nrhs, a, lda, b, ldb, info)

Description

The routine ?gegas uses the interval Gauss method to compute an enclosure of the solution
set to the following interval linear system of equations:

AX = B, if trans = 'N'

ATX = B, if trans = 'T'

AHX = B, if trans = 'C' (for complex matrices only).

Input Parameters

CHARACTER(1). Must be one of 'N', 'T', 'C', 'n', 't', or 'c'.trans
Indicates the form of the equations system:
If trans = 'N' or 'n', then AX = B is solved for X.
If trans = 'T' or 't', then ATX = B is solved for X.
If trans = 'C' or 'c', then AHX = B is solved for X.

INTEGER. The order of A, the number of rows in B(n ≥ 0).n

INTEGER. The number of right-hand sides (nrhs ≥ 0).nrhs

REAL for sigegas.a, b
DOUBLE PRECISION for digegas.
Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.

2531

Interval Linear Solvers 12

The array b contains the matrix B, whose columns are the right-hand
sides for the systems of equations.
The second dimension of a must be at least max(1,n) and the second
dimension of b must be at least max(1,nrhs).

INTEGER. The first dimension of a, lda ≥ max(1, n).lda

INTEGER. The first dimension of b, ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER.info
If info = 0, the execution is successful.
If info > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Example 12-1 Fortran 90 Code for Interval Gauss Method

The following piece of Fortran code presents an example of using the routine digegas to
compute, by an interval Gauss method, an enclosure of the solution set to the interval linear
system of equations:

2532

12 Intel® Math Kernel Library Reference Manual

--

.

USE INTERVAL_ARITHMETIC

.

TYPE(D_INTERVAL) :: A(2,2), B(2)

INTEGER :: N, INFO

CHARACTER(1) :: TRANS = 'n'

.

N = 2

A(1,1) = DINTERVAL(2.,3.); A(1,2) = DINTERVAL(0.,1.)

A(2,1) = DINTERVAL(1.,2.); A(2,2) = DINTERVAL(2.,3.)

B(1,1) = DINTERVAL(0.,120.); B(2,1) = DINTERVAL(60.,240.)

.

CALL DIGEGAS(TRANS, N, 1, A, 2, B, 2, INFO)

--

Note that assigning double-precision intervals to the entries of the matrix A and right-hand side
vector B is carried out by DINTERVAL function supplied by INTERVAL_ARITHMETIC module.

?gehss
Solves a system of interval linear equations by
interval Householder method.

Syntax

call sigehss(trans, n, nrhs, a, lda, b, ldb, info)

call digehss(trans, n, nrhs, a, lda, b, ldb, info)

Description

The routine ?gehss uses the interval Householder method to compute an enclosure of the
solution set to the following interval linear system of equations:

AX = B, if trans = 'N',

2533

Interval Linear Solvers 12

ATX = B, if trans = 'T' or 'C'.

Input Parameters

CHARACTER(1). Must be one of 'N', 'T', 'C', 'n', 't', or 'c'.trans
Indicates the form of the equations system:
If trans = 'N' or 'n', then AX = B is solved for X.
If trans = 'T' or 'C' or 't'or 'c', then ATX = B is solved for X.

INTEGER. The order of A, the number of rows in B (n ≥ 0).n

INTEGER. The number of right-hand sides (nrhs ≥ 0).nrhs

REAL for sigehss.a, b
DOUBLE PRECISION for digehss.
Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.
The array b contains the matrix B, whose columns are the right-hand
sides for the systems of equations.
The second dimension of a must be at least max(1,n) and the second
dimension of b must be at least max(1,nrhs).

INTEGER. The first dimension of a, lda ≥ max(1, n).lda

INTEGER. The first dimension of b, ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by an enclosure of the solution matrix X.b

INTEGER.info
If info = 0, the execution is successful.
If info > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

2534

12 Intel® Math Kernel Library Reference Manual

?gekws
Solves a system of interval linear equations by
Krawczyk iteration method.

Syntax

call sigekws(trans, n, nrhs, a, lda, b, ldb, epsilon, info)

call digekws(trans, n, nrhs, a, lda, b, ldb, epsilon, info)

call crgekws(trans, n, nrhs, a, lda, b, ldb, epsilon, info)

call zrgekws(trans, n, nrhs, a, lda, b, ldb, epsilon, info)

call ccgekws(trans, n, nrhs, a, lda, b, ldb, epsilon, info)

call zcgekws(trans, n, nrhs, a, lda, b, ldb, epsilon, info)

Description

The routine ?gekws uses the Krawczyk interval iteration to compute an enclosure of the solution
set to the following interval linear system of equations:

AX = B, if trans = 'N'

ATX = B, if trans = 'T'

AHX = B, if trans = 'C' (for complex matrices only).

Input Parameters

CHARACTER(1). Must be one of 'N', 'T', 'C', 'n', 't', or 'c'.trans
Indicates the form of the equations system:
If trans = 'N' or 'n', then AX = B is solved for X.
If trans = 'T' or 't', then ATX = B is solved for X.
If trans = 'C' or 'c', then AHX = B is solved for X.

INTEGER. The order of A, the number of rows in B (n ≥ 0).n

INTEGER. The number of right-hand sides (nrhs ≥ 0).nrhs

S_INTERVAL for sigekws.a, b
D_INTERVAL for digekws.
CR_INTERVAL for crgekws.
ZR_INTERVAL for zrgekws.

2535

Interval Linear Solvers 12

CC_INTERVAL for ccgekws.
ZC_INTERVAL for zcgekws.
Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.
The array b contains the matrix B, whose columns are the right-hand
sides for the systems of equations.

INTEGER. The first dimension of a, lda ≥ max(1, n).lda

INTEGER. The first dimension of b, ldb ≥ max(1, n).ldb

REAL for sigekws, crgekws, and ccgekws.epsilon
DOUBLE PRECISION for digekws, zrgekws, and zcgekws.
The prescribed accuracy of the estimate.

Output Parameters

Overwritten by an enclosure of the solution matrix X.b

INTEGER.info
If info = 0, the execution is successful.
If info > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

Krawczyk interval iteration already incorporates midpoint inverse preconditioning, so that
additional application of ?gemip routines is not necessary and does not improve the overall
efficiency.

2536

12 Intel® Math Kernel Library Reference Manual

?gegss
Solves a system of interval linear equations by
interval Gauss-Seidel iteration.

Syntax

call sigegss(trans, n, nrhs, a, lda, b, ldb, encl, epsilon, nits, info)

call digegss(trans, n, nrhs, a, lda, b, ldb, encl, epsilon, nits, info)

call crgegss(trans, n, nrhs, a, lda, b, ldb, encl, epsilon, nits, info)

call zrgegss(trans, n, nrhs, a, lda, b, ldb, encl, epsilon, nits, info)

call ccgegss(trans, n, nrhs, a, lda, b, ldb, encl, epsilon, nits, info)

call zcgegss(trans, n, nrhs, a, lda, b, ldb, encl, epsilon, nits, info)

Description

The routine ?gegss uses the interval Gauss-Seidel iteration to compute an enclosure of a
portion of the solution set to the following interval linear system of equations:

AX = B, if trans = 'N'

ATX = B, if trans = 'T'

AHX = B, if trans = 'C' (for complex matrices only).

See in Appendix C of this manual for example code on using this routine.

Input Parameters

CHARACTER(1). Must be one of 'N', 'T', 'C', 'n', 't', or 'c'.trans
Indicates the form of the equations system:
If trans = 'N' or 'n', then AX = B is solved for X.
If trans = 'T' or 't', then ATX = B is solved for X.
If trans = 'C' or 'c', then AHX = B is solved for X.

INTEGER. The order of A, the number of rows in B (n ≥ 0).n

INTEGER. The number of right-hand sides (nrhs ≥ 0).nrhs

S_INTERVAL for sigegss.a, b
D_INTERVAL for digegss.
CR_INTERVAL for crgegss.

2537

Interval Linear Solvers 12

ZR_INTERVAL for zrgegss.
CC_INTERVAL for ccgegss.
ZC_INTERVAL for zcgegss.
Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.
The array b contains the matrix B, whose columns are the right-hand
sides for the systems of equations.

INTEGER. The first dimension of a, lda≥ max(1, n).lda

INTEGER. The first dimension of b, ldb≥ max(1, n).ldb

S_INTERVAL for sigegss.encl
D_INTERVAL for digegss.
CR_INTERVAL for crgegss.
ZR_INTERVAL for zrgegss.
CC_INTERVAL for ccgegss.
ZC_INTERVAL for zcgegss.
Array: encl (ldb,*).
The array encl defines the interval box bounding the portion of the
solution set that the routine estimates.

REAL for sigegss, crgegss, and ccgegss.epsilon
DOUBLE PRECISION for digegss, zrgegss, and zcgegss.
The prescribed accuracy of the esimate.

INTEGER. The number of Gauss-Seidel iterations alloted, nits ≥ 0.nits

Output Parameters

Overwritten by an enclosure of the solution matrix X.b

INTEGER.info
If info = 0, the execution is successful.
If info= i > 0, then the diagonal element a(i,i) of the matrix
contains zero. The execution of the routine did not fail, but it is
recommended to interchange the rows and/or columns of the matrix
so as to exclude zero-containing elements from its main diagonal.
If info = -i, the i-th parameter has an illegal value.

2538

12 Intel® Math Kernel Library Reference Manual

Application Notes

Interval Gauss-Seidel iteration is a local solver of interval linear systems, which means that
it is mainly intended for computing enclosures of portions of the solution set bounded by a
given interval box in the space Rn.

If the goal is to compute, by ?gegss, an enclosure of the entire solution set to an interval linear
system of equations, then its initial (crude) enclosure should be provided through enclargument.

?gehbs
Solves a system of interval linear equations by
Hansen-Bliek-Rohn procedure.

Syntax

call sigehbs(trans, n, a, lda, b, ldb, info)

call digehbs(trans, n, a, lda, b, ldb, info)

Description

The routine ?gehbs uses the Hansen-Bliek-Rohn procedure to compute an enclosure of the
solution set to the following interval linear system of equations:

AX = B, if trans = 'N',

ATX = B, if trans = 'T' or 'C'.

See in Appendix C of this manual for example code on using this routine.

Input Parameters

CHARACTER(1). Must be one of 'N', 'T', 'C', 'n', 't', or 'c'.trans
Indicates the form of the equations system:
If trans = 'N' or 'n', then AX = B is solved for X.
If trans = 'T' or 'C' or 't'or 'c', then ATX = B is solved for X.

INTEGER. The order of A, the number of rows in B (n ≥ 0).n

REAL for sigehbs.a, b
DOUBLE PRECISION for digehbs.
Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.

2539

Interval Linear Solvers 12

The array b contains the matrix B, whose columns are the right-hand
sides for the systems of equations.

INTEGER. The first dimension of a, lda ≥ max(1, n).lda

INTEGER. The first dimension of b, ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the solution matrix X.b

INTEGER.info
If info = 0, the execution is successful.
If info > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

If the middle matrix of A is not close to a diagonal matrix, then the midpoint inverse
preconditioning by ?gemip routine may be necessary to correct the interval linear system and
yield better results.

Routines for Sharp Solution of Interval Systems

?gepps
Solves a system of interval linear equations by a
parameter partitioning method.

Syntax

call sigepps(trans, n, a, lda, b, ldb, cmpt, mode, estm, epsilon, nits, info)

call digepps(trans, n, a, lda, b, ldb, cmpt, mode, estm, epsilon, nits, info)

Description

The routine ?gepps uses the parameter partitioning (PPS) method to compute some (or all) of
the sharp outer component-wise estimates of the solution set to the following interval linear
system of equations:

AX = B, if trans = 'N',

2540

12 Intel® Math Kernel Library Reference Manual

ATX = B, if trans = 'T' or 'C'.

Input Parameters

CHARACTER(1). Must be one of 'N', 'T', 'C', 'n', 't', or 'c'.trans
Indicates the form of the equations system:
If trans = 'N' or 'n', then AX = B is solved for X.
If trans = 'T' or 'C' or 't'or 'c', then ATX = B is solved for X.

INTEGER. The order of A, the number of rows in B (n ≥ 0).n

REAL for sigepps.a, b
DOUBLE PRECISION for digepps.
Arrays: a (lda,*), b (ldb).
The array a contains the matrix A.
The array b contains the vector B of the right-hand sides for the system
of equations.

INTEGER. The first dimension of a, lda ≥ max(1, n).lda

INTEGER. The first dimension of b, ldb ≥ max(1, n).ldb

INTEGER. The number of the component of the solution set to be
estimated.

cmpt

CHARACTER(1). Must be either 'L' or 'U'(or the corresponding
lowercase letters).

mode

Indicates how to estimate the solution set along the coordinate direction
specified by the parameter cmpt:
if mode = 'L' or 'l', then the routine computes the lower estimate
of the solution set over the cmpt-th coordinate;
if mode = 'U' or 'u', then the routine computes the upper estimate
of the solution set over the cmpt-th coordinate.

REAL for sigepps.epsilon
DOUBLE PRECISION for digepps.
The prescribed accuracy of the estimate.

INTEGER. The number of iterations of the PPS algorithm alloted, nits

≥ 0.

nits

Output Parameters

REAL for sigepps.estm

2541

Interval Linear Solvers 12

DOUBLE PRECISION for digepps.
Estimate of the solution set along the coordinate axis with the number
cmpt. if mode = 'L', then estm represents the lower estimate of the
solution set. if mode = 'U', then estm is equal to the upper estimate
of the solution set.

The actual precision of the estimate.epsilon

The number of iterations that the algorithm actually executed.nits

INTEGER.info
If info = 0, the execution is successful.
If info = i > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

Routines ?gepps and ?gepss implement two mutually dual algorithms for computing optimal
estimates of the solution sets to interval linear systems, which use adaptive partitioning of
either parameter set or solution set of the system. The choice of either of these methods should
be based on the specific features of the problem under solution such as the number of essentially
interval parameters, the shape of the solution set, and so on.

For example, if the interval system has few interval parameters, then PPS-method is preferable,
while PSS-method works better for systems that have simple shape of the solution set.

Computing optimal (or sharp) enclosures of the solution sets to interval linear systems, as well
as enclosures that are guaranteed to be sharp within a prescribed accuracy, is known to be an
NP-hard problem.

Therefore, a good choice of the parameters epsilon and nits becomes crucial for effective
work of ?gepps and ?gepss routines and for producing desired results.

With this in mind, the recommendation is to organize the whole solution process with ?gepps
or ?gepss interactively as a sequence of routine calls, starting from a moderate nits and a
rough epsilon and then increasing nits and reducing epsilon until ?gepps or ?gepss still
complete their execution.

2542

12 Intel® Math Kernel Library Reference Manual

?gepss
Solves a system of interval linear equations by a
solution partitioning method.

Syntax

call sigepss(trans, n, a, lda, b, ldb, cmpt, mode, estm, epsilon, nits, info)

call digepss(trans, n, a, lda, b, ldb, cmpt, mode, estm, epsilon, nits, info)

Description

The routine ?gepss uses the (PSS) method to compute a sharp outer component-wise estimate,
along a prescribed coordinate axis, of the solution set to the following interval linear system of
equations:

AX = B, if trans = 'N',

ATX = B, if trans = 'T' or 'C'.

Input Parameters

CHARACTER(1). Must be one of 'N', 'T', 'C', 'n', 't', or 'c'.trans
Indicates the form of the equations system:
If trans = 'N' or 'n', then AX = B is solved for X.
If trans = 'T' or 'C' or 't'or 'c', then ATX = B is solved for X.

INTEGER. The order of A, the number of rows in B (n≥0).n

REAL for sigepss.a, b
DOUBLE PRECISION for digepss.
Arrays: a (lda,*), b (ldb).
The array a contains the matrix A.
The array b contains the vector B of the right-hand sides for the system
of equations to be solved.

INTEGER. The first dimension of a, lda≥ max(1, n).lda

INTEGER. The first dimension of b, ldb≥ max(1, n).ldb

INTEGER. The number of the component of the solution set to be
estimated.

cmpt

CHARACTER(1). Must be either 'L' or 'U'(or the corresponding
lowercase letters).

mode

2543

Interval Linear Solvers 12

Indicates how to estimate the solution set along the coordinate direction
specified by the parameter cmpt:
if mode = 'L' or 'l', then the routine computes the lower estimate
of the solution set over the cmpt-th coordinate;
if mode = 'U' or 'u', then the routine computes the upper estimate
of the solution set over the cmpt-th coordinate.

REAL for sigepss.epsilon
DOUBLE PRECISION for digepss.
The prescribed accuracy of the esimate for the solution set.

INTEGER. The number of iterations of the PSS algorithm alloted, nits≥0.nits

Output Parameters

REAL for sigepss.estm
DOUBLE PRECISION for digepss.
Estimate of the solution set along the coordinate axis with the number
cmpt. if mode = 'L', then estm represents the lower estimate of the
solution set. if mode = 'U', then estm is equal to the upper estimate
of the solution set.

The actual precision of the estimate estm.epsilon

INTEGER. The number of iterations that the algorithm actually executed.nits

INTEGER.info
If info = 0, the execution is successful.
If info = i > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value and the routine
outputs the corresponding message.

Application Notes

Routines ?gepps and ?gepss implement two mutually dual algorithms for computing optimal
estimates of the solution sets to interval linear systems, which use adaptive partitioning of
either parameter set or solution set of the system. The choice of either of these methods should
be based on the specific features of the problem under solution such as the number of essentially
interval parameters, the shape of the solution set, and so on.

For example, if the interval system has few interval parameters, then PPS-method is preferable,
while PSS-method works better for systems that have simple shape of the solution set.

2544

12 Intel® Math Kernel Library Reference Manual

Computing optimal (or sharp) enclosures of the solution sets to interval linear systems, as well
as enclosures that are guaranteed to be sharp within a prescribed accuracy, is known to be an
NP-hard problem.

Therefore, a good choice of the parameters epsilon and nits becomes crucial for effective
work of ?gepps and ?gepss routines and for producing desired results.

With this in mind, the recommendation is to organize the whole solution process with ?gepps
or ?gepss interactively as a sequence of routine calls, starting from a moderate nits and a
rough epsilon and then increasing nits and reducing epsilon until ?gepps or ?gepss still
complete their execution.

Example 12-2 Fortran 90 Code for Parameter Partitioning (PPS)Method

Consider a sample problem that requires computing a sharp lower estimate (to within the
accuracy of, say, 1.E-4), along the first coordinate direction, of the solution set to the interval
linear system

The problem can be solved by the following Fortran code that implements parameter partitioning
method (PPS-method) and uses sigepps routine:

2545

Interval Linear Solvers 12

--

.

USE INTERVAL_ARITHMETIC

.

INTEGER, PARAMETER :: LDA = 3, LDB = 3

INTEGER :: NITS, CMPT, INFO, I, J

CHARACTER(1) :: MODE = 'L'

REAL(4) :: EPS, ESTM

TYPE(S_INTERVAL) :: A(3,3), B(3)

.

DO I = 1, 3

DO J = 1, 3

IF(I/=J) THEN

A(I,J) = SINTERVAL(0.,2.)

ELSE

A(I,J) = SINTERVAL(3.5)

END IF

B(I) = SINTERVAL(-1.,1.)

END DO

END DO

CMPT = 1

NITS = 100

EPS= 1.E-4

.

CALL SIGEPPS('n', 3, A, LDA, B, LDB, CMPT, MODE, ESTM, EPS, NITS, INFO)

--

2546

12 Intel® Math Kernel Library Reference Manual

To guarantee the completion of the algorithm, the value of the parameter NITS is set equal to
100 (iterations), which is enough for the above specific example. Note that assigning
single-precision intervals to the entries of the matrix A and right-hand side vector B is carried
out by SINTERVAL function supplied by INTERVAL_ARITHMETIC module.

Routines for Inverting Interval Matrices

?trtri
Computes inverse interval matrix to a triangular
interval matrix.

Syntax

call sitrtri(uplo, diag, n, a, lda, info)

call ditrtri(uplo, diag, n, a, lda, info)

call crtrtri(uplo, diag, n, a, lda, info)

call zrtrtri(uplo, diag, n, a, lda, info)

call cctrtri(uplo, diag, n, a, lda, info)

call zctrtri(uplo, diag, n, a, lda, info)

Description

The routine ?trtri computes an interval enclosure of the inverse A-1 of an interval triangular
matrix A.

This routine implements a backward substitution algorithm and produces optimal enclosures
of the inverse interval matrix, which is due to the simple structure of the matrix to be inverted.

Input Parameters

CHARACTER(1). Must be one of 'U' , 'L' , 'u', or 'l'.uplo
Indicates whether A is upper or lower triangular.
If uplo = 'U' or 'u', then A is upper triangular.
If uplo = 'L' or 'l', then A is lower triangular.

CHARACTER(1). Must be one of 'N', 'U', 'n', or 'u'.diag
If diag = 'N' or 'n', then A is not a unit triangular matrix.

2547

Interval Linear Solvers 12

If diag = 'U' or 'u', then A is unit triangular: diagonal elements of
A are assumed to be 1 and not referenced in the array a.

INTEGER. The order of the matrix A (n ≥ 0).n

S_INTERVAL for sitrtri.a
D_INTERVAL for ditrtri.
CR_INTERVAL for crtrtri.
ZR_INTERVAL for zrtrtri.
CC_INTERVAL for cctrtri.
ZC_INTERVAL for zctrtri.
Array: DIMENSION (lda,*).
Contains the matrix A.
The second dimension of a must be at least max(1, n).

INTEGER. The first dimension of a, lda ≥ max(1, n).lda

Output Parameters

Overwritten by an interval n-by-n matrix that encloses the inverse
matrix A-1.

a

INTEGER.info
If info = 0, the execution was successful.
If info = -i, the i-th parameter has an illegal value.
If info = i, the i-th diagonal element of A contains zero, A is singular,
and its inversion could not be completed.

?geszi
Computes inverse interval matrix by Schulz
iterative method.

Syntax

call sigeszi(n, a, lda, info)

call digeszi(n, a, lda, info)

Description

For a general interval square matrix A, the routine ?geszi computes an enclosure of the inverse
interval matrix A-1 by the Schulz iterative method.

2548

12 Intel® Math Kernel Library Reference Manual

See in Appendix C of this manual for example code on using this routine.

Input Parameters

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sigeszi.a
DOUBLE PRECISION for digeszi.
Array: DIMENSION (lda,*).
Contains the matrix A.
The second dimension of a must be at least max(1, n).

INTEGER. The first dimension of a, lda ≥ max(1, n).lda

Output Parameters

Overwritten by an enclosure of the inverse interval matrix A-1.a

INTEGER.info
If info = 0, the execution is successful.
If info = i > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

Schulz iteration implemented in ?geszi routine converges only provided that the interval matrix
A is not “too wide”. Otherwise, when Schulz iteration diverges, the result is set equal to the
interval matrix with the elements [-infty,+infty], where infty is computer infinity of the
corresponding kind.

Routines for Checking Properties of Interval Matrices

?gerbr
Tests regularity of an interval matrix by Ris-Beeck
and Rex-Rohn criteria.

Syntax

call sigerbr(n, a, lda, sr, reg, info)

call digerbr(n, a, lda, sr, reg, info)

2549

Interval Linear Solvers 12

Description

The routine ?gerbr checks whether a general interval square matrix A is regular or singular
by using a combination of Ris-Beeck spectral criterion and Rex-Rohn test.

Input Parameters

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sigerbr.a
DOUBLE PRECISION for digerbr.
Array: DIMENSION (lda,*).
Contains the matrix A.
The second dimension of a must be at least max(1, n).

INTEGER. The first dimension of a, lda ≥ max(1, n).lda

Output Parameters

REAL for sigerbr.sr
DOUBLE PRECISION for digerbr.
An upper estimate of the spectral radius of the matrix (|(mid A)-1|
· rad A).
This is an additional information about the matrix A, which is crucial
for the so-called strong regularity of A.

INTEGER. Displays the results of the singularity test.reg
If reg > 0, then A is regular.
If reg < 0, then A is singular.
If reg = 0, then the result is undetermined, that is, the test was not
sufficiently sensitive to detect whether the matrix A is regular or
singular.

INTEGER.info
If info = 0, the execution is successful.
If info = i > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

The test implemented in the routine ?gerbr is rather crude, and in critical cases further
investigation of the matrix A is recommended. However, the routine may help to determine
(by comparing the value of sr with 1) whether an interval matrix is strongly regular or not.

2550

12 Intel® Math Kernel Library Reference Manual

?gesvr
Tests regularity/singularity of an interval matrix
by Rump and Rex-Rohn singular value criteria.

Syntax

call sigesvr(n, a, lda, msr, rsr, reg, info)

call digesvr(n, a, lda, msr, rsr, reg, info)

Description

The routine ?gesvr checks whether a general interval square matrix A is regular or singular
by using Rump and Rex-Rohn singular value criteria.

Input Parameters

INTEGER. The order of the matrix A (n ≥ 0).n

REAL for sigesvr.a
DOUBLE PRECISION for digesvr.
Array: DIMENSION (lda,*).
Contains the matrix A.
The second dimension of a must be at least max(1, n).

INTEGER. The first dimension of a, lda ≥ max(1, n).lda

Output Parameters

S_INTERVAL for sigesvr.msr, rsr
D_INTERVAL for digesvr.
Additional information about the matrix A.
The intervals represent the ranges of the singular spectra of the
midpoint matrix and radius matrix, respectively.

INTEGER. Displays results of the singularity test.reg
If reg > 0, then A is regular.
If reg < 0, then A is singular.
If reg = 0, then the result is undetermined, that is, the test was not
sufficiently sensitive to detect whether the matrix A is regular or
singular.

INTEGER.info

2551

Interval Linear Solvers 12

If info = 0, the execution is successful.
If info = i > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

The routine ?gesvr implements a test that is only a sufficient condition for a matrix to be either
regular or singular. This means that in some boundary cases the test may prove not sensitive
enough to determine whether a given matrix is regular or singular, and the routine returns reg
= 0 on output.

Example 12-3 Fortran 90 Code for Testing Regularity of Interval Matrix
by Singular Value Criteria

To test regularity of the interval matrix

by singular value criteria, the following piece of Fortran 90 code may be helpful:

--

.

USE INTERVAL_ARITHMETIC

.

INTEGER, PARAMETER :: LDA = 2, N = 2

TYPE(D_INTERVAL) :: A(LDA,N), MSR, RSR

INTEGER :: REG, INFO

.

A(1,1) = DINTERVAL(2.,4.); A(1,2) = DINTERVAL(-2.,1.)

A(2,1) = DINTERVAL(-1.,2.); A(2,2) = DINTERVAL(2.,4.)

.

CALL DIGESVR(N, A, LDA, MSR, RSR, REG, INFO)

--

2552

12 Intel® Math Kernel Library Reference Manual

Mutual disposition of the intervals MSR and RSR on the real axis can serve to some extent as a
measure of how large the regularity margin is (in case of MSR > RSR), or how far the matrix is
from the regular ones (in case of MSR < RSR).

Auxiliary and Utility Routines

?gemip
Performs midpoint-inverse preconditioning of an
interval linear system.

Syntax

call sigemip(n, nrhs, a, lda, b, ldb, info)

call digemip(n, nrhs, a, lda, b, ldb, info)

call crgemip(n, nrhs, a, lda, b, ldb, info)

call zrgemip(n, nrhs, a, lda, b, ldb, info)

call ccgemip(n, nrhs, a, lda, b, ldb, info)

call zcgemip(n, nrhs, a, lda, b, ldb, info)

Description

The routine ?gemip performs midpoint-inverse preconditioning of the interval linear system AX
= B. This is done through multiplying both matrices A and B by the midpoint-inverse matrix
(mid A)-1 in computer (rounded) interval arithmetic.

Input Parameters

INTEGER. The order of the matrix A.n

INTEGER. The number of right-hand sides (nrhs ≥ 0).nrhs

S_INTERVAL for sigemip.a, b
D_INTERVAL for digemip.
CR_INTERVAL for crgemip.
ZR_INTERVAL for zrgemip.
CC_INTERVAL for ccgemip.
ZC_INTERVAL for zcgemip.

2553

Interval Linear Solvers 12

Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.
The array b contains the matrix B, whose columns are the right-hand
sides for the systems of equations.
The second dimension of a must be at least max(1,n) and the second
dimension of b must be at least max(1,nrhs).

INTEGER. The first dimension of a, lda ≥ max(1, n).lda

INTEGER. The first dimension of b, ldb ≥ max(1, n).ldb

Output Parameters

Overwritten by the preconditioned matrix A.a

Overwritten by the preconditioned matrix B.b

INTEGER.info
If info = 0, the execution is successful.
If info > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

Preconditioning may sometimes extend applicability of the algorithms for the solution of interval
linear systems and/or improve the quality of the results produced by these algorithms.

In particular, interval Gauss method, interval Householder method and interval Gauss-Seidel
iteration applied to interval linear systems with “wide” matrices that are not diagonally dominant
should be preceded by preconditioning to yield better results. For Hansen-Bliek-Rohn procedure,
the midpoint-inverse preconditioning is recommended if the middle matrix of the system is far
from diagonal.

Example 12-4 Fortran 90 Code for Preconditioning Interval Linear
System

The following piece of Fortran code presents an example of how you can perform preconditioning
of the interval linear system

2554

12 Intel® Math Kernel Library Reference Manual

and then solve it by using the interval Gauss method:

--

.

USE INTERVAL_ARITHMETIC

.

TYPE(D_INTERVAL) :: A(2,2), B(2,2)

INTEGER :: N = 2, NRHS = 2, LDA = 2, LDB = 2, INFO

CHARACTER(1) :: TRANS = 'n'

.

A(1,1) = DINTERVAL(2.,4.); A(1,2) = DINTERVAL(-2.,1.)

A(2,1) = DINTERVAL(-1.,2.); A(2,2) = DINTERVAL(2.,4.)

B(1,1) = DINTERVAL(0.,2.); B(2,1) = DINTERVAL(0.,2.)

B(1,2) = DINTERVAL(-2.,2.); B(2,2) = DINTERVAL(-2.,2.)

.

CALL DIGEMIP(N, NRHS, A, LDA, B, LDB, INFO)

CALL DIGEGAS(TRANS, N, NRHS, A, LDA, B, LDB, INFO)

--

For more code examples on using this routine, see in Appendix C of this manual .

2555

Interval Linear Solvers 12

13Partial Differential Equations
Support

Intel® Math Kernel Library (Intel® MKL) provides tools for solving Partial Differential Equations (PDE).
These tools are Trigonometric Transform interface routines (see Trigonometric Transform Routines) and
Poisson Library (see Poisson Library Routines).

Poisson Library is designed for fast solving of simple Helmholtz, Poisson, and Laplace problems. The
Trigonometric Transform interface, which underlies the solver, is, in turn, based on Intel MKL DFT interface
(refer to Fourier Transform Functions), optimized for Intel® processors.

Direct use of the Trigonometric Transform routines may be helpful to those who have already implemented
their own solvers similar to the one that the Poisson Library provides. As it may be hard enough to modify
the original code so as to make it work with Poisson Library, you are encouraged to use fast sine, cosine,
and staggered cosine transforms implemented in the Trigonometric Transform interface to improve
performance of your solver.

Both Trigonometric Transform and Poisson Library routines can be called from C and Fortran-90, although
the interfaces description uses C convention. Fortran-90 users can find routine calls specifics in the “Calling
PDE Support Routines from Fortran-90” section.

Trigonometric Transform Routines
In addition to Discrete Fourier Transform (DFT) interface, described in chapter “ Fast Fourier
Transforms”, Intel® MKL supports the Real Discrete Trigonometric Transforms interface referred to
as TT interface. The interface implements a group of routines (TT routines) used to compute sine,
cosine, and staggered cosine transforms. TT interface provides much flexibility of use: you can adjust
routines to your particular needs at the cost of manual tuning routine parameters or just call routines
with default parameter values. Current Intel MKL implementation of TT interface can be used in
solving partial differential equations and contains routines that are helpful for Fast Poisson and similar
solvers.

To describe Intel MKL TT interface, C convention will be used. Fortran users should refer to Calling
PDE Support Routines from Fortran-90.

For the list of Trigonometric Transforms currently implemented in Intel MKL TT interface, see
Transforms Implemented.

Transforms Implemented

TT routines allow computing the following transforms:

Forward sine transform

2557

Backward sine transform

Forward cosine transform

Backward cosine transform

Forward staggered cosine transform

Backward staggered cosine transform

2558

13 Intel® Math Kernel Library Reference Manual

NOTE. The size of the transform n must be even. Current implementation of
Trigonometric Transforms does not support transforms of odd size.

Sequence of Invoking TT Routines

Computation of a transform using TT interface is conceptually divided into four steps each of
which is performed via a dedicated routine. Table 13-1 lists names of the routines and briefly
describes their purpose and use.

Most of TT routines have versions operating with single-precision and double-precision data.
Names of such routines begin respectively with “s” and “d”. The wildcard “?” stands for either
of these symbols in routine names.

Table 13-1 TT Interface Routines

DescriptionRoutine

Initializes basic data structures of Trigonometric
Transforms.

?_init_trig_transform

Checks consistency and correctness of user-defined
data as well as creates a data structure to be used
by Intel MKL DFT interface1.

?_commit_trig_transform

Computes a forward/backward Trigonometric
Transform of a specified type using the appropriate
formula (see Transforms Implemented).

?_forward_trig_transform

?_backward_trig_transform

Cleans the memory used by a data structure needed
for calling DFT interface1.

free_trig_transform

1TT routines call Intel MKL DFT interface for better performance.

To find once a transformed vector for a particular input vector, the Intel MKL TT interface
routines are normally invoked in the order in which they are listed in Table 13-1.

NOTE. Though the order of invoking TT routines may be changed, it is highly
recommended to follow the above order of routine calls.

2559

Partial Differential Equations Support 13

The diagram in Figure 13-1 indicates the typical order in which TT interface routines can be
invoked in a general case (prefixes and suffixes in routine names are omitted).

Figure 13-1 Typical Order of Invoking TT Interface Routines

A general scheme of using TT routines for double-precision computations is shown below.
Similar scheme holds for single-precision computations with the only difference in the initial
letter of routine names.
...

d_init_trig_transform(&n, &tt_type, ipar, dpar, &ir);

/* Change parameters in ipar if necessary. */

/* Note that the result of the Transform will be in f ! If you want to
preserve the data stored in f,

save them before this place in your code */

d_commit_trig_transform(f, &handle, ipar, dpar, &ir);

d_forward_trig_transform(f, &handle, ipar, dpar, &ir);

d_backward_trig_transform(f, &handle, ipar, dpar, &ir);

free_trig_transform(&handle, ipar, &ir);

/* here the user may clean the memory used by f, dpar, ipar */

...

2560

13 Intel® Math Kernel Library Reference Manual

You can find examples of Fortran-90 and C code that use TT interface routines to solve
one-dimensional Helmholtz problem in the “Trigonometric Transform Code Examples” section
in Appendix C.

Interface Description

All types in this documentation are standard C types: INT, FLOAT, and DOUBLE. Fortran-90
users can call the routines with INTEGER, REAL, and DOUBLE PRECISION Fortran types,
respectively (see examples in the “Trigonometric Transform Code Examples” section in Appendix
C).

Routine Options

All TT routines have parameters that are used for passing various options to the routines. These
parameters are arrays ipar, dpar and spar. Values for these parameters should be specified
very carefully (see Common Parameters). You can change these values during computations
to meet your needs.

NOTE. You must provide correct and consistent parameters to the routines to avoid
failure or wrong results.

User Data Arrays

TT routines take arrays of user data as input. For example, user arrays are passed to the routine
d_forward_trig_transform to compute a forward Trigonometric Transform. To minimize
storage requirements and improve the overall run-time efficiency, Intel MKL TT routines do not
make copies of user input arrays.

NOTE. If you need a copy of your input data arrays, you should save them yourself.

TT Routines

The section gives detailed description of TT routines, their syntax, parameters and values they
return. Double-precision and single-precision versions of the same routine are described together.

TT routines call Intel MKL DFT interface (described in section “DFT Functions” in chapter “Fast
Fourier Transforms”), which enhances performance of the routines.

2561

Partial Differential Equations Support 13

?_init_trig_transform
Initializes basic data structures of a Trigonometric
Transform.

Syntax

void d_init_trig_transform (int *n, int *tt_type, int ipar[], double dpar[],
int *stat);

void s_init_trig_transform (int *n, int *tt_type, int ipar[], float spar[],
int *stat);

Input Parameters

int*. Contains the size of the problem, which should be an
even positive integer. Note that data vector of the transform,
which other TT routines will use, must have size n+1.

n

int*. Contains the type of transform to compute, defined
via a set of named constants. The following constants are
available in the current implementation of TT interface:
MKL_SINE_TRANSFORM, MKL_COSINE_TRANSFORM and
MKL_STAGGERED_COSINE_TRANSFORM.

tt_type

Output Parameters

int array of size 128. Contains integer data needed for
Trigonometric Transform computations.

ipar

double array of size 3n/2+1. Contains double-precision
data needed for Trigonometric Transform computations.

dpar

float array of size 3n/2+1. Contains single-precision data
needed for Trigonometric Transform computations.

spar

int*. Contains the routine completion status, which is also
written to ipar[6]. The status should be 0 to proceed to
other TT routines.

stat

Description

The routine initializes basic data structures for Trigonometric Transforms of appropriate precision.
After a call to ?_init_trig_transform, all subsequently invoked TT routines use values of
ipar and dpar (spar) array parameters returned by ?_init_trig_transform. The routine

2562

13 Intel® Math Kernel Library Reference Manual

initializes the entire array ipar. In the dpar or spar array, ?_init_trig_transform initializes
elements that do not depend upon the type of transform. For detailed description of arrays
ipar, dpar and spar, refer to the Common Parameters section.You can skip calling the
initialization routine in your code. For more information, see Caveat on Parameter Modifications.

Return Values

The routine successfully completed the task.
In general, to proceed with computations, the
routine should complete with this stat value.

stat= 0

The routine failed to complete the task.stat= -99999

?_commit_trig_transform
Checks consistency and correctness of user’s data
as well as initializes certain data structures required
to perform the Trigonometric Transform.

Syntax

void d_commit_trig_transform (double f[], DFTI_DESCRIPTOR_HANDLE *handle,
int ipar[], double dpar[], int *stat);

void s_commit_trig_transform (float f[], DFTI_DESCRIPTOR_HANDLE *handle, int
ipar[], float spar[], int *stat);

Input Parameters

double for d_commit_trig_transform,float for
s_commit_trig_transform

f

array of size n+1, where n is the size of the problem.
Contains data vector to be transformed.

int array of size 128. Contains integer data needed for
Trigonometric Transform computations.

ipar

double array of size 3n/2+1. Contains double-precision
data needed for Trigonometric Transform computations.
Most of the array elements are to be initialized by the
routine.

dpar

2563

Partial Differential Equations Support 13

float array of size 3n/2+1. Contains single-precision data
needed for Trigonometric Transform computations. Most of
the array elements are to be initialized by the routine.

spar

Output Parameters

DFTI_DESCRIPTOR_HANDLE*. The data structure used by
Intel MKL DFT interface (for details, refer to section “DFT
Functions” in chapter “Fast Fourier Transforms”).

handle

Contains integer data needed for Trigonometric Transform
computations. On output, ipar[6] is updated with the stat
value.

ipar

Contains double-precision data needed for Trigonometric
Transform computations. On output, the entire array is
initialized.

dpar

Contains single-precision data needed for Trigonometric
Transform computations. On output, the entire array is
initialized.

spar

int*. Contains the routine completion status, which is also
written to ipar[6].

stat

Description

The routine ?_commit_trig_transform checks consistency and correctness of the parameters
to be passed to the transform routines ?_forward_trig_transform and/or
?_backward_trig_transform. The routine also initializes the following data structures:
handle, dpar in case of d_commit_trig_transform, and spar in case of
s_commit_trig_transform. The ?_commit_trig_transform routine initializes only those
elements of dpar or spar that depend upon the type of transform, defined in the
?_init_trig_transform routine and passed to ?_commit_trig_transform with the ipar
array. The size of the problem n, which determines sizes of the array parameters, is also passed
to the routine with the ipar array and defined in the previously called ?_init_trig_transform
routine. For detailed description of arrays ipar, dpar and spar, refer to the Common Parameters
section. The routine performs only a basic check for correctness and consistency of the
parameters. If you are going to modify parameters of TT routines, see the Caveat on Parameter
Modifications section. Unlike ?_init_trig_transform, you cannot skip calling this routine in
your code.

2564

13 Intel® Math Kernel Library Reference Manual

Return Values

The routine produced some warnings and made
some changes in the parameters to achieve their
correctness and/or consistency. You may proceed
with computations by assigning ipar[6]=0 if you
are sure that the parameters are correct.

stat= 11

The routine made some changes in the parameters
to achieve their correctness and/or consistency. You
may proceed with computations by assigning
ipar[6]=0 if you are sure that the parameters are
correct.

stat= 10

The routine produced some warnings. You may
proceed with computations by assigning ipar[6]=0
if you are sure that the parameters are correct.

stat= 1

The routine completed the task normally.stat= 0

The routine stopped for any of the following reasons:stat= -100

• An error in the user's data was encountered.

• Data in ipar, dpar or spar parameters became
incorrect and/or inconsistent as a result of
modifications.

The routine stopped because of DFT interface error.stat= -1000

The routine stopped as the initialization failed to
complete or parameter ipar[0] was altered by
mistake.

stat= -10000

NOTE. Although positive values of stat usually indicate minor problems with the input
data and Trigonometric Transform computations can be continued, it is highly
recommended to investigate the problem first and achieve stat=0.

2565

Partial Differential Equations Support 13

?_forward_trig_transform
Computes the forward Trigonometric Transform of
type specified by a parameter.

Syntax

void d_forward_trig_transform (double f[], DFTI_DESCRIPTOR_HANDLE *handle,
int ipar[], double dpar[], int *stat);

void s_forward_trig_transform (float f[], DFTI_DESCRIPTOR_HANDLE *handle,
int ipar[], float spar[], int *stat);

Input Parameters

double for d_forward_trig_transform,f
float for s_forward_trig_transform
array of size n+1, where n is the size of the problem.
At input, contains data vector to be transformed.

DFTI_DESCRIPTOR_HANDLE*. The data structure used by
Intel MKL DFT interface (for details, refer to section “DFT
Functions” in chapter “Fast Fourier Transforms”).

handle

int array of size 128. Contains integer data needed for
Trigonometric Transform computations.

ipar

double array of size 3n/2+1. Contains double-precision
data needed for Trigonometric Transform computations.

dpar

float array of size 3n/2+1. Contains single-precision data
needed for Trigonometric Transform computations.

spar

Output Parameters

Contains the transformed vector on output.f

Contains integer data needed for Trigonometric Transform
computations. On output, ipar[6] is updated with the stat
value.

ipar

int*. Contains the routine completion status, which is also
written to ipar[6].

stat

2566

13 Intel® Math Kernel Library Reference Manual

Description

The routine computes the forward Trigonometric Transform of type defined in the
?_init_trig_transform routine and passed to ?_forward_trig_transform with the ipar
array. The size of the problem n, which determines sizes of the array parameters, is also passed
to the routine with the ipar array and defined in the previously called ?_init_trig_transform
routine. Other data that facilitates the computation is created by ?_commit_trig_transform
and supplied in dpar or spar. For detailed description of arrays ipar, dpar and spar, refer
to the Common Parameters section. The routine has a commit step, which calls the
?_commit_trig_transform routine. The transform is computed according to formulas given
in the Transforms Implemented section. The routine replaces the input vector f with the
transformed vector.

NOTE. If you need a copy of the data vector f to be transformed, you should make the
copy before calling the ?_forward_trig_transform routine.

Return Values

The routine completed the task normally.stat= 0

The routine stopped for any of the following reasons:stat= -100

• An error in the user's data was encountered.

• Data in ipar, dpar or spar parameters became
incorrect and/or inconsistent as a result of
modifications.

The routine stopped because of DFT interface error.stat= -1000

The routine stopped as its commit step failed to
complete or the parameter ipar[0] was altered by
mistake.

stat= -10000

2567

Partial Differential Equations Support 13

?_backward_trig_transform
Computes the backward Trigonometric Transform
of type specified by a parameter.

Syntax

void d_backward_trig_transform (double f[], DFTI_DESCRIPTOR_HANDLE *handle,
int ipar[], double dpar[], int *stat);

void s_backward_trig_transform (float f[], DFTI_DESCRIPTOR_HANDLE *handle,
int ipar[], float spar[], int *stat);

Input Parameters

double for d_backward_trig_transform,f
float for s_backward_trig_transform
array of size n+1, where n is the size of the problem. At
input, contains data vector to be transformed.

DFTI_DESCRIPTOR_HANDLE*. The data structure used by
Intel MKL DFT interface (for details, refer to section “DFT
Functions” in chapter “Fast Fourier Transforms”).

handle

int array of size 128. Contains integer data needed for
Trigonometric Transform computations.

ipar

double array of size 3n/2+1. Contains double-precision
data needed for Trigonometric Transform computations.

dpar

float array of size 3n/2+1. Contains single-precision data
needed for Trigonometric Transform computations.

spar

Output Parameters

Contains the transformed vector on output.f

Contains integer data needed for Trigonometric Transform
computations. On output, ipar[6] is updated with the stat
value.

ipar

int*. Contains the routine completion status, which is also
written to ipar[6].

stat

2568

13 Intel® Math Kernel Library Reference Manual

Description

The routine computes the backward Trigonometric Transform of type defined in the
?_init_trig_transform routine and passed to ?_backward_trig_transform with the ipar
array. The size of the problem n, which determines sizes of the array parameters, is also passed
to the routine with the ipar array and defined in the previously called ?_init_trig_transform
routine. Other data that facilitates the computation is created by ?_commit_trig_transform
and supplied in dpar or spar. For detailed description of arrays ipar, dpar and spar, refer
to the Common Parameters section. The routine has a commit step, which calls the
?_commit_trig_transform routine. The transform is computed according to formulas given
in the Transforms Implemented section. The routine replaces the input vector f with the
transformed vector.

NOTE. If you need a copy of the data vector f to be transformed, you should make the
copy before calling the ?_backward_trig_transform routine.

Return Values

The routine completed the task normally.stat= 0

The routine stopped for any of the following reasons:stat= -100

• An error in the user's data was encountered.

• Data in ipar, dpar or spar parameters became
incorrect and/or inconsistent as a result of
modifications.

The routine stopped because of DFT interface error.stat= -1000

The routine stopped as its commit step failed to
complete or the parameter ipar[0] was altered by
mistake.

stat= -10000

2569

Partial Differential Equations Support 13

free_trig_transform
Cleans the memory allocated for the data structure
used by DFT interface.

Syntax

void free_trig_transform (DFTI_DESCRIPTOR_HANDLE *handle, int ipar[], int
*stat);

Input Parameters

int array of size 128. Contains integer data needed for
Trigonometric Transform computations.

ipar

DFTI_DESCRIPTOR_HANDLE*. The data structure used by
Intel MKL DFT interface (for details, refer to section “DFT
Functions” in chapter “Fast Fourier Transforms”).

handle

Output Parameters

The data structure used by Intel MKL DFT interface. Memory
allocated for the structure is released on output.

handle

Contains integer data needed for Trigonometric Transform
computations. On output, ipar[6] is updated with the stat
value.

ipar

int*. Contains the routine completion status, which is also
written to ipar[6].

stat

Description

The routine cleans the memory used by the handle structure, needed for Intel MKL DFT
functions. If you need to release memory allocated for other parameters, you should include
the memory cleaning in your code.

Return Values

The routine completed the task normally.stat= 0

The routine stopped because of DFT interface error.stat= -1000

The routine failed to complete the task.stat= -99999

2570

13 Intel® Math Kernel Library Reference Manual

Common Parameters

This section provides description of array parameters that hold TT routine options: ipar, dpar
and spar.

NOTE. Initial values are assigned to the array parameters by the appropriate
?_init_trig_transform and ?_commit_trig_transform routines.

int array of size 128, holds integer data needed for Trigonometric
Transform computations. Its elements are described in Table 13-2:

ipar

Table 13-2 Elements of the ipar Array

DescriptionIndex

Contains the size of the problem to solve. The ?_init_trig_transform
routine sets ipar[0]=n and all subsequently called TT routines use ipar[0]
as the size of the transform. Current implementation of TT interface supports
transforms of even size only.

0

Contains error messaging options:1

• ipar[1]=-1 indicates that all error messages will be printed to the file
MKL_Trig_Transforms_log.txt in the folder from which the routine is
called. If the file does not exist, the routine tries to create it. If the
attempt fails, the routine prints information that the file cannot be created
to the standard output device.

• ipar[1]=0 indicates that no error messages will be printed.
• ipar[1]=1 is the default value. It indicates that all error messages will

be printed to the preconnected default output device (usually, screen).

In case of errors, any TT routine will assign a non-zero value to stat
regardless of the ipar[1] setting.

Contains warning messaging options:2

• ipar[2]=-1 indicates that all warning messages will be printed to the
file MKL_Trig_Transforms_log.txt in the directory from which the routine
is called. If the file does not exist, the routine tries to create it. If the
attempt fails, the routine prints information that the file cannot be created
to the standard output device.

2571

Partial Differential Equations Support 13

DescriptionIndex

• ipar[2]=0 indicates that no warning messages will be printed.
• ipar[2]=1 is the default value. It indicates that all warning messages

will be printed to the preconnected default output device (usually,
screen).

In case of warnings, the stat parameter will acquire a non-zero value
regardless of the ipar[2] setting.

Reserved for future use.3 through 4

Contains the type of the transform. The ?_init_trig_transform routine
sets ipar[5]=tt_type and all subsequently called TT routines use ipar[5]
as the type of the transform.

5

Contains the stat value returned by the last completed TT routine. Used
to check that the previous call to a TT routine completed with stat=0.

6

Informs the ?_commit_trig_transform routines whether to initialize data
structures dpar (spar) and handle. ipar[7]=0 indicates that the routine
should skip the initialization and only check correctness and consistency of

7

the parameters. Otherwise, the routine initializes the data structures. The
default value is 1. The possibility to check correctness and consistency of
input data without initializing data structures dpar, spar and handle
prevents from losing performance in a repeated use of the same transform
for different data vectors.Note that you can benefit from the opportunity
that ipar[7] gives only if you are sure to have supplied proper tolerance
value in the dpar or spar array. Otherwise, avoid tuning this parameter.

Contains message style options for TT routines. If ipar[8]=0 then TT
routines print all error and warning messages in Fortran-style notations.
Otherwise, TT routines print the messages in C-style notations. The default

8

value is 1. When selecting between these notations, you should mind that
by default, numbering of elements in C arrays starts from 0 and in Fortran,
it starts from 1. For example, if a part of a C-style message looks like
“parameter ipar[0]=3 should be an even integer”, then the corresponding
Fortran-style message will be “parameter ipar(1)=3 should be an even
integer”. ipar[8] enables users to view messages in a more convenient
style.

2572

13 Intel® Math Kernel Library Reference Manual

DescriptionIndex

Specifies the number of OpenMP threads to run TT routines in the OpenMP
environment of the Poisson Library. The default value is 1. It is highly
recommended not to alter this value. See also Caveat on Parameter
Modifications.

9

Reserved for future use.10 through 127

NOTE. You may declare the ipar array in your code as int ipar[10]. However, for
compatibility with later versions of Intel MKL TT interface, which may require more ipar
values, it is highly recommended to declare ipar as int ipar[128].

Arrays dpar and spar are similar to each other and differ only in the data precision:

double array of size 3n/2+1, holds data needed for double-precision
routines to perform TT computations. This array is initialized in the
d_init_trig_transform and d_commit_trig_transform routines.

dpar

float array of size 3n/2+1, holds data needed for single-precision
routines to perform TT computations. This array is initialized in the
s_init_trig_transform and s_commit_trig_transform routines.

spar

As dpar and spar have similar elements in respective positions, the elements are described
together in Table 13-3:

Table 13-3 Elements of the dpar and spar Arrays

DescriptionIndex

The element contains the first absolute tolerance used by the appropriate
?_commit_trig_transform routine. For a staggered cosine or a sine
transform, f[n] should be equal to 0.0 and for a sine transform, f[0]

0

should be equal to 0.0. The ?_commit_trig_transform routine checks if
absolute values of these parameters are below dpar[0]*n or spar[0]*n,
depending on the routine precision. You can suppress warnings resulting
from tolerance checks by setting dpar[0] or spar[0] to a sufficiently large
number.

The element is reserved for future use.1

2573

Partial Differential Equations Support 13

DescriptionIndex

The elements contain tabulated values of trigonometric functions. Contents
of the elements depend upon the type of transform tt_type, set up in the
?_commit_trig_transform routine:

2 through 3n/2

• If tt_type=MKL_SINE_TRANSFORM, then the array contains n/2 elements
with tabulated sine values in n/2 successive array elements starting from
the third element (with index 2). The rest of the array is not used in this
transform.

• If tt_type=MKL_COSINE_TRANSFORM, then the array contains n elements
with tabulated cosine values in n successive array elements starting from
the third element (with index 2). The rest of the array is not used in this
transform.

• If tt_type=MKL_STAGGERED_COSINE_TRANSFORM, then the array
contains 3n/2-2 elements with tabulated sine and cosine values in 3n/2-2
successive array elements starting from the third element (with index
2). The rest of the array is not used in this transform.

NOTE. You may define the array size depending upon the type of transform.

Caveat on Parameter Modifications

Flexibility of TT interface makes it possible to skip calling the ?_init_trig_transform routine
and initialize the basic data structures explicitly in your code. You may also need to modify
contents of ipar, dpar and spar arrays after initialization. When doing so, you should provide
correct and consistent data in the arrays. Mistakenly altered arrays cause errors or wrong
computation. You can perform basic check for correctness and consistency of parameters by
calling the ?_commit_trig_transform routine but it does not ensure the correct result of a
transform, it only reduces the chance of errors or wrong result.

NOTE. To supply correct and consistent parameters to TT routines, you should have
considerable experience in using TT interface and good understanding of elements that
the ipar, spar and dpar arrays contain and dependencies between values of these
elements.

2574

13 Intel® Math Kernel Library Reference Manual

However, in rare occurrences, even advanced users may fail to compute a transform using TT
routines after the parameter modifications.

WARNING. The only way that ensures proper computation of the Trigonometric
Transforms is to follow a typical sequence of invoking the routines and not change the
default set of parameters. So, avoid modifications of ipar, dpar and spar arrays unless
a strong need arises.

Implementation Details

Several aspects of the Intel MKL TT interface are platform-specific and language-specific. To
promote portability across platforms and ease of use across different languages, users are
provided with Intel MKL TT language-specific header files to include in their code. Currently,
the following of them are available:

• mkl_trig_transforms.h, to be used together with mkl_dfti.h, for C programs.

• mkl_trig_transforms.f90, to be used toghether with mkl_dfti.f90, for Fortran-90 programs.

NOTE. Use of the Intel MKL TT software without including one of the above header files
is not supported.

C-specific Header File

The C-specific header file defines the following function prototypes:

void d_init_trig_transform(int *, int *, int *, double *, int *);

void d_commit_trig_transform(double *, DFTI_DESCRIPTOR_HANDLE *, int *,
double *, int *);

void d_forward_trig_transform(double *, DFTI_DESCRIPTOR_HANDLE *, int *, double *, int *);

void d_backward_trig_transform(double *, DFTI_DESCRIPTOR_HANDLE *, int *,
double *, int *);

void s_init_trig_transform(int *, int *, int *, float *, int *);

void s_commit_trig_transform(float *, DFTI_DESCRIPTOR_HANDLE *, int *, float
*, int *);

2575

Partial Differential Equations Support 13

void s_forward_trig_transform(float *, DFTI_DESCRIPTOR_HANDLE *, int *, float
*, int *);

void s_backward_trig_transform(float *, DFTI_DESCRIPTOR_HANDLE *, int *,
float *, int *);

void free_trig_transform(DFTI_DESCRIPTOR_HANDLE *, int *, int *);

2576

13 Intel® Math Kernel Library Reference Manual

Fortran-Specific Header File

The Fortran-90-specific header file defines the following function prototypes:

SUBROUTINE D_INIT_TRIG_TRANSFORM(n, tt_type, ipar, dpar, stat)

INTEGER, INTENT(IN) :: n, tt_type

INTEGER, INTENT(INOUT) :: ipar(*)

REAL(8), INTENT(INOUT) :: dpar(*)

INTEGER, INTENT(OUT) :: stat

END SUBROUTINE D_INIT_TRIG_TRANSFORM

SUBROUTINE D_COMMIT_TRIG_TRANSFORM(f, handle, ipar, dpar, stat)

REAL(8), INTENT(INOUT) :: f(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: handle

INTEGER, INTENT(INOUT) :: ipar(*)

REAL(8), INTENT(INOUT) :: dpar(*)

INTEGER, INTENT(OUT) :: stat

END SUBROUTINE D_COMMIT_TRIG_TRANSFORM

SUBROUTINE D_FORWARD_TRIG_TRANSFORM(f, handle, ipar, dpar, stat)

REAL(8), INTENT(INOUT) :: f(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: handle

INTEGER, INTENT(INOUT) :: ipar(*)

REAL(8), INTENT(INOUT) :: dpar(*)

INTEGER, INTENT(OUT) :: stat

END SUBROUTINE D_FORWARD_TRIG_TRANSFORM

SUBROUTINE D_BACKWARD_TRIG_TRANSFORM(f, handle, ipar, dpar, stat)

REAL(8), INTENT(INOUT) :: f(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: handle

2577

Partial Differential Equations Support 13

INTEGER, INTENT(INOUT) :: ipar(*)

REAL(8), INTENT(INOUT) :: dpar(*)

INTEGER, INTENT(OUT) :: stat

END SUBROUTINE D_BACKWARD_TRIG_TRANSFORM

SUBROUTINE S_INIT_TRIG_TRANSFORM(n, tt_type, ipar, spar, stat)

INTEGER, INTENT(IN) :: n, tt_type

INTEGER, INTENT(INOUT) :: ipar(*)

REAL(4), INTENT(INOUT) :: spar(*)

INTEGER, INTENT(OUT) :: stat

END SUBROUTINE S_INIT_TRIG_TRANSFORM

SUBROUTINE S_COMMIT_TRIG_TRANSFORM(f, handle, ipar, spar, stat)

REAL(4), INTENT(INOUT) :: f(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: handle

INTEGER, INTENT(INOUT) :: ipar(*)

REAL(4), INTENT(INOUT) :: spar(*)

INTEGER, INTENT(OUT) :: stat

END SUBROUTINE S_COMMIT_TRIG_TRANSFORM

SUBROUTINE S_FORWARD_TRIG_TRANSFORM(f, handle, ipar, spar, stat)

REAL(4), INTENT(INOUT) :: f(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: handle

INTEGER, INTENT(INOUT) :: ipar(*)

REAL(4), INTENT(INOUT) :: spar(*)

INTEGER, INTENT(OUT) :: stat

END SUBROUTINE S_FORWARD_TRIG_TRANSFORM

2578

13 Intel® Math Kernel Library Reference Manual

SUBROUTINE S_BACKWARD_TRIG_TRANSFORM(f, handle, ipar, spar, stat)

REAL(4), INTENT(INOUT) :: f(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: handle

INTEGER, INTENT(INOUT) :: ipar(*)

REAL(4), INTENT(INOUT) :: spar(*)

INTEGER, INTENT(OUT) :: stat

END SUBROUTINE S_BACKWARD_TRIG_TRANSFORM

SUBROUTINE FREE_TRIG_TRANSFORM(handle, ipar, stat)

INTEGER, INTENT(INOUT) :: ipar(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: handle

INTEGER, INTENT(OUT) :: stat

END SUBROUTINE FREE_TRIG_TRANSFORM

Fortran-90 specifics of the TT routines usage are similar for all Intel MKL PDE support tools and
described in the Calling PDE Support Routines from Fortran-90 section.

Poisson Library Routines
In addition to Real Discrete Trigonometric Transforms (TT) interface (refer to Trigonometric
Transform Routines), Intel® MKL supports the Poisson Library interface referred to as PL interface.
The interface implements a group of routines (PL routines) used to compute a solution of
Laplace, Poisson, and Helmholtz problems of special kind using discrete Fourier transforms.
Laplace and Poisson problems are special cases of a more general Helmholtz problem. The
problems being solved are defined more exactly in the Poisson Library Implemented subsection.
PL interface provides much flexibility of use: you can adjust routines to your particular needs
at the cost of manual tuning routine parameters or just call routines with default parameter
values. The interface can adjust style of error and warning messages to C or Fortran notations
by setting up a dedicated parameter. This adds convenience to debugging, as users can read
information in the way that is natural for their code. Intel MKL PL interface currently contains
only routines that implement the following solvers:

• Fast Laplace, Poisson and Helmholtz solvers in a Cartesian coordinate system

• Fast Poisson and Helmholtz solvers in a spherical coordinate system.

To describe Intel MKL PL interface, C convention will be used. Fortran usage specifics can be
found in the Calling PDE Support Routines from Fortran-90 section.

2579

Partial Differential Equations Support 13

NOTE. Fortran users should mind that respective array indices in Fortran increase by
1.

Poisson Library Implemented

PL routines enable approximate solving of certain two-dimensional and three-dimensional
problems. Figure 13-2 shows general structure of the Poisson Library.

Figure 13-2 Structure of the Poisson Library

Sections below provide details of the problems that can be solved using Intel MKL PL.

Two-Dimensional Problems

Notational Conventions

2580

13 Intel® Math Kernel Library Reference Manual

PL interface description uses the following notation for boundaries of a rectangular domain ax
< x < bx, ay < y < by on a Cartesian plane:

bd_ax = {x = ax, ay ≤ y ≤ by}, bd_bx = {x = bx, ay ≤ y ≤ by}

bd_ay = {ax ≤ x ≤ bx, y = ay}, bd_by = {ax ≤ x ≤ bx, y = by}.

The wildcard "+" may stand for any of the symbols ax, bx, ay, by, so that bd_+ denotes any of
the above boundaries.

PL interface description uses the following notation for boundaries of a rectangular domain aφ

< φ < bφ, aθ < θ < bθ on a sphere 0 ≤ φ ≤ 2 π, 0 ≤ θ ≤ π:

bd_aφ = {φ = aφ, aθ ≤ θ ≤ bθ}, bd_bφ = {φ = bφ, aθ ≤ θ ≤ bθ}

bd_aθ = {aφ ≤ φ ≤ bφ, θ = aθ}, bd_bθ = {aφ ≤ φ ≤ bφ, θ = bθ}.

The wildcard "~" may stand for any of the symbols aφ, bφ, aθ, bθ, so that bd_~ denotes any of
the above boundaries.

Two-dimensional (2D) Helmholtz problem on a Cartesian plane

2D Helmholtz problem is to find an approximate solution of Helmholtz equation

in a rectangle, that is, a rectangular domain ax< x < bx, ay< y < by, with one of the following
boundary conditions on each boundary bd_+:

• Dirichlet boundary condition

• Neumann boundary condition

2581

Partial Differential Equations Support 13

where

n= -x on bd_ax, n= x on bd_bx,

n= -y on bd_ay, n= y on bd_by.

Two-dimensional (2D) Poisson problem on a Cartesian plane

The Poisson problem is a special case of the Helmholtz problem, when q=0. 2D Poisson problem
is to find an approximate solution of Poisson equation

in a rectangle ax< x < bx, ay< y < by with Dirichlet or Neumann boundary condition on each
boundary bd_+. In case of a problem with Neumann boundary condition on the entire boundary,
you can find the solution of the problem up to a constant only. In this case, Poisson Library will
compute the solution that provides the minimal Euclidean norm of a residual.

Two-dimensional (2D) Laplace problem on a Cartesian plane

The Laplace problem is a special case of the Helmholtz problem, when q=0 and f(x, y)=0.
2D Laplace problem is to find an approximate solution of Laplace equation

in a rectangle ax< x < bx, ay< y < by with Dirichlet or Neumann boundary condition on each
boundary bd_+.

Helmholtz problem on a sphere

Helmholtz problem on a sphere is to find an approximate solution of Helmholtz equation

2582

13 Intel® Math Kernel Library Reference Manual

in a spherical rectangle that is, a domain bounded by angles aφ≤ φ ≤ bφ, aθ≤ θ ≤ bθ, with boundary
conditions for particular domains listed in Table 13-4.

Table 13-4 Details of Helmholtz Problem on a Sphere

Periodic/non-periodic
case

Boundary conditionDomain on a sphere

non-periodicHomogeneous Dirichlet boundary
conditions on each boundary bd_~

Rectangular, that is, bφ - aφ < 2 π and

bθ - aθ < π

periodicHomogeneous Dirichlet boundary
conditions on the boundaries bd_aθ

and bd_bθ

Where aφ = 0, bφ = 2 π, and bθ - aθ

< π

periodicBoundary conditionEntire sphere, that is, aφ = 0, bφ = 2

π, aθ = 0, and bθ = π

at the poles.

Poisson problem on a sphere

The Poisson problem is a special case of the Helmholtz problem, when q=0. Poisson problem
on a sphere is to find an approximate solution of Poisson equation

2583

Partial Differential Equations Support 13

in a spherical rectangle aφ≤ φ ≤ bφ, aθ≤ θ ≤ bθ in cases listed in Table 13-4. The solution to the
Poisson problem on the entire sphere can be found up to a constant only. In this case, Poisson
Library will compute the solution that provides the minimal Euclidean norm of a residual.

Approximation of 2D problems

To find an approximate solution for any of the 2D problems, a uniform mesh is built in the
rectangular domain:

in the Cartesian case and

in the spherical case.

Poisson Library uses standard five-point finite difference approximation on this mesh to compute
the approximation to the solution. In the Cartesian case, the values of the approximate solution
will be computed in the mesh points (xi , yj) provided that the user knows the values of the
right-hand side f(x, y) in these points and the values of the appropriate boundary functions
G(x, y) and/or g(x,y) in the mesh points laying on the boundary of the rectangular domain.
In the spherical case, the values of the approximate solution will be computed in the mesh

points (φi , θj) provided that the user knows the values of the right-hand side f(φ, θ) in these
points.

2584

13 Intel® Math Kernel Library Reference Manual

NOTE. The number of mesh intervals nx in the x direction of a Cartesian mesh must be

even. The number of mesh intervals nφ in the φ direction of a spherical mesh must be
even in the non-periodic case and divisible by four in the periodic case. Current
implementation of the Poisson Library does not support meshes with the number of
intervals that does not meet the above conditions.

Three-Dimensional Problems

Notational Conventions

PL interface description uses the following notation for boundaries of a parallelepiped domain
ax < x < bx, ay < y <by, az < z <bz:

bd_ax = {x = ax, ay ≤ y ≤ by, az ≤ z ≤ bz}, bd_bx = {x = bx, ay ≤ y ≤ by, az ≤ z ≤ bz}

bd_ay = {ax ≤ x ≤ bx, y = ay, az ≤ z ≤ bz}, bd_by = {ax ≤ x ≤ bx, y = by, az ≤ z ≤ bz}

bd_az = {ax ≤ x ≤ bx, ay ≤ y ≤ by, z = az}, bd_bx = {ax ≤ x ≤ bx, ay ≤ y ≤ by, z = bz}.

The wildcard "+" may stand for any of the symbols ax, bx, ay, by, az, bz, so that bd_+ denotes
any of the above boundaries.

Three-dimensional (3D) Helmholtz problem

3D Helmholtz problem is to find an approximate solution of Helmholtz equation

in a parallelepiped, that is, a parallelepiped domain ax< x < bx, ay< y < by, az< z < bz, with
one of the following boundary conditions on each boundary bd_+:

• Dirichlet boundary condition

• Neumann boundary condition

2585

Partial Differential Equations Support 13

where

n= -x on bd_ax, n= x on bd_bx,

n= -y on bd_ay, n= y on bd_by,

n= -z on bd_az, n= z on bd_bz.

Three-dimensional (3D) Poisson problem

The Poisson problem is a special case of the Helmholtz problem, when q=0. 3D Poisson problem
is to find an approximate solution of Poisson equation

in a parallelepiped ax< x < bx , ay< y < by, az< z < bz with Dirichlet or Neumann boundary
condition on each boundary bd_+.

Three-dimensional (3D) Laplace problem

The Laplace problem is a special case of the Helmholtz problem, when q=0 and f(x, y,z)=0.
3D Laplace problem is to find an approximate solution of Laplace equation

in a parallelepiped ax< x < bx , ay< y < by, az< z < bz with Dirichlet or Neumann boundary
condition on each boundary bd_+.

Approximation of 3D problems

To find an approximate solution for any of the 3D problems, a uniform mesh is built in the
parallelepiped domain

2586

13 Intel® Math Kernel Library Reference Manual

where

Poisson Library uses standard seven-point finite difference approximation on this mesh to
compute the approximation to the solution. The values of the approximate solution will be
computed in the mesh points (xi , yj , zk) provided that the user knows the values of the
right-hand side f(x, y, z) in these points and the values of the appropriate boundary functions
G(x, y, z) and/or g(x, y, z) in the mesh points laying on the boundary of the parallelepiped
domain.

NOTE. The number of mesh intervals nx and ny in the x and y direction, respectively,
must be even. Current implementation of Poisson Library does not support meshes with
odd number of intervals.

Sequence of Invoking PL Routines

NOTE. Further description will always consider the solution process for Helmholtz
problem, as Fast Poisson Solver and Fast Laplace Solver in Cartesian coordinates are
special cases of Fast Helmholtz Solver (see Poisson Library Implemented).

2587

Partial Differential Equations Support 13

Computation of a solution of Helmholtz problem using PL interface is conceptually divided into
four steps each of which is performed via a dedicated routine. Table 13-5 lists names of the
routines and briefly describes their purpose.

Most of PL routines have versions operating with single-precision and double-precision data.
Names of such routines begin respectively with “s” and “d”. The wildcard “?” stands for either
of these symbols in routine names. The routines for Cartesian coordinate system have 2D and
3D versions. Their names end respectively in “2D” and “3D”. The routines for spherical coordinate
system have periodic and non-periodic versions. Their names end respectively in “p” and “np”

Table 13-5 PL Interface Routines

DescriptionRoutine

Initializes basic data structures of
Poisson Library for Fast Helmholtz
Solver in 2D/3D/periodic/non-periodic
case, respectively.

?_init_Helmholtz_2D/?_init_Helmholtz_3D/
?_init_sph_p/?_init_sph_np

Checks consistency and correctness of
user's data, creates and initializes data
structures to be used by Intel MKL DFT
interface1 as well as other data
structures needed for the solver.

?_commit_Helmholtz_2D/?_commit_Helmholtz_3D/
?_commit_sph_p/?_commit_sph_np

Computes an approximate solution of
2D/3D/periodic/non-periodic Helmholtz
problem (see Poisson Library
Implemented) specified by parameters.

?_Helmholtz_2D/?_Helmholtz_3D/
?_sph_p/?_sph_np

Cleans the memory used by the data
structures needed for calling Intel MKL
DFT interface1.

free_Helmholtz_2D/free_Helmholtz_3D/
free_sph_p/free_sph_np

1 PL routines call Intel MKL DFT interface for better performance.

To find once an approximate solution of Helmholtz problem, the Intel MKL PL interface routines
are normally invoked in the order in which they are listed in Table 13-5.

NOTE. Though the order of invoking PL routines may be changed, it is highly
recommended to follow the above order of routine calls.

2588

13 Intel® Math Kernel Library Reference Manual

The diagram in Figure 13-3 indicates the typical order in which PL routines can be invoked in
a general case.

Figure 13-3 Typical Order of Invoking PL Routines

2589

Partial Differential Equations Support 13

A general scheme of using PL routines for double-precision computations in a 3D Cartesian
case is shown below. Similar scheme holds for single-precision computations with the only
difference in the initial letter of routine names. The general scheme in a 2D Cartesian case
differs form the one below in the set of routine parameters and the ending of routine names:
“2D” instead of “3D”.
...

d_init_Helmholtz_3D(&ax, &bx, &ay, &by, &az, &bz, &nx, &ny, &nz, BCtype,
ipar, dpar, &stat);

/* change parameters in ipar and/or dpar if necessary. */

/* note that the result of the Fast Helmholtz Solver will be in f! If you
want to keep the data stored in f,

save it before the function call below */

d_commit_Helmholtz_3D(f, bd_ax, bd_bx, bd_ay, bd_by, bd_az, bd_bz, &xhandle,
&yhandle, ipar, dpar, &stat);

d_Helmholtz_3D(f, bd_ax, bd_bx, bd_ay, bd_by, bd_az, bd_bz, &xhandle,
&yhandle, ipar, dpar, &stat);

free_Helmholtz_3D (&xhandle, &yhandle, ipar, &stat);

/* here you may clean the memory used by f, dpar, ipar */

...

2590

13 Intel® Math Kernel Library Reference Manual

A general scheme of using PL routines for double-precision computations in a spherical periodic
case is shown below. Similar scheme holds for single-precision computations with the only
difference in the initial letter of routine names. The general scheme in a spherical non-periodic
case differs from the one below in the set of routine parameters and the ending of routine
names: “np” instead of “p”.
...

d_init_sph_p(&ap,&bp,&at,&bt,&np,&nt,&q,ipar,dpar,&stat);

/* change parameters in ipar and/or dpar if necessary. */

/* note that the result of the Fast Helmholtz Solver will be in f! If you
want to

keep the data stored in f, save it before the function call below */

d_commit_sph_p(f,&handle_s,&handle_c,ipar,dpar,&stat);

d_sph_p(f,&handle_s,&handle_c,ipar,dpar,&stat);

free_sph_p(&handle_s,&handle_c,ipar,&stat);

/* here you may clean the memory used by f, dpar, ipar */

...

You can find examples of Fortran-90 and C code that use PL routines to solve Helmholtz problem
(in both Cartesian and spherical cases) in the “Poisson Library Code Examples” section in
Appendix C.

Interface Description

All types in this documentation are standard C types: INT, FLOAT, and DOUBLE. Fortran-90
users can call the routines with INTEGER, REAL, and DOUBLE PRECISION Fortran types,
respectively (see examples in the “Poisson Library Code Examples” section in Appendix C).

Routine Options

All PL routines have parameters that are used for passing various options to the routines. These
parameters are arrays ipar, dpar and spar. Values for these parameters should be specified
very carefully (see Common Parameters). You can change these values during computations
to meet your needs.

NOTE. You must provide correct and consistent parameters to the routines to avoid
failure or wrong results.

2591

Partial Differential Equations Support 13

User Data Arrays

PL routines take arrays of user data as input. For example, user arrays are passed to the routine
d_Helmholtz_3D to compute an approximate solution to 3D Helmholtz problem. To minimize
storage requirements and improve the overall run-time efficiency, Intel MKL PL routines do not
make copies of user input arrays.

NOTE. If you need a copy of your input data arrays, you should save them yourself.

PL Routines for the Cartesian Solver

The section gives detailed description of Cartesian PL routines, their syntax, parameters and
values they return. All flavors of the same routine, namely, double-precision and single-precision,
2D and 3D, are described together.

NOTE. Some of the routine parameters are used only in the 3D Fast Helmholtz Solver.

PL routines call Intel MKL DFT interface (described in section “DFT Functions” in chapter “Fast
Fourier Transforms”), which enhances performance of the routines.

?_init_Helmholtz_2D/?_init_Helmholtz_3D
Initializes basic data structures of the Fast 2D/3D
Helmholtz Solver.

Syntax

void d_init_Helmholtz_2D(double* ax, double* bx, double* ay, double* by,
int* nx, int* ny, char* BCtype, double* q, int* ipar, double* dpar, int*
stat);

void s_init_Helmholtz_2D(float* ax, float* bx, float* ay, float* by, int*
nx, int* ny, char* BCtype, float* q, int* ipar, float* spar, int* stat);

void d_init_Helmholtz_3D(double* ax, double* bx, double* ay, double* by,
double* az, double* bz, int* nx, int* ny, int* nz, char* BCtype, double* q,
int* ipar, double* dpar, int* stat);

2592

13 Intel® Math Kernel Library Reference Manual

void s_init_Helmholtz_3D(float* ax, float* bx, float* ay, float* by, float*
az, float* bz, int* nx, int* ny, int* nz, char* BCtype, float* q, int* ipar,
float* spar, int* stat);

Input Parameters

double* for
d_init_Helmholtz_2D/d_init_Helmholtz_3D,

ax

float* for s_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the leftmost boundary of the domain along
x-axis.

double* for
d_init_Helmholtz_2D/d_init_Helmholtz_3D,

bx

float* for s_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the rightmost boundary of the domain
along x-axis.

double* for
d_init_Helmholtz_2D/d_init_Helmholtz_3D,

ay

float* for s_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the leftmost boundary of the domain along
y-axis.

double* for
d_init_Helmholtz_2D/d_init_Helmholtz_3D,

by

float* for s_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the rightmost boundary of the domain
along y-axis.

double* for
d_init_Helmholtz_2D/d_init_Helmholtz_3D,

az

float* for s_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the leftmost boundary of the domain along
z-axis. This parameter is needed only for the
?_init_Helmholtz_3D routine.

double* for
d_init_Helmholtz_2D/d_init_Helmholtz_3D,

bz

float* for s_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the rightmost boundary of the domain
along z-axis. This parameter is needed only for the
?_init_Helmholtz_3D routine.

2593

Partial Differential Equations Support 13

int*. The number of mesh intervals along x-axis. Must be
even.

nx

int*. The number of mesh intervals along y-axis. Must be
even in the 3D case.

ny

int*. The number of mesh intervals along z-axis. This
parameter is needed only for the ?_init_Helmholtz_3D
routine.

nz

char*. Contains the type of boundary conditions on each
boundary. Must contain four characters for
?_init_Helmholtz_2D and six characters for

BCtype

?_init_Helmholtz_3D. Each of the characters can be 'N'
(Neumann boundary condition) or 'D' (Dirichlet boundary
condition). Types of boundary conditions for the boundaries
should be specified in the following order:bd_ax, bd_bx,
bd_ay, bd_by, bd_az, bd_bz. Boundary condition types for
the last two boundaries should be specified only in the 3D
case.

double* for
d_init_Helmholtz_2D/d_init_Helmholtz_3D,

q

float* for s_init_Helmholtz_2D/s_init_Helmholtz_3D
.
The constant Helmholtz coefficient. Note that to solve
Poisson or Laplace problem, you should set the value of q
to 0.

Output Parameters

int array of size 128. Contains integer data to be used by
Fast Helmholtz Solver (for details, refer to Common
Parameters).

ipar

double array of size 5*nx/2+7 in the 2D case or
5*(nx+ny)/2+9 in the 3D case. Contains double-precision
data to be used by Fast Helmholtz Solver (for details, refer
to Common Parameters).

dpar

float array of size 5*nx/2+7 in the 2D case or
5*(nx+ny)/2+9 in the 3D case. Contains single-precision
data to be used by Fast Helmholtz Solver (for details, refer
to Common Parameters).

spar

2594

13 Intel® Math Kernel Library Reference Manual

int*. Routine completion status, which is also written to
ipar[0]. The status should be 0 to proceed to other PL
routines.

stat

Description

The routines ?_init_Helmholtz_2D/?_init_Helmholtz_3D are called to initialize basic data
structures for Poisson Library computations of the appropriate precision. All routines invoked
after a call to a ?_init_Helmholtz_2D/?_init_Helmholtz_3D routine use values of the
ipar, dpar and spar array parameters returned by the routine. Detailed description of the
array parameters can be found in Common Parameters.

WARNING. Data structures initialized and created by 2D/3D flavors of the routine
cannot be used by 3D/2D flavors of any PL routines, respectively.

You can skip calling this routine in your code. However, see Caveat on Parameter Modifications
before doing so.

Return Values

The routine successfully completed the task. In
general, to proceed with computations, the routine
should complete with this stat value.

stat= 0

The routine failed to complete the task because of
fatal error.

stat= -99999

?_commit_Helmholtz_2D/?_commit_Helmholtz_3D
Checks consistency and correctness of user's data
as well as initializes certain data structures required
to solve 2D/3D Helmholtz problem.

Syntax

void d_commit_Helmholtz_2D(double* f, double* bd_ax, double* bd_bx, double*
bd_ay, double* bd_by, DFTI_DESCIPTOR* xhandle, int* ipar, double* dpar, int*
stat);

2595

Partial Differential Equations Support 13

void s_commit_Helmholtz_2D (float* f, float* bd_ax, float* bd_bx, float*
bd_ay, float* bd_by, DFTI_DESCIPTOR* xhandle, int* ipar, float* spar, int*
stat);

void d_commit_Helmholtz_3D(double* f, double* bd_ax, double* bd_bx, double*
bd_ay, double* bd_by, double* bd_az, double* bd_bz, DFTI_DESCIPTOR* xhandle,
DFTI_DESCIPTOR* yhandle, int* ipar, double* dpar, int* stat);

void s_commit_Helmholtz_3D(float* f, float* bd_ax, float* bd_bx, float*
bd_ay, float* bd_by, float* bd_az, float* bd_bz, DFTI_DESCIPTOR* xhandle,
DFTI_DESCIPTOR* yhandle, int* ipar, float* spar, int* stat);

Input Parameters

double* for
d_commit_Helmholtz_2D/d_commit_Helmholtz_3D,

f

float* for
s_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains the right-hand side of the problem packed in a
single vector. The size of the vector in the 2D case is
(nx+1)*(ny+1). In this case, value of the right-hand side
in the mesh point (i, j) is stored in f[i+j*(nx+1)] . The
size of the vector in the 3D case is (nx+1)*(ny+1)*(nz+1).
In this case, value of the right-hand side in the mesh point
(i, j, k) is stored in f[i+j*(nx+1)+k*(nx+1)*(ny+1)].
Note that to solve Laplace problem, you should set all the
elements of the array f to 0.
Note that the array f may be altered by the routine. Please
save this vector in another memory location if you want to
preserve it.

int array of size 128. Contains integer data to be used by
Fast Helmholtz Solver (for details, refer to Common
Parameters).

ipar

double array of size 5*nx/2+7 in the 2D case or
5*(nx+ny)/2+9 in the 3D case. Contains double-precision
data to be used by Fast Helmholtz Solver (for details, refer
to Common Parameters).

dpar

2596

13 Intel® Math Kernel Library Reference Manual

float array of size 5*nx/2+7 in the 2D case or
5*(nx+ny)/2+9 in the 3D case. Contains single-precision
data to be used by Fast Helmholtz Solver (for details, refer
to Common Parameters).

spar

double* for
d_commit_Helmholtz_2D/d_commit_Helmholtz_3D,

bd_ax

float* for
s_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains values of the boundary condition on the leftmost
boundary of the domain along x-axis.
For ?_commit_Helmholtz_2D, the size of the array is ny+1.
In case of Dirichlet boundary condition (value of BCtype[0]
is 'D'), it contains values of the function G(ax, yj), j=0, ...,
ny. In case of Neumann boundary condition (value of
BCtype[0] is 'N'), it contains values of the function g(ax,
yj), j=0, ..., ny. The value corresponding to the index j is
placed in bd_ax[j].
For ?_commit_Helmholtz_3D, the size of the array is
(ny+1)*(nz+1). In case of Dirichlet boundary condition
(value of BCtype[0] is 'D'), it contains values of the function
G(ax, yj, zk), j=0, ..., ny, k=0, ..., nz. In case of Neumann
boundary condition (value of BCtype[0] is 'N'), it contains
the values of the function g(ax, yj, zk), j=0, ..., ny, k=0,
..., nz. The values are packed in the array so that the value
corresponding to indices (j, k) is placed in
bd_ax[j+k*(ny+1)].

double* for
d_commit_Helmholtz_2D/d_commit_Helmholtz_3D,

bd_bx

float* for
s_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains values of the boundary condition on the rightmost
boundary of the domain along x-axis.
For ?_commit_Helmholtz_2D, the size of the array is ny+1.
In case of Dirichlet boundary condition (value of BCtype[1]
is 'D'), it contains values of the function G(bx, yj), j=0, ...,
ny. In case of Neumann boundary condition (value of

2597

Partial Differential Equations Support 13

BCtype[1] is 'N'), it contains values of the function g(bx,
yj), j=0, ..., ny. The value corresponding to the index j is
placed in bd_bx[j].
For ?_commit_Helmholtz_3D, the size of the array is
(ny+1)*(nz+1). In case of Dirichlet boundary condition
(value of BCtype[1] is 'D'), it contains values of the function
G(bx, yj, zk), j=0, ..., ny, k=0, ..., nz. In case of Neumann
boundary condition (value of BCtype[1] is 'N'), it contains
the values of the function g(bx, yj, zk), j=0, ..., ny, k=0,
..., nz. The values are packed in the array so that the value
corresponding to indices (j, k) is placed in
bd_bx[j+k*(ny+1)].

double* for
d_commit_Helmholtz_2D/d_commit_Helmholtz_3D,

bd_ay

float* for
s_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains values of the boundary condition on the leftmost
boundary of the domain along y-axis.
For ?_commit_Helmholtz_2D, the size of the array is nx+1.
In case of Dirichlet boundary condition (value of BCtype[2]
is 'D'), it contains values of the function G(xi, ay), i=0, ...,
nx. In case of Neumann boundary condition (value of
BCtype[2] is 'N'), it contains values of the function g(xi,
ay), i=0, ..., nx. The value corresponding to the index i is
placed in bd_ay[i].
For ?_commit_Helmholtz_3D, the size of the array is
(nx+1)*(nz+1). In case of Dirichlet boundary condition
(value of BCtype[2] is 'D'), it contains values of the function
G(xi,ay, zk), i=0, ..., nx, k=0, ..., nz. In case of Neumann
boundary condition (value of BCtype[2] is 'N'), it contains
the values of the function g(xi,ay, zk), i=0, ..., nx, k=0,
..., nz. The values are packed in the array so that the value
corresponding to indices (i, k) is placed in
bd_ay[i+k*(nx+1)].

double* for
d_commit_Helmholtz_2D/d_commit_Helmholtz_3D,

bd_by

2598

13 Intel® Math Kernel Library Reference Manual

float* for
s_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains values of the boundary condition on the rightmost
boundary of the domain along y-axis.
For ?_commit_Helmholtz_2D, the size of the array is nx+1.
In case of Dirichlet boundary condition (value of BCtype[3]
is 'D'), it contains values of the function G(xi, by), i=0, ...,
nx. In case of Neumann boundary condition (value of
BCtype[3] is 'N'), it contains values of the function g(xi,
by), i=0, ..., nx. The value corresponding to the index i is
placed in bd_by[i].
For ?_commit_Helmholtz_3D, the size of the array is
(nx+1)*(nz+1). In case of Dirichlet boundary condition
(value of BCtype[3] is 'D'), it contains values of the function
G(xi,by, zk), i=0, ..., nx, k=0, ..., nz. In case of Neumann
boundary condition (value of BCtype[3] is 'N'), it contains
the values of the function g(xi,by, zk), i=0, ..., nx, k=0,
..., nz. The values are packed in the array so that the value
corresponding to indices (i, k) is placed in
bd_by[i+k*(nx+1)].

double* for
d_commit_Helmholtz_2D/d_commit_Helmholtz_3D,

bd_az

float* for
s_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
This parameter is needed only for ?_commit_Helmholtz_3D.
Contains values of the boundary condition on the leftmost
boundary of the domain along z-axis.
The size of the array is (nx+1)*(ny+1). In case of Dirichlet
boundary condition (value of BCtype[4] is 'D'), it contains
values of the function G(xi, yj,az), i=0, ..., nx, j=0, ...,
ny. In case of Neumann boundary condition (value of
BCtype[4] is 'N'), it contains the values of the function g(xi,
yj,az), i=0, ..., nx, j=0, ..., ny. The values are packed in
the array so that the value corresponding to indices (i, j)
is placed in bd_az[i+j*(nx+1)].

double* for
d_commit_Helmholtz_2D/d_commit_Helmholtz_3D,

bd_bz

2599

Partial Differential Equations Support 13

float* for
s_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
This parameter is needed only for ?_commit_Helmholtz_3D.
Contains values of the boundary condition on the rightmost
boundary of the domain along z-axis.
The size of the array is (nx+1)*(ny+1). In case of Dirichlet
boundary condition (value of BCtype[5] is 'D'), it contains
values of the function G(xi, yj,bz), i=0, ..., nx, j=0, ...,
ny. In case of Neumann boundary condition (value of
BCtype[5] is 'N'), it contains the values of the function g(xi,
yj,bz), i=0, ..., nx, j=0, ..., ny. The values are packed in
the array so that the value corresponding to indices (i, j)
is placed in bd_bz[i+j*(nx+1)].

Output Parameters

Vector of the right-hand side of the problem. Possibly,
altered on output.

f

Contains integer data to be used by Fast Helmholtz Solver.
Modified on output as explained in Common Parameters.

ipar

Contains double-precision data to be used by Fast Helmholtz
Solver. Modified on output as explained in Common
Parameters.

dpar

Contains single-precision data to be used by Fast Helmholtz
Solver. Modified on output as explained in Common
Parameters.

spar

DESCIPTOR_HANDLE*. Data structures used by Intel MKL
DFT interface (for details, refer to section “DFT Functions”
in chapter “Fast Fourier Transforms”). yhandle is used only
by ?_commit_Helmholtz_3D.

xhandle, yhandle

int*. Routine completion status, which is also written to
ipar[0]. The status should be 0 to proceed to other PL
routines.

stat

Description

The routines ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D check consistency and
correctness of the parameters to be passed to the solver routines
?_Helmholtz_2D/?_Helmholtz_3D. They also initialize data structures xhandle, yhandle as

2600

13 Intel® Math Kernel Library Reference Manual

well as arrays ipar and dpar/spar, depending upon the routine precision. Refer to Common
Parameters to find out which particular array elements the
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routines initialize and what values are
written there. The routines perform only a basic check for correctness and consistency. If you
are going to modify parameters of PL routines, see the Caveat on Parameter Modifications
section. Unlike ?_init_Helmholtz_2D/?_init_Helmholtz_3D, you cannot skip calling these
routines in your code. Values of ax, bx, ay, by, az, bz, nx, ny, nz, and BCtype are passed to
each of the routines with the ipar array and defined in a previous call to the appropriate
?_init_Helmholtz_2D/?_init_Helmholtz_3D routine.

Return Values

The routine completed without errors and produced
some warnings.

stat= 1

The routine successfully completed the task.stat= 0

The routine stopped as an error in the user's data
was found or the data in the dpar, spar or ipar
array was altered by mistake.

stat= -100

The routine stopped because of Intel MKL DFT or TT
interface error.

stat= -1000

The routine stopped as the initialization failed to
complete or parameter ipar[0] was altered by
mistake.

stat= -10000

The routine failed to complete the task because of
fatal error.

stat= -99999

?_Helmholtz_2D/?_Helmholtz_3D
Computes the solution of 2D/3D Helmholtz problem
specified by the parameters.

Syntax

void d_Helmholtz_2D(double* f, double* bd_ax, double* bd_bx, double* bd_ay,
double* bd_by, DFTI_DESCIPTOR* xhandle, int* ipar, double* dpar, int* stat);

void s_Helmholtz_2D (float* f, float* bd_ax, float* bd_bx, float* bd_ay,
float* bd_by, DFTI_DESCIPTOR* xhandle, int* ipar, float* spar, int* stat);

2601

Partial Differential Equations Support 13

void d_Helmholtz_3D(double* f, double* bd_ax, double* bd_bx, double* bd_ay,
double* bd_by, double* bd_az, double* bd_bz, DFTI_DESCIPTOR* xhandle,
DFTI_DESCIPTOR* yhandle, int* ipar, double* dpar, int* stat);

void s_Helmholtz_3D(float* f, float* bd_ax, float* bd_bx, float* bd_ay,
float* bd_by, float* bd_az, float* bd_bz, DFTI_DESCIPTOR* xhandle,
DFTI_DESCIPTOR* yhandle, int* ipar, float* spar, int* stat);

Input Parameters

double* for d_Helmholtz_2D/d_Helmholtz_3D,f
float* for s_Helmholtz_2D/s_Helmholtz_3D.
Contains the right-hand side of the problem packed in a
single vector and modified by the appropriate
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D
routine. Note that an attempt to substitute the original
right-hand side vector at this point will result in a wrong
solution.
The size of the vector in the 2D case is (nx+1)*(ny+1). In
this case, value of the right-hand side in the mesh point (i,
j) is stored in f[i+j*(nx+1)] . The size of the vector in the
3D case is (nx+1)*(ny+1)*(nz+1). In this case, value of
the right-hand side in the mesh point (i, j, k) is stored
in f[i+j*(nx+1)+k*(nx+1)*(ny+1)].

DESCIPTOR_HANDLE*. Data structures used by Intel MKL
DFT interface (for details, refer to section “DFT Functions”
in chapter “Fast Fourier Transforms”). yhandle is used only
by ?_Helmholtz_3D.

xhandle, yhandle

int array of size 128. Contains integer data to be used by
Fast Helmholtz Solver (for details, refer to Common
Parameters).

ipar

double array of size 5*nx/2+7 in the 2D case or
5*(nx+ny)/2+9 in the 3D case. Contains double-precision
data to be used by Fast Helmholtz Solver (for details, refer
to Common Parameters).

dpar

float array of size 5*nx/2+7 in the 2D case or
5*(nx+ny)/2+9 in the 3D case. Contains single-precision
data to be used by Fast Helmholtz Solver (for details, refer
to Common Parameters).

spar

2602

13 Intel® Math Kernel Library Reference Manual

double* for d_Helmholtz_2D/d_Helmholtz_3D,bd_ax
float* for s_Helmholtz_2D/s_Helmholtz_3D.
Contains values of the boundary condition on the leftmost
boundary of the domain along x-axis.
For ?_Helmholtz_2D, the size of the array is ny+1. In case
of Dirichlet boundary condition (value of BCtype[0] is 'D'),
it contains values of the function G(ax, yj), j=0, ..., ny. In
case of Neumann boundary condition (value of BCtype[0]
is 'N'), it contains values of the function g(ax, yj), j=0, ...,
ny. The value corresponding to the index j is placed in
bd_ax[j].
For ?_Helmholtz_3D, the size of the array is
(ny+1)*(nz+1). In case of Dirichlet boundary condition
(value of BCtype[0] is 'D'), it contains values of the function
G(ax, yj, zk), j=0, ..., ny, k=0, ..., nz. In case of Neumann
boundary condition (value of BCtype[0] is 'N'), it contains
the values of the function g(ax, yj, zk), j=0, ..., ny, k=0,
..., nz. The values are packed in the array so that the value
corresponding to indices (j, k) is placed in
bd_ax[j+k*(ny+1)].

double* for d_Helmholtz_2D/d_Helmholtz_3D,bd_bx
float* for s_Helmholtz_2D/s_Helmholtz_3D.
Contains values of the boundary condition on the rightmost
boundary of the domain along x-axis.
For ?_Helmholtz_2D, the size of the array is ny+1. In case
of Dirichlet boundary condition (value of BCtype[1] is 'D'),
it contains values of the function G(bx, yj), j=0, ..., ny. In
case of Neumann boundary condition (value of BCtype[1]
is 'N'), it contains values of the function g(bx, yj), j=0, ...,
ny. The value corresponding to the index j is placed in
bd_bx[j].
For ?_Helmholtz_3D, the size of the array is
(ny+1)*(nz+1). In case of Dirichlet boundary condition
(value of BCtype[1] is 'D'), it contains values of the function
G(bx, yj, zk), j=0, ..., ny, k=0, ..., nz. In case of Neumann
boundary condition (value of BCtype[1] is 'N'), it contains
the values of the function g(bx, yj, zk), j=0, ..., ny, k=0,

2603

Partial Differential Equations Support 13

..., nz. The values are packed in the array so that the value
corresponding to indices (j, k) is placed in
bd_bx[j+k*(ny+1)].

double* for d_Helmholtz_2D/d_Helmholtz_3D,bd_ay
float* for s_Helmholtz_2D/s_Helmholtz_3D.
Contains values of the boundary condition on the leftmost
boundary of the domain along y-axis.
For ?_Helmholtz_2D, the size of the array is nx+1. In case
of Dirichlet boundary condition (value of BCtype[2] is 'D'),
it contains values of the function G(xi, ay), i=0, ..., nx. In
case of Neumann boundary condition (value of BCtype[2]
is 'N'), it contains values of the function g(xi, ay), i=0, ...,
nx. The value corresponding to the index i is placed in
bd_ay[i].
For ?_Helmholtz_3D, the size of the array is
(nx+1)*(nz+1). In case of Dirichlet boundary condition
(value of BCtype[2] is 'D'), it contains values of the function
G(xi,ay, zk), i=0, ..., nx, k=0, ..., nz. In case of Neumann
boundary condition (value of BCtype[2] is 'N'), it contains
the values of the function g(xi,ay, zk), i=0, ..., nx, k=0,
..., nz. The values are packed in the array so that the value
corresponding to indices (i, k) is placed in
bd_ay[i+k*(nx+1)].

double* for d_Helmholtz_2D/d_Helmholtz_3D,bd_by
float* for s_Helmholtz_2D/s_Helmholtz_3D.
Contains values of the boundary condition on the rightmost
boundary of the domain along y-axis.
For ?_Helmholtz_2D, the size of the array is nx+1. In case
of Dirichlet boundary condition (value of BCtype[3] is 'D'),
it contains values of the function G(xi, by), i=0, ..., nx. In
case of Neumann boundary condition (value of BCtype[3]
is 'N'), it contains values of the function g(xi, by), i=0, ...,
nx. The value corresponding to the index i is placed in
bd_by[i].
For ?_Helmholtz_3D, the size of the array is
(nx+1)*(nz+1). In case of Dirichlet boundary condition
(value of BCtype[3] is 'D'), it contains values of the function

2604

13 Intel® Math Kernel Library Reference Manual

G(xi,by, zk), i=0, ..., nx, k=0, ..., nz. In case of Neumann
boundary condition (value of BCtype[3] is 'N'), it contains
the values of the function g(xi,by, zk), i=0, ..., nx, k=0,
..., nz. The values are packed in the array so that the value
corresponding to indices (i, k) is placed in
bd_by[i+k*(nx+1)].

double* for d_Helmholtz_2D/d_Helmholtz_3D,bd_az
float* for s_Helmholtz_2D/s_Helmholtz_3D.
This parameter is needed only for ?_Helmholtz_3D.
Contains values of the boundary condition on the leftmost
boundary of the domain along z-axis.
The size of the array is (nx+1)*(ny+1). In case of Dirichlet
boundary condition (value of BCtype[4] is 'D'), it contains
values of the function G(xi, yj,az), i=0, ..., nx, j=0, ...,
ny. In case of Neumann boundary condition (value of
BCtype[4] is 'N'), it contains the values of the function g(xi,
yj,az), i=0, ..., nx, j=0, ..., ny. The values are packed in
the array so that the value corresponding to indices (i, j)
is placed in bd_az[i+j*(nx+1)].

double* for d_Helmholtz_2D/d_Helmholtz_3D,bd_bz
float* for s_Helmholtz_2D/s_Helmholtz_3D.
This parameter is needed only for ?_Helmholtz_3D.
Contains values of the boundary condition on the rightmost
boundary of the domain along z-axis.
The size of the array is (nx+1)*(ny+1). In case of Dirichlet
boundary condition (value of BCtype[5] is 'D'), it contains
values of the function G(xi, yj,bz), i=0, ..., nx, j=0, ...,
ny. In case of Neumann boundary condition (value of
BCtype[5] is 'N'), it contains the values of the function g(xi,
yj,bz), i=0, ..., nx, j=0, ..., ny. The values are packed in
the array so that the value corresponding to indices (i, j)
is placed in bd_bz[i+j*(nx+1)].

NOTE. To avoid wrong computation result, you should not change arrays bd_ax, bd_bx,
bd_ay, bd_by, bd_az, bd_bz between a call to the
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine and a subsequent call to
the appropriate ?_Helmholtz_2D/?_Helmholtz_3D routine.

2605

Partial Differential Equations Support 13

Output Parameters

On output, contains the approximate solution to the problem
packed the same way as the right-hand side of the problem
was packed on input.

f

Data structures used by Intel MKL DFT interface.xhandle, yhandle

Contains integer data to be used by Fast Helmholtz Solver.
Modified on output as explained in Common Parameters.

ipar

Contains double-precision data to be used by Fast Helmholtz
Solver. Modified on output as explained in Common
Parameters.

dpar

Contains single-precision data to be used by Fast Helmholtz
Solver. Modified on output as explained in Common
Parameters.

spar

int*. Routine completion status, which is also written to
ipar[0]. The status should be 0 to proceed to other PL
routines.

stat

Description

The routines compute the approximate solution of Helmholtz problem defined in the previous
calls to the corresponding initialization and commit routines. The solution is computed according
to formulas given in the Poisson Library Implemented section. The f parameter, which initially
holds the packed vector of the right-hand side of the problem, is replaced by the computed
solution packed in the same way. Values of ax, bx, ay, by, az, bz, nx, ny, nz, and BCtype are
passed to each of the routines with the ipar array and defined in the previous call to the
appropriate ?_init_Helmholtz_2D/?_init_Helmholtz_3D routine.

Return Values

The routine completed without errors and produced
some warnings.

stat= 1

The routine successfully completed the task.stat= 0

The routine stopped as division by zero occurred. It
usually happens if the data in the dpar or spar array
was altered by mistake.

stat= -2

The routine stopped as memory was insufficient to
complete the computations.

stat= -3

2606

13 Intel® Math Kernel Library Reference Manual

The routine stopped as an error in the user's data
was found or the data in the dpar, spar or ipar
array was altered by mistake.

stat= -100

The routine stopped because of Intel MKL DFT or TT
interface error.

stat= -1000

The routine stopped as the initialization failed to
complete or parameter ipar[0] was altered by
mistake.

stat= -10000

The routine failed to complete the task because of
fatal error.

stat= -99999

free_Helmholtz_2D/free_Helmholtz_3D
Cleans the memory allocated for the data
structures used by DFT interface.

Syntax

void free_Helmholtz_2D(DFTI_DESCIPTOR* xhandle, int* ipar, int* stat);

void free_Helmholtz_3D (DFTI_DESCIPTOR* xhandle, DFTI_DESCIPTOR* yhandle,
int* ipar, int* stat);

Input Parameters

DESCIPTOR_HANDLE*. Data structures used by Intel MKL
DFT interface (for details, refer to section “DFT Functions”
in chapter “Fast Fourier Transforms”). yhandle is used only
by free_Helmholtz_3D.

xhandle, yhandle

int array of size 128. Contains integer data to be used by
Fast Helmholtz Solver (for details, refer to Common
Parameters).

ipar

Output Parameters

Data structures used by Intel MKL DFT interface. Memory
allocated for the structures is released on output.

xhandle, yhandle

Contains integer data to be used by Fast Helmholtz Solver.
Status of the routine call is written to ipar[0].

ipar

2607

Partial Differential Equations Support 13

int*. Routine completion status, which is also written to
ipar[0].

stat

Description

The routine cleans the memory used by the xhandle and yhandle structures, needed for
calling Intel MKL DFT functions. If you need to release memory allocated for other parameters,
you should include the memory cleaning in your code.

Return Values

The routine successfully completed the task.stat= 0

The routine stopped because of Intel MKL DFT or TT
interface error.

stat= -1000

The routine failed to complete the task because of
fatal error.

stat= -99999

PL Routines for the Spherical Solver

The section gives detailed description of spherical PL routines, their syntax, parameters and
values they return. All flavors of the same routine, namely, double-precision and single-precision,
periodic (having names ending in “p”) and non-periodic (having names ending in “np”), are
described together.

These PL routines also call Intel MKL DFT interface (described in section “DFT Functions” in
chapter “Fast Fourier Transforms”), which enhances performance of the routines.

?_init_sph_p/?_init_sph_np
Initializes basic data structures of the Fast periodic
and non-periodic Helmholtz Solver on a sphere.

Syntax

void d_init_sph_p(double* ap, double* at, double* bp, double* bt, int* np,
int* nt, double* q, int* ipar, double* dpar, int* stat);

void s_init_sph_np(float* ap, float* at, float* bp, float* bt, int* np, int*
nt, float* q, int* ipar, float* spar, int* stat);

void d_init_sph_np(double* ap, double* at, double* bp, double* bt, int* np,
int* nt, double* q, int* ipar, double* dpar, int* stat);

2608

13 Intel® Math Kernel Library Reference Manual

void s_init_sph_np(float* ap, float* at, float* bp, float* bt, int* np, int*
nt, float* q, int* ipar, float* spar, int* stat);

Input Parameters

double* for d_init_sph_p/d_init_sph_np,ap
float* for s_init_sph_p/s_init_sph_np.
The coordinate (angle) of the leftmost boundary of the

domain along φ-axis.

double* for d_init_sph_p/d_init_sph_np,bp
float* for s_init_sph_p/s_init_sph_np.
The coordinate (angle) of the rightmost boundary of the

domain along φ-axis.

double* for d_init_sph_p/d_init_sph_np,at
float* for s_init_sph_p/s_init_sph_np.
The coordinate (angle) of the leftmost boundary of the

domain along θ-axis.

double* for d_init_sph_p/d_init_sph_np,bt
float* for s_init_sph_p/s_init_sph_np.
The coordinate (angle) of the rightmost boundary of the

domain along θ-axis.

int*. The number of mesh intervals along φ-axis. Must be
even in the non-periodic case and divisible by 4 in the
periodic case.

np

int*. The number of mesh intervals along θ-axis.nt

double* for d_init_sph_p/d_init_sph_np,q
float* for s_init_sph_p/s_init_sph_np.
The constant Helmholtz coefficient. Note that to solve
Poisson problem, you should set the value of q to 0.

Output Parameters

int array of size 128. Contains integer data to be used by
Fast Helmholtz Solver on a sphere (for details, refer to
Common Parameters).

ipar

2609

Partial Differential Equations Support 13

double array of size 5*np/2+nt+10. Contains
double-precision data to be used by Fast Helmholtz Solver
on a sphere (for details, refer to Common Parameters).

dpar

float array of size 5*np/2+nt+10. Contains
single-precision data to be used by Fast Helmholtz Solver
on a sphere (for details, refer to Common Parameters).

spar

int*. Routine completion status, which is also written to
ipar[0]. The status should be 0 to proceed to other PL
routines.

stat

Description

The routines ?_init_sph_p/?_init_sph_np are called to initialize basic data structures for
Poisson Library computations of the appropriate precision. All routines invoked after a call to
a ?_init_Helmholtz_2D/?_init_Helmholtz_3D routine use values of the ipar, dpar and
spar array parameters returned by the routine. Detailed description of the array parameters
can be found in Common Parameters.

WARNING. Data structures initialized and created by periodic/non-periodic flavors of
the routine cannot be used by non-periodic/periodic flavors of any PL routines for
Helmholtz Solver on a sphere, respectively.

You can skip calling this routine in your code. However, see Caveat on Parameter Modifications
before doing so.

Return Values

The routine successfully completed the task. In
general, to proceed with computations, the routine
should complete with this stat value.

stat= 0

The routine failed to complete the task because of
fatal error.

stat= -99999

2610

13 Intel® Math Kernel Library Reference Manual

?_commit_sph_p/?_commit_sph_np
Checks consistency and correctness of user's data
as well as initializes certain data structures required
to solve periodic/non-periodic Helmholtz problem
on a sphere.

Syntax

void d_commit_sph_p(double* f, DFTI_DESCIPTOR* handle_s, DFTI_DESCIPTOR*
handle_c, int* ipar, double* dpar, int* stat);

void s_commit_sph_p(float* f, DFTI_DESCIPTOR* handle_s, DFTI_DESCIPTOR*
handle_c, int* ipar, float* spar, int* stat);

void d_commit_sph_np(double* f, DFTI_DESCIPTOR* handle, int* ipar, double*
dpar, int* stat);

void s_commit_sph_np(float* f, DFTI_DESCIPTOR* handle, int* ipar, float*
spar, int* stat);

Input Parameters

double* for d_commit_sph_p/d_commit_sph_np,f
float* for s_commit_sph_p/s_commit_sph_np.
Contains the right-hand side of the problem packed in a
single vector. The size of the vector is (np+1)*(nt+1) and
value of the right-hand side in the mesh point (i, j) is
stored in f[i+j*(np+1)] .
Note that the array f may be altered by the routine. Please
save this vector in another memory location if you want to
preserve it.

int array of size 128. Contains integer data to be used by
Fast Helmholtz Solver on a sphere (for details, refer to
Common Parameters).

ipar

double array of size 5*np/2+nt+10. Contains
double-precision data to be used by Fast Helmholtz Solver
on a sphere (for details, refer to Common Parameters).

dpar

float array of size 5*np/2+nt+10. Contains
single-precision data to be used by Fast Helmholtz Solver
on a sphere (for details, refer to Common Parameters).

spar

2611

Partial Differential Equations Support 13

Output Parameters

Vector of the right-hand side of the problem. Possibly,
altered on output.

f

Contains integer data to be used by Fast Helmholtz Solver
on a sphere. Modified on output as explained in Common
Parameters.

ipar

Contains double-precision data to be used by Fast Helmholtz
Solver on a sphere. Modified on output as explained in
Common Parameters.

dpar

Contains single-precision data to be used by Fast Helmholtz
Solver on a sphere. Modified on output as explained in
Common Parameters.

spar

DESCIPTOR_HANDLE*. Data structures used by Intel MKL
DFT interface (for details, refer to section “DFT Functions”
in chapter “Fast Fourier Transforms”). handle_s and
handle_c are used only in ?_commit_sph_p and handle
is used only in ?_commit_sph_np.

handle_s, handle_c,
handle

int*. Routine completion status, which is also written to
ipar[0]. The status should be 0 to proceed to other PL
routines.

stat

Description

The routines ?_commit_sph_p/?_commit_sph_np check consistency and correctness of the
parameters to be passed to the solver routines ?_sph_p/?_sph_np, respectively. They also
initialize certain data structures. ?_commit_sph_p initializes structures handle_s and handle_c
and ?_commit_sph_np initializes handle. The routines also initialize arrays ipar and
dpar/spar, depending upon the routine precision. Refer to Common Parameters to find out
which particular array elements the ?_commit_sph_p/?_commit_sph_np routines initialize
and what values are written there. The routines perform only a basic check for correctness and
consistency. If you are going to modify parameters of PL routines, see the Caveat on Parameter
Modifications section. Unlike ?_init_sph_p/?_init_sph_np, you cannot skip calling these
routines in your code. Values of np and nt are passed to each of the routines with the ipar
array and defined in a previous call to the appropriate ?_init_sph_p/?_init_sph_np routine.

2612

13 Intel® Math Kernel Library Reference Manual

Return Values

The routine completed without errors and produced
some warnings.

stat= 1

The routine successfully completed the task.stat= 0

The routine stopped as an error in the user's data
was found or the data in the dpar, spar or ipar
array was altered by mistake.

stat= -100

The routine stopped because of Intel MKL DFT or TT
interface error.

stat= -1000

The routine stopped as the initialization failed to
complete or parameter ipar[0] was altered by
mistake.

stat= -10000

The routine failed to complete the task because of
fatal error.

stat= -99999

?_sph_p/?_sph_np
Computes the solution of a spherical Helmholtz
problem specified by the parameters.

Syntax

void d_sph_p(double* f, DFTI_DESCIPTOR* handle_s, DFTI_DESCIPTOR* handle_c,
int* ipar, double* dpar, int* stat);

void s_sph_p(float* f, DFTI_DESCIPTOR* handle_s, DFTI_DESCIPTOR* handle_c,
int* ipar, float* spar, int* stat);

void d_sph_np(double* f, DFTI_DESCIPTOR* handle, int* ipar, double* dpar,
int* stat);

void s_sph_np(float* f, DFTI_DESCIPTOR* handle, int* ipar, float* spar, int*
stat);

Input Parameters

double* for d_sph_p/d_sph_np,f
float* for s_sph_p/s_sph_np.

2613

Partial Differential Equations Support 13

Contains the right-hand side of the problem packed in a
single vector and modified by the appropriate
?_commit_sph_p/?_commit_sph_np routine. Note that an
attempt to substitute the original right-hand side vector at
this point will result in a wrong solution.
The size of the vector is (np+1)*(nt+1) and value of the
right-hand side in the mesh point (i, j) is stored in
f[i+j*(np+1)] .

DESCIPTOR_HANDLE*. Data structures used by Intel MKL
DFT interface (for details, refer to section “DFT Functions”
in chapter “Fast Fourier Transforms”). handle_s and
handle_c are used only in ?_sph_p and handle is used
only in ?_sph_np.

handle_s, handle_c,
handle

int array of size 128. Contains integer data to be used by
Fast Helmholtz Solver on a sphere (for details, refer to
Common Parameters).

ipar

double array of size 5*np/2+nt+10. Contains
double-precision data to be used by Fast Helmholtz Solver
on a sphere (for details, refer to Common Parameters).

dpar

float array of size 5*np/2+nt+10. Contains single-precision
data to be used by Fast Helmholtz Solver on a sphere (for
details, refer to Common Parameters).

spar

Output Parameters

On output, contains the approximate solution to the problem
packed the same way as the right-hand side of the problem
was packed on input.

f

Data structures used by Intel MKL DFT interface.handle_s, handle_c,
handle

Contains integer data to be used by Fast Helmholtz Solver
on a sphere. Modified on output as explained in Common
Parameters.

ipar

Contains double-precision data to be used by Fast Helmholtz
Solver on a sphere. Modified on output as explained in
Common Parameters.

dpar

2614

13 Intel® Math Kernel Library Reference Manual

Contains single-precision data to be used by Fast Helmholtz
Solver on a sphere. Modified on output as explained in
Common Parameters.

spar

int*. Routine completion status, which is also written to
ipar[0]. The status should be 0 to proceed to other PL
routines.

stat

Description

The routines compute the approximate solution on a sphere of the Helmholtz problem defined
in the previous calls to the corresponding initialization and commit routines. The solution is
computed according to formulas given in the Poisson Library Implemented section. The f
parameter, which initially holds the packed vector of the right-hand side of the problem, is
replaced by the computed solution packed in the same way. Values of np and nt are passed
to each of the routines with the ipar array and defined in the previous call to the appropriate
?_init_sph_p/?_init_sph_np routine.

Return Values

The routine completed without errors and produced
some warnings.

stat= 1

The routine successfully completed the task.stat= 0

The routine stopped as division by zero occurred. It
usually happens if the data in the dpar or spar array
was altered by mistake.

stat= -2

The routine stopped as memory was insufficient to
complete the computations.

stat= -3

The routine stopped as an error in the user's data
was found or the data in the dpar, spar or ipar
array was altered by mistake.

stat= -100

The routine stopped because of Intel MKL DFT or TT
interface error.

stat= -1000

The routine stopped as the initialization failed to
complete or parameter ipar[0] was altered by
mistake.

stat= -10000

The routine failed to complete the task because of
fatal error.

stat= -99999

2615

Partial Differential Equations Support 13

free_sph_p/free_sph_np
Cleans the memory allocated for the data
structures used by DFT interface.

Syntax

void free_sph_p(DFTI_DESCIPTOR* handle_s, DFTI_DESCIPTOR* handle_c, int*
ipar, int* stat);

void free_sph_np(DFTI_DESCIPTOR* handle, int* ipar, int* stat);

Input Parameters

DESCIPTOR_HANDLE*. Data structures used by Intel MKL
DFT interface (for details, refer to section “DFT Functions”
in chapter “Fast Fourier Transforms”). handle_s and
handle_c are used only in free_sph_p and handle is used
only in free_sph_np.

handle_s, handle_c,
handle

int array of size 128. Contains integer data to be used by
Fast Helmholtz Solver on a sphere (for details, refer to
Common Parameters).

ipar

Output Parameters

Data structures used by Intel MKL DFT interface. Memory
allocated for the structures is released on output.

handle_s, handle_c,
handle

Contains integer data to be used by Fast Helmholtz Solver
on a sphere. Status of the routine call is written to ipar[0].

ipar

int*. Routine completion status, which is also written to
ipar[0].

stat

Description

The routine cleans the memory used by the handle_s, handle_c or handle structures, needed
for calling Intel MKL DFT functions. If you need to release memory allocated for other parameters,
you should include the memory cleaning in your code.

Return Values

The routine successfully completed the task.stat= 0

2616

13 Intel® Math Kernel Library Reference Manual

The routine stopped because of Intel MKL DFT or TT
interface error.

stat= -1000

The routine failed to complete the task because of
fatal error.

stat= -99999

Common Parameters

This section provides description of array parameters ipar, dpar and spar, which hold PL
routine options in both Cartesian and spherical cases.

NOTE. Initial values are assigned to the array parameters by the appropriate
?_init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np and
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D/?_commit_sph_p/?_commit_sph_np
routines.

int array of size 128, holds integer data needed for Fast Helmholtz
Solver (both for Cartesian and spherical coordinate systems). Its
elements are described in Table 13-6:

ipar

Table 13-6 Elements of the ipar Array

DescriptionIndex

Contains status value of the last called PL routine. In general, it should be 0 to
proceed with Fast Helmholtz Solver. The element has no predefined values. This
element can also be used to inform the

0

?_commit_Helmholtz_2D/?_commit_Helmholtz_3D/?_commit_sph_p/?_commit_sph_np
routines of how the Commit step of the computation (see Figure 13-3) should be
carried out. Non-zero value of ipar[0] with decimal representation

where each of a, b, and c is equal to 0 or 9, indicates that some parts of the
Commit step should be omitted. If c=9, the routine omits checking of parameters
and initialization of the data structures. If b=9, then in the Cartesian case, the
routine omits the adjustment of the right-hand side vector f to the Neumann
boundary condition (multiplication of boundary values by 0.5 as well as
incorporation of the boundary function g) and/or Dirichlet boundary condition
(setting boundary values to 0 as well as incorporation of the boundary function

2617

Partial Differential Equations Support 13

DescriptionIndex

G). In this case, the routine also omits the adjustment of the right-hand side vector
f to the particular boundary functions. For the Helmholtz solver on a sphere, the
routine omits computation of the spherical weights for the dpar/spar array. If
a=9, then the routine omits the normalization of the right-hand side vector f. In
the 2D Cartesian case, it is the multiplication by hy2, where hy is the mesh size
in the y direction (for details, see Poisson Library Implemented). In the 3D
(Cartesian) case, it is the multiplication by hz2, where hz is the mesh size in the
z direction. For Helmholtz solver on a sphere, it is the multiplication by hθ

2, where

hθ is the mesh size in the θ direction (for details, see Poisson Library Implemented).
Using ipar[0] you can adjust the routine to your needs and gain efficiency in
solving multiple Helmholtz problems that differ only in the right-hand side. You
must be cautious using this opportunity, as misunderstanding of the commit process
may result in wrong results or program failure (see also Caveat on Parameter
Modifications).

Contains error messaging options:1

• ipar[1]=-1 indicates that all error messages will be printed to the file
MKL_Poisson_Library_log.txt in the folder from which the routine is called. If
the file does not exist, the routine tries to create it. If the attempt fails, the
routine prints information that the file cannot be created to the standard output
device.

• ipar[1]=0 indicates that no error messages will be printed.
• ipar[1]=1 is the default value. It indicates that all error messages will be

printed to the preconnected default output device (usually, screen).

In case of errors, the stat parameter will acquire a non-zero value regardless of
the ipar[1] setting.

Contains warning messaging options:2

• ipar[2]=-1 indicates that all warning messages will be printed to the file
MKL_Poisson_Library_log.txt in the directory from which the routine is called.
If the file does not exist, the routine tries to create it. If the attempt fails, the
routine prints information that the file cannot be created to the standard output
device.

• ipar[2]=0 indicates that no warning messages will be printed.
• ipar[2]=1 is the default value. It indicates that all warning messages will be

printed to the preconnected default output device (usually, screen).

2618

13 Intel® Math Kernel Library Reference Manual

DescriptionIndex

In case of warnings, the stat parameter will acquire a non-zero value regardless
of the ipar[2] setting.

Contains the number of the combination of boundary conditions. In the Cartesian
case, it corresponds to the value that the BCtype parameter holds:

3

• In the 2D case,

0 corresponds to 'DDDD'

1 corresponds to 'DDDN'

…

15 corresponds to 'NNNN'

• In the 3D case,

0 corresponds to 'DDDDDD'

1 corresponds to 'DDDDDN'

...

63 corresponds to 'NNNNNN'.

Helmholtz solver on a sphere uses this parameter only in a periodic case. The bp
and bt parameters of the ?_init_sph_p/?_init_sph_np routine, which initializes
ipar[3], determine its value:

• 0 corresponds to the problem without poles.
• 1 corresponds to the problem on the entire sphere.

Parameters 4 through 9 are used only in Cartesian case.

Takes the value of 1 if BCtype[0]='N', 0 if BCtype[0]='D', and -1 otherwise.4

Takes the value of 1 if BCtype[1]='N', 0 if BCtype[1]='D', and -1 otherwise.5

Takes the value of 1 if BCtype[2]='N', 0 if BCtype[2]='D', and -1 otherwise.6

Takes the value of 1 if BCtype[3]='N', 0 if BCtype[3]='D', and -1 otherwise.7

Takes the value of 1 if BCtype[4]='N', 0 if BCtype[4]='D', and -1 otherwise.
This parameter is used only in the 3D case.

8

2619

Partial Differential Equations Support 13

DescriptionIndex

Takes the value of 1 if BCtype[5]='N', 0 if BCtype[5]='D', and -1 otherwise.
This parameter is used only in the 3D case.

9

Takes the value of nx, that is, the number of intervals along x-axis in the Cartesian

case, and the value of np, that is, the number of intervals along φ-axis in the
spherical case.

10

Takes the value of ny, that is, the number of intervals along y-axis in the Cartesian

case, and the value of nt, that is, the number of intervals along θ-axis in the
spherical case.

11

Takes the value of nz, the number of intervals along z-axis. This parameter is
used only in the 3D (Cartesian) case.

12

Takes the value of 6, which specifies the internal partitioning of the dpar/spar
array.

13

Takes the value of ipar[13]+ipar[10]+1, which specifies the internal partitioning
of the dpar/spar array.

14

Subsequent values of ipar depend upon the dimension of the problem or upon whether the
solver on a sphere is periodic.

Non-periodic casePeriodic case
3D case2D case

Takes the value of ipar[14]+1, which specifies the internal
partitioning of the dpar/spar array.

Unused15

Takes the value of ipar[14]+ ipar[11]+1, which specifies the
internal partitioning of the dpar/spar array.

Unused16

Takes the value of ipar[16]+1, which specifies the internal
partitioning of the dpar/spar array.

Takes the value of
ipar[14]+1, which
specifies the internal
partitioning of the
dpar/spar array.

17

2620

13 Intel® Math Kernel Library Reference Manual

DescriptionIndex

Takes the value
of ipar[16]
+3*ipar[10]

Takes the value of
ipar[16]+3
*ipar[10]/4+1,

Takes the value
of ipar[16]+3*
ipar[10]/2+1,

Takes the value of
ipar[14]+3*ipar[10]
/2+1, which specifies
the internal
partitioning of the
dpar/spar array.

18

/2+1, which
specifies the
internal
partitioning of the
dpar/spar array.

which specifies the
internal partitioning
of the dpar/spar
array.

which specifies
the internal
partitioning of the
dpar/spar array.

Unused
Takes the value of ipar[18]+1, which
specifies the internal partitioning of the
dpar/spar array.

Unused19

Unused
Takes the value of
ipar[18]+3*ipar[10]
/4+1, which specifies

Takes the value
of ipar[18]+
3*ipar[11]/2+1,

Unused20

the internal
partitioning of the
dpar/spar array.

which specifies
the internal
partitioning of the
dpar/spar array.

Subsequent values of ipar are assigned regardless.

Contains message style options. If ipar[21]=0, then PL routines print all error
and warning messages in Fortran-style notations. If ipar[21]=1, then PL routines
print the messages in C-style notations. The default value is 1.

21

Contains the number of threads to be used for computations in a multithreaded
environment. The default value is 1.

22

Unused in the current implementation of the Poisson Library.23
through
39

Contain the first twenty elements of the ipar array of the first Trigonometric
Transform that the Solver uses. (For details, see Common Parameters in the
“Trigonometric Transform Routines” chapter.)

40
through
59

Contain the first twenty elements of the ipar array of the second Trigonometric
Transform that the 3D and periodic solvers use. (For details, see Common
Parameters in the “Trigonometric Transform Routines” chapter.)

60
through
79

2621

Partial Differential Equations Support 13

NOTE. You may declare the ipar array in your code as int ipar[80]. However, for
compatibility with later versions of Intel MKL Poisson Library, which may require more
ipar values, it is highly recommended to declare ipar as int ipar[128].

Arrays dpar and spar are similar to each other and differ only in the data precision:

Holds data needed for double-precision Fast Helmholtz Solver
computations.

dpar

• For the Cartesian solver, double array of size 5*nx/2+7 in the 2D
case or 5*(nx+ny)/2+9 in the 3D case; initialized in the
d_init_Helmholtz_2D/d_init_Helmholtz_3D and
d_commit_Helmholtz_2D/d_commit_Helmholtz_3D routines.

• For the spherical solver, double array of size 5*np/2+nt+10;
initialized in the d_init_sph_p/d_init_sph_np and
d_commit_sph_p/d_commit_sph_np routines.

Holds data needed for single-precision Fast Helmholtz Solver
computations.

spar

• For the Cartesian solver, float array of size 5*nx/2+7 in the 2D
case or 5*(nx+ny)/2+9 in the 3D case; initialized in the
s_init_Helmholtz_2D/s_init_Helmholtz_3D and
s_commit_Helmholtz_2D/s_commit_Helmholtz_3D routines.

• For the spherical solver, float array of size 5*np/2+nt+10;
initialized in the s_init_sph_p/s_init_sph_np and
s_commit_sph_p/s_commit_sph_np routines.

As dpar and spar have similar elements in respective positions, the elements are described
together in Table 13-7:

Table 13-7 Elements of the dpar and spar Arrays

DescriptionIndex

In the Cartesian case, contains the length of the interval along x-axis right
after a call to the ?_init_Helmholtz_2D/?_init_Helmholtz_3D routine
or the mesh size hx in the x direction (for details, see Poisson Library
Implemented) after a call to the
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine.

0

2622

13 Intel® Math Kernel Library Reference Manual

DescriptionIndex

In the spherical case, contains the length of the interval along φ-axis right
after a call to the ?_init_sph_p/?_init_sph_np routine or the mesh size

hφ in the φ direction (for details, see Poisson Library Implemented) after a
call to the ?_commit_sph_p/?_commit_sph_np routine.

In the Cartesian case, contains the length of the interval along y-axis right
after a call to the ?_init_Helmholtz_2D/?_init_Helmholtz_3D routine
or the mesh size hy in the y direction (for details, see Poisson Library
Implemented) after a call to the
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine.

1

In the spherical case, contains the length of the interval along θ-axis right
after a call to the ?_init_sph_p/?_init_sph_np routine or the mesh size

hθ in the θ direction (for details, see Poisson Library Implemented) after a
call to the ?_commit_sph_p/?_commit_sph_np routine.

In the Cartesian case, contains the length of the interval along z-axis right
after a call to the ?_init_Helmholtz_2D/?_init_Helmholtz_3D routine
or the mesh size hz in the z direction (for details, see Poisson Library

2

Implemented) after a call to the
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine. In the
Cartesian solver, this parameter is used only in the 3D case.

In the spherical solver, contains the coordinate of the leftmost boundary
along θ-axis after a call to the ?_init_sph_p/?_init_sph_np routine.

Contains the value of the coefficient q after a call to the
?_init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np
routine.

3

Contains the tolerance parameter after a call to the
?_init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np
routine.

4

In the Cartesian case, this value is used only for the pure Neumann boundary
conditions (BCtype="NNNN" in the 2D case; BCtype="NNNNNN" in the 3D
case). This is a special case, as the right-hand side of the problem cannot
be arbitrary if the coefficient q is zero. Poisson Library verifies that the
classical solution exists (up to rounding errors) using this tolerance. In any
case, Poisson Library computes the normal solution, that is, the solution

2623

Partial Differential Equations Support 13

DescriptionIndex

that has the minimal Euclidean norm of residual. Nevertheless, the
?_Helmholtz_2D/?_Helmholtz_3D routine informs the user that the
solution may not exist in a classical sense (up to rounding errors).

In the spherical solver, the value is used for the special case of a periodic
problem on the entire sphere. This special case is similar to the above
described Cartesian case with pure Neumann boundary conditions. So, here
Poisson Library computes the normal solution as well. The parameter is also
used to detect if the problem is periodic up to rounding errors.

The default value for this parameter is 1.0E-10 in case of double-precision
computations or 1.0E-4 in case of single-precision computations. The user
may increase the value of the tolerance, for instance, to avoid the warnings
that may appear.

In the Cartesian case, contain the spectrum of the 1D problem along x-axis
after a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D
routine. In the spherical case, contains the spectrum of the 1D problem
along φ-axis after a call to the ?_commit_sph_p/?_commit_sph_np routine.

ipar[13]-1
through
ipar[14]-1

In the Cartesian case, contain the spectrum of the 1D problem along y-axis
after a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D
routine. These elements are used only in the 3D case. In the spherical case,
contains the spherical weights after a call to the
?_commit_sph_p/?_commit_sph_np routine.

ipar[15]-1
through
ipar[16]-1

Take the values of the (staggered) sine/cosine in the mesh points:ipar[17]-1
through
ipar[18]-1

• along x-axis after a call to the
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine for a
Cartesian solver

• along φ-axis after a call to the ?_commit_sph_p/?_commit_sph_np
routine for a spherical solver.

Take the values of the (staggered) sine/cosine in the mesh points:ipar[19]-1
through
ipar[20]-1

• along y-axis after a call to the
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine for a
Cartesian 3D solver

• along φ-axis after a call to the ?_commit_sph_p routine for a spherical
periodic solver.

2624

13 Intel® Math Kernel Library Reference Manual

DescriptionIndex

These elements are used neither in the 2D Cartesian case nor in the
non-periodic spherical case.

NOTE. You may define the array size depending upon the type of the problem to solve.

Caveat on Parameter Modifications

Flexibility of PL interface makes it possible to skip calling the
?_init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np routine and
initialize the basic data structures explicitly in your code. You may also need to modify contents
of ipar, dpar and spar arrays after initialization. When doing so, you should provide correct
and consistent data in the arrays. Mistakenly altered arrays cause errors or wrong computation.
You can perform basic check for correctness and consistency of parameters by calling the
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine but it does not ensure the correct
solution, it only reduces the chance of errors or wrong result.

NOTE. To supply correct and consistent parameters to PL routines, you should have
considerable experience in using PL interface and good understanding of the solution
process as well as elements that the ipar, spar and dpar arrays contain and
dependencies between values of these elements.

However, in rare occurrences, even advanced users may fail in tuning parameters for the Fast
Helmholtz Solver.

WARNING. The only way that ensures a proper solution of a Helmholtz problem is to
follow a typical sequence of invoking the routines and not change the default set of
parameters. So, avoid modifications of ipar, dpar and spar arrays unless a strong need
arises.

2625

Partial Differential Equations Support 13

Implementation Details

Several aspects of the Intel MKL PL interface are platform-specific and language-specific. To
promote portability across platforms and ease of use across different languages, users are
provided with Intel MKL PL language-specific header files to include in their code. Currently,
the following of them are available:

• mkl_poisson.h, to be used together with mkl_dfti.h, for C programs.

• mkl_poisson.f90, to be used toghether with mkl_dfti.f90, for Fortran-90 programs.

NOTE. Use of the Intel MKL PL software without including one of the above header files
is not supported.

The include files define function prototypes for appropriate languages.

C-specific Header File

The C-specific header file defines the following function prototypes for the Cartesian solver:

void d_init_Helmholtz_2D(double*, double*, double*, double*, int*, int*,
char*, double*, int*, double*, int*);

void d_commit_Helmholtz_2D(double*, double*, double*, double*, double*,
DFTI_DESCRIPTOR_HANDLE*, int*, double*, int*);

void d_Helmholtz_2D(double*, double*, double*, double*, double*,
DFTI_DESCRIPTOR_HANDLE*, int*, double*, int*);

void s_init_Helmholtz_2D(float*, float*, float*, float*, int*, int*, char*,
float*, int*, float*, int*);

void s_commit_Helmholtz_2D(float*, float*, float*, float*, float*,
DFTI_DESCRIPTOR_HANDLE*, int*, float*, int*);

2626

13 Intel® Math Kernel Library Reference Manual

void s_Helmholtz_2D(float*, float*, float*, float*, float*,
DFTI_DESCRIPTOR_HANDLE*, int*, float*, int*);

void free_Helmholtz_2D(DFTI_DESCRIPTOR_HANDLE*, int*, int*);

void d_init_Helmholtz_3D(double*, double*, double*, double*, double*, double*,
int*, int*, int*, char*, double*, int*, double*, int*);

void d_commit_Helmholtz_3D(double*, double*, double*, double*, double*,
double*, double*, DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*,
double*, int*);

void d_Helmholtz_3D(double*, double*, double*, double*, double*, double*,
double*, DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*, double*,
int*);

void s_init_Helmholtz_3D(float*, float*, float*, float*, float*, float*,
int*, int*, int*, char*, float*, int*, float*, int*);

void s_commit_Helmholtz_3D(float*, float*, float*, float*, float*, float*,
float*, DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*, float*,
int*);

void s_Helmholtz_3D(float*, float*, float*, float*, float*, float*, float*,
DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*, float*, int*);

void free_Helmholtz_3D(DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*,
int*, int*);

The C-specific header file defines the following function prototypes for the spherical solver:

void d_init_sph_p(double*, double*, double*, double*, int*, int*, double*,
int*, double*, int*);

void d_commit_sph_p(double*, DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*,
int*, double*, int*);

void d_sph_p(double*, DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*,
double*, int*);

void s_init_sph_p(float*, float*, float*, float*, int*, int*, float*, int*,
float*, int*);

void s_commit_sph_p(float*, DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*,
int*, float*, int*);

void s_sph_p(float*, DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*,
float*, int*);

void free_sph_p(DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*,
int*);

void d_init_sph_np(double*, double*, double*, double*, int*, int*, double*,
int*, double*, int*);

2627

Partial Differential Equations Support 13

void d_commit_sph_np(double*, DFTI_DESCRIPTOR_HANDLE*, int*, double*, int*);

void d_sph_np(double*, DFTI_DESCRIPTOR_HANDLE*, int*, double*, int*);

void s_init_sph_np(float*, float*, float*, float*, int*, int*, float*, int*,
float*, int*);

void s_commit_sph_np(float*, DFTI_DESCRIPTOR_HANDLE*, int*, float*, int*);

void s_sph_np(float*, DFTI_DESCRIPTOR_HANDLE*, int*, float*, int*);

void free_sph_np(DFTI_DESCRIPTOR_HANDLE*, int*, int*);

Fortran-Specific Header File

The Fortran90-specific header file defines the following function prototypes for the Cartesian
solver:

SUBROUTINE D_INIT_HELMHOLTZ_2D (AX, BX, AY, BY, NX, NY, BCTYPE, Q, IPAR,
DPAR, STAT)

USE MKL_DFTI

INTEGER NX, NY, STAT

INTEGER IPAR(*)

DOUBLE PRECISION AX, BX, AY, BY, Q

DOUBLE PRECISION DPAR(*)

CHARACTER(4) BCTYPE

END SUBROUTINE

SUBROUTINE D_COMMIT_HELMHOLTZ_2D (F, BD_AX, BD_BX, BD_AY, BD_BY, XHANDLE,
IPAR, DPAR, STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

DOUBLE PRECISION F(IPAR(11)+1,*)

DOUBLE PRECISION DPAR(*)

2628

13 Intel® Math Kernel Library Reference Manual

DOUBLE PRECISION BD_AX(*), BD_BX(*), BD_AY(*), BD_BY(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE

END SUBROUTINE

SUBROUTINE D_HELMHOLTZ_2D (F, BD_AX, BD_BX, BD_AY, BD_BY, XHANDLE, IPAR,
DPAR, STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

DOUBLE PRECISION F(IPAR(11)+1,*)

DOUBLE PRECISION DPAR(*)

DOUBLE PRECISION BD_AX(*), BD_BX(*), BD_AY(*), BD_BY(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE

END SUBROUTINE

SUBROUTINE S_INIT_HELMHOLTZ_2D (AX, BX, AY, BY, NX, NY, BCTYPE, Q, IPAR,
SPAR, STAT)

USE MKL_DFTI

INTEGER NX, NY, STAT

INTEGER IPAR(*)

REAL AX, BX, AY, BY, Q

REAL SPAR(*)

CHARACTER(4) BCTYPE

END SUBROUTINE

2629

Partial Differential Equations Support 13

SUBROUTINE S_COMMIT_HELMHOLTZ_2D (F, BD_AX, BD_BX, BD_AY, BD_BY, XHANDLE,
IPAR, SPAR, STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

REAL F(IPAR(11)+1,*)

REAL SPAR(*)

REAL BD_AX(*), BD_BX(*), BD_AY(*), BD_BY(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE

END SUBROUTINE

SUBROUTINE S_HELMHOLTZ_2D (F, BD_AX, BD_BX, BD_AY, BD_BY, XHANDLE, IPAR,
SPAR, STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

REAL F(IPAR(11)+1,*)

REAL SPAR(*)

REAL BD_AX(*), BD_BX(*), BD_AY(*), BD_BY(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE

END SUBROUTINE

SUBROUTINE FREE_HELMHOLTZ_2D (XHANDLE, IPAR, STAT)

USE MKL_DFTI

2630

13 Intel® Math Kernel Library Reference Manual

INTEGER STAT

INTEGER IPAR(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE

END SUBROUTINE

SUBROUTINE D_INIT_HELMHOLTZ_3D (AX, BX, AY, BY, AZ, BZ, NX, NY, NZ, BCTYPE,
Q, IPAR, DPAR, STAT)

USE MKL_DFTI

INTEGER NX, NY, NZ, STAT

INTEGER IPAR(*)

DOUBLE PRECISION AX, BX, AY, BY, AZ, BZ, Q

DOUBLE PRECISION DPAR(*)

CHARACTER(6) BCTYPE

END SUBROUTINE

SUBROUTINE D_COMMIT_HELMHOLTZ_3D (F, BD_AX, BD_BX, BD_AY, BD_BY, BD_AZ,
BD_BZ, XHANDLE, YHANDLE, IPAR, DPAR, STAT)

USE MKL_DFTI

2631

Partial Differential Equations Support 13

INTEGER STAT

INTEGER IPAR(*)

DOUBLE PRECISION F(IPAR(11)+1,IPAR(12)+1,*)

DOUBLE PRECISION DPAR(*)

DOUBLE PRECISION BD_AX(IPAR(12)+1,*), BD_BX(IPAR(12)+1,*),
BD_AY(IPAR(11)+1,*)

DOUBLE PRECISION BD_BY(IPAR(11)+1,*), BD_AZ(IPAR(11)+1,*),
BD_BZ(IPAR(11)+1,*)

TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE, YHANDLE

END SUBROUTINE

SUBROUTINE D_HELMHOLTZ_3D (F, BD_AX, BD_BX, BD_AY, BD_BY, BD_AZ, BD_BZ,
XHANDLE, YHANDLE, IPAR, DPAR, STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

DOUBLE PRECISION F(IPAR(11)+1,IPAR(12)+1,*)

DOUBLE PRECISION DPAR(*)

DOUBLE PRECISION BD_AX(IPAR(12)+1,*), BD_BX(IPAR(12)+1,*),
BD_AY(IPAR(11)+1,*)

DOUBLE PRECISION BD_BY(IPAR(11)+1,*), BD_AZ(IPAR(11)+1,*),
BD_BZ(IPAR(11)+1,*)

TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE, YHANDLE

END SUBROUTINE

SUBROUTINE S_INIT_HELMHOLTZ_3D (AX, BX, AY, BY, AZ, BZ, NX, NY, NZ, BCTYPE,
Q, IPAR, SPAR, STAT)

USE MKL_DFTI

2632

13 Intel® Math Kernel Library Reference Manual

INTEGER NX, NY, NZ, STAT

INTEGER IPAR(*)

REAL AX, BX, AY, BY, AZ, BZ, Q

REAL SPAR(*)

CHARACTER(6) BCTYPE

END SUBROUTINE

SUBROUTINE S_COMMIT_HELMHOLTZ_3D (F, BD_AX, BD_BX, BD_AY, BD_BY, BD_AZ,
BD_BZ, XHANDLE, YHANDLE, IPAR, SPAR, STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

REAL F(IPAR(11)+1,IPAR(12)+1,*)

REAL SPAR(*)

REAL BD_AX(IPAR(12)+1,*), BD_BX(IPAR(12)+1,*), BD_AY(IPAR(11)+1,*)

REAL BD_BY(IPAR(11)+1,*), BD_AZ(IPAR(11)+1,*), BD_BZ(IPAR(11)+1,*)

TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE, YHANDLE

END SUBROUTINE

SUBROUTINE S_HELMHOLTZ_3D (F, BD_AX, BD_BX, BD_AY, BD_BY, BD_AZ, BD_BZ,
XHANDLE, YHANDLE, IPAR, SPAR, STAT)

USE MKL_DFTI

2633

Partial Differential Equations Support 13

INTEGER STAT

INTEGER IPAR(*)

REAL F(IPAR(11)+1,IPAR(12)+1,*)

REAL SPAR(*)

REAL BD_AX(IPAR(12)+1,*), BD_BX(IPAR(12)+1,*), BD_AY(IPAR(11)+1,*)

REAL BD_BY(IPAR(11)+1,*), BD_AZ(IPAR(11)+1,*), BD_BZ(IPAR(11)+1,*)

TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE, YHANDLE

END SUBROUTINE

SUBROUTINE FREE_HELMHOLTZ_3D (XHANDLE, YHANDLE, IPAR, STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE, YHANDLE

END SUBROUTINE

The Fortran90-specific header file defines the following function prototypes for the spherical
solver:

SUBROUTINE D_INIT_SPH_P(AP,BP,AT,BT,NP,NT,Q,IPAR,DPAR,STAT)

USE MKL_DFTI

INTEGER NP, NT, STAT

INTEGER IPAR(*)

DOUBLE PRECISION AP,BP,AT,BT,Q

DOUBLE PRECISION DPAR(*)

END SUBROUTINE

2634

13 Intel® Math Kernel Library Reference Manual

SUBROUTINE D_COMMIT_SPH_P(F,HANDLE_S,HANDLE_C,IPAR,DPAR,STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

DOUBLE PRECISION DPAR(*)

DOUBLE PRECISION F(IPAR(11)+1,*)

TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE_C, HANDLE_S

END SUBROUTINE

SUBROUTINE D_SPH_P(F,HANDLE_S,HANDLE_C,IPAR,DPAR,STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

DOUBLE PRECISION DPAR(*)

DOUBLE PRECISION F(IPAR(11)+1,*)

TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE_C, HANDLE_S

END SUBROUTINE

SUBROUTINE S_INIT_SPH_P(AP,BP,AT,BT,NP,NT,Q,IPAR,SPAR,STAT)

USE MKL_DFTI

INTEGER NP, NT, STAT

INTEGER IPAR(*)

REAL AP,BP,AT,BT,Q

REAL SPAR(*)

2635

Partial Differential Equations Support 13

END SUBROUTINE

SUBROUTINE S_COMMIT_SPH_P(F,HANDLE_S,HANDLE_C,IPAR,SPAR,STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

REAL SPAR(*)

REAL F(IPAR(11)+1,*)

TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE_C, HANDLE_S

END SUBROUTINE

SUBROUTINE S_SPH_P(F,HANDLE_S,HANDLE_C,IPAR,SPAR,STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

REAL SPAR(*)

REAL F(IPAR(11)+1,*)

TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE_C, HANDLE_S

END SUBROUTINE

SUBROUTINE FREE_SPH_P(HANDLE_S,HANDLE_C,IPAR,STAT)

USE MKL_DFTI

2636

13 Intel® Math Kernel Library Reference Manual

INTEGER STAT

INTEGER IPAR(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE_S, HANDLE_C

END SUBROUTINE

SUBROUTINE D_INIT_SPH_NP(AP,BP,AT,BT,NP,NT,Q,IPAR,DPAR,STAT)

USE MKL_DFTI

INTEGER NP, NT, STAT

INTEGER IPAR(*)

DOUBLE PRECISION AP,BP,AT,BT,Q

DOUBLE PRECISION DPAR(*)

END SUBROUTINE

SUBROUTINE D_COMMIT_SPH_NP(F,HANDLE,IPAR,DPAR,STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

DOUBLE PRECISION DPAR(*)

DOUBLE PRECISION F(IPAR(11)+1,*)

TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE

END SUBROUTINE

SUBROUTINE D_SPH_NP(F,HANDLE,IPAR,DPAR,STAT)

USE MKL_DFTI

2637

Partial Differential Equations Support 13

INTEGER STAT

INTEGER IPAR(*)

DOUBLE PRECISION DPAR(*)

DOUBLE PRECISION F(IPAR(11)+1,*)

TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE

END SUBROUTINE

SUBROUTINE S_INIT_SPH_NP(AP,BP,AT,BT,NP,NT,Q,IPAR,SPAR,STAT)

USE MKL_DFTI

INTEGER NP, NT, STAT

INTEGER IPAR(*)

REAL AP,BP,AT,BT,Q

REAL SPAR(*)

END SUBROUTINE

SUBROUTINE S_COMMIT_SPH_NP(F,HANDLE,IPAR,SPAR,STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

REAL SPAR(*)

REAL
F(IPAR(11)+1,*)

TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE

END SUBROUTINE

2638

13 Intel® Math Kernel Library Reference Manual

SUBROUTINE S_SPH_NP(F,HANDLE,IPAR,SPAR,STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

REAL SPAR(*)

REAL F(IPAR(11)+1,*)

TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE

END SUBROUTINE

SUBROUTINE FREE_SPH_NP(HANDLE,IPAR,STAT)

USE MKL_DFTI

INTEGER STAT

INTEGER IPAR(*)

TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE

END SUBROUTINE

Fortran-90 specifics of the PL routines usage are similar for all Intel MKL PDE support tools and
described in the Calling PDE Support Routines from Fortran-90 section.

Calling PDE Support Routines from Fortran-90
The calling interface for all Intel MKL TT and PL routines is designed to be easily used in C.
However, any of the TT and PL routines can be invoked directly from Fortran-90 if users are
familiar with the inter-language calling conventions of their platforms.

Neither TT nor PL interface can be invoked from Fortran-77 due to restrictions imposed by the
use of Intel MKL DFT interface.

The inter-language calling conventions include, but are not limited to, the argument passing
mechanisms for the language, the data type mappings from C to Fortran-90 and how C external
names are decorated on the platform.

2639

Partial Differential Equations Support 13

To promote portability and relieve a user of dealing with the calling conventions specifics,
Fortran-90 header file mkl_trig_transforms.f90 for TT routines and mkl_poisson.f90 for PL
routines, used together with mkl_dfti.f90, declare a set of macros and introduce type definitions
intended to hide the inter-language calling conventions and provide an interface to the routines
that looks natural in Fortran-90.

For example, consider a hypothetical library routine, foo, which takes a double-precision vector
of length n. C users would access such a function as follows:

int n;

double *x;

…

foo(x, &n);

As noted above, to invoke foo, Fortran-90 users would need to know what Fortran-90 data
types correspond to C types int and double (or float in case of single-precision), what
argument-passing mechanism the C compiler uses and what, if any, name decoration is
performed by the C compiler when generating the external symbol foo.However, with the
Fortran-90 header files mkl_trig_transforms.f90 / mkl_poisson.f90 and mkl_dfti.f90 included,
the invocation of foo within a Fortran-90 program will look as follows:

• For TT interface,
use mkl_dfti

use mkl_trig_transforms

INTEGER n

DOUBLE PRECISION, ALLOCATABLE :: x

…

CALL FOO(x,n)

• For PL interface,
use mkl_dfti

use mkl_poisson

INTEGER n

DOUBLE PRECISION, ALLOCATABLE :: x

…

CALL FOO(x,n)

2640

13 Intel® Math Kernel Library Reference Manual

Note that in the above example, the header files mkl_trig_transforms.f90 / mkl_poisson.f90
and mkl_dfti.f90 provide a definition for the subroutine FOO. To ease the use of PL or TT routines
in Fortran-90, the general approach of providing Fortran-90 definitions of names is used
throughout the libraries. Specifically, if a name from a PL or TT interface is documented as
having the C-specific name foo, then the Fortran-90 header files provide an appropriate
Fortran-90 language type definition FOO.

One of the key differences between Fortran-90 and C is the language argument-passing
mechanism: C programs use pass-by-value semantics and Fortran-90 programs use
pass-by-reference semantics. The Fortran-90 headers ensure proper treatment of this difference.
In particular, in the above example, the header files mkl_trig_transforms.f90 / mkl_poisson.f90
and mkl_dfti.f90 hide the difference by defining a macro FOO that takes the address of the
appropriate arguments.

2641

Partial Differential Equations Support 13

14Optimization Solvers Routines

Intel® Math Kernel Library provides tools for solving optimization problems. These tools are routines for
solving nonlinear least squares problems through the Trust-Region (TR) algorithms.

Intel MKL Optimization solver routines that can be used for:

– solving nonlinear least-squares problems without constraints

– solving nonlinear least-squares problems with boundary constraints

– computing Jacobi matrix by central differences for solving nonlinear least-square problem.

The first two groups of routines are designed to find only local minimum point. However problems can
have multiple local minima and trying different initial points is recommended for better solutions.

For more information on terms and key concepts required to understand the use of the Intel MKL nonlinear
least-squares problem solver routines, see Appendix F, “Optimization Solvers Basics”.

Routines described below are subdivided according to their purpose as follows:

Nonlinear Least-Squares Problem without Constraints

Nonlinear Least-Squares Problem with Linear (Boundary) Constraints

Jacobi Matrix Calculation Routines.

Organization and Implementation
The TR solvers have RCI-based interfaces. The RCI TR interface implements a group of user-callable
routines that are used in the step-by-step solving process for nonlinear least square problem and
follows the general RCI scheme described in [Dong95]. RCI means that user is supposed to perform
certain operations for the solver (for example, to provide values of the objective function or Jacobi

2643

matrix). When the solver needs the results of such operations, the user should pass them to
the solver. This makes the solver independent of specific implementation of the operations.
However, this approach requires some additional work by the user.

Figure 14-1 Typical order for invoking RCI solver routines

The Trust-Region solvers implement with OpenMP* support. For using multiprocessing mode,
set the number of threads in environment variable OMP_NUM_THREADS.

Memory Allocation and Handles

To make the routines easy to use, the user is not required to allocate temporary working
storage. Any required memory is allocated by the solver. To allow multiple users to access the
solver simultaneously, the solver keeps track of the storage allocated for a particular application
by using an opaque data object called a handle. Each of the Intel RCI TR solver routine either
creates, uses or deletes a handle.

Handle declaration varies from language to language. This document declares it as to be of
_TRNSP_HANDLE_t or _TRNSPBC_HANDLE_t type.

2644

14 Intel® Math Kernel Library Reference Manual

C and C++ programmers should declare a handle as:

#include "mkl_rci.h"

_TRNSP_HANDLE_t handle;

or

_TRNSPBC_HANDLE_t handle;

Fortran programmers using compilers that support eight byte integers should declare a handle
as:

INCLUDE "mkl_rci.fi"

INTEGER*8 handle

In addition to the necessary definition for the correct declaration of a handle, the include file
also defines the following:

• function prototypes for languages that support prototypes

• symbolic constants that are used for the error returns

• user options for the solver routines

• message severity.

Nonlinear Least-Squares Problem without Constraints
The nonlinear least squares problem without constraints can be described as follows:

where F(x) : Rn → R is a twice differentiable function in Rn. Solving of nonlinear least squares
problem is searching for the best approximation to vector y with model function fi(x), which
has nonlinear dependence on variables х. The best approximation means that the sum of
squares of residuals yi - fi(x) is the lowest possible.

Table 14-1 RCI TR Routines

OperationRoutine Name

Initializes the solver.dtrnlsp_init

2645

Optimization Solvers Routines 14

OperationRoutine Name

Solves a nonlinear least-squares problem on the basis of RCI
using the Trust-Region algorithm.

dtrnlsp_solve

Retrieves the number of iterations, stop criterion, initial
residual, and final residual.

dtrnlsp_get

Removes data.dtrnlsp_delete

dtrnlsp_init
Initializes the solver of nonlinear least square
problem.

Syntax

Fortran:

res = dtrnlsp_init(handle, n, m, x, eps, iter1, iter2, rs)

C:

res = dtrnlsp_init(&handle, &n, &m, x, eps, &iter1, &iter2, &rs);

Description

The routine initializes the solver. After initialization all subsequent invocations of dtrnlsp_solve
routine should use the values of the handle returned by dtrnlsp_init.

The eps array contains the stopping tests:

eps(1): Δk < eps(1)

eps(2): ||F(x)|| < eps(2)

eps(3): ||A(x)ij|| < eps(3)

eps(4): ||s|| < eps(4)

eps(5): ||F(x)||- ||F(x) - A(x)s|| < eps(5)

eps(6): trial step precision. If eps(6) = 0, then eps(6) = 1.d-10,

where A is a Jacobi matrix.

2646

14 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. Length of X.n

INTEGER. Length of F(x).m

DOUBLE PRECISION. Array of size n. Initial guess.x

DOUBLE PRECISION. Array of size 6; contains stopping tests. See the
values in Description.

eps

INTEGER. Specifies the maximum number of iterations.iter1

INTEGER. Specifies the maximum number of iterations of trial-step
calculation.

iter2

DOUBLE PRECISION. Positive input variable used in determining the
initial step bound. In most cases the factor should lie within the interval
(0.1, 100.0). The generally recommended value is 100.

rs

Output Parameters

Data object of _TRNSP_HANDLE_t type for C/C++ programmers and
INTEGER*8 for FORTRAN programmers.

handle

INTEGER. Informs about the task completion.res
res = TR_SUCCESS means the routine completed the task normally.
res = TR_INVALID_OPTION means an error in the input parameters.
res = TR_OUT_OF_MEMORY means a memory error.

dtrnlsp_solve
Solves a nonlinear least-squares problem using
Trust-Region algorithm.

Syntax

Fortran:

res = dtrnlsp_solve(handle, fvec, fjac, RCI_Request)

C:

res = dtrnlsp_solve(&handle, fvec, fjac, &RCI_Request);

2647

Optimization Solvers Routines 14

Description

The dtrnlsp_solve routine based on Reverse Communication Interface (RCI) uses the
Trust-Region algorithm to solve nonlinear least squares problems. The problem is stated as
follows:

where m ≥ n, F : Rn → Rm and fi(x) is the i-th component function of F(x). From a current
point, the algorithm uses the trust region approach:

to get the new point xn as solution to the following problem:

where s is the trial step, and ||s||2 ≤ Δc

then xn = xc + s.

The RCI_Request parameter informs about the task completion and may have the following
values:

RCI_Request= 2 - calculate the Jacobian matrix and put the result into fjac.

RCI_Request= 1 - recalculate the function at vector X and put the result into fvec.

RCI_Request= 0 - successful completion of the task

RCI_Request= -1 - the algorithm has exceeded the maximal number of iterations.

RCI_Request= -2 - Δk < eps(1)

RCI_Request= -3 - ||F(x)|| < eps(2)

2648

14 Intel® Math Kernel Library Reference Manual

RCI_Request= -4 - ||A(x)ij|| < eps(3)

RCI_Request= -5 - ||s|| < eps(4)

RCI_Request= -6 -||F(x)||- ||F(x) - A(x)s|| < eps(5),

where A is a Jacobi matrix.

Input Parameters

Data object of _TRNSP_HANDLE_t type for C/C++ programmers and
INTEGER*8 for FORTRAN programmers.

handle

DOUBLE PRECISION. Array of size m. Contains the function values at
X, where fvec(i) = (yi – fi(x)).

fvec

DOUBLE PRECISION. Array of size (m,n). Contains the Jacobi matrix of
the function.

fjac

Output Parameters

DOUBLE PRECISION. Array of size m. Contains the updated function
values at X

fvec

INTEGER. Informs about the task completion. When equal to 0, the
task is completed succefully.

RCI_Request

See Description for the other values of the parameter and their meaning.

INTEGER. Informs about the task completion.res
res = TR_SUCCESS means the routine completed the task normally.

dtrnlsp_get
Retrieves the number of iterations, stop criterion,
initial residual, and final residual.

Syntax

Fortran:

res = dtrnlsp_get(handle, iter, st_cr, r1, r2)

C:

res = dtrnlsp_get(&handle, &iter, &st_cr, &r1, &r2);

2649

Optimization Solvers Routines 14

Description

The routine retrieves the number of current iterations, stop criterion, initial residual, and final
residual.

The st_cr parameter contains the stop criterion:

st_cr = 1 - the algorithm has exceeded the maximal number of iterations.

st_cr = 2 - Δk < eps(1)

st_cr = 3 - ||F(x)|| < eps(2)

st_cr = 4 - ||A(x)ij|| < eps(3)

st_cr = 5 - ||s|| < eps(4)

st_cr = 6 - ||F(x)||- ||F(x) - A(x)s|| < eps(5),

where A is a Jacobi matrix.

Input Parameters

Data object of _TRNSP_HANDLE_t type for C/C++ programmers and
INTEGER*8 for FORTRAN programmers.

handle

Output Parameters

INTEGER. Contains the current number of iterations.iter

INTEGER. Contains the stop criterion.st_cr
See Description for the parameter values and their meanings.

DOUBLE PRECISION. Contains the initial residual, that is, the functional
value (||y - f(x)||) of the initial х set by the user.

r1

DOUBLE PRECISION. Contains the final residual, that is, the functional
value (||y - f(x)||) of the final х resulting from the algorithm
operation.

r2

INTEGER. Informs about task completion.res
res = TR_SUCCESS means the routine completed the task normally.

2650

14 Intel® Math Kernel Library Reference Manual

dtrnlsp_delete
Removes data object required by TR solver.

Syntax

Fortran:

res = dtrnlsp_delete(handle)

C:

res = dtrnlsp_delete(&handle);

Description

The routine removes a data object needed for the RCI TR solver.

Input Parameters

Data object of _TRNSP_HANDLE_t type for C/C++ programmers and
INTEGER*8 for FORTRAN programmers.

handle

Output Parameters

INTEGER. Informs about task completion.res
res = TR_SUCCESS means the routine completed the task normally.

2651

Optimization Solvers Routines 14

Examples of dtrnlsp Usage

Example 14-1. dtrnlsp Usage in Fortran
C** NONLINEAR LEAST SQUARE PROBLEM WITHOUT BOUNDARY CONSTRAINTS

PROGRAM EXAMPLE_DTRNLSP_POWELL

IMPLICIT NONE

C** HEADER-FILE WITH DEFINITIONS (CONSTANTS, EXTERNALS)

INCLUDE 'mkl_rci.fi'

C** USER’S OBJECTIVE FUNCTION

EXTERNAL EXTENDET_POWELL

C** N - NUMBER OF FUNCTION VARIABLES

INTEGER N

PARAMETER (N = 40)

C** M - DIMENSION OF FUNCTION VALUE

INTEGER M

PARAMETER (M = 40)

C** SOLUTION VECTOR. CONTAINS VALUES X FOR F(X)

DOUBLE PRECISION X (N)

C** PRECISIONS FOR STOP-CRITERIA (SEE MANUAL FOR MORE DETAILS)

DOUBLE PRECISION ESP (6)

C** JACOBI CALCULATION PRECISION

DOUBLE PRECISION JAC_EPS

C** REVERSE COMMUNICATION INTERFACE PARAMETER

INTEGRER RCI_REQUEST

C** FUNCTION (F(X)) VALUE VECTOR

DOUBLE PRECISION FVEC (M)

C** JACOBI MATRIX

DOUBLE PRECISION FJAC (M, N)

2652

14 Intel® Math Kernel Library Reference Manual

C** NUMBER OF ITERATIONS

INTEGRER ITER

C** NUMBER OF STOP-CRITERION

INTEGRER ST_CR

C** CONTROLS OF RCI CYCLE

INTEGRER SUCCESSFUL

C** MAXIMUM NUMBER OF ITERATIONS

INTEGRER ITER1

C** MAXIMUM NUMBER OF ITERATIONS OF CALCULATION OF TRIAL-STEP

INTEGRER ITER2

C** INITIAL STEP BOUND

DOUBLE PRECISION RS

C** INITIAL AND FINAL RESIDUALS

DOUBLE PRECISION R1, R2

C** TR SOLVER HANDLE

INTEGRER*8 HANDLE

C** CYCLE’S COUNTERS

INTEGRER I, J

C** SET PRECISIONS FOR STOP-CRITERIA

EPS (1:6) = 1.D-5

C** SET MAXIMUM NUMBER OF ITERATIONS

ITER1 = 1000

C** SET MAXIMUM NUMBER OF ITERATIONS OF CALCULATION OF TRIAL-STEP

ITER2 = 100

C** SET INITIAL STEP BOUND

RS = 100.D0

C** PRECISIONS FOR JACOBI CALCULATION

2653

Optimization Solvers Routines 14

JAC_EPS = 1.D-8

C** SET THE INITIAL GUESS

DO I = 1, N/4

X (4*I - 3) = 3.D0

X (4*I - 2) = -1.D0

X (4*I - 1) = 0.D0

X (4*I) = 1.D0

ENDDO

C** SET INITIAL VALUES

DO I = 1, M

FVEC (I) = 0.D0

DO J = 1, N

FJAC (I, J) = 0.D0

ENDDO

ENDDO

C** INITIALIZE SOLVER (ALLOCATE MEMORY, SET INITIAL VALUES)

C** HANDLE IN/OUT: TR SOLVER HANDLE

C** N IN: NUMBER OF FUNCTION VARIABLES

C** M IN: DIMENSION OF FUNCTION VALUE

C** X IN: SOLUTION VECTOR. CONTAINS VALUES X FOR F(X)

C** EPS IN: PRECISIONS FOR STOP-CRITERIA

C** ITER1 IN: MAXIMUM NUMBER OF ITERATIONS

C** ITER2 IN: MAXIMUM NUMBER OF ITERATIONS OF CALCULATION OF
TRIAL-STEP

C** RS IN: INITIAL STEP BOUND

IF (DTRNLSP_INIT (HANDLE, N, M, X, EPS, ITER1, ITER2, RS)

+ /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '| ERROR IN DTRNLSP_INIT'

2654

14 Intel® Math Kernel Library Reference Manual

C** AND STOP

STOP

ENDIF

C** SET INITIAL RCI CYCLE VARIABLES

RCI_REQUEST = 0

SUCCESSFUL = 0

C** RCI CYCLE

DO WHILE (SUCCESSFUL == 0)

C** CALL TR SOLVER

C** HANDLE IN/OUT: TR SOLVER HANDLE

C** FVEC IN: VECTOR

C** FJAC IN: JACOBI MATRIX

C** RCI_REQUEST IN/OUT: RETURN NUMBER THAT DENOTES NEXT STEP FOR
PERFORMING

IF (DTRNLSP_SOLVE (HANDLE, FVEC, FJAC, RCI_REQUEST)

+ /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '| ERROR IN DTRNLSP_SOLVE'

C** AND STOP

STOP

ENDIF

C** RCI_REQUEST IN/OUT: RETURN NUMBER THAT DENOTES NEXT STEP FOR
PERFORMING

C** ACCORDING TO RCI_REQUEST VALUE WE DO NEXT STEP

SELECT CASE (RCI_REQUEST)

CASE (-1, -2, -3, -4, -5, -6)

C** STOP RCI CYCLE

SUCCESSFUL = 1

CASE (1)

2655

Optimization Solvers Routines 14

C** RECALCULATE FUNCTION VALUE

C** M IN: DIMENSION OF FUNCTION VALUE

C** N IN: NUMBER OF FUNCTION VARIABLES

C** X IN: SOLUTION VECTOR

C** FVEC OUT: FUNCTION VALUE F(X)

CALL EXTENDET_POWELL (M, N, X, FVEC)

CASE (2)

C** COMPUTE JACOBI MATRIX

C** EXTENDET_POWELL IN: EXTERNAL OBJECTIVE FUNCTION

C** N IN: NUMBER OF FUNCTION VARIABLES

C** M IN: DIMENSION OF FUNCTION VALUE

C** FJAC OUT: JACOBI MATRIX

C** X IN: SOLUTION VECTOR

C** JAC_EPS IN: JACOBI CALCULATION PRECISION

IF (DJACOBI (EXTENDET_POWELL, N, M, FJAC, X, JAC_EPS)

+ /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '| ERROR IN DTRNLSP_SOLVE'

C** AND STOP

STOP

ENDIF

ENDSELECT

ENDDO

C** GET SOLUTION STATUSES

C** HANDLE IN: TR SOLVER HANDLE

C** ITER OUT: NUMBER OF ITERATIONS

C** ST_CR OUT: NUMBER OF STOP CRITERION

C** R1 OUT: INITIAL RESIDUALS

2656

14 Intel® Math Kernel Library Reference Manual

C** R2 OUT: FINAL RESIDUALS

IF (DTRNLSP_GET (HANDLE, ITER, ST_CR, R1_R2)

+ /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '| ERROR IN DTRNLSP_GET'

C** AND STOP

STOP

ENDIF

C** FREE HANDLE MEMORY

IF (DTRNLSP_DELETE (HANDLE) /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '| ERROR IN DTRNLSP_DELETE'

C** AND STOP

STOP

ENDIF

C** IF FINAL RESIDUAL IS LESS THAN REQUIRED PRECISION THEN PRINT PASS

IF (R2 < 1.D-5) THEN

PRINT *, '| DTRNLSP POWELL............PASS'!, R1, R2

C** ELSE PRINT FAILED

ELSE

PRINT *, '| DTRNLSP POWELL............FAILED'!, R1,
R2

ENDIF

END PROGRAM EXAMPLE_DTRNLSP_POWELL

C** ROUTINE FOR EXTENDET POWELL FUNCTION CALCULATION

C** M IN: DIMENSION OF FUNCTION VALUE

2657

Optimization Solvers Routines 14

C** N IN: NUMBER OF FUNCTION VARIABLES

C** X IN: VECTOR FOR FUNCTION CALCULATION

C** F OUT: FUNCTION VALUE F(X)

SUBROUTINE EXTENDET_POWELL (M, N, X, F)

IMPLICIT NONE

INTEGER M, N

DOUBLE PRECISION X (*), F (*)

INTEGER I

DO I = 1, N/4

F (4*I-3) = X(4*I - 3) + 10.D0 * X(4*I - 2)

F (4*I-2) = 2.2360679774997896964091736687313D0*(X(4*I-1) -
X(4*I))

F (4*I-1) = (X(4*I-2) - 2.D0*X(4*I-1))**2

F (4*I) = 3.1622776601683793319988935444327D0*(X(4*I-3) -
X(4*I))**2

ENDDO

ENDSUBROUTINE EXTENDET_POWELL

2658

14 Intel® Math Kernel Library Reference Manual

Example 14-2. dtrnlsp Usage in C
#include <stdio.h>

#include <malloc.h>

#include <math.h>

#include "mkl_rci.h"

/* nonlinear least square problem without boundary constraints */

int main ()

{

/* user’s objective function */

extern void extendet_powell (int *, int *, double*, double*);

/* n - number of function variables

m - dimension of function value */

int n = 4, m = 4;

/* precisions for stop-criteria (see manual for more details) */

double eps[6];

/* solution vector. contains values x for f(x) */

double *x;

/* iter1 - maximum number of iterations

iter2 - maximum number of iterations of calculation of trial-step */

int iter1 = 1000, iter2 = 100;

/* initial step bound */

double rs = 0.0;

/* reverse communication interface parameter */

int RCI_Request; // reverse communication interface
variable

/* controls of rci cycle */

int successful;

2659

Optimization Solvers Routines 14

/* function (f(x)) value vector */

double *fvec;

/* jacobi matrix */

double *fjac;

/* number of iterations */

int iter;

/* number of stop-criterion */

int st_cr;

/* initial and final residuals */

double r1, r2;

/* TR solver handle */

_TRNSP_HANDLE_t handle; // TR solver handle

/* cycle’s counter */

int i;

/* memory allocation */

x = (double*) malloc (sizeof (double)*n);

fvec = (double*) malloc (sizeof (double)*m);

fjac = (double*) malloc (sizeof (double)*m*n);

/* set precisions for stop-criteria */

for (i = 0; i < 6; i++)

{

eps [i] = 0.00001;

}

/* set the initial guess */

for (i = 0; i < n/4; i++)

{

x [4*i] = 3.0;

2660

14 Intel® Math Kernel Library Reference Manual

x [4*i + 1] = -1.0;

x [4*i + 2] = 0.0;

x [4*i + 3] = 1.0;

}

/* set the initial values */

for (i = 0; i < m; i++)

fvec [i] = 0.0;

for (i = 0; i < m*n; i++)

fjac [i] = 0.0;

/* initialize solver (allocate memory, set initial values)

handle in/out: TR solver handle

n in: number of function variables

m in: dimension of function value

x in: solution vector. contains values x for f(x)

eps in: precisions for stop-criteria

iter1 in: maximum number of iterations

iter2 in: maximum number of iterations of calculation of
trial-step

rs in: initial step bound */

if (dtrnlsp_init (&handle, &n, &m, x, eps, &iter1, &iter2, &rs) !=
TR_SUCCESS)

{

/* if function does not complete successfully then print error message
*/

printf ("| error in dtrnlsp_init\n");

/* and exit */

return 0;

}

/* set initial rci cycle variables */

RCI_Request = 0;

2661

Optimization Solvers Routines 14

successful = 0;

/* rci cycle */

while (successful == 0)

{

/* call tr solver

handle in/out: tr solver handle

fvec in: vector

fjac in: jacobi matrix

RCI_request in/out: return number which denotes next step for
performing */

if (dtrnlsp_solve (&handle, fvec, fjac, &RCI_Request) != TR_SUCCESS)

{

/* if function does not complete successfully then print error
message */

printf ("| error in dtrnlsp_solve\n");

/* and exit */

return 0;

}

/* according to rci_request value we do next step */

if (RCI_Request == -1 ||

RCI_Request == -2 ||

RCI_Request == -3 ||

RCI_Request == -4 ||

RCI_Request == -5 ||

RCI_Request == -6)

/* exit rci cycle */

successful = 1;

if (RCI_Request == 1)

{

2662

14 Intel® Math Kernel Library Reference Manual

/* recalculate function value

m in: dimension of function value

n in: number of function variables

x in: solution vector

fvec out: function value f(x) */

extendet_powell (&m, &n, x, fvec);

}

if (RCI_Request == 2)

{

/* compute jacobi matrix

extendet_powell in: external objective function

n in: number of function variables

m in: dimension of function value

fjac out: jacobi matrix

2663

Optimization Solvers Routines 14

x in: solution vector

jac_eps in: jacobi calculation precision */

if (djacobi (extendet_powell, &n, &m, fjac, x, eps) != TR_SUCCESS)

{

/* if function does not complete successfully then print
error message */

printf ("| error in djacobi\n");

/* and exit */

return 0;

}

}

}

/* get solution statuses

handle in: TR solver handle

iter out: number of iterations

st_cr out: number of stop criterion

r1 out: initial residuals

r2 out: final residuals */

if (dtrnlsp_get (&handle, &iter, &st_cr, &r1, &r2) != TR_SUCCESS)

{

/* if function does not complete successfully then print error message
*/

printf ("| error in dtrnlsp_get\n");

/* and exit */

return 0;

}

/* free handle memory */

if (dtrnlsp_delete (&handle) != TR_SUCCESS)

{

2664

14 Intel® Math Kernel Library Reference Manual

/* if function does not complete successfully then print error message
*/

printf ("| error in dtrnlsp_delete\n");

/* and exit */

return 0;

}

/* free allocated memory */

free (x);

free (fvec);

free (fjac);

/* if final residual is less than required precision then print pass */

if (r2 < 0.00001)

printf ("| dtrnlsp powell............PASS\n");

/* else print failed */

else

printf ("| dtrnlsp powell............FAILED\n");

return 0;

}

/* nonlinear system equations without constraints */

/* routine for extendet powell function calculation

m in: dimension of function value

n in: number of function variables

x in: vector for function calculation

f out: function value f(x) */

void extendet_powell (int *m, int *n, double *x, double *f)

{

int i;

2665

Optimization Solvers Routines 14

for (i = 0; i < (*n)/4; i++)

{

f [4*i] = x [4*i] + 10.0*x [4*i + 1];

f [4*i + 1] = 2.2360679774997896964091736687313*(x [4*i + 2] - x [4*i
+ 3]);

f [4*i + 2] = (x [4*i + 1] - 2.0*x [4*i + 2])*(x [4*i + 1] - 2.0*x
[4*i + 2]);

f [4*i + 3] = 3.1622776601683793319988935444327*(x [4*i] - x [4*i +
3])*(x [4*i] - x [4*i + 3]);

}

return;

}

Nonlinear Least-Squares Problem with Linear (Bound)
Constraints

The nonlinear least squares problem with linear bound constraints can be described and solved
in the same way as the nonlinear least squares problem without constraints but it has the
following constraints:

Table 14-2 RCI TR Routines for Problem with Bound Constraints

OperationRoutine Name

Initializes the solver.dtrnlspbc_init

Solves a nonlinear least-squares problem on the basis of RCI
using the Trust-Region algorithm.

dtrnlspbc_solve

Retrieves the number of iterations, stop criterion, initial
residual, and final residual.

dtrnlspbc_get

Removes data.dtrnlspbc_delete

2666

14 Intel® Math Kernel Library Reference Manual

dtrnlspbc_init
Initializes the solver of nonlinear least square
problem with linear (boundary) constraints.

Syntax

Fortran:

res = dtrnlspbc_init(handle, n, m, x, LW, UP, eps, iter1, iter2, rs)

C:

res = dtrnlspbc_init(&handle, &n, &m, x, LW, UP, eps, &iter1, &iter2, &rs);

Description

The routine initializes the solver. After initialization all subsequent invocations of
dtrnlspbc_solve routine should use the values of the handle returned by dtrnlspbc_init.

The eps array contains the stopping tests:

eps(1): Δk < eps(1)

eps(2): ||F(x)|| < eps(2)

eps(3): ||A(x)ij|| < eps(3)

eps(4): ||s|| < eps(4)

eps(5): ||F(x)||- ||F(x) - A(x)s|| < eps(5)

eps(6): trial step precision. If eps(6) = 0, then eps(6) = 1.d-10,

where A is a Jacobi matrix.

Input Parameters

INTEGER. Length of X.n

INTEGER. Length of F(x).m

DOUBLE PRECISION. Array of size n. Initial guess.x

DOUBLE PRECISION. Array of size n.LW

Contains low bounds for x (lwi ≤ xi).

DOUBLE PRECISION. Array of size n.UP

Contains upper bounds for x (upi ≤ xi).

2667

Optimization Solvers Routines 14

DOUBLE PRECISION. Array of size 6; contains stopping tests. See the
values in Description.

eps

INTEGER. Specifies the maximum number of iterations.iter1

INTEGER. Specifies the maximum number of iterations of trial-step
calculation.

iter2

DOUBLE PRECISION. Positive input variable used in determining the
initial step bound. In most cases the factor should lie within the interval
(0.1, 100.0). The generally recommended value is 100.

rs

Output Parameters

Data object of _TRNSPBC_HANDLE_t type for C/C++ programmers and
INTEGER*8 for FORTRAN programmers.

handle

INTEGER. Informs about the task completion.res
res = TR_SUCCESS means the routine completed the task normally.
res = TR_INVALID_OPTION means an error in the input parameters.
res = TR_OUT_OF_MEMORY means a memory error.

dtrnlspbc_solve
Solves a nonlinear least-squares problem with
linear (bound) constraints using Trust-Region
algorithm.

Syntax

Fortran:

res = dtrnlspbc_solve(handle, fvec, fjac, RCI_Request)

C:

res = dtrnlspbc_solve(&handle, fvec, fjac, &RCI_Request);

Description

The dtrnlspbc_solve routine based on Reverse Communication Interface (RCI) uses the
Trust-Region algorithm to solve nonlinear least squares problems with linear (bound) constraints.
The problem is stated as follows:

2668

14 Intel® Math Kernel Library Reference Manual

where m ≥ n, F : Rn → Rm and fi(x) is the i-th component function of F(x).

The RCI_Request parameter informs about the task completion and may have the following
values:

RCI_Request= 2 - calculate the Jacobian matrix and put the result into fjac.

RCI_Request= 1 - recalculate the function at vector X and put the result into fvec.

RCI_Request= 0 - successful completion of the task

RCI_Request= -1 - the algorithm has exceeded the maximal number of iterations.

RCI_Request= -2 - Δk < eps(1)

RCI_Request= -3 - ||F(x)|| < eps(2)

RCI_Request= -4 - ||A(x)ij|| < eps(3)

RCI_Request= -5 - ||s|| < eps(4)

RCI_Request= -6 -||F(x)||- ||F(x) - A(x)s|| < eps(5),

where A is a Jacobi matrix.

Input Parameters

Data object of _TRNSPBC_HANDLE_t type for C/C++ programmers and
INTEGER*8 for FORTRAN programmers.

handle

DOUBLE PRECISION. Array of size m. Contains the function values at
X, where fvec(i) = (yi – fi(x)).

fvec

DOUBLE PRECISION. Array of size m by n. Contains the Jacobi matrix
of the function.

fjac

Output Parameters

DOUBLE PRECISION. Array of size m. Contains the updated function
values at X

fvec

INTEGER. Informs about the task completion. When equal to 0, the
task is completed succefully.

RCI_Request

2669

Optimization Solvers Routines 14

See Description for the other values of the parameter and their meaning.

INTEGER. Informs about the task completion.res
res = TR_SUCCESS means the routine completed the task normally.

dtrnlspbc_get
Retrieves the number of iterations, stop criterion,
initial residual, and final residual.

Syntax

Fortran:

res = dtrnlspbc_get(handle, iter, st_cr, r1, r2)

C:

res = dtrnlspbc_get(&handle, &iter, &st_cr, &r1, &r2);

Description

The routine retrieves the number of current iterations, stop criterion, initial residual, and final
residual.

The st_cr parameter contains the stop criterion:

st_cr = 1 - the algorithm has exceeded the maximal number of iterations.

st_cr = 2 - Δk < eps(1)

st_cr = 3 - ||F(x)|| < eps(2)

st_cr = 4 - ||A(x)ij|| < eps(3)

st_cr = 5 - ||s|| < eps(4)

st_cr = 6 - ||F(x)||- ||F(x) - A(x)s|| < eps(5),

where A is a Jacobi matrix.

Input Parameters

Data object of _TRNSPBC_HANDLE_t type for C/C++ programmers and
INTEGER*8 for FORTRAN programmers.

handle

2670

14 Intel® Math Kernel Library Reference Manual

Output Parameters

INTEGER. Contains the current number of iterations.iter

INTEGER. Contains the stop criterion.st_cr
See Description for the parameter values and their meanings.

DOUBLE PRECISION. Contains the initial residual, that is, the functional
value (||y - f(x)||) of the initial х set by the user.

r1

DOUBLE PRECISION. Contains the final residual, that is, the functional
value (||y - f(x)||) of the final х resulting from the algorithm
operation.

r2

INTEGER. Informs about task completion.res
res = TR_SUCCESS means the routine completed the task normally.

dtrnlspbc_delete
Removes data object required by TR solver.

Syntax

Fortran:

res = dtrnlspbc_delete(handle)

C:

res = dtrnlspbc_delete(&handle);

Description

The routine removes a data object needed for the RCI TR solver.

Input Parameters

Data object of _TRNSPBC_HANDLE_t type for C/C++ programmers and
INTEGER*8 for FORTRAN programmers.

handle

Output Parameters

INTEGER. Informs about task completion.res
res = TR_SUCCESS means the routine completed the task normally.

2671

Optimization Solvers Routines 14

Examples of dtrnlspbc Usage

Example 14-3. dtrnlspbc Usage in Fortran
C** NONLINEAR LEAST SQUARE PROBLEM WITH BOUNDARY CONSTRAINTS

PROGRAM EXAMPLE_DTRNLSPBC_POWELL

IMPLICIT NONE

C** HEADER-FILE WITH DEFINITIONS (CONSTANTS, EXTERNALS)

INCLUDE 'mkl_rci.f'

C** USER’S OBJECTIVE FUNCTION

EXTERNAL EXTENDET_POWELL

C** N - NUMBER OF FUNCTION VARIABLES

INTEGER N

PARAMETER (N = 40)

C** M - DIMENSION OF FUNCTION VALUE

INTEGER M

PARAMETER (M = 40)

C** SOLUTION VECTOR. CONTAINS VALUES X FOR F(X)

DOUBLE PRECISION X (N)

C** PRECISIONS FOR STOP-CRITERIA (SEE MANUAL FOR MORE DETAILS)

DOUBLE PRECISION ESP (6)

C** JACOBI CALCULATION PRECISION

DOUBLE PRECISION JAC_EPS

C** LOWER AND UPPER BOUNDS

DOUBLE PRECISION LW (N), UP (N)

C** REVERSE COMMUNICATION INTERFACE PARAMETER

INTEGRER RCI_REQUEST

C** FUNCTION (F(X)) VALUE VECTOR

DOUBLE PRECISION FVEC (M)

2672

14 Intel® Math Kernel Library Reference Manual

C** JACOBI MATRIX

DOUBLE PRECISION FJAC (M, N)

C** NUMBER OF ITERATIONS

INTEGRER ITER

C** NUMBER OF STOP-CRITERION

INTEGRER ST_CR

C** CONTROLS OF RCI CYCLE

INTEGRER SUCCESSFUL

C** MAXIMUM NUMBER OF ITERATIONS

INTEGRER ITER1

C** MAXIMUM NUMBER OF ITERATIONS OF CALCULATION OF TRIAL-STEP

INTEGRER ITER2

C** INITIAL STEP BOUND

DOUBLE PRECISION RS

C** INITIAL AND FINAL RESIDUALS

DOUBLE PRECISION R1, R2

C** TR SOLVER HANDLE

INTEGRER*8 HANDLE

C** CYCLE’S COUNTERS

INTEGRER I, J

C** SET PRECISIONS FOR STOP-CRITERIA

EPS (1:6) = 1.D-5

C** SET MAXIMUM NUMBER OF ITERATIONS

ITER1 = 1000

C** SET MAXIMUM NUMBER OF ITERATIONS OF CALCULATION OF TRIAL-STEP

ITER2 = 100

C** SET INITIAL STEP BOUND

RS = 100.D0

2673

Optimization Solvers Routines 14

C** PRECISIONS FOR JACOBI CALCULATION

JAC_EPS = 1.D-8

C** SET THE INITIAL GUESS

DO I = 1, N/4

X (4*I - 3) = 3.D0

X (4*I - 2) = -1.D0

X (4*I - 1) = 0.D0

X (4*I) = 1.D0

ENDDO

C** SET LOWER AND UPPER BOUNDS

DO I = 1, N/4

LW(4*I-3) = 0.1D0

LW(4*I-2) = -20.D0

LW(4*I-1) = -1.D0

LW(4*I) = -1.D0

UP(4*I-3) = 100.D0

2674

14 Intel® Math Kernel Library Reference Manual

UP(4*I-2) = 20.D0

UP(4*I-1) = 1.D0

UP(4*I) = 50.D0

ENDDO

C** SET INITIAL VALUES

DO I = 1, M

FVEC (I) = 0.D0

DO J = 1, N

FJAC (I, J) = 0.D0

ENDDO

ENDDO

C** INITIALIZE SOLVER (ALLOCATE MEMORY, SET INITIAL VALUES)

C** HANDLE IN/OUT: TR SOLVER HANDLE

C** N IN: NUMBER OF FUNCTION VARIABLES

C** M IN: DIMENSION OF FUNCTION VALUE

C** X IN: SOLUTION VECTOR. CONTAINS VALUES X FOR F(X)

C** LW IN: LOWER BOUND

C** UP IN: UPPER BOUND

C** EPS IN: PRECISIONS FOR STOP-CRITERIA

C** ITER1 IN: MAXIMUM NUMBER OF ITERATIONS

C** ITER2 IN: MAXIMUM NUMBER OF ITERATIONS OF CALCULATION OF
TRIAL-STEP

C** RS IN: INITIAL STEP BOUND

IF (DTRNLSPBC_INIT (HANDLE, N, M, X, LW, UP, EPS, ITER1, ITER2

+ , RS) /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '| ERROR IN DTRNLSPBC_INIT'

C** AND STOP

STOP

2675

Optimization Solvers Routines 14

ENDIF

C** SET INITIAL RCI CYCLE VARIABLES

RCI_REQUEST = 0

SUCCESSFUL = 0

C** RCI CYCLE

DO WHILE (SUCCESSFUL == 0)

C** CALL TR SOLVER

C** HANDLE IN/OUT: TR SOLVER HANDLE

C** FVEC IN: VECTOR

C** FJAC IN: JACOBI MATRIX

C** RCI_REQUEST IN/OUT: RETURN NUMBER THAT DENOTES NEXT STEP FOR
PERFORMING

IF (DTRNLSPBC_SOLVE (HANDLE, FVEC, FJAC, RCI_REQUEST)

+ /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '| ERROR IN DTRNLSPBC_SOLVE'

C** AND STOP

STOP

ENDIF

C** RCI_REQUEST IN/OUT: RETURN NUMBER THAT DENOTES NEXT STEP FOR
PERFORMING

C** ACCORDING TO RCI_REQUEST VALUE WE DO NEXT STEP

SELECT CASE (RCI_REQUEST)

CASE (-1, -2, -3, -4, -5, -6)

C** STOP RCI CYCLE

SUCCESSFUL = 1

CASE (1)

C** RECALCULATE FUNCTION VALUE

C** M IN: DIMENSION OF FUNCTION VALUE

2676

14 Intel® Math Kernel Library Reference Manual

C** N IN: NUMBER OF FUNCTION VARIABLES

C** X IN: SOLUTION VECTOR

C** FVEC OUT: FUNCTION VALUE F(X)

CALL EXTENDET_POWELL (M, N, X, FVEC)

CASE (2)

C** COMPUTE JACOBI MATRIX

C** EXTENDET_POWELL IN: EXTERNAL OBJECTIVE FUNCTION

C** N IN: NUMBER OF FUNCTION VARIABLES

C** M IN: DIMENSION OF FUNCTION VALUE

C** FJAC OUT: JACOBI MATRIX

C** X IN: SOLUTION VECTOR

C** JAC_EPS IN: JACOBI CALCULATION PRECISION

IF (DJACOBI (EXTENDET_POWELL, N, M, FJAC, X, JAC_EPS)

+ /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '| ERROR IN DTRNLSPBC_SOLVE'

C** AND STOP

STOP

ENDIF

ENDSELECT

ENDDO

C** GET SOLUTION STATUSES

C** HANDLE IN: TR SOLVER HANDLE

C** ITER OUT: NUMBER OF ITERATIONS

C** ST_CR OUT: NUMBER OF STOP CRITERION

C** R1 OUT: INITIAL RESIDUALS

C** R2 OUT: FINAL RESIDUALS

IF (DTRNLSPBC_GET (HANDLE, ITER, ST_CR, R1_R2)

2677

Optimization Solvers Routines 14

+ /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '| ERROR IN DTRNLSPBC_GET'

C** AND STOP

STOP

ENDIF

C** FREE HANDLE MEMORY

IF (DTRNLSPBC_DELETE (HANDLE) /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '| ERROR IN DTRNLSPBC_DELETE'

C** AND STOP

STOP

ENDIF

C** IF FINAL RESIDUAL IS LESS THAN REQUIRED PRECISION THEN PRINT PASS

IF (R2 < 1.D-1) THEN

PRINT *, '| DTRNLSPBC POWELL............PASS'!, R1,
R2

C** ELSE PRINT FAILED

ELSE

PRINT *, '| DTRNLSPBC POWELL............FAILED'!, R1,
R2

ENDIF

END PROGRAM EXAMPLE_DTRNLSPBC_POWELL

C** ROUTINE FOR EXTENDET POWELL FUNCTION CALCULATION

C** M IN: DIMENSION OF FUNCTION VALUE

C** N IN: NUMBER OF FUNCTION VARIABLES

2678

14 Intel® Math Kernel Library Reference Manual

C** X IN: VECTOR FOR FUNCTION CALCULATION

C** F OUT: FUNCTION VALUE F(X)

SUBROUTINE EXTENDET_POWELL (M, N, X, F)

IMPLICIT NONE

INTEGER M, N

DOUBLE PRECISION X (*), F (*)

INTEGER I

DO I = 1, N/4

F (4*I-3) = X(4*I - 3) + 10.D0 * X(4*I - 2)

F (4*I-2) = 2.2360679774997896964091736687313D0*(X(4*I-1) -
X(4*I))

F (4*I-1) = (X(4*I-2) - 2.D0*X(4*I-1))**2

F (4*I) = 3.1622776601683793319988935444327D0*(X(4*I-3) -
X(4*I))**2

ENDDO

ENDSUBROUTINE EXTENDET_POWELL

2679

Optimization Solvers Routines 14

Example 14-4. dtrnlspbc Usage in C
#include <stdio.h>

#include <malloc.h>

#include <math.h>

#include "mkl_rci.h"

/* nonlinear least square problem with boundary constraints */

int main ()

{

/* user’s objective function */

extern void extendet_powell (int *, int *, double*, double*);

/* n - number of function variables

m - dimension of function value */

int n = 4, m = 4;

/* precisions for stop-criteria (see manual for more details) */

double eps[6];

/* solution vector. contains values x for f(x) */

double *x;

/* iter1 - maximum number of iterations

iter2 - maximum number of iterations of calculation of trial-step */

int iter1 = 1000, iter2 = 100;

/* initial step bound */

double rs = 0.0;

/* reverse communication interface parameter */

int RCI_Request;

2680

14 Intel® Math Kernel Library Reference Manual

/* controls of rci cycle */

int successful;

/* function (f(x)) value vector */

double *fvec;

/* jacobi matrix */

double *fjac;

/* lower and upper bounds */

double *LW, *UP;

/* number of iterations */

int iter;

/* number of stop-criterion */

int st_cr;

/* initial and final residuals */

double r1, r2;

/* TR solver handle */

_TRNSPBC_HANDLE_t handle;

/* cycle’s counter */

int i;

/* memory allocation */

x = (double*) malloc (sizeof (double)*n);

fvec = (double*) malloc (sizeof (double)*m);

fjac = (double*) malloc (sizeof (double)*m*n);

LW = (double*) malloc (sizeof (double)*n);

UP = (double*) malloc (sizeof (double)*n);

/* set precisions for stop-criteria */

for (i = 0; i < 6; i++)

{

2681

Optimization Solvers Routines 14

eps [i] = 0.00001;

}

/* set the initial guess */

for (i = 0; i < n/4; i++)

{

x [4*i] = 3.0;

x [4*i + 1] = -1.0;

x [4*i + 2] = 0.0;

x [4*i + 3] = 1.0;

}

/* set the initial values */

for (i = 0; i < m; i++)

fvec [i] = 0.0;

for (i = 0; i < m*n; i++)

fjac [i] = 0.0;

/* set bounds */

for (i = 0; i < n/4; i++)

{

LW [4*i] = 0.1;

LW [4*i + 1] = -20.0;

LW [4*i + 2] = -1.0;

LW [4*i + 3] = -1.0;

UP [4*i] = 100.0;

UP [4*i + 1] = 20.0;

UP [4*i + 2] = 1.0;

UP [4*i + 3] = 50.0;

}

/* initialize solver (allocate memory, set initial values)

2682

14 Intel® Math Kernel Library Reference Manual

handle in/out: TR solver handle

n in: number of function variables

m in: dimension of function value

x in: solution vector. contains values x for f(x)

LW in: lower bound

UP in: upper bound

eps in: precisions for stop-criteria

iter1 in: maximum number of iterations

iter2 in: maximum number of iterations of calculation of
trial-step

rs in: initial step bound */

if (dtrnlspbc_init (&handle, &n, &m, x, LW, UP, eps, &iter1, &iter2,
&rs) != TR_SUCCESS)

{

/* if function does not complete successfully then print error message
*/

printf ("| error in dtrnlspbc_init\n");

/* and exit */

return 0;

}

/* set initial rci cycle variables */

RCI_Request = 0;

successful = 0;

/* rci cycle */

while (successful == 0)

{

/* call tr solver

handle in/out: tr solver handle

fvec in: vector

fjac in: jacobi matrix

2683

Optimization Solvers Routines 14

RCI_request in/out: return number which denotes next step for
performing */

if (dtrnlspbc_solve (&handle, fvec, fjac, &RCI_Request) != TR_SUCCESS)

{

/* if function does not complete successfully then print error
message */

printf ("| error in dtrnlspbc_solve\n");

/* and exit */

return 0;

}

/* according to rci_request value we do next step */

if (RCI_Request == -1 ||

RCI_Request == -2 ||

RCI_Request == -3 ||

RCI_Request == -4 ||

RCI_Request == -5 ||

RCI_Request == -6)

/* exit rci cycle */

successful = 1;

if (RCI_Request == 1)

{

/* recalculate function value

m in: dimension of function value

n in: number of function variables

x in: solution vector

fvec out: function value f(x) */

extendet_powell (&m, &n, x, fvec);

}

if (RCI_Request == 2)

2684

14 Intel® Math Kernel Library Reference Manual

{

/* compute jacobi matrix

extendet_powell in: external objective function

n in: number of function variables

m in: dimension of function value

fjac out: jacobi matrix

2685

Optimization Solvers Routines 14

x in: solution vector

jac_eps in: jacobi calculation precision */

if (djacobi (extendet_powell, &n, &m, fjac, x, eps) != TR_SUCCESS)

{

/* if function does not complete successfully then print
error message */

printf ("| error in djacobi\n");

/* and exit */

return 0;

}

}

}

/* get solution statuses

handle in: TR solver handle

iter out: number of iterations

st_cr out: number of stop criterion

r1 out: initial residuals

r2 out: final residuals */

if (dtrnlspbc_get (&handle, &iter, &st_cr, &r1, &r2) != TR_SUCCESS)

{

/* if function does not complete successfully then print error message
*/

printf ("| error in dtrnlspbc_get\n");

/* and exit */

return 0;

}

/* free handle memory */

if (dtrnlspbc_delete (&handle) != TR_SUCCESS)

{

2686

14 Intel® Math Kernel Library Reference Manual

/* if function does not complete successfully then print error message
*/

printf ("| error in dtrnlspbc_delete\n");

/* and exit */

return 0;

}

/* free allocated memory */

free (x);

free (fvec);

free (fjac);

free (LW);

free (UP);

/* if final residual is less than required precision then print pass */

if (r2 < 0.1)

printf ("| dtrnlspbc powell............PASS\n");

/* else print failed */

else

printf ("| dtrnlspbc powell............FAILED\n");

return 0;

}

/* nonlinear system equations with constraints */

/* routine for extendet powell function calculation

m in: dimension of function value

n in: number of function variables

x in: vector for function calculation

f out: function value f(x) */

void extendet_powell (int *m, int *n, double *x, double *f)

{

2687

Optimization Solvers Routines 14

int i;

for (i = 0; i < (*n)/4; i++)

{

f [4*i] = x [4*i] + 10.0*x [4*i + 1];

f [4*i + 1] = 2.2360679774997896964091736687313*(x [4*i + 2] - x [4*i
+ 3]);

f [4*i + 2] = (x [4*i + 1] - 2.0*x [4*i + 2])*(x [4*i + 1] - 2.0*x
[4*i + 2]);

f [4*i + 3] = 3.1622776601683793319988935444327*(x [4*i] - x [4*i +
3])*(x [4*i] - x [4*i + 3]);

}

return;

}

Jacobi Matrix Calculation Routines
This section describes routines that compute Jacobi matrix by central differences. Jacobi matrix
calculation is required while solving nonlinear least-square problem and systems of nonlinear
equations (with or without linear bound constraints).Routines for calculation of Jacobi matrix
have "Black-Box" interfaces, where users put the objective function via parameters. But in that
case the user’s objective function must have fixed interface.

Table 14-3 Jacobi Matrix Calculation Routines

OperationRoutine Name

Initializes the solver.djacobi_init

Computes a Jacobi matrix of the function on the basis of RCI
using central difference.

djacobi_solve

Removes data.djacobi_delete

Computes a Jacobi matrix of the fcn function using central
difference.

djacobi

2688

14 Intel® Math Kernel Library Reference Manual

djacobi_init
Initializes the solver of Jacobian calculations.

Syntax

Fortran:

res = djacobi_init(handle, n, m, x, a, esp)

C:

res = djacobi_init(&handle, &n, &m, x, a, &eps);

Description

The routine initializes the solver.

Input Parameters

INTEGER. Length of X.n

INTEGER. Length of F.m

DOUBLE PRECISION. Array of size n. Vector at which the function is
evaluated.

x

DOUBLE PRECISION. Precision of Jacobi matrix calculation.eps

Output Parameters

Data object of _JACOBIMATRIX_HANDLE_t type for C/C++ programmers
and INTEGER*8 for FORTRAN programmers.

handle

DOUBLE PRECISION. Array of size (m,n). Contains the Jacobi matrix of
the function.

a

INTEGER. Informs about the task completion.res
res = TR_SUCCESS means the routine completed the task normally.
res = TR_INVALID_OPTION means an error in the input parameters.
res = TR_OUT_OF_MEMORY means a memory error.

2689

Optimization Solvers Routines 14

djacobi_solve
Computes Jacobi matrix of the function on the basis
of RCI using central difference.

Syntax

Fortran:

res = djacobi_solve(handle, f1, f2, RCI_Request)

C:

res = djacobi_solve(&handle, f1, f2, &RCI_Request);

Description

The djacobi_solve routine computes a Jacobi matrix of the function on the basis of RCI using
central difference.

Input Parameters

Data object of _JACOBIMATRIX_HANDLE_t type for C/C++ programmers
and INTEGER*8 for FORTRAN programmers.

handle

Output Parameters

DOUBLE PRECISION. Array of size m. Contains the updated function

values at X + ε.
f1

DOUBLE PRECISION. Array of size m. Contains the updated function

values at X - ε.
f2

INTEGER. Informs about the task completion. When equal to 0, the
task is completed succefully.

RCI_Request

RCI_Request= 1 means user should calculate the Jacobian matrix and
put the result into f1.
RCI_Request= 2 - means user should calculate the Jacobian matrix
and put the result into f2.

INTEGER. Informs about the task completion.res
res = TR_SUCCESS means the routine completed the task normally.
res = TR_INVALID_OPTION means an error in the input parameters.

2690

14 Intel® Math Kernel Library Reference Manual

djacobi_delete
Removes data object required by Jacobian
calculation.

Syntax

Fortran:

res = djacobi_delete(handle)

C:

res = djacobi_delete(&handle);

Description

The routine removes a data object needed for the Jacobi matrix RCI solver.

Input Parameters

Data object of _JACOBIMATRIX_HANDLE_t type for C/C++ programmers
and INTEGER*8 for FORTRAN programmers.

handle

Output Parameters

INTEGER. Informs about task completion.res
res = TR_SUCCESS means the routine completed the task normally.

djacobi
Computes Jacobi matrix of user's objective function
using cenral difference.

Syntax

Fortran:

res = djacobi(fcn, n, m, fjac, x, jac_eps)

C:

res = djacobi(fcn, &n, &m, fjac, x, &jac_eps);

2691

Optimization Solvers Routines 14

Description

The routine computes a Jacobi matrix for function fcn using central difference. This routine
has "Black-Box" interface, where user inputs the objective function via parameters. But in that
case the user’s objective function must have a fixed interface.

Input Parameters

User-supplied subroutine to evaluate the function that defines the
least-squares problem. Call fcn (m, n, x, f), where

fcn

m - INTEGER. Input parameter. Length of f
n - INTEGER. Input parameter. Length of x.
x - DOUBLE PRECISION. Input parameter. Array of size n. Vector at
which the function is evaluated; x should not be changed by fcn.
f - DOUBLE PRECISION. Output parameter. Array of size m; contains
the function values at x.
Declare fcn as EXTERNAL in the calling program.

INTEGER. Length of X.n

INTEGER. Length of F.m

DOUBLE PRECISION. Array of size n. Vector at which the function is
evaluated.

x

DOUBLE PRECISION. Precision of Jacobi matrix calculation.eps

Output Parameters

DOUBLE PRECISION. Array of size (m,n). Contains the Jacobi matrix of
the function.

a

INTEGER. Informs about task completion.res
res = TR_SUCCESS means the routine completed the task normally.
res = TR_INVALID_OPTION means an error in the input parameters.
res = TR_OUT_OF_MEMORY means a memory error.

2692

14 Intel® Math Kernel Library Reference Manual

Examples of djacobi_solve Usage

Example 14-5. djacobi_solve Usage in Fortran
PROGRAM JACOBI_MATRIX

IMPLICIT NONE

INCLUDE '../include/mkl_opt_tr.f'

EXTERNAL EXTENDET_POWELL

C** N - NUMBER OF FUNCTION VARIABLES

C** M - DIMENSION OF FUNCTION VALUE

INTEGER N, M

PARAMETER (N = 4, M = 4)

C** JACOBI MATRIX

C** SOLUTION VECTOR. CONTAINS VALUES X FOR F(X)

C** FUNCTION (F(X)) VALUE VECTOR

C** TEMPORARY ARRAYS F1 & F2 WHICH CONTAINS F1 = F(X+EPS) | F2 = F(X-EPS)

DOUBLE PRECISION A (M,N), X(N), F1(N), F2(N)

DOUBLE PRECISION EPS

C** PRECISIONS FOR JACOBI_MATRIX CALCULATION

PARAMETER (EPS = 1.D-6)

C** JACOBI-MATRIX SOLVER HANDLE

INTEGER*8 HANDLE

C** CONTROLS OF RCI CYCLE

INTEGER SUCCESSFUL, RCI_REQUEST

C** SET THE X VALUES

X = 10.d0

2693

Optimization Solvers Routines 14

C** INITIALIZE SOLVER (ALLOCATE MEMORY, SET INITIAL VALUES)

IF (DJACOBI_INIT (HANDLE, N, M, X, EPS) /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '#ERROR IN DJACOBI_INIT'

STOP

ENDIF

C** SET INITIAL RCI CYCLE VARIABLES

RCI_REQUEST = 0

SUCCESSFUL = 0

C** RCI CYCLE

DO WHILE (SUCCESSFUL == 0)

C** CALL SOLVER

IF (DJACOBI_SOLVE (HANDLE, F1, F2, RCI_REQUEST) /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '#ERROR IN DJACOBI_SOLVE'

STOP

ENDIF

IF RCI_REQUEST == 1) THEN

C** CALCULATE FUNCTION VALUE F1 = F(X+EPS)

CALL EXTENDET_POWELL (M, N, X, F1)

ELSEIF (RCI_REQUEST == 2) THEN

C** CALCULATE FUNCTION VALUE F1 = F(X-EPS)

CALL EXTENDET_POWELL (M, N, X, F2)

ELSEIF (RCI_REQUEST == 0) THEN

C** EXIT RCI CYCLE

SUCCESSFUL = 1

ENDIF

ENDDO

2694

14 Intel® Math Kernel Library Reference Manual

C** FREE HANDLE MEMORY

IF (DJACOBI_DELETE (HANDLE) /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '#ERROR IN DJACOBI_DELETE'

STOP

ENDIF

ENDPROGRAM JACOBI_MATRIX

C** ROUTINE FOR EXTENDET POWELL FUNCTION CALCULATION

C** M IN: DIMENSION OF FUNCTION VALUE

C** N IN: NUMBER OF FUNCTION VARIABLES

C** X IN: VECTOR FOR FUNCTION CALCULATION

C** F OUT: FUNCTION VALUE F(X)

SUBROUTINE EXTENDET_POWELL (M, N, X, F)

IMPLICIT NONE

INTEGER M, N

DOUBLE PRECISION X (*), F (*)

INTEGER I

DO I = 1, N/4

F (4*I-3) = X(4*I - 3) + 10.D0 * X(4*I - 2)

F (4*I-2) = DSQRT(5.D0) * (X(4*I-1) - X(4*I))

F (4*I-1) = (X(4*I-2) - 2.D0*X(4*I-1))**2

F (4*I) = DSQRT(10.D0)*(X(4*I-3) - X(4*I))**2

ENDDO

ENDSUBROUTINE EXTENDET_POWELL

2695

Optimization Solvers Routines 14

Example 14-6. djacobi_solve Usage in C

#include "../include/mkl_opt_tr.h"

#include <stdlib.h>

#include <stdio.h>

int main ()

{

/* user’s objective function */

extern void extendet_powell (int*, int*, double*, double*);

/* n - number of function variables

m - dimension of function value */

int n = 4, m = 4;

/* jacobi matrix */

solution vector. contains values x for f(x)

temporary arrays f1 & f2 that contain f1 = f(x+eps) | f2 = f(x-eps) */

double *a, *x, *f1, *f2;

/* precisions for jacobi_matrix calculation */

double eps = 0.000001;

/* jacobi-matrix solver handle */

_JACOBIMATRIX_HANDLE_t handle;

/* controls of rci cycle */

int successful, rci_request, i;

a = (double*) malloc (sizeof (double) * n*m);

x = (double*) malloc (sizeof (double) * n);

2696

14 Intel® Math Kernel Library Reference Manual

f1 = (double*) malloc (sizeof (double) * n);

f2 = (double*) malloc (sizeof (double) * n);

/* set the x values */

for (i = 0; i < n; i++) x[i] = 10.0;

/* initialize solver (allocate mamory, set initial values) */

if (djacobi_init (&handle, &n, &m, x, a, &eps) != TR_SUCCESS){

/* if function does not complete successfully then print error message */

printf ("\n#ERROR IN DJACOBI_INIT\n");

return 0;

}

/* set initial rci cycle variables */

rci_request = 0;

successful = 0;

/* rci cycle */

while (successful == 0) {

/* call solver */

if (djacobi_solve (&handle, f1, f2, &rci_request) != TR_SUCCESS){

/* if function does not complete successfully then print error message */

printf ("\n#ERROR IN DJACOBI_SOLVE\n");

return 0;

}

if (rci_request == 1)

/* calculate function value f1 = f(x+eps) */

extendet_powell (&m, &n, x, f1);

else if (rci_request == 2)

/* calculate function value f1 = f(x-eps) */

extendet_powell (&m, &n, x, f2);

else if (rci_request == 0)

2697

Optimization Solvers Routines 14

/* exit rci cycle */

successful = 1;

}

/* free handle memory */

2698

14 Intel® Math Kernel Library Reference Manual

if (djacobi_delete (&handle) != TR_SUCCESS) {

/* if function does not complete successfully then print error message */

printf ("\n#ERROR IN DJACOBI_DELETE\n");

return 0;

}

return 0;

}

/* routine for extendet powell function calculation

m in: dimension of function value

n in: number of function variables

x in: vector for function calculation

f out: function value f(x) */

void extendet_powell (int *m, int *n, double *x, double *f)

{

int i;

for (i = 0; i < (*n)/4; i++)

{

f [4*i] = x [4*i] + 10.0*x [4*i + 1];

f [4*i + 1] = 2.2360679774*(x [4*i + 2] - x [4*i + 3]);

f [4*i + 2] = (x [4*i + 1] - 2.0*x [4*i + 2])*(x [4*i + 1] - 2.0*x
[4*i + 2]);

f [4*i + 3] = 3.1622776601*(x [4*i] - x [4*i + 3])*(x [4*i] - x [4*i
+ 3]);

}

return;

}

2699

Optimization Solvers Routines 14

Examples of djacobi Usage

Example 14-7. djacobi Usage in Fortran
C** COMPUTE JACOBI MATRIX

C** EXTENDET_POWELL IN: EXTERNAL OBJECTIVE FUNCTION

C** N IN: NUMBER OF FUNCTION VARIABLES

C** M IN: DIMENSION OF FUNCTION VALUE

C** FJAC OUT: JACOBI MATRIX

C** X IN: SOLUTION VECTOR

C** JAC_EPS IN: JACOBI CALCULATION PRECISION

IF (DJACOBI (EXTENDET_POWELL, N, M, FJAC, X, JAC_EPS)

+ /= TR_SUCCESS) THEN

C** IF FUNCTION DOES NOT COMPLETE SUCCESSFULLY THEN PRINT ERROR MESSAGE

PRINT *, '| ERROR IN DJACOBI'

ENDIF

...

C** ROUTINE FOR EXTENDET POWELL FUNCTION CALCULATION

C** M IN: DIMENSION OF FUNCTION VALUE

C** N IN: NUMBER OF FUNCTION VARIABLES

C** X IN: VECTOR FOR FUNCTION CALCULATION

C** F OUT: FUNCTION VALUE F(X)

SUBROUTINE EXTENDET_POWELL (M, N, X, F)

IMPLICIT NONE

INTEGER M, N

DOUBLE PRECISION X (*), F (*)

INTEGER I

2700

14 Intel® Math Kernel Library Reference Manual

DO I = 1, N/4

F (4*I-3) = X(4*I - 3) + 10.D0 * X(4*I - 2)

F (4*I-2) = DSQRT(5.D0) * (X(4*I-1) - X(4*I))

F (4*I-1) = (X(4*I-2) - 2.D0*X(4*I-1))**2

F (4*I) = DSQRT(10.D0)*(X(4*I-3) - X(4*I))**2

ENDDO

ENDSUBROUTINE EXTENDET_POWELL

Example 14-8. djacobi Usage in C
/* compute jacobi matrix

extendet_powell in: external objective function

n in: number of function variables

m in: dimension of function value

fjac out: jacobi matrix

2701

Optimization Solvers Routines 14

x in: solution vector

jac_eps in: jacobi calculation precision */

if (djacobi (extendet_powell, &n, &m, fjac, x, &jac_eps) /= TR_SUCCESS){

/* if function does not complete successfully then print error message */

printf ("\n#ERROR IN DJACOBI\n");

return 0;

}

/* ...*/

/* routine for extendet powell function calculation

m in: dimension of function value

n in: number of function variables

x in: vector for function calculation

f out: function value f(x) */

void extendet_powell (int *m, int *n, double *x, double *f)

{

int i;

for (i = 0; i < (*n)/4; i++)

{

f [4*i] = x [4*i] + 10.0*x [4*i + 1];

f [4*i + 1] = 2.2360679774*(x [4*i + 2] - x [4*i + 3]);

f [4*i + 2] = (x [4*i + 1] - 2.0*x [4*i + 2])*(x [4*i + 1] - 2.0*x
[4*i + 2]);

f [4*i + 3] = 3.1622776601*(x [4*i] - x [4*i + 3])*(x [4*i] - x [4*i
+ 3]);

}

2702

14 Intel® Math Kernel Library Reference Manual

return;

}

2703

Optimization Solvers Routines 14

15Support Functions

Intel® MKL support functions are used to:

– retrieve information about the current Intel MKL version

– handle errors

– test characters and character strings for equality

– measure user time for a process and elapsed CPU time

– set and measure CPU frequency

– free memory allocated by Intel MKL memory management software.

Functions described below are subdivided according to their purpose into the following groups:

Version Information Functions

Error Handling Functions

Equality Test Functions

Timing Functions

Memory Functions

Table 15-1 contains the list of support functions common for Intel MKL.

Table 15-1 Intel MKL Support Functions

OperationFunction Name

Version Information Functions

Returns information about the active library version.MKLGetVersion

Returns information about the library version string.MKLGetVersionString

Error Handling Functions

Handles error conditions for BLAS, LAPACK, VML routines.xerbla

Handles error conditions for ScaLAPACK routines.pxerbla

Equality Test Functions

Tests two characters for equality regardless of case.lsame

2705

OperationFunction Name

Tests two character strings for equality regardless of case.lsamen

Timing Functions

Returns user time for a process.second/dsecnd

Returns full precision elapsed CPU clocks.getcpuclocks

Returns CPU frequency value in GHz.getcpufrequency

Sets CPU frequency value in GHz.setcpufrequency

Memory Functions

Frees memory buffers.MKL_FreeBuffers

Version Information Functions
Intel® MKL provides two methods for extracting information about the library version number.
First, you may extract a version string using the MKLGetVersionString function . Or,
alternatively, you can use the MKLGetVersion function to obtain an MKLVersion structure
that contains the version information. A makefile is also provided to automatically build the
examples and output summary files containing the version information for the current library.

MKLGetVersion
Returns information about the active library
version.

Syntax

void MKLGetVersion(MKLVersion*pVersion)

Description

The MKLGetVersion function collects the information about the active version of Intel MKL
software and returns this information in a structure of MKLVersion type by the pVersion
address . MKLVersion structure type is defined in mkl_types.h file. The following fields of
MKLVersion structure are available:

2706

15 Intel® Math Kernel Library Reference Manual

is the major number of the current library version.MajorVersion

is the minor number of the current library version.MinorVersion

is the update number of the current library version.BuildNumber

is the status of the current library version. Possible variants could be
“Beta”, “Product”.

ProductStatus

is the string that contains the build date and the internal build number.Build

is the processor optimization that is targeted for the specific processor.
It is not the definition of the processor installed in the system, rather
the MKL library detection that is optimal for the processor installed in
the system.

Processor

Output Parameters

Pointer to the MKLVersion structure.pVersion

2707

Support Functions 15

MKLGetVersion Usage

--

#include <stdio.h>

#include <stdlib.h>

#include "mkl_blas.h"

#include "mkl_types.h"

int main(void)

{

MKLVersion pVersion;

MKLGetVersion(pVersion);

printf("Major version: %d\n",pVersion->MajorVersion);

printf("Minor version: %d\n",pVersion->MinorVersion);

printf("Update number: %d\n",pVersion->BuildNumber);

printf("Product status: %s\n",pVersion->ProductStatus);

printf("Build: %s\n",pVersion->Build);

printf("Processor optimization: %s\n",pVersion->Processor);

printf("==\n");

printf("\n");

return 0;

}

Output:

9Major Version
0Minor Version
0Build number
ProductProduct status
061909.09Build

2708

15 Intel® Math Kernel Library Reference Manual

Intel® Xeon® Processor with Intel® Extended Memory 64 TechnologyProcessor
opimization

MKLGetVersionString
Gets the library version string.

Syntax

Fortran:

call MKLGetVersionString(buf)

C:

MKLGetVersionString(buf, len);

Output Parameters

Source stringbuf

Length of the source stringlen

Description

The function MKLGetVersionString returns a string that contains the library version
information.

See example below:

Examples

Fortran:

program getversionstring

character*198 buf

call mklgetversionstring(buf)

write(*,'(a)') buf

end

2709

Support Functions 15

C:

#include <stdio.h>

#include "mkl_blas.h"

int main(void)

{

int len=198;

char buf[198];

MKLGetVersionString(buf, len);

printf("%s\n",buf);

printf("\n");

return 0;

}

Error Handling Functions

xerbla
Error handling routine called by BLAS, LAPACK,
VML routines.

Syntax

call xerbla(srname, info)

Description

The routine xerbla is an error handler for the BLAS, LAPACK, and VML routines. It is called by
a BLAS, LAPACK, or VML routine if an input parameter has an invalid value.

A message is printed and execution stops.

Installers may consider modifying the stop statement in order to call system-specific
exception-handling facilities.

2710

15 Intel® Math Kernel Library Reference Manual

Input Parameters

CHARACTER*6. The name of the routine which called xerbla.srname

INTEGER. The position of the invalid parameter in the
parameter list of the calling routine.

info

pxerbla
Error handling routine called by ScaLAPACK
routines.

Syntax

call pxerbla(ictxt, srname, info)

Description

This routine is an error handler for the ScaLAPACK routines. It is called by a ScaLAPACK routine
if an input parameter has an invalid value. A message is printed. Program execution is not
terminated. For the ScaLAPACK driver and computational routines, a RETURN statement is
issued following the call to pxerbla.

Control returns to the higher-level calling routine, and it is left to the user to determine how
the program should proceed. However, in the specialized low-level ScaLAPACK routines (auxiliary
routines that are Level 2 equivalents of computational routines), the call to pxerbla() is
immediately followed by a call to BLACS_ABORT() to terminate program execution since recovery
from an error at this level in the computation is not possible.

It is always good practice to check for a nonzero value of info on return from a ScaLAPACK
routine. Installers may consider modifying this routine in order to call system-specific
exception-handling facilities.

Input Parameters

(global) INTEGERictxt
The BLACS context handle, indicating the global context of
the operation. The context itself is global.

(global) CHARACTER*6srname
The name of the routine which called pxerbla.

(global) INTEGER.info

2711

Support Functions 15

The position of the invalid parameter in the parameter list
of the calling routine.

Equality Test Functions

lsame
Tests two characters for equality regardless of
case.

Syntax

val = lsame(ca, cb)

Description

This logical function returns .TRUE. if ca is the same letter as cb regardless of case.

Input Parameters

CHARACTER*1. Specify the single characters to be compared.ca, cb

Output Parameters

LOGICAL. Result of the comparison.val

lsamen
Tests two character strings for equality regardless
of case.

Syntax

val = lsamen(n, ca, cb)

Description

This logical function tests if the first n letters of the string ca are the same as the first n letters
of cb, regardless of case. The function lsamen returns .TRUE. if ca and cb are equivalent
except for case and .FALSE. otherwise. lsamen also returns .FALSE. if len(ca) or len(cb)
is less than n.

2712

15 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. The number of characters in ca and cb to be
compared.

n

CHARACTER*(*). Specify two character strings of length at
least n to be compared. Only the first n characters of each
string will be accessed.

ca, cb

Output Parameters

LOGICAL. Result of the comparison.val

Timing Functions

second/dsecnd
Returns elapsed CPU time in seconds.

Syntax

val = second()

val = dsecnd()

Description

The functions second/dsecnd return the elapsed CPU time in seconds. These versions get the
time from the elapsed CPU clocks divided by CPU frequency. The difference is that dsecnd
returns the result with double presision.

The functions should be applied in pairs: the first time, before a routine to be measured, and
the second time - after the measurement. The difference between the returned values is the
time spent in the routine. The usage of second is discouraged for measuring short time intervals
because the single precision format is not capable of holding sufficient timer precision.

Output Parameters

REAL for secondval
DOUBLE PRECISION for dsecnd
Elapsed CPU time in seconds.

2713

Support Functions 15

getcpuclocks
Returns full precision elapsed CPU clocks.

Syntax

getcpuclocks(clocks)

Description

The getcpuclocks subroutine returns the elapsed CPU clocks.

This may be useful when timing short intervals with a high resolution. The getcpuclocks
subroutine is also applied in pairs like second/dsecnd. Note that out-of-order code execution
on IA-32 or on Intel® 64 architecture processors may disturb the exact elapsed CPU clocks
value a little bit, which may be important while measuring extremely short time intervals.

Output Parameters

INTEGER*8. Elapsed CPU clocks.clocks

getcpufrequency
Returns CPU frequency value in GHz.

Syntax

val = getcpufrequency()

Description

The function getcpufrequency returns the CPU frequency in GHz. This value is used by second
/dsecnd functions while converting CPU clocks into seconds.

Obtaining a frequency may take some time for the first time second /dsecnd/getcpufrequency
is called. To avoid it, call setcpufrequency before setting the exact CPU frequency if it is
known in advance.

Output Parameters

DOUBLE PRECISION. CPU frequency value in GHz.val

2714

15 Intel® Math Kernel Library Reference Manual

setcpufrequency
Sets CPU frequency value in GHz.

Syntax

setcpufrequency(freq)

Description

The setcpufrequency subroutine sets the CPU frequency in GHz, used then by second /dsecnd
functions while converting CPU clocks into seconds. Setting the exact CPU frequency is useful
to bypass obtaining a frequency by getcpufrequency.

Initially, CPU frequency value is unset. The CPU frequency value can be set only by
setcpufrequency call, or during the first call of getcpufrequency, if setcpufrequency has
not been called before. Calling setcpufrequency with a special parameter freq = -1.0 forces
the CPU frequency value be unset.

Output Parameters

DOUBLE PRECISION. CPU frequency value in GHz.freq

Memory Functions
This section describes the Intel MKL function that frees memory allocated by Intel® MKL Memory
Manager. See the MKL User’s Guide for details of MKL memory management.

MKL_FreeBuffers
Frees memory buffers.

Syntax

void MKL_FreeBuffers(void)

2715

Support Functions 15

Description

The function MKL_FreeBuffers frees the memory allocated by the MKL Memory Manager. The
Memory Manager allocates new buffers if no free buffers are currently available. Call
MKL_FreeBuffers() to free all memory buffers and to avoid memory leaking on completion
of work with Intel MKL functions, that is, after the last call of an MKL function from your
application.

See MKL User’s Guide for details.

2716

15 Intel® Math Kernel Library Reference Manual

MKL_FreeBuffers Usage with DFT Functions

--

DFTI_DESCRIPTOR *hand1, *hand2;

void MKL_FreeBuffers(void);

.

/* Using MKL DFT */

Status = DftiCreateDescriptor(&hand1, DFTI_SINGLE, DFTI_COMPLEX, dim, m1);

Status = DftiCommitDescriptor(hand1);

Status = DftiComputeForward(hand1, s_array1);

.

Status = DftiCreateDescriptor(&hand2, DFTI_SINGLE, DFTI_COMPLEX, dim, m2);

Status = DftiCommitDescriptor(hand2);

.

Status = DftiFreeDescriptor(&hand1);

/* Do not call MKL_FreeBuffers() here as the hand2 descriptor will be
destroyed! */

.

Status = DftiComputeBackward(hand2, s_array2));

Status = DftiFreeDescriptor(&hand2);

/* Here user finishes the MKL DFT usage */

/* Memory leak will be triggered by any memory control tool */

/* Use MKL_FreeBuffers() to avoid memory leaking */

MKL_FreeBuffers();

--

If the memory space is sufficient, use MKL_FreeBuffers after the last call of the MKL functions.
Otherwise, a drop in performance can occur due to reallocation of buffers for the subsequent
MKL functions.

WARNING. For FFT calls, do not use MKL_FreeBuffers between
DftiCreateDescriptor(hand) and DftiFreeDescriptor(&hand).

2717

Support Functions 15

16BLACS Routines

This chapter describes the Intel® Math Kernel Library implementation of routines from the BLACS (Basic
Linear Algebra Communication Subprograms) package that are used to support a linear algebra oriented
message passing interface that may be implemented efficiently and uniformly across a large range of
distributed memory platforms.

The BLACS routines make linear algebra applications both easier to program and more portable. For this
purpose, they are used in Intel MKL as the communication layer of ScaLAPACK and Cluster DFT.

These routines perform distinct tasks that can be used for:

Initialization

Destruction

Information Purposes

Miscellaneous Tasks.

Initialization Routines
This section describes BLACS routines that deal with grid/context creation, and processing before
the grid/context has been defined.

Table 16-1 BLACS Intialization Routines

Operation performedRoutine name

Returns the number of processes available for use.blacs_pinfo

Allocates virtual machine and spawns processes.blacs_setup

Gets values that BLACS use for internal defaults.blacs_get

Sets values that BLACS use for internal defaults.blacs_set

Assigns available processes into BLACS process grid.blacs_gridinit

Maps available processes into BLACS process grid.blacs_gridmap

2719

blacs_pinfo
Returns the number of processes available for use.

Syntax

call blacs_pinfo(mypnum, nprocs)

Output Parameters

INTEGER. An integer between 0 and (nprocs - 1) that
uniquely identifies each process.

mypnum

INTEGER.The number of processes available for BLACS use.nprocs

Description

This routine is used when some initial system information is required before the BLACS are set
up. On all platforms except PVM, nprocs is the actual number of processes available for use,
that is, nprows * npcols <= nprocs. In PVM, the virtual machine may not have been set
up before this call, and therefore no parallel machine exists. In this case, nprocs is returned
as less than one. If a process has been spawned via the keyboard, it receives mypnum of 0, and
all other processes get mypnum of -1. As a result, the user can distinguish between processes.
Only after the virtual machine has been set up via a call to BLACS_SETUP, this routine returns
the correct values for mypnum and nprocs.

blacs_setup
Allocates virtual machine and spawns processes.

Syntax

call blacs_setup(mypnum, nprocs)

Input Parameters

INTEGER. On the process spawned from the keyboard rather
than from pvmspawn, this parameter indicates the number
of processes to create when building the virtual machine.

nprocs

2720

16 Intel® Math Kernel Library Reference Manual

Output Parameters

INTEGER. An integer between 0 and (nprocs - 1) that
uniquely identifies each process.

mypnum

INTEGER. For all processes other than spawned from the
keyboard, this parameter means the number of processes
available for BLACS use.

nprocs

Description

This routine only accomplishes meaningful work in the PVM BLACS. On all other platforms, it
is functionally equivalent to blacs_pinfo. The BLACS assume a static system, that is, the
given number of processes does not change. PVM supplies a dynamic system, allowing processes
to be added to the system on the fly.

blacs_setup is used to allocate the virtual machine and spawn off processes. It reads in a file
called blacs_setup.dat, in which the first line must be the name of your executable. The second
line is optional, but if it exists, it should be a PVM spawn flag. Legal values at this time are 0
(PvmTaskDefault), 4 (PvmTaskDebug), 8 (PvmTaskTrace), and 12 (PvmTaskDebug +
PvmTaskTrace). The primary reason for this line is to allow the user to easily turn on and off
PVM debugging. Additional lines, if any, specify what machines should be added to the current
configuration before spawning nprocs-1 processes to the machines in a round robin fashion.

nprocs is input on the process which has no PVM parent (that is, mypnum=0), and both
parameters are output for all processes. So, on PVM systems, the call to blacs_pinfo informs
you that the virtual machine has not been set up, and a call to blacs_setup then sets up the
machine and returns the real values for mypnum and nprocs.

Note that if the file blacs_setup.dat does not exist, the BLACS prompt the user for the executable
name, and processes are spawned to the current PVM configuration.

blacs_get
Gets values that BLACS use for internal defaults.

Syntax

call blacs_get(icontxt, what, val)

2721

BLACS Routines 16

Input Parameters

INTEGER. On values of what that are tied to a particular
context, this parameter is the integer handle indicating the
context. Otherwise, ignored.

icontxt

INTEGER. Indicates what BLACS internal(s) should be
returned in val. Present options are:

what

• what = 0 : Handle indicating default system context

• what = 1 : The BLACS message ID range

• what = 2 : The BLACS debug level the library was
compiled with

• what = 10 : Handle indicating the system context used
to define the BLACS context whose handle is icontxt

• what = 11 : Number of rings multiring topology is
presently using

• what = 12 : Number of branches general tree topology
is presently using.

Output Parameters

INTEGER. The value of the BLACS internal.val

Description

This routine gets the values that the BLACS are using for internal defaults. Some values are
tied to a BLACS context, and some are more general. The most common use is in retrieving a
default system context for input into blacs_gridinit or blacs_gridmap.

Some systems, such as MPI*, supply their own version of context. For those users who mix
system code with BLACS code, a BLACS context should be formed in reference to a system
context. Thus, the grid creation routines take a system context as input. If you wish to have
strictly portable code, you may use blacs_get to retrieve a default system context that will
include all available processes. This value is not tied to a BLACS context, so the parameter
icontxt is unused.

blacs_get returns information on three quantities that are tied to an individual BLACS context,
which is passed in as icontxt. The information that may be retrieved is:

• The handle of the system context upon which this BLACS context was defined

2722

16 Intel® Math Kernel Library Reference Manual

• The number of rings for TOP = 'M' (multiring broadcast)

• The number of branches for TOP = 'T' (general tree broadcast/general tree gather).

blacs_set
Sets values that BLACS use for internal defaults.

Syntax

call blacs_set(icontxt, what, val)

Input Parameters

INTEGER. On values of what that are tied to a particular
context, this parameter is the integer handle indicating the
context. Otherwise, ignored.

icontxt

INTEGER. Indicates what BLACS internal(s) should be set.
Present values are:

what

• 1 = The BLACS message ID range

• 11 = Number of rings for multiring topology to use

• 12 = Number of branches for general tree topology to
use.

INTEGER. Array of dimension (*).Indicates the value(s) the
internals should be set to. The specific meanings depend
on what values, as discussed in Description below.

val

Description

This routine sets the BLACS internal defaults depending on the what values:

Setting the BLACS message ID range.what = 1
If you wish to mix the BLACS with other message-passing packages,
restrict the BLACS to a certain message ID range not to used by the
non-BLACS routines. The message ID range must be set before the
first call to blacs_gridinit or blacs_gridmap. Subsequent calls will
have no effect. Because the message ID range is not tied to a particular
context, the parameter icontxt is ignored, and val is defined as:
VAL (input) INTEGER array of dimension (2)

2723

BLACS Routines 16

VAL(1) : The smallest message ID (also called message type or
message tag) the BLACS should use.

VAL(2) : The largest message ID (also called message type or
message tag) the BLACS should use.

Set number of rings for TOP = 'M' (multiring broadcast).This quantity
is tied to a context, so icontxt is used, and val is defined as:

what = 11

VAL (input) INTEGER array of dimension (1)
VAL(1) : The number of rings for multiring topology to use.

Set number of rings for TOP = 'T' (general tree broadcast/general
tree gather). This quantity is tied to a context, so icontxt is used,
and val is defined as:

what = 12

VAL (input) INTEGER array of dimension (1)
VAL(1) : The number branches for general tree topology to use.

blacs_gridinit
Assigns available processes into BLACS process
grid.

Syntax

call blacs_gridinit(icontxt, order, nprow, npcol)

Input Parameters

INTEGER. Integer handle indicating the system context to
be used in creating the BLACS context. Call blacs_get to
obtain a default system context.

icontxt

CHARACTER*1. Indicates how to map processes to BLACS
grid. Options are:

order

• 'R' : Use row-major natural ordering

• 'C' : Use column-major natural ordering

• ELSE : Use row-major natural ordering

INTEGER. Indicates how many process rows the process
grid should contain.

nprow

INTEGER. Indicates how many process columns the process
grid should contain.

npcol

2724

16 Intel® Math Kernel Library Reference Manual

Output Parameters

INTEGER. Integer handle to the created BLACS context.icontxt

Description

All BLACS codes must call this routine, or its sister routine blacs_gridmap. These routines
take the available processes, and assign, or map, them into a BLACS process grid. In other
words, they establish how the BLACS coordinate system maps into the native machine process
numbering system. Each BLACS grid is contained in a context, so that it does not interfere with
distributed operations that occur within other grids/contexts. These grid creation routines may
be called repeatedly to define additional contexts/grids.

The creation of a grid requires input from all processes that are defined to be in this grid.
Processes belonging to more than one grid have to agree on which grid formation will be serviced
first, much like the globally blocking sum or broadcast.

These grid creation routines set up various internals for the BLACS, and one of them must be
called before any calls are made to the non-initialization BLACS.

Note that these routines map already existing processes to a grid: the processes are not created
dynamically. On most parallel machines, the processes are actual processors (hardware), and
they are "created" when you run your executable. When using the PVM BLACS, if the virtual
machine has not been set up yet, the routine blacs_setup should be used to create the virtual
machine.

This routine creates a simple nprow x npcol process grid. This process grid uses the first
nprow * npcol processes, and assigns them to the grid in a row- or column-major natural
ordering. If these process-to-grid mappings are unacceptable, call blacs_gridmap.

blacs_gridmap
Maps available processes into BLACS process grid.

Syntax

call blacs_gridmap(icontxt, usermap, ldumap, nprow, npcol)

Input Parameters

INTEGER. Integer handle indicating the system context to
be used in creating the BLACS context. Call blacs_get to
obtain a default system context.

icontxt

2725

BLACS Routines 16

INTEGER. Array, dimension (ldumap, npcol), indicating the
process-to-grid mapping.

usermap

INTEGER. Leading dimension of the 2D array usermap.

ldumap ≥ nprow.

ldumap

INTEGER. Indicates how many process rows the process
grid should contain.

nprow

INTEGER. Indicates how many process columns the process
grid should contain.

npcol

Output Parameters

INTEGER. Integer handle to the created BLACS context.icontxt

Description

All BLACS codes must call this routine, or its sister routine blacs_gridinit. These routines
take the available processes, and assign, or map, them into a BLACS process grid. In other
words, they establish how the BLACS coordinate system maps into the native machine process
numbering system. Each BLACS grid is contained in a context, so that it does not interfere with
distributed operations that occur within other grids/contexts. These grid creation routines may
be called repeatedly to define additional contexts/grids.

The creation of a grid requires input from all processes that are defined to be in this grid.
Processes belonging to more than one grid have to agree on which grid formation will be serviced
first, much like the globally blocking sum or broadcast.

These grid creation routines set up various internals for the BLACS, and one of them must be
called before any calls are made to the non-initialization BLACS.

Note that these routines map already existing processes to a grid: the processes are not created
dynamically. On most parallel machines, the processes are actual processors (hardware), and
they are "created" when you run your executable. When using the PVM BLACS, if the virtual
machine has not been set up yet, the routine blacs_setup should be used to create the virtual
machine.

This routine allows the user to map processes to the process grid in an arbitrary manner.
usermap(i,j) holds the process number of the process to be placed in {i, j} of the process
grid. On most distributed systems, this process number is a machine defined number between
0 ... nprow-1. For PVM, these node numbers are the PVM TIDS (Task IDs). The blacs_gridmap
routine is intended for an experienced user. The blacs_gridinit routine is much simpler.
blacs_gridinit simply performs a gridmap where the first nprow * npcol processes are
mapped into the current grid in a row-major natural ordering. If you are an an experienced

2726

16 Intel® Math Kernel Library Reference Manual

user, blacs_gridmap allows you to take advantage of your system's actual layout. That is,
you can map nodes that are physically connected to be neighbors in the BLACS grid, etc. The
blacs_gridmap routine also opens the way for multigridding: you can separate your nodes
into arbitrary grids, join them together at some later date, and then re-split them into new
grids. blacs_gridmap also provides the ability to make arbitrary grids or subgrids (for example,
a "nearest neighbor" grid), which can greatly facilitate operations among processes that do not
fall on a row or column of the main process grid.

Destruction Routines
This section describes BLACS routines that destroy grids, abort processes, and free resources.

Table 16-2 BLACS Destruction Routines

Operation performedRoutine name

Frees BLACS buffer.blacs_freebuff

Frees a BLACS context.blacs_gridexit

Aborts all processes.blacs_abort

Frees all BLACS contexts and releases all allocated memory.blacs_exit

blacs_freebuff
Frees BLACS buffer.

Syntax

call blacs_freebuff(icontxt, wait)

Input Parameters

INTEGER. Integer handle that indicates the BLACS context.icontxt

INTEGER. Parameter indicating whether to wait for
non-blocking operations or not. If equals 0, the operations
should not be waited for; free only unused buffers.
Otherwise, wait in order to free all buffers.

wait

2727

BLACS Routines 16

Description

This routine releases the BLACS buffer.

The BLACS have at least one internal buffer that is used for packing messages. The number of
internal buffers depends on what platform you are running the BLACS on. On systems where
memory is tight, keeping this buffer or buffers may become expensive. Call freebuff to release
the buffer. However, the next call of a communication routine that requires packing reallocates
the buffer.

The wait parameter determines whether the BLACS should wait for any non-blocking operations
to be completed or not. If wait = 0, the BLACS free any buffers that can be freed without
waiting. If wait is not 0, the BLACS free all internal buffers, even if non-blocking operations
must be completed first.

blacs_gridexit
Frees a BLACS context.

Syntax

call blacs_gridexit(icontxt)

Input Parameters

INTEGER. Integer handle that indicates the BLACS context
to be freed.

icontxt

Description

This routine frees a BLACS context.

Release the resources when contexts are no longer needed. After freeing a context, the context
no longer exists, and its handle may be re-used if new contexts are defined.

blacs_abort
Aborts all processes.

Syntax

call blacs_abort(icontxt, errornum)

2728

16 Intel® Math Kernel Library Reference Manual

Input Parameters

INTEGER. Integer handle that indicates the BLACS context
to be aborted.

icontxt

INTEGER. User-defined integer error number.errornum

Description

This routine aborts all the BLACS processes, not only those confined to a particular context.

Use blacs_abort to abort all the processes in case of a serious error. Note that both parameters
are input, but the routine uses them only in printing out the error message. The context handle
passed in is not required to be a valid context handle.

blacs_exit
Frees all BLACS contexts and releases all allocated
memory.

Syntax

call blacs_exit(continue)

Input Parameters

INTEGER. Flag indicating whether message passing continues
after the BLACS are done. If continue is non-zero, the user
is assumed to continue using the machine after completing
the BLACS. Otherwise, no message passing is assumed after
calling this routine.

continue

Description

This routine frees all BLACS contexts and releases all allocated memory.

This routine should be called when a process has finished all use of the BLACS. The continue
parameter indicates whether the user will be using the underlying communication platform
after the BLACS are finished. This information is most important for the PVM BLACS. If continue
is set to 0, then pvm_exit is called; otherwise, it is not called. Setting continue not equal to
0 indicates that explicit PVM send/recvs will be called after the BLACS are done. Make sure
your code calls pvm_exit. PVM users should either call blacs_exit or explicitly call pvm_exit
to avoid PVM problems.

2729

BLACS Routines 16

Informational Routines
This section describes BLACS routines that return information involving the process grid.

Table 16-3 BLACS Informational Routines

Operation performedRoutine name

Returns information on the current grid.blacs_gridinfo

Returns the system process number of the process in the
process grid.

blacs_pnum

Returns the row and column coordinates in the process grid.blacs_pcoord

blacs_gridinfo
Returns information on the current grid.

Syntax

call blacs_gridinfo(icontxt, nprow, npcol, myprow, mypcol)

Input Parameters

INTEGER. Integer handle that indicates the context.icontxt

Output Parameters

INTEGER. Number of process rows in the current process
grid.

nprow

INTEGER. Number of process columns in the current process
grid.

npcol

INTEGER. Row coordinate of the calling process in the
process grid.

myprow

INTEGER. Column coordinate of the calling process in the
process grid.

mypcol

2730

16 Intel® Math Kernel Library Reference Manual

Description

This routine returns information on the current grid. If the context handle does not point at a
valid context, all quantities are returned as -1.

blacs_pnum
Returns the system process number of the process
in the process grid.

Syntax

call blacs_pnum(icontxt, prow, pcol)

Input Parameters

INTEGER. Integer handle that indicates the context.icontxt

INTEGER. Row coordinate of the process the system process
number of which is to be determined.

prow

INTEGER. Column coordinate of the process the system
process number of which is to be determined.

pcol

Description

This function returns the system process number of the process at {PROW, PCOL} in the process
grid.

blacs_pcoord
Returns the row and column coordinates in the
process grid.

Syntax

call blacs_pcoord(icontxt, pnum, prow, pcol)

Input Parameters

INTEGER. Integer handle that indicates the context.icontxt

INTEGER. Process number the coordinates of which are to
be determined. This parameter stand for the process number
of the underlying machine, that is, it is a tid for PVM.

pnum

2731

BLACS Routines 16

Output Parameters

INTEGER. Row coordinates of the pnum process in the BLACS
grid.

prow

INTEGER. Column coordinates of the pnum process in the
BLACS grid.

pcol

Description

Given the system process number, this function returns the row and column coordinates in the
BLACS process grid.

Miscellaneous Routines
This section describes blacs_barrier routine.

Table 16-4 BLACS Informational Routines

Operation performedRoutine name

Holds up execution of all processes within the indicated scope
until they have all called the routine.

blacs_barrier

blacs_barrier
Holds up execution of all processes within the
indicated scope.

Syntax

call blacs_barrier(icontxt, scope)

Input Parameters

INTEGER. Integer handle that indicates the context.icontxt

CHARACTER*1. Parameter that indicates whether a process
row (scope='R'), column ('C'), or entire grid ('A') will
participate in the barrier.

scope

2732

16 Intel® Math Kernel Library Reference Manual

Description

This routine holds up execution of all processes within the indicated scope until they have all
called the routine.

2733

BLACS Routines 16

Examples of BLACS Routines Usage

Example 16-1. BLACS Usage. Hello World

The following routine takes the available processes, forms them into a process grid, and then
has each process check in with the process at {0,0} in the process grid.

PROGRAM HELLO

* -- BLACS example code --

* Written by Clint Whaley 7/26/94

* Performs a simple check-in type hello world

* ..

* .. External Functions ..

INTEGER BLACS_PNUM

EXTERNAL BLACS_PNUM

* ..

* .. Variable Declaration ..

INTEGER CONTXT, IAM, NPROCS, NPROW, NPCOL, MYPROW, MYPCOL

INTEGER ICALLER, I, J, HISROW, HISCOL

*

* Determine my process number and the number of processes in

* machine

*

CALL BLACS_PINFO(IAM, NPROCS)

*

* If in PVM, create virtual machine if it doesn't exist

*

IF (NPROCS .LT. 1) THEN

IF (IAM .EQ. 0) THEN

WRITE(*, 1000)

2734

16 Intel® Math Kernel Library Reference Manual

READ(*, 2000) NPROCS

END IF

CALL BLACS_SETUP(IAM, NPROCS)

END IF

*

* Set up process grid that is as close to square as possible

*

NPROW = INT(SQRT(REAL(NPROCS)))

NPCOL = NPROCS / NPROW

*

* Get default system context, and define grid

*

CALL BLACS_GET(0, 0, CONTXT)

CALL BLACS_GRIDINIT(CONTXT, 'Row', NPROW, NPCOL)

CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYPROW, MYPCOL)

*

* If I'm not in grid, go to end of program

*

IF ((MYPROW.GE.NPROW) .OR. (MYPCOL.GE.NPCOL)) GOTO 30

*

* Get my process ID from my grid coordinates

*

ICALLER = BLACS_PNUM(CONTXT, MYPROW, MYPCOL)

*

* If I am process {0,0}, receive check-in messages from

* all nodes

*

IF ((MYPROW.EQ.0) .AND. (MYPCOL.EQ.0)) THEN

2735

BLACS Routines 16

WRITE(*,*) ' '

DO 20 I = 0, NPROW-1

DO 10 J = 0, NPCOL-1

IF ((I.NE.0) .OR. (J.NE.0)) THEN

CALL IGERV2D(CONTXT, 1, 1, ICALLER, 1, I, J)

END IF

*

* Make sure ICALLER is where we think in process grid

*

CALL BLACS_PCOORD(CONTXT, ICALLER, HISROW, HISCOL)

IF ((HISROW.NE.I) .OR. (HISCOL.NE.J)) THEN

WRITE(*,*) 'Grid error! Halting . . .'

STOP

END IF

WRITE(*, 3000) I, J, ICALLER

10 CONTINUE

20 CONTINUE

WRITE(*,*) ' '

WRITE(*,*) 'All processes checked in. Run finished.'

*

* All processes but {0,0} send process ID as a check-in

*

ELSE

CALL IGESD2D(CONTXT, 1, 1, ICALLER, 1, 0, 0)

2736

16 Intel® Math Kernel Library Reference Manual

END IF

30 CONTINUE

CALL BLACS_EXIT(0)

1000 FORMAT('How many processes in machine?')

2000 FORMAT(I)

3000 FORMAT('Process {',i2,',',i2,'} (node number =',I,

$ ') has checked in.')

STOP

END

2737

BLACS Routines 16

Example 16-2. BLACS Usage. PROCMAP

This routine maps processes to a grid using blacs_gridmap.

SUBROUTINE PROCMAP(CONTEXT, MAPPING, BEGPROC, NPROW, NPCOL, IMAP)

*

* -- BLACS example code --

* Written by Clint Whaley 7/26/94

* ..

* .. Scalar Arguments ..

INTEGER CONTEXT, MAPPING, BEGPROC, NPROW, NPCOL

* ..

* .. Array Arguments ..

INTEGER IMAP(NPROW, *)

* ..

*

* Purpose

* =======

* PROCMAP maps NPROW*NPCOL processes starting from process BEGPROC to

* the grid in a variety of ways depending on the parameter MAPPING.

*

* Arguments

* =========

*

* CONTEXT (output) INTEGER

* This integer is used by the BLACS to indicate a context.

* A context is a universe where messages exist and do not

* interact with other context's messages. The context

* includes the definition of a grid, and each process's

2738

16 Intel® Math Kernel Library Reference Manual

* coordinates in it.

*

* MAPPING (intput) INTEGER

* Way to map processes to grid. Choices are:

* 1 : row-major natural ordering

* 2 : column-major natural ordering

*

* BEGPROC (input) INTEGER

* The process number (between 0 and NPROCS-1) to use as

* {0,0}. From this process, processes will be assigned

* to the grid as indicated by MAPPING.

*

* NPROW (input) INTEGER

* The number of process rows the created grid

* should have.

*

* NPCOL (input) INTEGER

* The number of process columns the created grid

* should have.

*

* IMAP (workspace) INTEGER array of dimension (NPROW, NPCOL)

* Workspace, where the array which maps the

* processes to the grid will be stored for the

* call to GRIDMAP.

2739

BLACS Routines 16

*

* ===

*

* ..

* .. External Functions ..

INTEGER BLACS_PNUM

EXTERNAL BLACS_PNUM

* ..

* .. External Subroutines ..

EXTERNAL BLACS_PINFO, BLACS_GRIDINIT, BLACS_GRIDMAP

* ..

* .. Local Scalars ..

INTEGER TMPCONTXT, NPROCS, I, J, K

* ..

* .. Executable Statements ..

*

* See how many processes there are in the system

*

CALL BLACS_PINFO(I, NPROCS)

IF (NPROCS-BEGPROC .LT. NPROW*NPCOL) THEN

WRITE(*,*) 'Not enough processes for grid'

STOP

END IF

*

* Temporarily map all processes into 1 x NPROCS grid

*

CALL BLACS_GET(0, 0, TMPCONTXT)

CALL BLACS_GRIDINIT(TMPCONTXT, 'Row', 1, NPROCS)

2740

16 Intel® Math Kernel Library Reference Manual

K = BEGPROC

*

* If we want a row-major natural ordering

*

IF (MAPPING .EQ. 1) THEN

DO I = 1, NPROW

DO J = 1, NPCOL

IMAP(I, J) = BLACS_PNUM(TMPCONTXT, 0, K)

K = K + 1W

END DO

END DO

*

* If we want a column-major natural ordering

*

ELSE IF (MAPPING .EQ. 2) THEN

DO J = 1, NPCOL

DO I = 1, NPROW

IMAP(I, J) = BLACS_PNUM(TMPCONTXT, 0, K)

K = K + 1

END DO

END DO

ELSE

WRITE(*,*) 'Uknown mapping.'

STOP

END IF

*

* Free temporary context

2741

BLACS Routines 16

*

CALL BLACS_GRIDEXIT(TMPCONTXT)

*

* Apply the new mapping to form desired context

*

CALL BLACS_GET(0, 0, CONTEXT)

CALL BLACS_GRIDMAP(CONTEXT, IMAP, NPROW, NPROW, NPCOL)

RETURN

END

2742

16 Intel® Math Kernel Library Reference Manual

ALinear Solvers Basics

Many applications in science and engineering require the solution of a system of linear equations. This
problem is usually expressed mathematically by the matrix-vector equation, Ax = b, where A is an m-by-n
matrix, x is the n element column vector and b is the m element column vector. The matrix A is usually
referred to as the coefficient matrix, and the vectors x and b are referred to as the solution vector and
the right-hand side, respectively.

Basic concepts related to solving linear systems with sparse matrices are described in section Sparse
Linear Systems that follows.

If the coefficients in matrix A and right-hand sides in vector b are not defined exactly but rather belong
to known intervals, the system is called an interval linear system. Some basic definitions and
concepts used in solving interval linear systems are described in Interval Linear Systems section below.

Sparse Linear Systems
In many real-life applications, most of the elements in A are zero. Such a matrix is referred to as
sparse. Conversely, matrices with very few zero elements are called dense. For sparse matrices,
computing the solution to the equation Ax = b can be made much more efficient with respect to
both storage and computation time, if the sparsity of the matrix can be exploited. The more an
algorithm can exploit the sparsity without sacrificing the correctness, the better the algorithm.

Generally speaking, computer software that finds solutions to systems of linear equations is called
a solver. A solver designed to work specifically on sparse systems of equations is called a sparse
solver. Solvers are usually classified into two groups - direct and iterative.

Iterative Solvers start with an initial approximation to a solution and attempt to estimate the
difference between the approximation and the true result. Based on the difference, an iterative
solver calculates a new approximation that is closer to the true result than the initial approximation.
This process is repeated until the difference between the approximation and the true result is
sufficiently small. The main drawback to iterative solvers is that the rate of convergence depends
greatly on the values in the matrix A. Consequently, it is not possible to predict how long it will take
for an iterative solver to produce a solution. In fact, for ill-conditioned matrices, the iterative process
will not converge to a solution at all. However, for well-conditioned matrices it is possible for iterative
solvers to converge to a solution very quickly. Consequently for the right applications, iterative
solvers can be very efficient.

Direct Solvers, on the other hand, often factor the matrix A into the product of two triangular
matrices and then perform a forward and backward triangular solve.

2743

This approach makes the time required to solve a systems of linear equations relatively
predictable, based on the size of the matrix. In fact, for sparse matrices, the solution time can
be predicted based on the number of non-zero elements in the array A.

Matrix Fundamentals

A matrix is a rectangular array of either real or complex numbers. A matrix is denoted by a
capital letter; its elements are denoted by the same lower case letter with row/column subscripts.
Thus, the value of the element in row i and column j in matrix A is denoted by a(i,j). For
example, a 3 by 4 matrix A, is written as follows:

Note that with the above notation, we assume the standard Fortran programming language
convention of starting array indices at 1 rather than the C programming language convention
of starting them at 0.

A matrix in which all of the elements are real numbers is called a real matrix. A matrix that
contains at least one complex number is called a complex matrix. A real or complex matrix A
with the property that a(i,j) = a(j,i), is called a symmetric matrix. A complex matrix A with
the property that a(i,j) = conj(a(j,i)), is called a Hermitian matrix. Note that programs that
manipulate symmetric and Hermitian matrices need only store half of the matrix values, since
the values of the non-stored elements can be quickly reconstructed from the stored values.

A matrix that has the same number of rows as it has columns is referred to as a square matrix.
The elements in a square matrix that have same row index and column index are called the
diagonal elements of the matrix, or simply the diagonal of the matrix.

The transpose of a matrix A is the matrix obtained by “flipping” the elements of the array about
its diagonal. That is, we exchange the elements a(i,j) and a(j,i). For a complex matrix, if
we both flip the elements about the diagonal and then take the complex conjugate of the
element, the resulting matrix is called the Hermitian transpose or conjugate transpose of the
original matrix. The transpose and Hermitian transpose of a matrix A are denoted by AT and
AH respectively.

2744

A Intel® Math Kernel Library Reference Manual

A column vector, or simply a vector, is a n × 1 matrix, and a row vector is a 1 × n matrix. A
real or complex matrix A is said to be positive definite if the vector-matrix product xTAx is
greater than zero for all non-zero vectors x. A matrix that is not positive definite is referred to
as indefinite.

An upper (or lower) triangular matrix, is a square matrix in which all elements below (or above)
the diagonal are zero. A unit triangular matrix is an upper or lower triangular matrix with all
1's along the diagonal.

A matrix P is called a permutation matrix if, for any matrix A, the result of the matrix product
PA is identical to A except for interchanging the rows of A. For a square matrix, it can be shown
that if PA is a permutation of the rows of A, then APT is the same permutation of the columns
of A. Additionally, it can be shown that the inverse of P is PT.

In order to save space, a permutation matrix is usually stored as a linear array, called a
permutation vector, rather than as an array. Specifically, if the permutation matrix maps the
i-th row of a matrix to the j-th row, then the i-th element of the permutation vector is j.

A matrix with non-zero elements only on the diagonal is called a diagonal matrix. As is the case
with a permutation matrix, it is usually stored as a vector of values, rather than as a matrix.

Direct Method

For solvers that use the direct method, the basic technique employed in finding the solution of
the system Ax = b is to first factor A into triangular matrices. That is, find a lower triangular
matrix L and an upper triangular matrix U, such that A = LU. Having obtained such a
factorization (usually referred to as an LU decomposition or LU factorization), the solution to
the original problem can be rewritten as follows.

Ax = b

LUx = b

(Ux) = b

This leads to the following two-step process for finding the solution to the original system of
equations:

1. Solve the systems of equations Ly = b.

2. Solve the system Ux = y.

Solving the systems Ly = b and Ux = y is referred to as a forward solve and a backward solve,
respectively.

2745

Linear Solvers Basics A

If a symmetric matrix A is also positive definite, it can be shown that A can be factored as LLT

where L is a lower triangular matrix. Similarly, a Hermitian matrix, A, that is positive definite
can be factored as A = LLH. For both symmetric and Hermitian matrices, a factorization of this
form is called a Cholesky factorization.

In a Cholesky factorization, the matrix U in an LU decomposition is either LT or LH. Consequently,
a solver can increase its efficiency by only storing L, and one-half of A, and not computing U.
Therefore, users who can express their application as the solution of a system of positive definite
equations will gain a significant performance improvement over using a general representation.

For matrices that are symmetric (or Hermitian) but not positive definite, there are still some
significant efficiencies to be had. It can be shown that if A is symmetric but not positive definite,
then A can be factored as A = LDLT, where D is a diagonal matrix and L is a lower unit triangular
matrix. Similarly, if A is Hermitian, it can be factored as A = LDLH. In either case, we again
only need to store L, D, and half of A and we need not compute U. However, the backward solve
phases must be amended to solving LTx = D-1y rather than LTx = y.

Fill-In and Reordering of Sparse Matrices

Two important concepts associated with the solution of sparse systems of equations are fill-in
and reordering. The following example illustrates these concepts.

Consider the system of linear equation Ax = b, where A is the symmetric positive definite
sparse matrix defined by the following:

2746

A Intel® Math Kernel Library Reference Manual

A star (*) is used to represent zeros and to emphasize the sparsity of A. The Cholesky
factorization of A is: A = LLT, where L is the following:

Notice that even though the matrix A is relatively sparse, the lower triangular matrix L has no
zeros below the diagonal. If we computed L and then used it for the forward and backward
solve phase, we would do as much computation as if A had been dense.

The situation of L having non-zeros in places where A has zeros is referred to as fill-in.
Computationally, it would be more efficient if a solver could exploit the non-zero structure of
A in such a way as to reduce the fill-in when computing L. By doing this, the solver would only
need to compute the non-zero entries in L. Toward this end, consider permuting the rows and
columns of A. As described in Matrix Fundamentals section , the permutations of the rows of A
can be represented as a permutation matrix, P. The result of permuting the rows is the product
of P and A. Suppose, in the above example, we swap the first and fifth row of A, then swap the
first and fifth columns of A, and call the resulting matrix B. Mathematically, we can express the
process of permuting the rows and columns of A to get B as B = PAPT. After permuting the
rows and columns of A, we see that B is given by the following:

2747

Linear Solvers Basics A

Since B is obtained from A by simply switching rows and columns, the numbers of non-zero
entries in A and B are the same. However, when we find the Cholesky factorization, B = LLT,
we see the following:

2748

A Intel® Math Kernel Library Reference Manual

The fill-in associated with B is much smaller than the fill-in associated with A. Consequently,
the storage and computation time needed to factor B is much smaller than to factor A. Based
on this, we see that an efficient sparse solver needs to find permutation P of the matrix A,
which minimizes the fill-in for factoring B = PAPT, and then use the factorization of B to solve
the original system of equations.

Although the above example is based on a symmetric positive definite matrix and a Cholesky
decomposition, the same approach works for a general LU decomposition. Specifically, let P be
a permutation matrix, B = PAPT and suppose that B can be factored as B = LU. Then

Ax = b

PA(P-1P)x = Pb

PA(PTP)x = Pb

(PAPT)(Px) = Pb

B(Px) = Pb

LU(Px) = Pb

It follows that if we obtain an LU factorization for B, we can solve the original system of equations
by a three step process:

1. Solve Ly = Pb.

2. Solve Uz = y.

3. Set x = PTz.

If we apply this three-step process to the current example, we first need to perform the forward
solve of the systems of equation Ly = Pb:

2749

Linear Solvers Basics A

This gives:

The second step is to perform the backward solve, Uz = y. Or, in this case, since we are using
a Cholesky factorization, LTz = y.

2750

A Intel® Math Kernel Library Reference Manual

This gives

The third and final step is to set x = PTz. This gives

Sparse Matrix Storage Formats

As discussed above, it is more efficient to store only the non-zeros of a sparse matrix. This
assumes that the sparsity is large, that is, the number of non-zero entries is a small percentage
of the total number of entries. If there is only an occasional zero entry, the cost of exploiting
the sparsity actually slows down the computation when compared to simply treating the matrix
as dense, meaning that all the values, zero and non-zero, are used in the computation.

2751

Linear Solvers Basics A

There are a number of common storage schemes used for sparse matrices, but most of the
schemes employ the same basic technique. That is, compress all of the non-zero elements of
the matrix into a linear array, and then provide some number of auxiliary arrays to describe
the locations of the non-zeros in the original matrix.

Storage Formats for the PARDISO Solver

The compression of the non-zeros of a sparse matrix A into a linear array is done by walking
down each column (column major format) or across each row (row major format) in order, and
writing the non-zero elements to a linear array in the order that they appear in the walk.

When storing symmetric matrices, it is necessary to store only the upper triangular half of the
matrix (upper triangular format) or the lower triangular half of the matrix (lower triangular
format).

The Intel MKL direct sparse solver uses a row major upper triangular storage format. That is,
the matrix is compressed row-by-row and for symmetric matrices only non-zeros in the upper
triangular half of the matrix are stored.

The Intel MKL storage format accepted for the PARDISO software for sparse matrices consists
of three arrays, which are called the values, columns, and rowIndex arrays. The following
table describes the arrays in terms of the values, row, and column positions of the non-zero
elements in a sparse matrix A.

A real or complex array that contains the non-zero entries of A. The
non-zero values of A are mapped into the values array using the row
major, upper triangular storage mapping described above.

values

Element i of the integer array columns contains the number of the
column in A that contained the value in values(i).

columns

Element j of the integer array rowIndex gives the index into the values
array that contains the first non-zero element in a row j of A.

rowIndex

The length of the values and columns arrays is equal to the number of non-zeros in A.

Since the rowIndex array gives the location of the first non-zero within a row, and the non-zeros
are stored consecutively, then the number of non-zeros in the i-th row is equal to the difference
of rowIndex(i) and rowIndex(i+1).

In order to have this relationship hold for the last row of A, an additional entry (dummy entry)
is added to the end of rowIndex whose value is equal to the number of non-zeros in A, plus
one. This makes the total length of the rowIndex array one larger than the number of rows of
A.

2752

A Intel® Math Kernel Library Reference Manual

NOTE. The Intel MKL sparse storage scheme uses the Fortran programming language
convention of starting array indices at 1, rather than the C programming language
convention of starting at 0.

With the above in mind, consider storing the symmetric matrix discussed in the example from
the previous section.

In this case, A has nine non-zero elements, so the lengths of the values and columns arrays
will be nine. Also, since the matrix A has five rows, the rowIndex array is of length six. The
actual values for each of the arrays for the example matrix are as follows:

Table A-1 Storage Arrays for a Symmetric Example Matrix

one base indexing

16)5/81/21/233/463/2(9=values

5)4325432(1=columns

10)9876(1=rowIndex

zero base indexing

16)5/81/21/233/463/2(9=values

4)3214321(0=columns

9)8765(0=rowIndex

2753

Linear Solvers Basics A

For a non-symmetric or non-Hermitian array, all of the non-zeros need to be stored. Consider
the non-symmetric matrix B defined by the following:

We see that B has 13 non-zeros, and we store B as follows:

Table A-2 Storage Arrays for a Non-Symmetric Example Matrix

one base indexing

-5)872-44645-2-3-1(1=values

5)24315432142(1=columns

14)12964(1=rowIndex

zero base
indexing

-5)872-44645-2-3-1(1=values

4)13204321031(0=columns

13)11853(0=rowIndex

In the current version of Intel MKL, direct sparse solvers cannot solve non-symmetric systems
of equations. However, it can solve symmetrically structured systems of equations. A
symmetrically structured system of equations is one where the pattern of non-zeros is symmetric.
That is, a matrix has a symmetric structure if a(j,i)is non-zero if and only if a(j, i) is non-zero.
From the point of view of the solver software, a non-zero element of a matrix is anything that
is stored in the values array. In that sense, we can turn any non-symmetric matrix into a
symmetrically structured matrix by carefully adding zeros to the values array. For example,
suppose we consider the matrix B to have the following set of non-zero entries:

2754

A Intel® Math Kernel Library Reference Manual

Now B can be considered to be symmetrically structured with 15 non-zero entries.We would
represent the matrix as:

Table A-3 Storage Arrays for a Symmetrically Structured Example Matrix

-5)0872-446405-2-3-1(1=values

5)3243154352142(1=columns

16)131074(1=rowIndex

Storage Format Restrictions

The storage format for the sparse solver must conform to two important restrictions:

First, the non-zero values in a given row must be placed into the values array in the order in
which they occur in the row (from left to right). Second, no diagonal element can be omitted
from the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that when dealing with symmetric or structurally symmetric
matrices that have zeros on the diagonal, the zero diagonal elements must be explicitly
represented in the values array.

Sparse Storage Formats for Sparse BLAS Levels 2-3

This section describes in detail the sparse data structures supported in the current version of
the Intel MKL Sparse BLAS level 2 and 3.

2755

Linear Solvers Basics A

CSR Format

The Intel MKL compressed sparse row (CSR) format for sparse matrices consists of four arrays,
which are called the values, columns, pointerB, and pointerE arrays. The following table
describes the arrays in terms of the values, row, and column positions of the non-zero elements
in a sparse matrix A.

A real or complex array that contains the non-zero entries of A. The
non-zero values of A are mapped into the values array using the row
major storage mapping described above.

values

Element i of the integer array columns contains the number of the
column in A that contained the value in values(i).

columns

Element j of this integer array gives the index into the values array
that contains the first non-zero element in a row j of A. Note that this
index is equal to pointerB(j) - pointerB(1)+1 .

pointerB

An integer array contains row indices, such that
pointerE(j)-pointerB(1) is the index into the values array that
contains the last non-zero element in a row j of A.

pointerE

The length of the values and columns arrays is equal to the number of non-zeros in A.The
length of the pointerB and pointerE arrays is equal to the number of rows in A.

Previously defined matrix B

can be represented in the CSR format as:

Table A-4 Storage Arrays for an Example Matrix in CSR Format

one base indexing

-5)872-44645-2-3-1(1=values

2756

A Intel® Math Kernel Library Reference Manual

5)24315432142(1=columns

12)964(1=pointerB

14)1296(4=pointerE

zero base indexing

-5)872-44645-2-3-1(1=values

4)13204321031(0=columns

11)853(0=pointerB

13)1185(3=pointerE

This storage format is used in the NIST Sparse BLAS library [Rem05].

Note that the storage format accepted for the PARDISO software and described above (see
Storage Formats for the PARDISO Solver), is a variation of the CSR format. The PARDISO
format has a restriction - all non-zero elements are stored continuously, that is the set of
non-zero elements in the row J goes just after the set of non-zero elements in the row J-1.

There is no such restrictions in the CSR format. This advantage can be useful, for example, if
there is a need to operate with different submatrices of the matrix at the same time. In this
case, it is enough to define the arrays pointerB and pointerE for each needed submatrix so
that all these array are pointers to the one array values.

Comparing the array rowIndex from the Table A-2 with the arrays pointerB and pointerE
from the Table A-4 it is easy to see that

pointerB(i) = rowIndex(i) for i=1, ..5;

pointerE(i) = rowIndex(i+1) for i=1, ..5.

This gives the possibility to call a routine that has values, columns, pointerB and pointerE
as input parameters for a sparse matrix stored in the format accepted for PARDISO. For example,
a routine with the interface:

Subroutine name_routine(.... , values, columns, pointerB, pointerE, ...)

can be called with arguments values, columns, rowIndex in the following way:

call name_routine(.... , values, columns, rowIndex, rowindex(2), ...).

NOTE. Intel MKL Sparse BLAS level 2 provide routines for both flavors of the CSR format.

2757

Linear Solvers Basics A

CSC Format

The compressed sparse column format (CSC), often called Harwell-Boeing sparse matrix
format, is similar to the CSR format, but the columns are used instead the rows. Or, in other
words, CSC format is equal to the CSR format for the transposed matrix.

By analogy with the CSR format Intel MKL Sparse BLAS level 2 library provides routines for
two variations of the CSC format.

Variation of this format accepted for the PARDISO software consists of three arrays, which are
called the values, rows, and colIndex arrays. The following table describes these arrays:

A real or complex array that contains the non-zero entries of A. The
non-zero values of A are mapped into the values array using the column
major storage mapping described above.

values

Element i of the integer array rows contains the number of the row in
A that contained the value in values(i).

rows

Element j of the integer array colIndex gives the index into the values
array that contains the first non-zero element in a column j of A.

colIndex

The length of the values and rows arrays is equal to the number of non-zero elements in A.

For example, the sparse matrix B

can be represented in the CSC format for PARDISO as follows:

Table A-5 Storage Arrays for an Example Matrix in the Harwell-Boeing format

-5)476-32485-1-4-2(1=values

5)24315432142(1=rows

14)12974(1=colIndex

2758

A Intel® Math Kernel Library Reference Manual

Coordinate Format

The coordinate format is the most flexible and simplest format for the sparse matrix
representation. Only nonzero entries are provided, and the coordinates of each nonzero entry
is given explicitly. Many commercial libraries support the matrix-vector multiplication for the
sparse matrices in the coordinate format.

The Intel MKL coordinate format consists of three arrays, which are called the values, rows,
and column arrays, and a parameter nnz which is number of non-zero entries in A. All three
arrays have to be dimensioned as nnz. The following table describes the arrays in terms of the
values, row, and column positions of the non-zero elements in a sparse matrix A.

A real or complex array that contains the non-zero entries of A given
in any order.

values

Element i of the integer array rows contains the number of the row in
A that contained the value in values(i).

rows

Element i of the integer array columns contains the number of the
column in A that contained the value in values(i).

columns

For example, the sparse matrix C

can be represented in the coordinate format as follows:

Table A-6 Storage Arrays for an Example Matrix in case of the coordinate format

-5)872-44645-2-3-1(1=values

5)54443332211(1=rows

5)24315432132(1=columns

2759

Linear Solvers Basics A

Diagonal Storage Scheme

If the matrix A has a few diagonals, then this structure can be used to reduce the amount of
information needed for the location of the non-zero elements. This storage scheme is particularly
useful in many applications where the matrix arises from a finite element or finite difference
discretization. The Intel MKL diagonal storage scheme consists of two arrays, which are called
the values and distance arrays, and parameters ndiag which is the number of non-empty
diagonals, and lval which is declared leading dimension in the calling (sub) program. The
following table describes the arrays values and distance:

A real or complex two dimensional array is dimensioned as lval by
ndiag. It contains the non-zero diagonals of A. The key point of the
storage is that each element in values retains the row corresponding

values

to the row in the original matrix. In order to do so diagonals in the
lower triangular part of A are padded from the top, and those in the
upper triangular part are padded from the bottom. Note that the value
of distance(i) is the number of elements to be padded for diagonal
i.

An integer array is dimensioned as ndiag. Element i of the array integer
distance contains the distance between i-diagonal and the main
diagonal. The distance is positive if the diagonal is above the main
diagonal, and negative if the diagonal is below the main diagonal. The
main diagonal has a distance equal to zero.

distance

The sparse matrix C given above can be stored in the diagonal storage scheme as follows:

where the asterisks denote padded elements.

2760

A Intel® Math Kernel Library Reference Manual

It is clear that the upper triangle or lower triangle can be stored if the matrix is symmetric,
hermitian, or skew-symmetric.

The diagonals can be stored in any order if the sparse diagonal representation is used for Intel
MKL sparse matrix-matrix or matrix-vector multiplication routines. However, all elements of
the array distance must be sorted in increasing order if the sparse diagonal representation is
used for Intel MKL sparse triangular solver routines.

Skyline Storage Scheme

The skyline storage scheme is important in the direct sparse solvers, and it is well suited for
Cholesky or LU decomposition when no pivoting is required.

The skyline storage scheme accepted in the Intel MKL can store only triangular matrix or
triangular part of the matrix. This variant consists of two arrays which are called values and
pointers arrays. The following table describes these arrays:

A scalar array. It contains the set of elements from each row of A
starting from the first non-zero elements to and uncluding the diagonal
element if the matrix is lower triangular, and the set of elements from

values

each column of A starting with the first non-zero element down to and
including the diagonal element. Encountered zero elements are included
in the sets.

An integer array is dimensioned as m+1, where m is the number of rows
for lower triangle (columns for the upper triangle). pointers(i) -
pointers(1)+1 points to the location in values of the first non-zero

pointers

element in row (column) i. The value of pointers(m+1) is set to the
value nnz+pointers(1), where nnz is the number of elements in the
array values.

Note that Intel MKL Sparse BLAS does not support general matrices for the routines operating
with the skyline storage format.

For example, the low triangle of the matrix C given above can be stored as follows:

values = (1 -2 5 4 -4 0 2 7 8 0 0 -5)

pointers = (1 2 4 5 9 13)

and the upper triangle of this matrix C can be stored as follows:

values = (1 -1 5 -3 0 4 6 7 4 0 -5)

pointers = (1 2 4 7 9 12)

2761

Linear Solvers Basics A

This storage format is supported by the NIST Sparse BLAS library [Rem05].

BSR Format

The Intel MKL block compressed sparse row (BSR) format for sparse matrices consists of four
arrays, which are called the values, columns, pointerB, and pointerE arrays. The following
table describes these arrays.

A real array that contains the non-zero blocks of a sparse matrix storing
them block by block in row-wise fashion. A non-zero block is the block
that contains at least one non-zero element. All elements of non-zero

values

blocks are stored, even if some of them is equal to zero. Elements of
nonzero blocks are stored in column major order within each dense
block in the case of the Fortran programming language convention,
and in row major order in the case of the C programming language
convention.

Element i of the integer array columns contains the number of the
column in the block matrix that contains the i-th non-zero block.

columns

Element j of this integer array gives the index into the columns array
that contains the first non-zero block in a row j of the block matrix.

pointerB

Element j of this integer array gives the index into the columns array
that contains the last non-zero block in a row j of the block matrix plus
1.

pointerE

The length of the values array is equal to the number of all elements in the non-zero blocks,
the length of the columns array is equal to the number of non-zero blocks. The length of the
pointerB and pointerE arrays is equal to the number of rows in the block matrix.

For example, consider the sparse matrix D

2762

A Intel® Math Kernel Library Reference Manual

If the size of the block equals to 2, then the sparse matrix D can be represented as a 3x3 block
matrix E with the following structure:

where

The matrix D can be represented in the BSR format as follows:

one-based indexing

values = (1 2 0 1 6 8 7 2 1 5 4 2 4 0 3 0 7 0 2 0)

columns = (1 2 2 2 3)

pointerB = (1 3 4)

pointerE = (3 4 6)

zero-based indexing

values = (1 2 0 1 6 8 7 2 1 5 4 2 4 0 3 0 7 0 2 0)

columns = (0 1 1 1 2)

pointerB = (0 2 3)

pointerE = (2 3 5)

This storage format is supported by the NIST Sparse BLAS library [Rem05].

The Intel MKL supports the PARDISO variation of the block compressed sparse row (BSR) format
for sparse matrices. This format consists of three arrays, which are called the values, columns,
and rowIndex arrays. The following table describes these arrays.

2763

Linear Solvers Basics A

A real array that contains the non-zero blocks of a sparse matrix storing
them block by block in row-wise fashion. A non-zero block is the block
that contains at least one non-zero element. All elements of non-zero

values

blocks are stored, even if some of them is equal to zero. Elements of
nonzero blocks are stored in column major order within each block in
the case of the Fortran programming language convention, and in row
major order in the case of the C programming language convention.

Element i of the integer array columns contains the number of the
column in the block matrix that contains the i-th non-zero block.

columns

Element j of this integer array gives the index in the columns array
that contains the first non-zero block in a row j of the block matrix.

rowIndex

The length of the values array is equal to the number of all elements in the non-zero blocks,
the length of the columns array is equal to the number of non-zero blocks.

Since the rowIndex array gives the location of the first non-zero block within a row, and the
non-zero blocks are stored consecutively, then the number of non-zero blocks in the i-th row
is equal to the difference of rowIndex(i) and rowIndex(i+1).

In order to have this relationship hold for the last row of the block matrix, an additional entry
(dummy entry) is added to the end of rowIndex whose value is equal to the number of non-zeros
blocks plus one. This makes the total length of the rowIndex array one larger than the number
of rows of the block matrux.

The above matrix D can be represented in the BSR format (PARDISO) variation as follows:

one-based indexing

values = (1 2 0 1 6 8 7 2 1 5 4 2 4 0 3 0 7 0 2 0)

columns = (1 2 2 2 3)

rowIndex = (1 3 4 6)

zero-based indexing

values = (1 2 0 1 6 8 7 2 1 5 4 2 4 0 3 0 7 0 2 0)

columns = (0 1 1 1 2)

rowIndex = (0 2 3 5)

When storing symmetric matrices, it is necessary to store only the upper triangular half of the
matrix (upper triangular format) or the lower triangular half of the matrix (lower triangular
format).

For example, consider the symmetric sparse matrix F:

2764

A Intel® Math Kernel Library Reference Manual

If the size of the block equals to 2, then the sparse matrix F can be represented as a 3x3 block
matrix G with the following structure:

where

The symmetric matrix F can be represented in the PARDISO variation of the BSR format (storing
only upper triangular) as follows:

one-based indexing

values = (1 2 0 1 6 8 7 2 1 5 4 2 7 0 2 0)

columns = (1 2 2 3)

rowIndex = (1 3 4 5)

2765

Linear Solvers Basics A

zero-based indexing

values = (1 2 0 1 6 8 7 2 1 5 4 2 4 0 3 0 7 0 2 0)

columns = (0 1 1 2)

rowIndex = (0 2 3 4)

Interval Linear Systems

Intervals

An interval is a compact connected subset of the real axis R. It is thus completely defined by
two numbers, namely, its lower endpoint and upper endpoint (sometimes called left
endpoint and right endpoint respectively), so that [a, b] denotes the interval

{x ∈ R|a ≤ x≤b}. The set of all real intervals is denoted by IR. In mathematical notation,
taking the lower and upper endpoints of an interval is usually denoted by
inf[a, b] = a, sup[a, b] = b.

In the discussion below, intervals and interval objects are denoted by boldface letters, while
underscores and overscores designate the lower and upper endpoints of the interval x = [x,x]

Every interval is uniquely determined by its midpoint,

and radius,

2766

A Intel® Math Kernel Library Reference Manual

the latter being equivalent to the width wid a = a--a. Intervals of the form [a, a] that have
equal lower and upper endpoints, that is, intervals of zero width, are called degenerate or

point or thin, and they coincide with usual real numbers so that it can be implied R ⊂ IR.
On the contrary, the intervals with nonzero width are called thick intervals.

Since intervals are sets, set-theoretical relations and operations between them are applicable,

for example, inclusion, intersection, and so on. In particular, a point t ∈ R is a member of the

interval a (written as t ∈ a) if a ≤ t ≤ a. Also, the inclusion is defined as a ⊆ b if and only

if a ≥ b and a ≤ b

Intervals and interval objects (vectors, matrices, etc.) are a convenient tool to represent the
so-called bounded uncertainty and ambiguity, when only the lower and upper bounds of the
possible variation of some value are known. In this sense, intervals provide an alternative to
probabilistic and fuzzy approaches for describing quantitative uncertainty.

Arithmetic operations, such as addition, subtraction, multiplication and division, can be extended
to intervals according to the fundamental principle

(1)a*b: = {a*b|a ∈ a,b∈b}, *∈ {+, -, ·,/},

which makes it possible to define the so-called classical interval arithmetic. Note that

the empty interval [∅] is often incorporated into the computer interval arithmetic structures.

Interval vectors and matrices

An interval vector is an ordered tuple of intervals placed vertically(column vector) or horizontally
(row vector). So, if a1, a2, ... , an are intervals, then

and

a1, a2, ... , an is a row vector.

2767

Linear Solvers Basics A

The set of all interval n-vectors is denoted later in the text by IRn.

The interval vectors can be associated with their geometric images, namely rectangular boxes
of the space Rn, whose sides are parallel to the coordinate axes. For this reason, interval vectors
are often called boxes for brevity.

An interval matrix is a rectangular table composed of the intervals:

or A = (aij). Interval vectors can be identified with interval matrices either of the size n × 1
(column vectors) or 1 × n (row vectors). The set of all interval m × n-matrices is denoted by
IRm×n. Arithmetic operations between interval vectors and matrices can be introduced on the
basis of the relation that generalizes (1) (see [Alefeld83], [Neumaier90]).

An interval square matrix A ∈ IRn×n is referred to as regular (nonsingular) if and only if all

the point matrices A ∈ A are regular (nonsingular), that is, have nonzero determinants.

Otherwise, the interval matrix A ∈ IRn×n is called singular, which means that it contains at
least one singular point matrix.

Generally, recognition of whether an interval matrix is regular or singular is an NP-hard problem,
which implies that there may be no relatively simple (polynomially complex) algorithms that
completely solve the problem in a reasonable time.

2768

A Intel® Math Kernel Library Reference Manual

For practical needs, it is important to have a set of workable sufficient criteria for testing
regularity of a wide range of interval matrices. Intel MKL provides routines that implement
Ris-Beeck spectral criterion, Rump singular value criterion, as well as Rohn-Rex singular value
criterion for testing regularity/singularity of interval matrices.

Sometimes, a related property (called strong regularity) needs to be checked for interval
matrices. Strong regularity requires that the product of the interval matrix by its midpoint
inverse is regular. The routine ?gerbr enables to check the strong regularity judging by the
value of its output parameter sr.

Interval Linear Systems

Solving systems of linear algebraic equations of the form

(2)

or, concisely,

Ax = b

2769

Linear Solvers Basics A

with an m × n matrix A and a right-hand side m-vector b, is one of the key problems in science
and engineering. If aij and bi are not defined exactly but rather belong to known intervals aij
and bi respectively, the system is called an interval linear system and can be written as

(3)

with intervals aij and bi, or in a short form as

(4)Ax = b

with an interval matrix A = (aij) and interval right-hand side vector b = (bi). An interval
linear system (3)–(4) is considered as a set of point linear systems of the same form Ax = b

with the parameters aij and bi such that aij ∈ aij and bi ∈ bi.

When aij and bi are changing within intervals aij and bi, the solutions to the corresponding
point systems Ax = b with A = (aij) and b = (bi) form a set in the space Rn, namely

(5)Ξ(A, b := {x ∈ Rn|(∃A ∈ A)(∃b ∈ b)(Ax = b)}.

The set (5), made up of solutions to all the point systems Ax = b with A ∈ A and b ∈ b, is
called a solution set to the interval linear system (3)–(4). Usually, the solution set is a solid

polyhedron in Rn for independent aij and bi, 1≤i, j≤n, sometimes star-shaped as in the figure
below.

2770

A Intel® Math Kernel Library Reference Manual

NOTE. The above described set Ξ(A,B) is often called a untied solution set, since
there exist a variety of other solution sets to interval systems of equations (see
[Shary02]).

An exact description of the solution set is practically impossible for dimensions n larger than
several tens, since its complexity grows exponentially with n. On the other hand, such an exact
description is not really necessary in most cases. Usually, one needs to compute some
estimates, in a prescribed sense, of the solution set. The most popular in practice is the
following problem of outer (by supersets) interval estimation:

(6)For an interval system of linear equations Ax = b

find an interval enclosure of the solution set Ξ(A, b).

Frequently, a component-wise form of the problem (6) is considered:

(7)For an interval system of linear equations Ax = b

find estimates for min{xv|x∈Ξ(A, b)} from below,

for max{xv|x∈Ξ(A, b)}from above, v = 1, 2, . . . , n.

In particular, Intel MKL ?gepps routines operate with this type of the problem statement.

The problem (6)–(7) is one of the historically first and most popular in modern interval analysis.
You can find an extensive bibliography on this problem, for example, in [Alefeld83], [Kearfott96]
, [Neumaier90]).

Thus, solving an interval linear system is understood here as computing an outer interval
estimate of the solution set to an interval linear system (3)–(4). The matrix A of the system is
usually assumed to be square nonsingular.

2771

Linear Solvers Basics A

Unlike classical computational linear algebra, solving interval linear systems proves to be very
computationally hard in general. Computing the optimal (smallest) interval enclosures of the
solution in (6), or, equivalently, computing exact estimates of the solution set in (7), is an
NP-hard problem (see [Kreinovich97]), if there are no restrictions on the widths of the intervals
in the system and/or the structure of nonzero elements in the matrix A. Moreover, the problem
remains NP-hard even if we weaken the requirements on the solution and compute estimates
of the solution sets that must be precise to within a predetermined absolute or relative accuracy.

From the practical standpoint, NP-hardness means that with a high probability a general problem
cannot be solved in polynomial time with respect to problem size.

For this reason, numerical algorithms employed in Intel MKL for solving interval linear systems
are divided into two classes depending on whether or not they provide a guaranteed accuracy
of the result. “Fast” algorithms work fast and compute an enclosure of the solution set in a
reasonable time, but without any accuracy assumptions. “Optimal”, or “sharp” algorithms may
take a lot of time to complete execution, but the results they obtain are less crude and may
satisfy some accuracy requirements.

Intel MKL includes interval solver routines that implement algorithms of both types. For example,
fast methods, such as interval Gauss method, interval Householder method, Hansen-Bliek-Rohn
method, and Krawczyk iteration, are implemented in routines ?gegas, ?gehss, ?gehbs, and
?gekws, respectively. Parameter partitioning method (PPS-method) implemented in ?gepps
routine is an example of a sharp method. The routine ?trtrs is subsumed under both categories
due to a very special matrix structure.

Preconditioning

Preconditioning of interval linear system (4) is multiplying both the matrix A and the
right-hand side vector b by a point matrix, with the intension to improve the properties of the
system. So the system Ax = b is substituted by the following system

(CA)x = Cb

where C is some square point matrix. Preconditioning is widely used in classical computational
linear algebra, and many interval solver algorithms (for example, interval Gauss method,
interval Gauss-Seidel method and some others) also require a suitable preconditioning prior to
their use.

One of the widely used preconditioning methods for the interval linear systems is preconditioning
done by the inverse of the midpoint matrix, often called midpoint-inverse preconditioning.
In Intel MKL, the midpoint inverse preconditioning is implemented in the routine ?gemip.

2772

A Intel® Math Kernel Library Reference Manual

Inverting interval matrices

Given an interval square matrix A, an enclosure for the set of all inverse point matrices in A is
called the inverse interval matrixA-1, that is,

A-1⊇{A-1|A ∈ A}.

In classical linear algebra, the solution to a system of linear algebraic equations Ax = b with
square nonsingular matrix A can be expressed as the product of the inverse A-1 by the right-hand
side vector, or x = A-1b.

In interval analysis, the similar product A-1b also produces an enclosure for the solution set

ΞA,b of the interval linear system Ax = b. However, this method usually causes substantial
overestimation and is not recommended. Using specialized procedures for outer estimation of
the solution sets is preferable.

Nevertheless, computing tight enclosures for inverse interval matrices is essential in
sensitivity-like analysis of equation systems and the like.

Computing the inverse interval matrix may be carried out as finding an enclosure for the solution
set of the following interval matrix equation

AY = I, where I is the identity matrix,

by applying n times (for every column of the matrix Y) any method to solve the interval linear
systems.

Note also that direct iterative procedures for finding the inverse interval matrix exist, such as
Schulz method (see [Herzberger94]), which is included into Intel MKL as ?geszi routine.

2773

Linear Solvers Basics A

BRoutine and Function Arguments

The major arguments in the BLAS routines are vector and matrix, whereas VML functions work on vector
arguments only. The sections that follow discuss each of these arguments and provide examples.

Vector Arguments in BLAS
Vector arguments are passed in one-dimensional arrays. The array dimension (length) and vector
increment are passed as integer variables. The length determines the number of elements in the
vector. The increment (also called) determines the spacing between vector elements and the order
of the elements in the array in which the vector is passed.

A vector of length n and increment incx is passed in a one-dimensional array x whose values are
defined as
x(1), x(1+|incx|), ..., x(1+(n-1)* |incx|)

If incx is positive, then the elements in array x are stored in increasing order. If incx is negative,
the elements in array x are stored in decreasing order with the first element defined as x(1+(n-1)*
|incx|). If incx is zero, then all elements of the vector have the same value, x(1). The dimension
of the one-dimensional array that stores the vector must always be at least
idimx = 1 + (n-1)* |incx |

Example B-1 One-dimensional Real Array

Let x(1:7) be the one-dimensional real array

x = (1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0).

If incx =2 and n = 3, then the vector argument with elements in order from first to last is (1.0,
5.0, 9.0).

If incx = -2 and n = 4, then the vector elements in order from first to last is (13.0, 9.0, 5.0,
1.0).

If incx = 0 and n = 4, then the vector elements in order from first to last is (1.0, 1.0, 1.0,
1.0).

One-dimensional substructures of a matrix, such as the rows, columns, and diagonals, can be passed
as vector arguments with the starting address and increment specified. In Fortran, storing the m-by-n
matrix is based on column-major ordering where the increment between elements in the same
column is 1, the increment between elements in the same row is m, and the increment between
elements on the same diagonal is m + 1.

2775

Example B-2 Two-dimensional Real Matrix

Let a be the real 5 x 4 matrix declared as REAL A (5,4).

To scale the third column of a by 2.0, use the BLAS routine sscal with the following calling
sequence:

callsscal (5, 2.0, a(1,3), 1)

To scale the second row, use the statement:

callsscal (4, 2.0, a(2,1), 5)

To scale the main diagonal of A by 2.0, use the statement:

callsscal (5, 2.0, a(1,1), 6)

NOTE. The default vector argument is assumed to be 1.

Vector Arguments in VML
Vector arguments of VML mathematical functions are passed in one-dimensional arrays with
unit vector increment. It means that a vector of length n is passed contiguously in an array a
whose values are defined as a[0], a[1], ..., a[n-1] (for C- interface).

To accommodate for arrays with other increments, or more complicated indexing, VML contains
auxiliary pack/unpack functions that gather the array elements into a contiguous vector and
then scatter them after the computation is complete.

Generally, if the vector elements are stored in a one-dimensional array a as

a[m0], a[m1], ..., a[mn-1]

and need to be regrouped into an array y as

y[k0], y[k1], ..., y[kn-1],

VML pack/unpack functions can use one of the following indexing methods:

Positive Increment Indexing
kj = incy * j, mj = inca * j, j = 0 ,..., n-1

Constraint: incy > 0 and inca > 0.

For example, setting incy = 1 specifies gathering array elements into a contiguous vector.

2776

B Intel® Math Kernel Library Reference Manual

This method is similar to that used in BLAS, with the exception that negative and zero increments
are not permitted.

Index Vector Indexing
kj = iy[j], mj = ia[j], j = 0 ,..., n-1,

where ia and iy are arrays of length n that contain index vectors for the input and output arrays
a and y, respectively.

Mask Vector Indexing

Indices kj, mj are such that:

my[kj] ≠ 0, ma[mj] ≠ 0 , j = 0,..., n-1,

where ma and my are arrays that contain mask vectors for the input and output arrays a and
y, respectively.

Matrix Arguments
Matrix arguments of the Intel® Math Kernel Library routines can be stored in either one- or
two-dimensional arrays, using the following storage schemes:

• conventional full storage (in a two-dimensional array)

• packed storage for Hermitian, symmetric, or triangular matrices (in a one-dimensional array)

• band storage for band matrices (in a two-dimensional array).

Full storage is the following obvious scheme: a matrix A is stored in a two-dimensional array
a, with the matrix element aij stored in the array element a(i,j).

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements
of the relevant triangle are stored; the remaining elements of the array need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower triangle
of the matrix to be stored in the corresponding elements of the array:

aij is stored in a(i,j) for i ≤ j, other elements of a need not be set.if uplo ='U',

aij is stored in a(i,j) for j ≤ i, other elements of a need not be set.if uplo ='L',

2777

Routine and Function Arguments B

Packed storage allows you to store symmetric, Hermitian, or triangular matrices more
compactly: the relevant triangle (again, as specified by the argument uplo) is packed by
columns in a one-dimensional array ap:

if uplo ='U', aij is stored in ap(i+j(j-1)/2) for i ≤ j

if uplo ='L', aij is stored in ap(i+(2*n-j)*(j-1)/2) for j ≤ i.

In descriptions of LAPACK routines, arrays with packed matrices have names ending in p.

Band storage is as follows: an m-by-n band matrix with kl non-zero sub-diagonals and ku
non-zero super-diagonals is stored compactly in a two-dimensional array ab with kl+ku+1
rows and n columns. Columns of the matrix are stored in the corresponding columns of the
array, and diagonals of the matrix are stored in rows of the array. Thus,

aij is stored in ab(ku+1+i-j,j) for max(1,j-ku) ≤ i ≤ min(n,j+kl).

Use the band storage scheme only when kl and ku are much less than the matrix size n.
Although the routines work correctly for all values of kl and ku, using the band storage is
inefficient if your matrices are not really banded.

The band storage scheme is illustrated by the following example, when
m = n = 6, kl = 2, ku = 1

Array elements marked * are not used by the routines:

2778

B Intel® Math Kernel Library Reference Manual

When a general band matrix is supplied for LU factorization, space must be allowed to
store kl additional super-diagonals generated by fill-in as a result of row interchanges. This
means that the matrix is stored according to the above scheme, but with kl + ku
super-diagonals. Thus,

aij is stored in ab(kl+ku+1+i-j,j) for max(1,j-ku) ≤ i ≤ min(n,j+kl).

The band storage scheme for LU factorization is illustrated by the following example, whenm
= n = 6, kl = 2, ku = 1:

Array elements marked * are not used by the routines; elements marked + need not be set
on entry, but are required by the LU factorization routines to store the results. The input array
will be overwritten on exit by the details of the LU factorization as follows:

2779

Routine and Function Arguments B

where uij are the elements of the upper triangular matrix U, and mij are the multipliers used
during factorization.

Triangular band matrices are stored in the same format, with either kl= 0 if upper triangular,
or ku = 0 if lower triangular. For symmetric or Hermitian band matrices with k sub-diagonals
or super-diagonals, you need to store only the upper or lower triangle, as specified by the
argument uplo:

if uplo ='U', aij is stored in ab(k+1+i-j,j) for max(1,j-k) ≤ i ≤ j

if uplo ='L', aij is stored in ab(1+i-j,j) for j ≤ i ≤ min(n,j+k).

In descriptions of LAPACK routines, arrays that hold matrices in band storage have names
ending in b.

In Fortran, column-major ordering of storage is assumed. This means that elements of the
same column occupy successive storage locations.

Three quantities are usually associated with a two-dimensional array argument: its leading
dimension, which specifies the number of storage locations between elements in the same row,
its number of rows, and its number of columns. For a matrix in full storage, the leading dimension
of the array must be at least as large as the number of rows in the matrix.

A character transposition parameter is often passed to indicate whether the matrix argument
is to be used in normal or transposed form or, for a complex matrix, if the conjugate transpose
of the matrix is to be used.

The values of the transposition parameter for these three cases are the following:

normal (no conjugation, no transposition)'N' or 'n'
transpose'T' or 't'
conjugate transpose.'C' or 'c'

Example B-3 Two-Dimensional Complex Array

Suppose A (1:5, 1:4) is the complex two-dimensional array presented by matrix

2780

B Intel® Math Kernel Library Reference Manual

Let transa be the transposition parameter, m be the number of rows, n be the number of
columns, and lda be the leading dimension. Then if

transa = 'N', m = 4, n = 2, and lda = 5, the matrix argument would be

If transa = 'T', m = 4, n = 2, and lda =5, the matrix argument would be

If transa = 'C', m = 4, n = 2, and lda =5, the matrix argument would be

2781

Routine and Function Arguments B

Note that care should be taken when using a leading dimension value which is different from
the number of rows specified in the declaration of the two-dimensional array. For example,
suppose the array A above is declared as COMPLEX A (5,4).

Then if transa = 'N', m = 3, n = 4, and lda = 4, the matrix argument will be

2782

B Intel® Math Kernel Library Reference Manual

CCode Examples

This appendix presents code examples of using some Intel MKL routines and functions. You can find here
example code written in both Fortran and C.

Currently, the appendix includes the following sections:

• BLAS Code Examples

• PARDISO Code Examples

• Direct Sparse Solver Code Examples

• Iterative Sparse Solver Code Examples

• Fourier Transform Functions Code Examples

• Interval Linear Solvers Code Examples

• PDE Support Code Examples.

Please refer to respective chapters in the manual for detailed descriptions of function parameters and
operation.

BLAS Code Examples

Example C-1. Using BLAS Level 1 Function

The following example illustrates a call to the BLAS Level 1 function sdot. This function performs a
vector-vector operation of computing a scalar product of two single-precision real vectors x and y.

Parameters

Specifies the order of vectors x and y.n

Specifies the increment for the elements of x.incx

Specifies the increment for the elements of y.incy

program dot_main

2783

real x(10), y(10), sdot, res

integer n, incx, incy, i

external sdot

n = 5

incx = 2

incy = 1

do i = 1, 10

x(i) = 2.0e0

y(i) = 1.0e0

end do

res = sdot (n, x, incx, y, incy)

print*, `SDOT = `, res

end

As a result of this program execution, the following line is printed:

SDOT = 10.000

Example C-2. Using BLAS Level 1 Routine

The following example illustrates a call to the BLAS Level 1 routine scopy. This routine performs
a vector-vector operation of copying a single-precision real vector x to a vector y.

Parameters

Specifies the order of vectors x and y.n

Specifies the increment for the elements of x.incx

2784

C Intel® Math Kernel Library Reference Manual

Parameters

Specifies the increment for the elements of y.incy

program copy_main

real x(10), y(10)

integer n, incx, incy, i

n = 3

incx = 3

incy = 1

do i = 1, 10

x(i) = i

end do

call scopy (n, x, incx, y, incy)

print*, `Y = `, (y(i), i = 1, n)

end

As a result of this program execution, the following line is printed:

Y = 1.00000 4.00000 7.00000

Example C-3. Using BLAS Level 2 Routine

The following example illustrates a call to the BLAS Level 2 routine sger. This routine performs
a matrix-vector operation

a := alpha*x*y' + a.

Parameters

Specifies a scalar alpha.alpha

m-element vector.x

n-element vector.y

m-by-n matrix.a

program ger_main

2785

Code Examples C

real a(5,3), x(10), y(10), alpha

integer m, n, incx, incy, i, j, lda

m = 2

n = 3

lda = 5

incx = 2

incy = 1

alpha = 0.5

do i = 1, 10

x(i) = 1.0

y(i) = 1.0

end do

do i = 1, m

do j = 1, n

a(i,j) = j

end do

end do

call sger (m, n, alpha, x, incx, y, incy, a, lda)

print*, `Matrix A: `

do i = 1, m

print*, (a(i,j), j = 1, n)

end do

end

As a result of this program execution, matrix a is printed as follows:

Matrix A:

1.50000 2.50000 3.50000

1.50000 2.50000 3.50000

2786

C Intel® Math Kernel Library Reference Manual

Example C-4. Using BLAS Level 3 Routine

The following example illustrates a call to the BLAS Level 3 routine ssymm. This routine performs
a matrix-matrix operation

c := alpha*a*b' + beta*c.

Parameters

Specifies a scalar alpha.alpha

Specifies a scalar beta.beta

Symmetric matrix.a

m-by-n matrix.b

2787

Code Examples C

Parameters

m-by-n matrix.c

program symm_main

real a(3,3), b(3,2), c(3,3), alpha, beta

integer m, n, lda, ldb, ldc, i, j

character uplo, side

uplo = 'u'

side = 'l'

m = 3

n = 2

lda = 3

ldb = 3

ldc = 3

alpha = 0.5

beta = 2.0

do i = 1, m

do j = 1, m

a(i,j) = 1.0

end do

end do

do i = 1, m

do j = 1, n

c(i,j) = 1.0

b(i,j) = 2.0

end do

end do

call ssymm (side, uplo, m, n, alpha,

a, lda, b, ldb, beta, c, ldc)

2788

C Intel® Math Kernel Library Reference Manual

print*, `Matrix C: `

do i = 1, m

print*, (c(i,j), j = 1, n)

end do

end

As a result of this program execution, matrix c is printed as follows:

Matrix C:

5.00000 5.00000

5.00000 5.00000

5.00000 5.00000

Example C-5. Calling a Complex BLAS Level 1 Function from C

The following example illustrates a call from a C program to the complex BLAS Level 1 function
zdotc(). This function computes the dot product of two double-precision complex vectors.

In this example, the complex dot product is returned in the structure c.

#define N 5

void main()

{

2789

Code Examples C

int n, inca = 1, incb = 1, i;

typedef struct{ double re; double im; } complex16;

complex16 a[N], b[N], c;

void zdotc();

n = N;

for(i = 0; i < n; i++){

a[i].re = (double)i; a[i].im = (double)i * 2.0;

b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;

}

zdotc(&c, &n, a, &inca, b, &incb);

printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re, c.im);

}

NOTE. Instead of calling BLAS directly from C programs, you might wish to use the
CBLAS interface; this is the supported way of calling BLAS from C. For more information
about CBLAS, see Appendix D , which presents CBLAS, the C interface to the Basic Linear
Algebra Subprograms (BLAS) implemented in Intel® MKL.

PARDISO Code Examples
This section presents code examples of using the PARDISO direct solver for computing solutions
of linear systems with sparse matrices. For description of this solver, refer to Chapter 8 of the
manual .

Examples for Sparse Symmetric Linear Systems

In this section two examples (Fortran, C) are provided to solve symmetric linear systems with
PARDISO. To solve the systems of equations Ax = b, where

2790

C Intel® Math Kernel Library Reference Manual

Example Results for Symmetric Systems

Upon successful execution of the solver, the result of the solution X is as follows

Reordering completed ...

Number of nonzeros in factors = 30

Number of factorization MFLOPS = 0

Factorization completed ...

Solve completed ...

The solution of the system is

x(1) = -0.0418602013

x(2) = -0.00341312416

x(3) = 0.117250377

x(4) = -0.11263958

x(5) = 0.0241722445

x(6) = -0.10763334

x(7) = 0.198719673

x(8) = 0.190382964

2791

Code Examples C

Example C-6. pardiso_sym.f for Symmetric Linear Systems
C--

C Example program to show the use of the "PARDISO" routine

C for symmetric linear systems

C---

C This program can be downloaded from the following site:

C http://www.computational.unibas.ch/cs/scicomp

C

C (C) Olaf Schenk, Department of Computer Science,

C University of Basel, Switzerland.

C Email: olaf.schenk@unibas.ch

C

C---

PROGRAM pardiso_sym

IMPLICIT NONE

C.. Internal solver memory pointer for 64-bit architectures

C.. INTEGER*8 pt(64)

C.. Internal solver memory pointer for 32-bit architectures

C.. INTEGER*4 pt(64)

C.. This is OK in both cases

INTEGER*8 pt(64)

C.. All other variables

INTEGER maxfct, mnum, mtype, phase, n, nrhs, error, msglvl

INTEGER iparm(64)

INTEGER ia(9)

INTEGER ja(18)

REAL*8 a(18)

REAL*8 b(8)

2792

C Intel® Math Kernel Library Reference Manual

REAL*8 x(8)

INTEGER i, idum

REAL*8 waltime1, waltime2, ddum

C.. Fill all arrays containing matrix data.

DATA n /8/, nrhs /1/, maxfct /1/, mnum /1/

DATA ia /1,5,8,10,12,15,17,18,19/

DATA ja

1 /1, 3, 6,7,

2 2,3, 5,

3 3, 8,

4 4, 7,

5 5,6,7,

6 6, 8,

7 7,

8 8/

DATA a

1 /7.d0, 1.d0, 2.d0,7.d0,

2 -4.d0,8.d0, 2.d0,

3 1.d0, 5.d0,

4 7.d0, 9.d0,

5 5.d0,1.d0,5.d0,

6 -1.d0, 5.d0,

7 11.d0,

8 5.d0/

integer omp_get_max_threads

external omp_get_max_threads

C..

C.. Set up PARDISO control parameter

2793

Code Examples C

C..

do i = 1, 64

iparm(i) = 0

end do

iparm(1) = 1 ! no solver default

iparm(2) = 2 ! fill-in reordering from METIS

iparm(3) = omp_get_max_threads() !numbers of processors, value of
 !OMP_NUM_THREADS

iparm(4) = 0 ! no iterative-direct algorithm

iparm(5) = 0 ! no user fill-in reducing permutation

iparm(6) = 0 ! =0 solution on the first n compoments of x

iparm(7) = 16 ! default logical fortran unit number for output

iparm(8) = 9 ! numbers of iterative refinement steps

iparm(9) = 0 ! not in use

iparm(10) = 13 ! perturbe the pivot elements with 1E-13

iparm(11) = 1 ! use nonsymmetric permutation and scaling MPS

iparm(12) = 0 ! not in use

iparm(13) = 0 ! not in use

iparm(14) = 0 ! Output: number of perturbed pivots

iparm(15) = 0 ! not in use

iparm(16) = 0 ! not in use

iparm(17) = 0 ! not in use

iparm(18) = -1 ! Output: number of nonzeros in the factor LU

iparm(19) = -1 ! Output: Mflops for LU factorization

iparm(20) = 0 ! Output: Numbers of CG Iterations

error = 0 ! initialize error flag

msglvl = 0 ! don't print statistical information

mtype = -2 ! unsymmetric matrix symmetric, indefinite, no pivoting

C.. Initiliaze the internal solver memory pointer. This is only

2794

C Intel® Math Kernel Library Reference Manual

C necessary for the FIRST call of the PARDISO solver.

do i = 1, 64

pt(i) = 0

end do

C.. Reordering and Symbolic Factorization, This step also allocates

C all memory that is necessary for the factorization

phase = 11 ! only reordering and symbolic factorization

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

WRITE(*,*) 'Reordering completed ... '

IF (error .NE. 0) THEN

WRITE(*,*) 'The following ERROR was detected: ', error

STOP

END IF

WRITE(*,*) 'Number of nonzeros in factors = ',iparm(18)

WRITE(*,*) 'Number of factorization MFLOPS = ',iparm(19)

C.. Factorization.

phase = 22 ! only factorization

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

WRITE(*,*) 'Factorization completed ... '

IF (error .NE. 0) THEN

WRITE(*,*) 'The following ERROR was detected: ', error

STOP

ENDIF

C.. Back substitution and iterative refinement

iparm(8) = 2 ! max numbers of iterative refinement steps

phase = 33 ! only factorization

2795

Code Examples C

do i = 1, n

b(i) = 1.d0

end do

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

1 idum, nrhs, iparm, msglvl, b, x, error)

WRITE(*,*) 'Solve completed ... '

WRITE(*,*) 'The solution of the system is '

DO i = 1, n

WRITE(*,*) ' x(',i,') = ', x(i)

END DO

C.. Termination and release of memory

phase = -1 ! release internal memory

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, ddum, idum, idum,

1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

END

2796

C Intel® Math Kernel Library Reference Manual

Example C-7. pardiso_sym.c for Symmetric Linear Systems
/* --*/

/* Example program to show the use of the "PARDISO" routine */

/* on symmetric linear systems*/

/* --*/

/* This program can be downloaded from the following site: */

/* http://www.computational.unibas.ch/cs/scicomp*/

/* */

/* (C) Olaf Schenk, Department of Computer Science, */

/* University of Basel, Switzerland.*/

/* Email: olaf.schenk@unibas.ch*/

/* --*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

extern int omp_get_max_threads();

/* PARDISO prototype. */

extern int PARDISO

(void *, int *, int *, int *, int *, int *,

double *, int *, int *, int*, int *, int *,

int *, double *, double *, int*);

int main(void) {

/* Matrix data. */

int n = 8;

int ia[9] = { 1, 5, 8, 10, 12, 15, 17, 18, 19 };

int ja[18] = { 1, 3, 6, 7,

2, 3, 5,

2797

Code Examples C

3, 8,

4, 7,

5, 6, 7,

6, 8,

7,

8 };

double a[18] = { 7.0, 1.0, 2.0, 7.0,

-4.0, 8.0, 2.0,

1.0, 5.0,

7.0, 9.0,

5.0, 1.0, 5.0,

-1.0, 5.0,

11.0,

5.0 };

int mtype = -2; /* Real symmetric matrix */

/* RHS and solution vectors.*/

double b[8], x[8];

int nrhs = 1; /* Number of right hand sides. */

/* Internal solver memory pointer pt, */

/* 32-bit: int pt[64]; 64-bit: long int pt[64] */

/* or void *pt[64] should be OK on both architectures */

void *pt[64];

/* Pardiso control parameters.*/

int iparm[64];

int maxfct, mnum, phase, error, msglvl;

/* Auxiliary variables. */

int i;

double ddum; /* Double dummy*/

2798

C Intel® Math Kernel Library Reference Manual

int idum; /* Integer dummy.*/

/* --*/

/* .. Setup Pardiso control parameters.*/

/* --*/

for (i = 0; i < 64; i++) {

iparm[i] = 0;

}

iparm[0] = 1; /* No solver default*/

iparm[1] = 2; /* Fill-in reordering from METIS */

/* Numbers of processors, value of OMP_NUM_THREADS */

iparm[2] = omp_get_max_threads();

iparm[3] = 0; /* No iterative-direct algorithm */

iparm[4] = 0; /* No user fill-in reducing permutation */

iparm[5] = 0; /* Write solution into x */

iparm[6] = 16; /* Default logical fortran unit number for output */

iparm[7] = 2; /* Max numbers of iterative refinement steps */

iparm[8] = 0; /* Not in use*/

iparm[9] = 13; /* Perturb the pivot elements with 1E-13 */

iparm[10] = 1; /* Use nonsymmetric permutation and scaling MPS */

iparm[11] = 0; /* Not in use*/

iparm[12] = 0; /* Not in use*/

iparm[13] = 0; /* Output: Number of perturbed pivots */

iparm[14] = 0; /* Not in use*/

iparm[15] = 0; /* Not in use*/

iparm[16] = 0; /* Not in use*/

iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */

iparm[18] = -1; /* Output: Mflops for LU factorization */

iparm[19] = 0; /* Output: Numbers of CG Iterations */

2799

Code Examples C

maxfct = 1; /* Maximum number of numerical factorizations. */

mnum = 1; /* Which factorization to use. */

msglvl = 0; /* Don't print statistical information in file */

error = 0; /* Initialize error flag */

/* --*/

/* .. Initialize the internal solver memory pointer. This is only */

/* necessary for the FIRST call of the PARDISO solver. */

/* --*/

for (i = 0; i < 64; i++) {

pt[i] = 0;

}

/* --*/

/* .. Reordering and Symbolic Factorization. This step also allocates */

/* all memory that is necessary for the factorization. */

/* --*/

phase = 11;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

if (error != 0) {

printf("\nERROR during symbolic factorization: %d", error);

exit(1);

}

printf("\nReordering completed ... ");

printf("\nNumber of nonzeros in factors = %d", iparm[17]);

printf("\nNumber of factorization MFLOPS = %d", iparm[18]);

/* --*/

/* .. Numerical factorization.*/

2800

C Intel® Math Kernel Library Reference Manual

/* --*/

phase = 22;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

if (error != 0) {

printf("\nERROR during numerical factorization: %d", error);

exit(2);

}

printf("\nFactorization completed ... ");

/* --*/

/* .. Back substitution and iterative refinement. */

/* --*/

phase = 33;

iparm[7] = 2; /* Max numbers of iterative refinement steps. */

/* Set right hand side to one.*/

for (i = 0; i < n; i++) {

b[i] = 1;

}

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, b, x, &error);

if (error != 0) {

printf("\nERROR during solution: %d", error);

exit(3);

}

printf("\nSolve completed ... ");

printf("\nThe solution of the system is: ");

2801

Code Examples C

for (i = 0; i < n; i++) {

printf("\n x [%d] = % f", i, x[i]);

}

printf ("\n");

/* --*/

/* .. Termination and release of memory. */

/* --*/

phase = -1; /* Release internal memory. */

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, &ddum, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

return 0;

}

Examples for Sparse Unsymmetric Linear Systems

In this section two examples (Fortran, C) are provided to solve unsymmetric linear systems
with PARDISO. To solve the systems of equations Ax = b, where

2802

C Intel® Math Kernel Library Reference Manual

Example Results for Unsymmetric Systems

Upon successful execution of the solver, the result of the solution X is as follows

Reordering completed ...

Number of nonzeros in factors = 21

Number of factorization MFLOPS = 0

Factorization completed ...

Solve completed ...

The solution of the system is

x(1) = -0.522321429

x(2) = -0.00892857143

x(3) = 1.22098214

x(4) = -0.504464286

x(5) = -0.214285714

2803

Code Examples C

Example C-8. pardiso_unsym.f for Unsymmetric Linear Systems

* Copyright(C) 2004 Intel Corporation. All Rights Reserved.

* The source code contained or described herein and all documents related
 to

* the source code ("Material") are owned by Intel Corporation or its
suppliers

* or licensors. Title to the Material remains with Intel Corporation or
its

* suppliers and licensors. The Material contains trade secrets and
proprietary

* and confidential information of Intel or its suppliers and licensors.
The

* Material is protected by worldwide copyright and trade secret laws
and

* treaty provisions. No part of the Material may be used, copied,
reproduced,

* modified, published, uploaded, posted, transmitted, distributed or
disclosed

* in any way without Intel's prior express written permission.

* No license under any patent, copyright, trade secret or other
intellectual

* property right is granted to or conferred upon you by disclosure or
delivery

* of the Materials, either expressly, by implication, inducement, estoppel
or

* otherwise. Any license under such intellectual property rights must
be

* express and approved by Intel in writing.

*

**

* Content : MKL DSS Fortran-77 example

*

**

2804

C Intel® Math Kernel Library Reference Manual

C--

C Example program to show the use of the "PARDISO" routine

C for symmetric linear systems

C---

C This program can be downloaded from the following site:

C http://www.computational.unibas.ch/cs/scicomp

C

C (C) Olaf Schenk, Department of Computer Science,

C University of Basel, Switzerland.

C Email: olaf.schenk@unibas.ch

C

C---

PROGRAM pardiso_unsym

IMPLICIT NONE

C.. Internal solver memory pointer for 64-bit architectures

C.. INTEGER*8 pt(64)

C.. Internal solver memory pointer for 32-bit architectures

C.. INTEGER*4 pt(64)

C.. This is OK in both cases

INTEGER*8 pt(64)

C.. All other variables

INTEGER maxfct, mnum, mtype, phase, n, nrhs, error, msglvl

INTEGER iparm(64)

INTEGER ia(6)

INTEGER ja(13)

REAL*8 a(13)

REAL*8 b(5)

REAL*8 x(5)

2805

Code Examples C

INTEGER i, idum

REAL*8 waltime1, waltime2, ddum

C.. Fill all arrays containing matrix data.

DATA n /5/, nrhs /1/, maxfct /1/, mnum /1/

DATA ia /1,4,6,9,12,14/

DATA ja

1 / 1, 2, 4,

2 1, 2,

3 3, 4, 5,

4 1, 3, 4,

5 2, 5/

DATA a

1 /1.d0,-1.d0, -3.d0,

2 -2.d0, 5.d0,

3 4.d0, 6.d0, 4.d0,

4 -4.d0, 2.d0, 7.d0,

5 8.d0, -5.d0/

integer omp_get_max_threads

external omp_get_max_threads

C..

C.. Set up PARDISO control parameter

C..

do i = 1, 64

iparm(i) = 0

end do

iparm(1) = 1 ! no solver default

iparm(2) = 2 ! fill-in reordering from METIS

iparm(3) = omp_get_max_threads() ! numbers of processors, value of
OMP_NUM_THREADS

2806

C Intel® Math Kernel Library Reference Manual

iparm(4) = 0 ! no iterative-direct algorithm

iparm(5) = 0 ! no user fill-in reducing permutation

iparm(6) = 0 ! =0 solution on the first n compoments of x

iparm(7) = 0 ! not in use

iparm(8) = 9 ! numbers of iterative refinement steps

iparm(9) = 0 ! not in use

iparm(10) = 13 ! perturbe the pivot elements with 1E-13

iparm(11) = 1 ! use nonsymmetric permutation and scaling MPS

iparm(12) = 0 ! not in use

iparm(13) = 0 ! not in use

iparm(14) = 0 ! Output: number of perturbed pivots

iparm(15) = 0 ! not in use

iparm(16) = 0 ! not in use

iparm(17) = 0 ! not in use

iparm(18) = -1 ! Output: number of nonzeros in the factor LU

iparm(19) = -1 ! Output: Mflops for LU factorization

iparm(20) = 0 ! Output: Numbers of CG Iterations

error = 0 ! initialize error flag

msglvl = 1 ! print statistical information

mtype = 11 ! real unsymmetric

C.. Initiliaze the internal solver memory pointer. This is only

C necessary for the FIRST call of the PARDISO solver.

do i = 1, 64

pt(i) = 0

end do

C.. Reordering and Symbolic Factorization, This step also allocates

C all memory that is necessary for the factorization

phase = 11 ! only reordering and symbolic factorization

2807

Code Examples C

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

WRITE(*,*) 'Reordering completed ... '

IF (error .NE. 0) THEN

WRITE(*,*) 'The following ERROR was detected: ', error

STOP

END IF

WRITE(*,*) 'Number of nonzeros in factors = ',iparm(18)

WRITE(*,*) 'Number of factorization MFLOPS = ',iparm(19)

C.. Factorization.

phase = 22 ! only factorization

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

WRITE(*,*) 'Factorization completed ... '

IF (error .NE. 0) THEN

WRITE(*,*) 'The following ERROR was detected: ', error

STOP

ENDIF

C.. Back substitution and iterative refinement

iparm(8) = 2 ! max numbers of iterative refinement steps

phase = 33 ! only factorization

do i = 1, n

b(i) = 1.d0

end do

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

1 idum, nrhs, iparm, msglvl, b, x, error)

WRITE(*,*) 'Solve completed ... '

WRITE(*,*) 'The solution of the system is '

2808

C Intel® Math Kernel Library Reference Manual

DO i = 1, n

WRITE(*,*) ' x(',i,') = ', x(i)

END DO

C.. Termination and release of memory

phase = -1 ! release internal memory

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, ddum, idum, idum,

1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

END

2809

Code Examples C

Example C-9. pardiso_unsym.c for Unsymmetric Linear Systems
/*

**

* Copyright(C) 2004 Intel Corporation. All Rights Reserved.

* The source code contained or described herein and all documents related
to

* the source code ("Material") are owned by Intel Corporation or its
suppliers

* or licensors. Title to the Material remains with Intel Corporation or
its

* suppliers and licensors. The Material contains trade secrets and
proprietary

* and confidential information of Intel or its suppliers and licensors.
The

* Material is protected by worldwide copyright and trade secret laws
and

* treaty provisions. No part of the Material may be used, copied,
reproduced,

* modified, published, uploaded, posted, transmitted, distributed or
disclosed

* in any way without Intel's prior express written permission.

* No license under any patent, copyright, trade secret or other
intellectual

* property right is granted to or conferred upon you by disclosure or
delivery

* of the Materials, either expressly, by implication, inducement, estoppel
or

* otherwise. Any license under such intellectual property rights must
be

* express and approved by Intel in writing.

*

**

* Content : MKL DSS C example

*

2810

C Intel® Math Kernel Library Reference Manual

**

*/

/* --*/

/* Example program to show the use of the "PARDISO" routine */

/* on symmetric linear systems*/

/* --*/

/* This program can be downloaded from the following site: */

/* http://www.computational.unibas.ch/cs/scicomp*/

/* */

/* (C) Olaf Schenk, Department of Computer Science, */

/* University of Basel, Switzerland.*/

/* Email: olaf.schenk@unibas.ch*/

/* --*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

extern int omp_get_max_threads();

/* PARDISO prototype. */

#if defined(_WIN32) || defined(_WIN64)

#define pardiso_ PARDISO

#else

#define PARDISO pardiso_

#endif

extern int PARDISO

(void *, int *, int *, int *, int *, int *,

double *, int *, int*, int *, int *, int *,

int *, double *, double*, int *);

2811

Code Examples C

int main(void) {

/* Matrix data. */

int n = 5;

int ia[6] = { 1, 4, 6, 9, 12, 14 };

int ja[13] = { 1, 2, 4,

1, 2,

3, 4, 5,

1, 3, 4,

2, 5 };

double a[18] = { 1.0, -1.0, -3.0,

-2.0, 5.0,

4.0, 6.0, 4.0,

-4.0, 2.0, 7.0,

8.0, -5.0 };

int mtype = 11; /* Real unsymmetric matrix */

/* RHS and solution vectors.*/

double b[5], x[5];

int nrhs = 1; /* Number of right hand sides. */

/* Internal solver memory pointer pt, */

/* 32-bit: int pt[64]; 64-bit: long int pt[64] */

/* or void *pt[64] should be OK on both architectures */

void *pt[64];

/* Pardiso control parameters.*/

int iparm[64];

int maxfct, mnum, phase, error, msglvl;

/* Auxiliary variables.*/

int i;

double ddum; /* Double dummy */

2812

C Intel® Math Kernel Library Reference Manual

int idum; /* Integer dummy. */

/* --*/

/* .. Setup Pardiso control parameters.*/

/* --*/

for (i = 0; i < 64; i++) {

iparm[i] = 0;

}

iparm[0] = 1; /* No solver default */

iparm[1] = 2; /* Fill-in reordering from METIS */

/* Numbers of processors, value of OMP_NUM_THREADS */

iparm[2] = omp_get_max_threads();

iparm[3] = 0; /* No iterative-direct algorithm */

iparm[4] = 0; /* No user fill-in reducing permutation */

iparm[5] = 0; /* Write solution into x */

iparm[6] = 0; /* Not in use */

iparm[7] = 2; /* Max numbers of iterative refinement steps */

iparm[8] = 0; /* Not in use */

iparm[9] = 13; /* Perturb the pivot elements with 1E-13 */

iparm[10] = 1; /* Use nonsymmetric permutation and scaling MPS */

iparm[11] = 0; /* Not in use */

iparm[12] = 0; /* Not in use */

iparm[13] = 0; /* Output: Number of perturbed pivots */

iparm[14] = 0; /* Not in use */

iparm[15] = 0; /* Not in use */

iparm[16] = 0; /* Not in use */

iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */

iparm[18] = -1; /* Output: Mflops for LU factorization */

iparm[19] = 0; /* Output: Numbers of CG Iterations */

2813

Code Examples C

maxfct = 1; /* Maximum number of numerical factorizations. */

mnum = 1; /* Which factorization to use. */

msglvl = 1; /* Print statistical information in file */

error = 0; /* Initialize error flag */

/* --*/

/* .. Initialize the internal solver memory pointer. This is only */

/* necessary for the FIRST call of the PARDISO solver. */

/* --*/

for (i = 0; i < 64; i++) {

pt[i] = 0;

}

/* --*/

/* .. Reordering and Symbolic Factorization. This step also allocates */

/* all memory that is necessary for the factorization. */

/* --*/

phase = 11;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

if (error != 0) {

printf("\nERROR during symbolic factorization: %d", error);

exit(1);

}

printf("\nReordering completed ... ");

printf("\nNumber of nonzeros in factors = %d", iparm[17]);

printf("\nNumber of factorization MFLOPS = %d", iparm[18]);

/* --*/

/* .. Numerical factorization.*/

2814

C Intel® Math Kernel Library Reference Manual

/* --*/

phase = 22;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

if (error != 0) {

printf("\nERROR during numerical factorization: %d", error);

exit(2);

}

printf("\nFactorization completed ... ");

/* --*/

/* .. Back substitution and iterative refinement. */

/* --*/

phase = 33;

iparm[7] = 2; /* Max numbers of iterative refinement steps. */

/* Set right hand side to one. */

for (i = 0; i < n; i++) {

b[i] = 1;

}

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, b, x, &error);

if (error != 0) {

printf("\nERROR during solution: %d", error);

exit(3);

}

printf("\nSolve completed ... ");

printf("\nThe solution of the system is: ");

2815

Code Examples C

for (i = 0; i < n; i++) {

printf("\n x [%d] = % f", i, x[i]);

}

printf ("\n");

/* --*/

/* .. Termination and release of memory. */

/* --*/

phase = -1; /* Release internal memory. */

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, &ddum, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

return 0;

}

Direct Sparse Solver Code Examples
This section contains example code in Fortran 77, Fortran 90 and C. For description of the
sparse solver routines used in this code, refer to “Direct Sparse Solver (DSS) Interface Routines”
in Chapter 8 of the manual . The example code solves the equations presented in Direct Method
section of Appendix A - a symmetric positive definite system of equations Ax= b with a sparse
matrix, where

2816

C Intel® Math Kernel Library Reference Manual

Example results for symmetric systems

Upon successful execution of the solver, the determinant and the result of the solution array
are as follows

pow of determinant is 0.000

base of determinant is 2.250

Determinant is 2.250

Solution Array: -326.333 983.000 163.417 398.000 61.500

2817

Code Examples C

Example C-10. Fortran 77 example to Solve Symmetric Positive Definite
System
**

* Copyright(C) 2001-2004 Intel Corporation. All Rights Reserved.

* The source code contained or described herein and all documents related
to

* the source code ("Material") are owned by Intel Corporation or its
suppliers

* or licensors. Title to the Material remains with Intel Corporation or
its

* suppliers and licensors. The Material contains trade secrets and
proprietary

* and confidential information of Intel or its suppliers and licensors.
The

* Material is protected by worldwide copyright and trade secret laws
and

* treaty provisions. No part of the Material may be used, copied,
reproduced,

* modified, published, uploaded, posted, transmitted, distributed or
disclosed

* in any way without Intel's prior express written permission.

* No license under any patent, copyright, trade secret or other
intellectual

* property right is granted to or conferred upon you by disclosure or
delivery

* of the Materials, either expressly, by implication, inducement, estoppel
or

* otherwise. Any license under such intellectual property rights must
be

* express and approved by Intel in writing.

*

**

* Content : Intel MKL DSS Fortran-77 example

*

2818

C Intel® Math Kernel Library Reference Manual

**

C---

C Example program for solving symmetric positive definite system of

C equations.

C---

PROGRAM solver_f77_test

IMPLICIT NONE

INCLUDE 'mkl_dss.f77'

C---

C Define the array and rhs vectors

C---

INTEGER nRows, nCols, nNonZeros, i, nRhs

PARAMETER (nRows = 5,

1 nCols = 5,

2 nNonZeros = 9,

3 nRhs = 1)

INTEGER rowIndex(nRows + 1), columns(nNonZeros)

DOUBLE PRECISION values(nNonZeros), rhs(nRows)

DATA rowIndex / 1, 6, 7, 8, 9, 10 /

DATA columns / 1, 2, 3, 4, 5, 2, 3, 4, 5 /

DATA values / 9, 1.5, 6, .75, 3, 0.5, 12, .625, 16 /

DATA rhs / 1, 2, 3, 4, 5 /

C---

C Allocate storage for the solver handle and the solution vector

C---

DOUBLE PRECISION solution(nRows)

INTEGER*8 handle

INTEGER error

2819

Code Examples C

CHARACTER*15 statIn

DOUBLE PRECISION statOut(5)

INTEGER bufLen

PARAMETER(bufLen = 20)

INTEGER buff(bufLen)

C---

C Initialize the solver

C---

error = dss_create(handle, MKL_DSS_DEFAULTS)

IF (error .NE. MKL_DSS_SUCCESS) GOTO 999

C---

C Define the non-zero structure of the matrix

C---

error = dss_define_structure(handle, MKL_DSS_SYMMETRIC,

& rowIndex, nRows, nCols, columns, nNonZeros)

IF (error .NE. MKL_DSS_SUCCESS) GOTO 999

C---

C Reorder the matrix

C---

error = dss_reorder(handle, MKL_DSS_DEFAULTS, 0)

IF (error .NE. MKL_DSS_SUCCESS) GOTO 999

C---

C Factor the matrix

C---

error = dss_factor_real(handle,

& MKL_DSS_DEFAULTS, VALUES)

IF (error .NE. MKL_DSS_SUCCESS) GOTO 999

C---

2820

C Intel® Math Kernel Library Reference Manual

C Get the solution vector

C---

error = dss_solve_real(handle, MKL_DSS_DEFAULTS,

& rhs, nRhs, solution)

IF (error .NE. MKL_DSS_SUCCESS) GOTO 999

C---

C Print Determinant of the matrix

C---

statIn = 'determinant'

call mkl_cvt_to_null_terminated_str(buff,bufLen,statIn)

error = dss_statistics(handle, MKL_DSS_DEFAULTS,

& buff,statOut)

WRITE(*,"(' pow of determinant is ', 5(F10.3))") statOut(1)

WRITE(*,"(' base of determinant is ', 5(F10.3))") statOut(2)

WRITE(*,"(' Determinant is ', 5(F10.3))")(10**statOut(1))*

& statOut(2)

C---

C Deallocate solver storage

C---

error = dss_delete(handle, MKL_DSS_DEFAULTS)

IF (error .NE. MKL_DSS_SUCCESS) GOTO 999

C---

C Print solution vector

C---

WRITE(*,900) (solution(i), i = 1, nCols)

900 FORMAT(' Solution Array: ',5(F10.3))

GOTO 1000

999 WRITE(*,*) "Solver returned error code ", error

2821

Code Examples C

1000 END

2822

C Intel® Math Kernel Library Reference Manual

Example C-11. C Example to Solve Symmetric Positive Definite System
/*

* Copyright(C) 2001-2004 Intel Corporation. All Rights Reserved.

* The source code contained or described herein and all documents related
to

* the source code ("Material") are owned by Intel Corporation or its
suppliers

* or licensors. Title to the Material remains with Intel Corporation or
its

* suppliers and licensors. The Material contains trade secrets and
proprietary

* and confidential information of Intel or its suppliers and licensors.
The

* Material is protected by worldwide copyright and trade secret laws
and

* treaty provisions. No part of the Material may be used, copied,
reproduced,

* modified, published, uploaded, posted, transmitted, distributed or
disclosed

* in any way without Intel's prior express written permission.

* No license under any patent, copyright, trade secret or other
intellectual

* property right is granted to or conferred upon you by disclosure or
delivery

* of the Materials, either expressly, by implication, inducement, estoppel
or

* otherwise. Any license under such intellectual property rights must
be

* express and approved by Intel in writing.

*

**

* Content : Intel MKL DSS C example

*

2823

Code Examples C

**/

/*

** Example program to solve symmetric positive definite system of equations.

*/

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include "mkl_dss.h"

/*

** Define the array and rhs vectors

*/

#define NROWS 5

#define NCOLS 5

#define NNONZEROS 9

#define NRHS 1

static const int nRows = NROWS ;

static const int nCols = NCOLS ;

static const int nNonZeros = NNONZEROS ;

static const int nRhs = NRHS ;

static _INTEGER_t rowIndex[NROWS+1] = { 1, 6, 7, 8, 9, 10 };

static _INTEGER_t columns[NNONZEROS] = { 1, 2, 3, 4, 5, 2, 3, 4, 5 };

static _DOUBLE_PRECISION_t values[NNONZEROS] = { 9, 1.5, 6, .75, 3, 0.5, 12,
.625, 16 };

static _DOUBLE_PRECISION_t rhs[NCOLS] = { 1, 2, 3, 4, 5 };

void main() {

int i;

/* Allocate storage for the solver handle and the right-hand side. */

2824

C Intel® Math Kernel Library Reference Manual

_DOUBLE_PRECISION_t solValues[NROWS];

_MKL_DSS_HANDLE_t handle;

_INTEGER_t error;

_CHARACTER_STR_t statIn[] = "determinant";

_DOUBLE_PRECISION_t statOut[5];

int opt = MKL_DSS_DEFAULTS;

int sym = MKL_DSS_SYMMETRIC;

int type = MKL_DSS_POSITIVE_DEFINITE;

/* ---------------------*/

/* Initialize the solver */

/* ---------------------*/

error = dss_create(handle, opt);

if (error != MKL_DSS_SUCCESS) goto printError;

/* ---*/

/* Define the non-zero structure of the matrix */

/* ---*/

error = dss_define_structure(

handle, sym, rowIndex, nRows, nCols,

columns, nNonZeros);

if (error != MKL_DSS_SUCCESS) goto printError;

/* ------------------*/

/* Reorder the matrix */

/* ------------------*/

error = dss_reorder(handle, opt, 0);

if (error != MKL_DSS_SUCCESS) goto printError;

/* ------------------*/

/* Factor the matrix */

/* ------------------*/

2825

Code Examples C

error = dss_factor_real(handle, type, values);

if (error != MKL_DSS_SUCCESS) goto printError;

/* ------------------------*/

/* Get the solution vector */

/* ------------------------*/

error = dss_solve_real(handle, opt, rhs, nRhs, solValues);

if (error != MKL_DSS_SUCCESS) goto printError;

/* ------------------------*/

/* Get the determinant*/

/*--------------------------*/

error = dss_statistics(handle, opt, statIn, statOut);

if (error != MKL_DSS_SUCCESS) goto printError;

/*-------------------------*/

/* print determinant*/

/*-------------------------*/

printf(" determinant power is %g \n", statOut[0]);

printf(" determinant base is %g \n", statOut[1]);

printf(" Determinant is %g \n", (pow(10.0,statOut[0]))*statOut[1]);

free((void*) statIn);

/* --------------------------*/

/* Deallocate solver storage */

/* --------------------------*/

error = dss_delete(handle, opt);

if (error != MKL_DSS_SUCCESS) goto printError;

/* ----------------------*/

/* Print solution vector */

/* ----------------------*/

printf(" Solution array: ");

2826

C Intel® Math Kernel Library Reference Manual

for(i = 0; i< nCols; i++)

printf(" %g", solValues[i]);

printf("\n");

exit(0);

printError:

printf("Solver returned error code %d\n", error);

exit(1);

}

2827

Code Examples C

Example C-12. Fortran 90 Example to Solve Symmetric Positive Definite
System
!***

! Copyright(C) 2001-2004 Intel Corporation. All Rights Reserved.

! The source code contained or described herein and all documents related
to

! the source code ("Material") are owned by Intel Corporation or its
suppliers

! or licensors. Title to the Material remains with Intel Corporation or
its

! suppliers and licensors. The Material contains trade secrets and
proprietary

! and confidential information of Intel or its suppliers and licensors.
The

! Material is protected by worldwide copyright and trade secret laws
and

! treaty provisions. No part of the Material may be used, copied,
reproduced,

! modified, published, uploaded, posted, transmitted, distributed or
disclosed

! in any way without Intel's prior express written permission.

! No license under any patent, copyright, trade secret or other
intellectual

! property right is granted to or conferred upon you by disclosure or
delivery

! of the Materials, either expressly, by implication, inducement, estoppel
or

! otherwise. Any license under such intellectual property rights must
be

! express and approved by Intel in writing.

!

!***

! Content : Intel MKL DSS Fortran-90 example

!

2828

C Intel® Math Kernel Library Reference Manual

!***

!--

!

! Example program for solving a symmetric positive definite system of

! equations.

!

!--

INCLUDE 'mkl_dss.f90' ! Include the standard DSS "header file."

PROGRAM solver_f90_test

use mkl_dss

IMPLICIT NONE

INTEGER, PARAMETER :: dp = KIND(1.0D0)

INTEGER :: error

INTEGER :: i

INTEGER, PARAMETER :: bufLen = 20

! Define the data arrays and the solution and rhs vectors.

INTEGER, ALLOCATABLE :: columns(:)

INTEGER :: nCols

INTEGER :: nNonZeros

INTEGER :: nRhs

INTEGER :: nRows

REAL(KIND=DP), ALLOCATABLE :: rhs(:)

INTEGER, ALLOCATABLE :: rowIndex(:)

REAL(KIND=DP), ALLOCATABLE :: solution(:)

REAL(KIND=DP), ALLOCATABLE :: values(:)

TYPE(MKL_DSS_HANDLE) :: handle ! Allocate storage for the solver handle.

REAL(KIND=DP),ALLOCATABLE::statOUt(:)

CHARACTER*15 statIn

2829

Code Examples C

INTEGER perm(1)

INTEGER buff(bufLen)

EXTERNAL MKL_CVT_TO_NULL_TERMINATED_STR

! Set the problem to be solved.

nRows = 5

nCols = 5

nNonZeros = 9

nRhs = 1

perm(1) = 0

ALLOCATE(rowIndex(nRows + 1))

rowIndex = (/ 1, 6, 7, 8, 9, 10 /)

ALLOCATE(columns(nNonZeros))

columns = (/ 1, 2, 3, 4, 5, 2, 3, 4, 5 /)

ALLOCATE(values(nNonZeros))

values = (/ 9.0_DP, 1.5_DP, 6.0_DP, 0.75_DP, 3.0_DP, 0.5_DP, 12.0_DP, &

& 0.625_DP, 16.0_DP /)

ALLOCATE(rhs(nRows))

rhs = (/ 1.0_DP, 2.0_DP, 3.0_DP, 4.0_DP, 5.0_DP /)

! Initialize the solver.

error = dss_create(handle, MKL_DSS_DEFAULTS)

IF (error /= MKL_DSS_SUCCESS) GOTO 999

! Define the non-zero structure of the matrix.

error = dss_define_structure(handle, MKL_DSS_SYMMETRIC, rowIndex, nRows, &

& nCols, columns, nNonZeros)

IF (error /= MKL_DSS_SUCCESS) GOTO 999

! Reorder the matrix.

error = dss_reorder(handle, MKL_DSS_DEFAULTS, perm)

IF (error /= MKL_DSS_SUCCESS) GOTO 999

2830

C Intel® Math Kernel Library Reference Manual

! Factor the matrix.

error = dss_factor_real(handle, MKL_DSS_DEFAULTS, values)

IF (error /= MKL_DSS_SUCCESS) GOTO 999

! Allocate the solution vector and solve the problem.

ALLOCATE(solution(nRows))

error = dss_solve_real(handle, MKL_DSS_DEFAULTS, rhs, nRhs, solution)

IF (error /= MKL_DSS_SUCCESS) GOTO 999

! Print Out the determinant of the matrix

ALLOCATE(statOut(5))

statIn = 'determinant'

call mkl_cvt_to_null_terminated_str(buff,bufLen,statIn);

error = dss_statistics(handle, MKL_DSS_DEFAULTS, buff, statOut)

IF (error /= MKL_DSS_SUCCESS) GOTO 999

WRITE(*,"('pow of determinant is '(5F10.3))") (statOut(1))

WRITE(*,"('base of determinant is '(5F10.3))") (statOut(2))

WRITE(*,"('Determinant is '(5F10.3))") ((10**statOut(1))*statOut(2))

! Deallocate solver storage and various local arrays.

error = dss_delete(handle, MKL_DSS_DEFAULTS)

IF (error /= MKL_DSS_SUCCESS) GOTO 999

IF (ALLOCATED(rowIndex)) DEALLOCATE(rowIndex)

IF (ALLOCATED(columns)) DEALLOCATE(columns)

IF (ALLOCATED(values)) DEALLOCATE(values)

IF (ALLOCATED(rhs)) DEALLOCATE(rhs)

IF (ALLOCATED(statOut)) DEALLOCATE(statOut)

! Print the solution vector, deallocate it and exit

WRITE(*,"('Solution Array: '(5F10.3))") (solution(i), i = 1, nCols)

IF (ALLOCATED(solution)) DEALLOCATE(solution)

GOTO 1000

2831

Code Examples C

! Print an error message and exit

999 WRITE(*,*) "Solver returned error code ", error

1000 CONTINUE

END PROGRAM solver_f90_test

Iterative Sparse Solver Code Examples
This section contains example code in Fortran 77 and C. For description of the iterative sparse
solver routines based on the reverse communication interface (RCI ISS) used in this code, refer
to “Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS)” in Chapter
8 of the manual .

Example of Use RCI (Preconditioned) Conjugate Gradient Solver

Example results for symmetric positive definite systems. Upon successful execution of the
solver, the result of the solution array is as follows:

The system is successfully solved

The following solution obtained

1.000 0.000 1.000 0.000

1.000 0.000 1.000 0.000

Expected solution

1.000 0.000 1.000 0.000

1.000 0.000 1.000 0.000

Number of iterations: 8

2832

C Intel® Math Kernel Library Reference Manual

Example C-13a. Fortran 77 Example to Solve Symmetric Positive
Definite System
**

*

* Copyright(C) 2001-2006 Intel Corporation. All Rights Reserved.

* The source code contained or described herein and all documents related
to

* the source code ("Material") are owned by Intel Corporation or its suppliers

* or licensors. Title to the Material remains with Intel Corporation or its

* suppliers and licensors. The Material contains trade secrets and proprietary

* and confidential information of Intel or its suppliers and licensors. The

* Material is protected by worldwide copyright and trade secret laws and

* treaty provisions. No part of the Material may be used, copied, reproduced,

* modified, published, uploaded, posted, transmitted, distributed or disclosed

* in any way without Intel's prior express written permission.

* No license under any patent, copyright, trade secret or other intellectual

* property right is granted to or conferred upon you by disclosure or delivery

* of the Materials, either expressly, by implication, inducement, estoppel
or

* otherwise. Any license under such intellectual property rights must be

* express and approved by Intel in writing.

*

**

*

* Content : Intel MKL RCI (P)CG Fortran-77 example

*

**

*

C---

2833

Code Examples C

C Example program for solving symmetric positive definite system of

C equations.

C---

PROGRAM rci_pcg_f77_test

IMPLICIT NONE

C---

C Define arrays for the upper triangle of the coefficient matrix and rhs
vector

C Compressed sparse row storage is used for sparse representation

C---

INTEGER N, RCI_request, itercount, i

PARAMETER (N=8)

DOUBLE PRECISION rhs(N), solution(N)

INTEGER ia(9)

INTEGER ja(18)

DOUBLE PRECISION a(18)

C.. Fill all arrays containing matrix data.

DATA ia /1,5,8,10,12,15,17,18,19/

DATA ja

1 /1, 3, 6,7,

2834

C Intel® Math Kernel Library Reference Manual

2 2, 3, 5,

3 3, 8,

4 4, 7,

5 5,6,7,

6 6, 8,

7 7,

8 8/

DATA a

1 /7.D0, 1.D0, 2.D0, 7.D0,

2 -4.D0,8.D0, 2.D0,

3 1.D0, 5.D0,

4 7.D0, 9.D0,

5 5.D0, 1.D0, 5.D0,

6 -1.D0, 5.D0,

7 11.D0,

8 5.D0/

C---

C Allocate storage for the solver ?par and the initial solution vector

C---

INTEGER length

PARAMETER (length=128)

DOUBLE PRECISION expected(N)

DATA expected/1.D0, 0.D0, 1.D0, 0.D0, 1.D0, 0.D0, 1.D0, 0.D0/

INTEGER ipar(length)

DOUBLE PRECISION dpar(length),tmp(N,4)

C---

C Initialize the right hand side through matrix-vector product

C---

2835

Code Examples C

CALL DCSRMV_SY('U', N, A, IA, JA, expected, rhs)

C---

C Initialize the initial guess

C---

DO I=1, N

solution(I)=1.D0

ENDDO

2836

C Intel® Math Kernel Library Reference Manual

C---

C Initialize the solver

C---

CALL dcg_init(N,solution,rhs,RCI_request,ipar,dpar,tmp)

IF (RCI_request .NE. 0) GOTO 999

C---

C Set the desired parameters:

C LOGICAL parameters:

C do residual stopping test

C do not request for the user defined stopping test

C do Preconditioned Conjugate Gradient iterations

C DOUBLE PRECISION parameters

C set the relative tolerance to 1.0D-5 instead of default value 1.0D-6

C---

ipar(9)=1

ipar(10)=0

ipar(11)=1

dpar(1)=1.D-5

C---

C Check the correctness and consistency of the newly set parameters

C---

CALL dcg_check(N,solution,rhs,RCI_request,ipar,dpar,tmp)

IF (RCI_request .NE. 0) GOTO 999

C---

C Compute the solution by RCI PCG solver

C Reverse Communications starts here

C---

1 CALL dcg(N,solution,rhs,RCI_request,ipar,dpar,tmp)

2837

Code Examples C

C---

C If RCI_request=0, then the solution was found with the required precision

C---

IF (RCI_request .EQ. 0) THEN

GOTO 700

C---

C If RCI_request=1, then compute the vector A*tmp(:,1)

C and put the result in vector tmp(:,2)

C---

ELSE IF (RCI_request .EQ. 1) THEN

CALL DCSRMV_SY('U', N, A, IA, JA, TMP, TMP(1, 2))

GOTO 1

C---

C If RCI_request=3, then compute vector preconditioner matrix on tmp(:,3)

C and put the result in vector tmp(:,4)

C---

ELSE IF (RCI_request .EQ. 3) THEN

CALL DCOPY(N, TMP(1,3),1, TMP(1, 4), 1)

GOTO 1

ELSE

C---

C If RCI_request=anything else, then dcg subroutine failed

2838

C Intel® Math Kernel Library Reference Manual

C to compute the solution vector: solution(N)

C---

GOTO 999

ENDIF

C---

C Reverse Communication ends here

C Get the current iteration number

C---

700 CALL dcg_get(N,solution,rhs,RCI_request,ipar,dpar,tmp,

& itercount)

C---

C Print solution vector: solution(N) and number of iterations: itercount

C---

WRITE(*, *) ' The system is successfully solved '

WRITE(*, *) ' The following solution obtained '

WRITE(*,800)(solution(i),i =1,N)

WRITE(*, *) ' Expected solution '

WRITE(*,800)(expected(i),i =1,N)

800 FORMAT(4(F10.3))

WRITE(*,900)(itercount)

900 FORMAT(' Number of iterations: ',1(I2))

GOTO 1000

999 WRITE(*,*) 'Solver returned error code ', RCI_request

STOP

1000 CONTINUE

read *

END

2839

Code Examples C

Fortran Example of Using RCI (Preconditioned) Flexible Generalized Minimal Residual
Solver.

Fortran example results for a non-symmetric indefinite system. Upon successful execution of
the solver, the following result is printed (up to rounding errors that depend on the computer
system used):

--

The SIMPLEST example of usage of RCI FGMRES solver

2840

C Intel® Math Kernel Library Reference Manual

to solve a non-symmetric indefinite non-degenerate

algebraic system of linear equations

--

Some info about the current run of RCI FGMRES method:

As IPAR(8)=1, the automatic test for the maximal number of iterations
will be performed

As IPAR(9)=1, the automatic residual test will be performed

+++

As IPAR(10)=0, the user-defined stopping test will not be requested, thus,
RCI_REQUEST will not take the value 2

+++

As IPAR(11)=0, the Preconditioned FGMRES iterations will not be performed,
thus, RCI_REQUEST will not take the value 3

+++

As IPAR(12)=1, the automatic test for the norm of the next generated vector
is not equal to zero up to rounding and computational errors will be
performed, thus, RCI_REQUEST will not take the value 4

+++

The system has been SUCCESSFULLY solved

The following solution has been obtained:

COMPUTED_SOLUTION(1)=-0.100E+01

COMPUTED_SOLUTION(2)= 0.100E+01

COMPUTED_SOLUTION(3)= 0.305E-15

COMPUTED_SOLUTION(4)= 0.100E+01

COMPUTED_SOLUTION(5)=-0.100E+01

2841

Code Examples C

The expected solution is:

EXPECTED_SOLUTION(1)=-0.100E+01

EXPECTED_SOLUTION(2)= 0.100E+01

EXPECTED_SOLUTION(3)= 0.000E+00

EXPECTED_SOLUTION(4)= 0.100E+01

EXPECTED_SOLUTION(5)=-0.100E+01

+++

Number of iterations: 5

+++

2842

C Intel® Math Kernel Library Reference Manual

Example C-13b. Fortran Example to Solve Non-Symmetric Indefinite
System
C***

C

C Copyright(C) 2005-2006 Intel Corporation. All Rights Reserved.

C The source code contained or described herein and all documents related
to

C the source code ("Material") are owned by Intel Corporation or its suppliers

C or licensors. Title to the Material remains with Intel Corporation or its

C suppliers and licensors. The Material contains trade secrets and proprietary

C and confidential information of Intel or its suppliers and licensors. The

C Material is protected by worldwide copyright and trade secret laws and

C treaty provisions. No part of the Material may be used, copied, reproduced,

C modified, published, uploaded, posted, transmitted, distributed or disclosed

C in any way without Intel's prior express written permission.

C No license under any patent, copyright, trade secret or other intellectual

C property right is granted to or conferred upon you by disclosure or delivery

C of the Materials, either expressly, by implication, inducement, estoppel
or

C otherwise. Any license under such intellectual property rights must be

C express and approved by Intel in writing.

C

C***

C Content:

C Intel MKL RCI (P)FGMRES ((Preconditioned) Flexible Generalized Minimal

C
RESidual method) example

C**

C

C---

2843

Code Examples C

C Example program for solving non-symmetric indefinite system of equations

C Simplest case: no preconditioning and no user-defined stopping tests

C---

PROGRAM DFGMRES_NO_PRECON_F

INCLUDE "mkl_rci.fi"

INTEGER N

PARAMETER(N=5)

INTEGER SIZE

PARAMETER (SIZE=128)

C---

C Define arrays for the upper triangle of the coefficient matrix

C Compressed sparse row storage is used for sparse representation

--

INTEGER IA(6)

DATA IA /1,3,6,9,12,14/

INTEGER JA(13)

DATA JA / 1, 3,

1 1, 2, 4,

2 2, 3, 5,

3 3, 4, 5,

4 4, 5 /

DOUBLE PRECISION A(13)

DATA A / 1.0, -1.0,

1 -1.0, 1.0, -1.0,

2 1.0,-2.0, 1.0,

3 -1.0, 2.0,-1.0,

4 -1.0,-3.0 /

C---

2844

C Intel® Math Kernel Library Reference Manual

C Allocate storage for the ?par parameters and the solution/rhs vectors

C---

2845

Code Examples C

INTEGER IPAR(SIZE)

DOUBLE PRECISION DPAR(SIZE), TMP(N*(2*N+1)+(N*(N+9))/2+1)

DOUBLE PRECISION EXPECTED_SOLUTION(N)

DATA EXPECTED_SOLUTION /-1.0,1.0,0.0,1.0,-1.0/

DOUBLE PRECISION RHS(N)

DOUBLE PRECISION COMPUTED_SOLUTION(N)

C---

C Some additional variables to use with the RCI (P)FGMRES solver

C---

INTEGER ITERCOUNT

INTEGER RCI_REQUEST, I

PRINT *,'--'

PRINT *,'The SIMPLEST example of usage of RCI FGMRES solver'

PRINT *,'to solve a non-symmetric indefinite non-degenerate'

PRINT *,' algebraic system of linear equations'

PRINT *,'--'

C---

C Initialize variables and the right hand side through matrix-vector product

C---

CALL MKL_DCSRGEMV('N', N, A, IA, JA, EXPECTED_SOLUTION, RHS)

C---

C Initialize the initial guess

C---

DO I=1,N

COMPUTED_SOLUTION(I)=1.0

ENDDO

C---

C Initialize the solver

2846

C Intel® Math Kernel Library Reference Manual

C---

CALL DFGMRES_INIT(N, COMPUTED_SOLUTION, RHS, RCI_REQUEST, IPAR,

1 DPAR, TMP)

IF (RCI_REQUEST.NE.0) GOTO 999

C---

C Set the desired parameters:

C LOGICAL parameters:

C do residual stopping test

C do not request for the user defined stopping test

C do the check of the norm of the next generated vector automatically

C DOUBLE PRECISION parameters

C set the relative tolerance to 1.0D-3 instead of default value 1.0D-6

C---

IPAR(9)=1

IPAR(10)=0

IPAR(12)=1

DPAR(1)=1.0D-3

C---

C Check the correctness and consistency of the newly set parameters

C---

CALL DFGMRES_CHECK(N, COMPUTED_SOLUTION, RHS, RCI_REQUEST,

1 IPAR, DPAR, TMP)

IF (RCI_REQUEST.NE.0) GOTO 999

C---

C Print the info about the RCI FGMRES method

2847

Code Examples C

C---

PRINT *, ''

PRINT *,'Some info about the current run of RCI FGMRES method:'

PRINT *, ''

IF (IPAR(8).NE.0) THEN

WRITE(*,'(A,I1,A)') 'As IPAR(8)=',IPAR(8),', the automatic

1 test for the maximal number of iterations will be'

PRINT *,'performed'

ELSE

WRITE(*,'(A,I1,A)') 'As IPAR(8)=',IPAR(8),', the automatic test

1 for the maximal number of iterations will be'

PRINT *,'skipped'

ENDIF

PRINT *,'+++'

IF (IPAR(9).NE.0) THEN

WRITE(*,'(A,I1,A)') 'As IPAR(9)=',IPAR(9),', the automatic

1 residual test will be performed'

ELSE

WRITE(*,'(A,I1,A)') 'As IPAR(9)=',IPAR(9),', the automatic

1 residual test will be skipped'

ENDIF

PRINT *,'+++'

IF (IPAR(10).NE.0) THEN

WRITE(*,'(A,I1,A)') 'As IPAR(10)=',IPAR(10),', the user-defined

1 stopping test will be requested via'

PRINT *,'RCI_REQUEST=2'

ELSE

2848

C Intel® Math Kernel Library Reference Manual

WRITE(*,'(A,I1,A)') 'As IPAR(10)=',IPAR(10),', the user-defined

1 stopping test will not be requested, thus,'

PRINT *,'RCI_REQUEST will not take the value 2'

ENDIF

PRINT *,'+++'

IF (IPAR(11).NE.0) THEN

WRITE(*,'(A,I1,A)') 'As IPAR(11)=',IPAR(11),', the

1 Preconditioned FGMRES iterations will be performed, thus,'

PRINT *,'the preconditioner action will be requested via

1 RCI_REQUEST=3'

ELSE

WRITE(*,'(A,I1,A)') 'As IPAR(11)=',IPAR(11),', the

1 Preconditioned FGMRES iterations will not be performed,'

PRINT *,'thus, RCI_REQUEST will not take the value 3'

ENDIF

PRINT *,'+++'

IF (IPAR(12).NE.0) THEN

WRITE(*,'(A,I1,A)')'As IPAR(12)=',IPAR(12),', the automatic

1 test for the norm of the next generated vector is'

PRINT *,'not equal to zero up to rounding and computational

1 errors will be performed,'

PRINT *,'thus, RCI_REQUEST will not take the value 4'

ELSE

2849

Code Examples C

WRITE(*,'(A,I1,A)')'As IPAR(12)=',IPAR(12),', the automatic

1 test for the norm of the next generated vector is'

PRINT *,'not equal to zero up to rounding and computational

1 errors will be skipped,'

PRINT *,'thus, the user-defined test will be requested via

1 RCI_REQUEST=4'

ENDIF

PRINT *,'+++'

C---

C Compute the solution by RCI (P)FGMRES solver without preconditioning

C Reverse Communication starts here

C---

1 CALL DFGMRES(N, COMPUTED_SOLUTION, RHS, RCI_REQUEST, IPAR,

1 DPAR, TMP)

C---

C If RCI_REQUEST=0, then the solution was found with the required precision

C---

IF (RCI_REQUEST.EQ.0) GOTO 3

C---

C If RCI_REQUEST=1, then compute the vector A*TMP(IPAR(22))

C and put the result in vector TMP(IPAR(23))

C---

IF (RCI_REQUEST.EQ.1) THEN

CALL MKL_DCSRGEMV('N',N, A, IA, JA, TMP(IPAR(22)), TMP(IPAR(23)))

GOTO 1

C---

C If RCI_REQUEST=anything else, then DFGMRES subroutine failed

2850

C Intel® Math Kernel Library Reference Manual

C to compute the solution vector: COMPUTED_SOLUTION(N)

C---

ELSE

GOTO 999

ENDIF

C---

C Reverse Communication ends here

C Get the current iteration number and the FGMRES solution (DO NOT FORGET
to

C call DFGMRES_GET routine as COMPUTED_SOLUTION is still containing

C the initial guess!)

C---

3 CALL DFGMRES_GET(N, COMPUTED_SOLUTION, RHS, RCI_REQUEST, IPAR,

1 DPAR, TMP, ITERCOUNT)

C---

C Print solution vector: COMPUTED_SOLUTION(N) and

2851

Code Examples C

C the number of iterations: ITERCOUNT

C---

PRINT *, ''

PRINT *,' The system has been SUCCESSFULLY solved'

PRINT *, ''

PRINT *,' The following solution has been obtained:'

DO I=1,N

WRITE(*,'(A18,I1,A2,E10.3)') 'COMPUTED_SOLUTION(',I,')=',

1 COMPUTED_SOLUTION(I)

ENDDO

PRINT *, ''

PRINT *,' The expected solution is:'

DO I=1,N

WRITE(*,'(A18,I1,A2,E10.3)') 'EXPECTED_SOLUTION(',I,')=',

1 EXPECTED_SOLUTION(I)

ENDDO

PRINT *, ''

PRINT *,' Number of iterations: ',ITERCOUNT

GOTO 1000

999 PRINT *,'The solver has returned the ERROR code ', RCI_REQUEST

1000 CONTINUE

END

C Example of Using RCI (Preconditioned) Flexible Generalized Minimal Residual Solver.

C example results for the same non-symmetric indefinite system as in the previous example.
The results are the same up to the notational convention between C and Fortran. Please pay
special attention to how it is recommended to handle the differences between the Fortran and
C arrays. Specifically, in this example we adjust the addresses for input/result for user-defined

2852

C Intel® Math Kernel Library Reference Manual

operations from IPAR(22) to ipar[21]-1, and from IPAR(23) to ipar[22]-1, respectively.
Upon successful execution of the solver, the following result is printed (up to rounding errors
that depend on the computer system used):

--

The SIMPLEST example of usage of RCI FGMRES solver

to solve a non-symmetric indefinite non-degenerate

algebraic system of linear equations

--

Some info about the current run of RCI FGMRES method:

As ipar[7]=1, the automatic test for the maximal number of iterations will
be performed

+++

As ipar[8]=1, the automatic residual test will be performed

+++

As ipar[9]=0, the user-defined stopping test will not be requested, thus,

RCI_request will not take the value 2

+++

As ipar[10]=0, the Preconditioned FGMRES iterations will not be performed,
thus, RCI_request will not take the value 3

+++

As ipar[11]=1, the automatic test for the norm of the next generated vector
is not equal to zero up to rounding and computational errors will be
performed, thus, RCI_request will not take the value 4

+++

The system has been SUCCESSFULLY solved

The following solution has been obtained:

2853

Code Examples C

computed_solution[0]=-1.000000e+000

computed_solution[1]=1.000000e+000

computed_solution[2]=3.053113e-016

computed_solution[3]=1.000000e+000

computed_solution[4]=-1.000000e+000

The expected solution is:

expected_solution[0]=-1.000000e+000

expected_solution[1]=1.000000e+000

expected_solution[2]=0.000000e+000

expected_solution[3]=1.000000e+000

expected_solution[4]=-1.000000e+000

Number of iterations: 5

2854

C Intel® Math Kernel Library Reference Manual

Example C-13c. C Example to Solve Non-Symmetric Indefinite System
/**

/* INTEL CONFIDENTIAL

/* Copyright(C) 2005-2006 Intel Corporation. All Rights Reserved.

/* The source code contained or described herein and all documents related
to

/* the source code ("Material")are owned by Intel Corporation or its
suppliers

/* or licensors. Title to the Material remains with Intel Corporation or
its

/* suppliers and licensors.The Material contains trade secrets and
proprietary

/* and confidential information of Intel or its suppliers and licensors.
The

/* Material is protected by worldwide copyright and trade secret laws
and

/* treaty provisions. No part of the Material may be used, copied,
reproduced,

/* modified,published, uploaded, posted, transmitted, distributed or
disclosed

/* in any way without Intel's prior express written permission.

/* No license under any patent, copyright, trade secret or other
intellectual

/* property right is granted to or conferred upon you by disclosure or
delivery

/* of the Materials, either expressly, by implication, inducement, estoppel
or

/* otherwise. Any license under such intellectual property rights
must be

/* express and approved by Intel in writing.

/*

/**

/* Content:

2855

Code Examples C

/* Intel MKL RCI (P)FGMRES ((Preconditioned) Flexible Generalized Minimal

/* RESidual method)
example

/***/

/*---

/* Example program for solving non-symmetric indefinite system of equations

/* Simplest case: no preconditioning and no user-defined stopping tests

/*---*/

#include <stdio.h>

#include "mkl_blas.h"

#include "mkl_spblas.h"

#include "mkl_rci.h"

#define N 5

#define size 128

int main(void)

{

2856

C Intel® Math Kernel Library Reference Manual

/*---

/* Define arrays for the upper triangle of the coefficient matrix

/* Compressed sparse row storage is used for sparse representation

/*---*/

int ia[6]={1,3,6,9,12,14};

int ja[13]={ 1, 3,

1, 2, 4,

2, 3, 5,

3, 4, 5,

4, 5 };

double A[13]={ 1.0, -1.0,

-1.0, 1.0, -1.0,

1.0,-2.0, 1.0,

-1.0, 2.0,-1.0,

-1.0,-3.0 };

/*---

/* Allocate storage for the ?par parameters and the solution/rhs vectors

/*---*/

2857

Code Examples C

int ipar[size];

double dpar[size], tmp[N*(2*N+1)+(N*(N+9))/2+1];

double expected_solution[N]={-1.0,1.0,0.0,1.0,-1.0};

double rhs[N];

double computed_solution[N];

/*---

/* Some additional variables to use with the RCI (P)FGMRES solver

/*---*/

int itercount;

int RCI_request, i, ivar;

double dvar;

char cvar;

printf("--\n");

printf("The SIMPLEST example of usage of RCI FGMRES solver\n");

printf("to solve a non-symmetric indefinite non-degenerate\n");

printf(" algebraic system of linear equations\n");

printf("--\n\n");

/*---

/* Initialize variables and the right hand side through matrix-vector
product

/*---*/

ivar=N;

cvar='N';

mkl_dcsrgemv(&cvar, &ivar, A, ia, ja, expected_solution, rhs);

/*---

if (RCI_request!=0) goto FAILED;

2858

C Intel® Math Kernel Library Reference Manual

/*---

/* Set the desired parameters:

/* LOGICAL parameters:

/* do residual stopping test

/* do not request for the user defined stopping test

/* do the check of the norm of the next generated vector automatically

/* DOUBLE PRECISION parameters

/* set the relative tolerance to 1.0D-3 instead of default value 1.0D-6

/*---*/

ipar[8]=1;

ipar[9]=0;

ipar[11]=1;

dpar[0]=1.0E-3;

/*---

/* Check the correctness and consistency of the newly set parameters

/*---*/

dfgmres_check(&ivar, computed_solution, rhs, &RCI_request, ipar, dpar, tmp);

if (RCI_request!=0) goto FAILED;

/*---

/* Print the info about the RCI FGMRES method

/*---*/

printf("Some info about the current run of RCI FGMRES method:\n\n");

if (ipar[7])

2859

Code Examples C

{

printf("As ipar[7]=%d, the automatic test for the maximal number of
iterations will be\n", ipar[7]);

printf("performed\n");

}

else

{

printf("As ipar[7]=%d, the automatic test for the maximal number of
iterations will be\n", ipar[7]);

printf("skipped\n");

}

printf("+++\n");

if (ipar[8])

{

printf("As ipar[8]=%d, the automatic residual test will be performed\n",
ipar[8]);

}

else

{

printf("As ipar[8]=%d, the automatic residual test will be skipped\n",
ipar[8]);

}

printf("+++\n");

if (ipar[9])

2860

C Intel® Math Kernel Library Reference Manual

{

printf("As ipar[9]=%d, the user-defined stopping test will be requested
via\n", ipar[9]);

printf("RCI_request=2\n");

}

else

{

printf("As ipar[9]=%d, the user-defined stopping test will not be
requested, thus,\n", ipar[9]);

printf("RCI_request will not take the value 2\n");

}

printf("+++\n");

if (ipar[10])

{

printf("As ipar[10]=%d, the Preconditioned FGMRES iterations will be
performed, thus,\n", ipar[10]);

printf("the preconditioner action will be requested via
RCI_request=3\n");

}

else

{

printf("As ipar[10]=%d, the Preconditioned FGMRES iterations will not
be performed,\n", ipar[10]);

printf("thus, RCI_request will not take the value 3\n");

}

printf("+++\n");

if (ipar[11])

2861

Code Examples C

{

printf("As ipar[11]=%d, the automatic test for the norm of the next
generated vector is\n", ipar[11]);

printf("not equal to zero up to rounding and computational errors will
be performed,\n");

printf("thus, RCI_request will not take the value 4\n");

}

else

2862

C Intel® Math Kernel Library Reference Manual

{

printf("As ipar[11]=%d, the automatic test for the norm of the next
generated vector is\n", ipar[11]);

printf("not equal to zero up to rounding and computational errors will
be skipped,\n");

printf("thus, the user-defined test will be requested via
RCI_request=4\n");

}

printf("+++\n\n");

/*---

/* Compute the solution by RCI (P)FGMRES solver without preconditioning

/* Reverse Communication starts here

/*---*/

ONE: dfgmres(&ivar, computed_solution, rhs, &RCI_request, ipar, dpar, tmp);

/*---

/* If RCI_request=0, then the solution was found with the required
precision

/*---*/

if (RCI_request==0) goto COMPLETE;

/*---

/* If RCI_request=1, then compute the vector A*tmp[ipar[21]-1]

/* and put the result in vector tmp[ipar[22]-1]

/*---

/* NOTE that ipar[21] and ipar[22] contain FORTRAN style addresses,

/* therefore, in C code it is required to subtract 1 from them to get

2863

Code Examples C

/* C style addresses

/*---*/

if (RCI_request==1)

{

mkl_dcsrgemv(&cvar, &ivar, A, ia, ja, &tmp[ipar[21]-1], &tmp[ipar[22]-1]);

goto ONE;

}

/*---

/* If RCI_request=anything else, then dfgmres subroutine failed

/* to compute the solution vector: computed_solution[N]

/*---*/

else

{

goto FAILED;

}

/*---

/* Reverse Communication ends here

/* Get the current iteration number and the FGMRES solution (DO NOT FORGET

/* to call dfgmres_get routine as computed_solution is still containing

2864

C Intel® Math Kernel Library Reference Manual

/* the initial guess!)

/*---*/

COMPLETE: dfgmres_get(&ivar, computed_solution, rhs, &RCI_request, ipar,
dpar, tmp, &itercount);

/*

/*---

/* Print solution vector: computed_solution[N] and the number of
iterations: itercount

/*---*/

printf(" The system has been SUCCESSFULLY solved \n");

printf("\n The following solution has been obtained: \n");

for (i=0;i<N;i++)
printf("computed_solution[%d]=%e\n",i,computed_solution[i]);

printf("\n The expected solution is: \n");

for (i=0;i<N;i++)
printf("expected_solution[%d]=%e\n",i,expected_solution[i]);

printf("\n Number of iterations: %d",itercount);

goto SUCCEDED;

FAILED: printf("The solver has returned the ERROR code %d", RCI_request);

SUCCEDED: return 0;

}

Fourier Transform Functions Code Examples
This section presents code examples of functions described in the “DFT Functions” and “Cluster
DFT Functions” sections in the “Fourier Transform Functions” chapter. The examples are grouped
in subsections

• Examples for DFT Functions, including Examples of Using Multi-Threading for DFT Computation

• Examples for Cluster DFT Functions.

2865

Code Examples C

DFT Code Examples

This section presents code examples of using the DFT interface functions described in “Fourier
Transform Functions” chapter. Here are the examples of two one-dimensional computations.
These examples use the default settings for all of the configuration parameters, which are
specified in “Configuration Settings”.

Example C-16 One-dimensional In-place DFT (Fortran Interface)
! Fortran example.

! 1D complex to complex, and real to conjugate even

Use MKL_DFTI

Complex :: X(32)

Real :: Y(34)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle

Integer :: Status

...put input data into X(1),...,X(32); Y(1),...,Y(32)

! Perform a complex to complex transform

Status = DftiCreateDescriptor(My_Desc1_Handle, DFTI_SINGLE,

DFTI_COMPLEX, 1, 32)

Status = DftiCommitDescriptor(My_Desc1_Handle)

Status = DftiComputeForward(My_Desc1_Handle, X)

Status = DftiFreeDescriptor(My_Desc1_Handle)

! result is given by {X(1),X(2),...,X(32)}

2866

C Intel® Math Kernel Library Reference Manual

! Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,

DFTI_REAL, 1, 32)

Status = DftiCommitDescriptor(My_Desc2_Handle)

Status = DftiComputeForward(My_Desc2_Handle, Y)

Status = DftiFreeDescriptor(My_Desc2_Handle)

! result is given in CCS format.

2867

Code Examples C

Example C-16a One-dimensional Out-of-place DFT (Fortran Interface)
! Fortran example.

! 1D complex to complex, and real to conjugate even

Use MKL_DFTI

Complex :: X_in(32)

Complex :: X_out(32)

Real :: Y_in(32)

Real :: Y_out(34)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle

Integer :: Status

...put input data into X_in(1),...,X_in(32); Y_in(1),...,Y_in(32)

! Perform a complex to complex transform

Status = DftiCreateDescriptor(My_Desc1_Handle, DFTI_SINGLE,

DFTI_COMPLEX, 1, 32)

Status = DftiSetValue(My_Desc1_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiCommitDescriptor(My_Desc1_Handle)

Status = DftiComputeForward(My_Desc1_Handle, X_in, X_out)

Status = DftiFreeDescriptor(My_Desc1_Handle)

! result is given by {X_out(1),X_out(2),...,X_out(32)}

! Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,

DFTI_REAL, 1, 32)

Status = DftiSetValue(My_Desc2_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiCommitDescriptor(My_Desc2_Handle)

Status = DftiComputeForward(My_Desc2_Handle, Y_in, Y_out)

Status = DftiFreeDescriptor(My_Desc2_Handle)

! result is given by Y_out in CCS format.

2868

C Intel® Math Kernel Library Reference Manual

Example C-17 One-dimensional In-place DFT (C Interface)
/* C example, float _Complex is defined in C9X */

#include "mkl_dfti.h"

float _Complex x[32];

float y[34];

dfti_descriptor *my_desc1_handle,*my_desc2_handle;

/* or alternatively

dfti_descriptor_handle my_desc1_handle, my_desc2_handle; */

long status;

...put input data into x[0],...,x[31]; y[0],...,y[31]

status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,

DFTI_COMPLEX, 1, 32);

status = DftiCommitDescriptor(my_desc1_handle);

status = DftiComputeForward(my_desc1_handle, x);

status = DftiFreeDescriptor(&my_desc1_handle);

/* result is x[0], ..., x[31]*/

status = DftiCreateDescriptor(&my_desc2_handle, DFTI_SINGLE,

DFTI_REAL, 1, 32);

status = DftiCommitDescriptor(my_desc2_handle);

status = DftiComputeForward(my_desc2_handle, y);

status = DftiFreeDescriptor(&my_desc2_handle);

/* result is given in CCS format*/

2869

Code Examples C

Example C-17a One-dimensional Out-of-place DFT (C Interface)
/* C example, float _Complex is defined in C9X */

#include "mkl_dfti.h"

float _Complex x_in[32];

float _Complex x_out[32];

float y_in[32];

float y_out[34];

dfti_descriptor *my_desc1_handle,*my_desc2_handle;

/* or alternatively

dfti_descriptor_handle my_desc1_handle, my_desc2_handle; */

long status;

...put input data into x_in[0],...,x_in[31]; y_in[0],...,y_in[31]

status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,

DFTI_COMPLEX, 1, 32);

Status = DftiSetValue(My_Desc1_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);

status = DftiCommitDescriptor(my_desc1_handle);

status = DftiComputeForward(my_desc1_handle, x_in, x_out);

status = DftiFreeDescriptor(&my_desc1_handle);

/* result is x_out[0], ..., x_out[31]*/

status = DftiCreateDescriptor(&my_desc2_handle, DFTI_SINGLE,

DFTI_REAL, 1, 32);

Status = DftiSetValue(My_Desc2_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);

status = DftiCommitDescriptor(my_desc2_handle);

status = DftiComputeForward(my_desc2_handle, y_in, y_out);

status = DftiFreeDescriptor(&my_desc2_handle);

/* result is given by y_out in CCS format*

2870

C Intel® Math Kernel Library Reference Manual

The following is an example of two simple two-dimensional transforms. Notice that the data
and result parameters in computation functions are all declared as assumed-size rank-1 array
DIMENSION(0:*). Therefore two-dimensional array must be transformed to one-dimensional
array by EQUIVALENCE statement or other facilities of Fortran.

Example C-18 Two-dimensional DFT (Fortran Interface)
! Fortran example.

! 2D complex to complex, and real to conjugate even

Use MKL_DFTI

Complex :: X_2D(32,100)

Real :: Y_2D(34, 102)

Complex :: X(3200)

Real :: Y(3468)

Equivalence (X_2D, X)

Equivalence (Y_2D, Y)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle

Integer :: Status, L(2)

...put input data into X_2D(j,k), Y_2D(j,k), 1<=j=32,1<=k<=100

...set L(1) = 32, L(2) = 100

...the transform is a 32-by-100

! Perform a complex to complex transform

Status = DftiCreateDescriptor(My_Desc1_Handle, DFTI_SINGLE,

DFTI_COMPLEX, 2, L)

Status = DftiCommitDescriptor(My_Desc1_Handle)

Status = DftiComputeForward(My_Desc1_Handle, X)

Status = DftiFreeDescriptor(My_Desc1_Handle)

! result is given by X_2D(j,k), 1<=j<=32, 1<=k<=100

2871

Code Examples C

! Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,

DFTI_REAL, 2, L)

Status = DftiCommitDescriptor(My_Desc2_Handle)

Status = DftiComputeForward(My_Desc2_Handle, Y)

Status = DftiFreeDescriptor(My_Desc2_Handle)

! result is given by the complex value z(j,k) 1<=j<=32; 1<=k<=100

! and is stored in CCS format

2872

C Intel® Math Kernel Library Reference Manual

Example C-19 Two-dimensional DFT (C Interface)
/* C example */

#include "mkl_dfti.h"

float _Complex x[32][100];

float y[34][102];

dfti_descriptor_handle my_desc1_handle, my_desc2_handle;

/* or alternatively

dfti_descriptor *my_desc1_handle,*my_desc2_handle; */

long status, l[2];

...put input data into x[j][k] 0<=j<=31, 0<=k<=99

...put input data into y[j][k] 0<=j<=31, 0<=k<=99

l[0] = 32; l[1] = 100;

status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,

DFTI_COMPLEX, 2, l);

status = DftiCommitDescriptor(my_desc1_handle);

status = DftiComputeForward(my_desc1_handle, x);

status = DftiFreeDescriptor(&my_desc1_handle);

/* result is the complex value x[j][k], 0<=j<=31, 0<=k<=99 */

status = DftiCreateDescriptor(&my_desc2_handle, DFTI_SINGLE,

DFTI_REAL, 2, l);

status = DftiCommitDescriptor(my_desc2_handle);

status = DftiComputeForward(my_desc2_handle, y);

status = DftiFreeDescriptor(&my_desc2_handle);

/* result is the complex value z(j,k) 0<=j<=31; 0<=k<=99

/* and is stored in CCS format*/

The following examples demonstrate how you can change the default configuration settings by
using the DftiSetValue function.

2873

Code Examples C

For instance, to preserve the input data after the DFT computation, the configuration of the
DFTI_PLACEMENT should be changed to "not in place" from the default choice of "in place."

The code below illustrates how this can be done:

Example C-20 Changing Default Settings (Fortran)
! Fortran example

! 1D complex to complex, not in place

Use MKL_DFTI

Complex :: X_in(32), X_out(32)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle

Integer :: Status

...put input data into X_in(j), 1<=j<=32

Status = DftiCreateDescriptor(My_Desc_Handle,
DFTI_SINGLE, DFTI_COMPLEX, 1, 32)

Status = DftiSetValue(My_Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiCommitDescriptor(My_Desc_Handle)

Status = DftiComputeForward(My_Desc_Handle, X_in, X_out)

Status = DftiFreeDescriptor (My_Desc_Handle)

! result is X_out(1),X_out(2),...,X_out(32)

2874

C Intel® Math Kernel Library Reference Manual

Example C-21 Changing Default Settings (C)
/* C example */

#include "mkl_dfti.h"

float _Complex x_in[32], x_out[32];

DFTI_DESCRIPTOR_HANDLE my_desc_handle;

/* or alternatively

DFTI_DESCRIPTOR *my_desc_handle;*/

long status;

...put input data into x_in[j], 0 <= j < 32

status = DftiCreateDescriptor(&my_desc_handle, DFTI_SINGLE,

DFTI_COMPLEX, 1, 32);

status = DftiSetValue(my_desc_handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);

status = DftiCommitDescriptor(my_desc_handle);

status = DftiComputeForward(my_desc_handle, x_in, x_out);

status = DftiFreeDescriptor(&my_desc_handle);

/* result is x_out[0], x_out[1], ..., x_out[31] */

The Example C-22 below illustrates the use of the status checking functions described in Chapter
11 .

Example C-22 Using Status Checking Function
from C language:

DFTI_DESCRIPTOR_HANDLE desc;

long status, class_error, value;

char* error_message;

. . . descriptor creation and other code

status = DftiGetValue(desc, DFTI_PRECISION, &value); //

2875

Code Examples C

//or any DFTI function

class_error = DftiErrorClass(status, DFTI_NO_ERROR);

if (! class_error) {

printf ("DftiGetValue() fixes the wrong situation and

returns the corresponding value n");

error_message = DftiErrorMessage(status);

printf("error_message = %s \n", error_message);

}

. . .

from Fortran:

type(DFTI_DESCRIPTOR), POINTER :: desc

integer value, status

character(DFTI_MAX_MESSAGE_LENGTH) error_message

logical class_error

. . . descriptor creation and other code

status = DftiGetValue(desc, DFTI_PRECISION, value)

class_error = DftiErrorClass(status, DFTI_NO_ERROR)

if (.not. class_error) then

print *, ' DftiGetValue() fixes the wrong situation and

returns the corresponding value '

error_message = DftiErrorMessage(status)

print *, 'error_message = ', error_message

endif

2876

C Intel® Math Kernel Library Reference Manual

Below is an example where a 20-by-40 two-dimensional DFT is computed explicitly using
one-dimensional transforms. Notice that the data and result parameters in computation functions
are all declared as assumed-size rank-1 array DIMENSION(0:*). Therefore two-dimensional
array must be transformed to one-dimensional array by EQUIVALENCE statement or other
facilities of Fortran.

2877

Code Examples C

Example C-23 Computing 2D DFT by One-Dimensional Transforms

! Fortran

Complex :: X_2D(20,40),

Complex :: X(800)

Equivalence (X_2D, X)

INTEGER :: STRIDE(2)

type(DFTI_DESCRIPTOR), POINTER

:: Desc_Handle_Dim1

type(DFTI_DESCRIPTOR), POINTER

:: Desc_Handle_Dim2

...

Status = DftiCreateDescriptor(Desc_Handle_Dim1, DFTI_SINGLE,

DFTI_COMPLEX, 1, 20)

Status = DftiCreateDescriptor(Desc_Handle_Dim2, DFTI_SINGLE,

DFTI_COMPLEX, 1, 40)

! perform 40 one-dimensional transforms along 1st dimension

Status = DftiSetValue(

Desc_Handle_Dim1, DFTI_NUMBER_OF_TRANSFORMS, 40)

Status = DftiSetValue(Desc_Handle_Dim1,

DFTI_INPUT_DISTANCE, 20)

Status = DftiSetValue(Desc_Handle_Dim1,

DFTI_OUTPUT_DISTANCE, 20)

Status = DftiCommitDescriptor(Desc_Handle_Dim1)

Status = DftiComputeForward(Desc_Handle_Dim1, X)

! perform 20 one-dimensional transforms along 2nd dimension

Stride(1) = 0; Stride(2) = 20

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_NUMBER_OF_TRANSFORMS, 20)

2878

C Intel® Math Kernel Library Reference Manual

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_INPUT_DISTANCE, 1)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_OUTPUT_DISTANCE, 1)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_INPUT_STRIDES, Stride)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_OUTPUT_STRIDES, Stride)

Status = DftiCommitDescriptor(Desc_Handle_Dim2)

Status = DftiComputeForward(Desc_Handle_Dim2, X)

Status = DftiFreeDescriptor(Desc_Handle_Dim1)

Status = DftiFreeDescriptor(Desc_Handle_Dim2)

2879

Code Examples C

/* C */

float _Complex x[20][40];

long stride[2];

long status;

DFTI_DESCRIPTOR_HANDLE desc_handle_dim1;

DFTI_DESCRIPTOR_HANDLE desc_handle_dim2;

...

status = DftiCreateDescriptor(&desc_handle_dim1, DFTI_SINGLE,

DFTI_COMPLEX, 1, 20);

status = DftiCreateDescriptor(&desc_handle_dim2, DFTI_SINGLE,

DFTI_COMPLEX, 1, 40);

/* perform 40 one-dimensional transforms along 1st dimension */

/* note that the 1st dimension data are not unit-stride */

stride[0] = 0; stride[1] = 40;

status = DftiSetValue(desc_handle_dim1, DFTI_NUMBER_OF_TRANSFORMS, 40);

status = DftiSetValue(desc_handle_dim1, DFTI_INPUT_DISTANCE, 1);

status = DftiSetValue(desc_handle_dim1, DFTI_OUTPUT_DISTANCE, 1);

status = DftiSetValue(desc_handle_dim1, DFTI_INPUT_STRIDES, stride);

status = DftiSetValue(desc_handle_dim1, DFTI_OUTPUT_STRIDES, stride);

status = DftiCommitDescriptor(desc_handle_dim1);

status = DftiComputeForward(desc_handle_dim1, x);

/* perform 20 one-dimensional transforms along 2nd dimension */

/* note that the 2nd dimension is unit stride */

status = DftiSetValue(desc_handle_dim2, DFTI_NUMBER_OF_TRANSFORMS, 20);

status = DftiSetValue(desc_handle_dim2,

DFTI_INPUT_DISTANCE, 40);

status = DftiSetValue(desc_handle_dim2,

2880

C Intel® Math Kernel Library Reference Manual

DFTI_OUTPUT_DISTANCE, 40);

status = DftiCommitDescriptor(desc_handle_dim2);

status = DftiComputeForward(desc_handle_dim2, x);

status = DftiFreeDescriptor(&Desc_Handle_Dim1);

status = DftiFreeDescriptor(&Desc_Handle_Dim2);

The following are examples of real multi-dimensional transforms with CCE format storage of
conjugate-even complex matrix. Example C-24 is two-dimensional in-place transform and
Example C-24a is two-dimensional out-of-place transform in Fortran interface. Example C-25
is three-dimensional out-of-place transform in C interface. Notice that the data and result
parameters in computation functions are all declared as assumed-size rank-1 array
DIMENSION(0:*). Therefore two-dimensional array must be transformed to one-dimensional
array by EQUIVALENCE statement or other facilities of Fortran.

2881

Code Examples C

Example C-24 Two-Dimensional REAL In-place DFT (Fortran Interface)
! Fortran example.

! 2D and real to conjugate even

Use MKL_DFTI

Real :: X_2D(34,100) ! 34 = (32/2 + 1)*2

Real :: X(3400)

Equivalence (X_2D, X)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle

Integer :: Status, L(2)

Integer :: strides_in(3)

Integer :: strides_out(3)

...put input data into X_2D(j,k), 1<=j=32,1<=k<=100

...set L(1) = 32, L(2) = 100

...set strides_in(1) = 0, strides_in(2) = 1, strides_in(3) = 34

...set strides_out(1) = 0, strides_out(2) = 1, strides_out(3) = 17

...the transform is a 32-by-100

! Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc_Handle, DFTI_SINGLE,

DFTI_REAL, 2, L)

Status = DftiSetValue(My_Desc_Handle, DFTI_CONJUGATE_EVEN_STORAGE,

DFTI_COMPLEX_COMPLEX)

Status = DftiSetValue(My_Desc_Handle, DFTI_INPUT_STRIDES, strides_in)

Status = DftiSetValue(My_Desc_Handle, DFTI_OUTPUT_STRIDES, strides_out)

Status = DftiCommitDescriptor(My_Desc_Handle)

Status = DftiComputeForward(My_Desc_Handle, X)

Status = DftiFreeDescriptor(My_Desc_Handle)

! result is given by the complex value z(j,k) 1<=j<=17; 1<=k<=100 and

! is stored in real matrix X_2D in CCE format.

2882

C Intel® Math Kernel Library Reference Manual

Example C-24a Two-Dimensional REAL Out-of-place DFT (Fortran
Interface)

! Fortran example.

! 2D and real to conjugate even

Use MKL_DFTI

Real :: X_2D(32,100)

Complex :: Y_2D(17, 100) ! 17 = 32/2 + 1

2883

Code Examples C

Real :: X(3200)

Complex :: Y(1700)

Equivalence (X_2D, X)

Equivalence (Y_2D, Y)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle

Integer :: Status, L(2)

Integer :: strides_out(3)

...put input data into X_2D(j,k), 1<=j=32,1<=k<=100

...set L(1) = 32, L(2) = 100

...set strides_out(1) = 0, strides_out(2) = 1, strides_out(3) = 17

...the transform is a 32-by-100

! Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc_Handle, DFTI_SINGLE,

DFTI_REAL, 2, L)

Status = DftiSetValue(My_Desc_Handle,

DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX)

Status = DftiSetValue(My_Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiSetValue(My_Desc_Handle,

DFTI_OUTPUT_STRIDES, strides_out)

Status = DftiCommitDescriptor(My_Desc_Handle)

Status = DftiComputeForward(My_Desc_Handle, X, Y)

Status = DftiFreeDescriptor(My_Desc_Handle)

! result is given by the complex value z(j,k) 1<=j<=17; 1<=k<=100 and

! is stored in complex matrix Y_2D in CCE format.

2884

C Intel® Math Kernel Library Reference Manual

Example C-25 Three-Dimensional REAL DFT (C Interface)

/* C example */

#include "mkl_dfti.h"

float x[32][100][19];

float _Complex y[32][100][10]; /* 10 = 19/2 + 1 */

DFTI_DESCRIPTOR_HANDLE my_desc_handle

/* or alternatively

DFTI_DESCRIPTOR *my_desc_handle*/

long status, l[3];

long strides_out[4];

...put input data into x[j][k][s] 0<=j<=31, 0<=k<=99, 0<=s<=18

2885

Code Examples C

l[0] = 32; l[1] = 100; l[2] =

19;

strides_out[0] = 0; strides_out[1] = 1000;

strides_out[2] = 10; strides_out[3] = 1;

status = DftiCreateDescriptor(&my_desc_handle, DFTI_SINGLE,

DFTI_REAL, 3, l);

Status = DftiSetValue(my_desc_handle,

DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX);

Status = DftiSetValue(my_desc_handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);

Status = DftiSetValue(my_desc_handle,

DFTI_OUTPUT_STRIDES, strides_out);

status = DftiCommitDescriptor(my_desc_handle);

status = DftiComputeForward(my_desc_handle, x, y);

status = DftiFreeDescriptor(&my_desc_handle);

/* result is the complex value z(j,k,s) 0<=j<=31; 0<=k<=99, 0<=s<=9

and is stored in complex matrix y in CCE format. */

Examples of Using Multi-Threading for DFT Computation

The following example program shows how to employ internal threading in Intel MKL for DFT
computation (see case 1 in “Number of user threads”).

To specify the number of threads inside Intel MKL, use the following settings:

set OMP_NUM_THREADS = 1 for one-threaded mode;

set OMP_NUM_THREADS = 4 for multi-threaded mode.

Note that the configuration parameter DFTI_NUMBER_OF_USER_THREADS must be equal to its
default value 1.

2886

C Intel® Math Kernel Library Reference Manual

Example C-26 Using Intel MKL Internal Threading Mode

#include "mkl_dfti.h"

void main () {

float x[200][100];

DFTI_DESCRIPTOR_HANDLE my_desc1_handle;

long status, len[2];

//...put input data into x[j][k] 0<=j<=199, 0<=k<=99

len[0] = 200; len[1] = 100;

status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,DFTI_REAL, 2,

len);

status = DftiCommitDescriptor(

my_desc1_handle);

status = DftiComputeForward(

my_desc1_handle, x);

status = DftiFreeDescriptor(&my_desc1_handle);

}

The following Example C-27 illustrates a parallel customer program with each descriptor instance
used only in a single thread (see case 2 in “Number of user threads”).

To specify the number of threads, use the following settings:

set MKL_SERIAL = yes (or YES) for single-threaded mode in Intel MKL (recommended);

set OMP_NUM_THREADS = 4 for multi-threaded mode in customer program.

The configuration parameter DFTI_NUMBER_OF_USER_THREADS must be equal to its default
value 1.

Note that in this example the program can be transformed to become single-threaded on the
customer level but using parallel mode within Intel MKL. To achieve this, you need to set the
parameter DFTI_NUMBER_OF_TRANSFORMS = 4 and to set the corresponding parameter
DFTI_INPUT_DISTANCE = 5000.

2887

Code Examples C

Example C-27 Using Parallel Mode with Multiple Descriptors

#include "mkl_dfti.h"

#include "omp.h"

void main ()

{

float _Complex x[200][100];

long len[2];

//...put input data into x[j][k] 0<=j<=199, 0<=k<=99

len[0] = 50; len[1] = 100;

// each thread calculates real DFT for matrix (50*100)

#pragma omp parallel

{

DFTI_DESCRIPTOR_HANDLE my_desc_handle;

long myStatus;

int myID = omp_get_thread_num ();

myStatus = DftiCreateDescriptor (my_desc_handle, DFTI_SINGLE,

DFTI_COMPLEX, 2, len);

myStatus = DftiCommitDescriptor (my_desc_handle);

myStatus = DftiComputeForward (my_desc_handle, &x[myID * len[0] *
len[1]);

myStatus = DftiFreeDescriptor (&my_desc_handle);

} /* End OpenMP parallel region */

}

The following Example C-28 illustrates a parallel customer program with a common descriptor
used in several threads (see case 3 in “Number of user threads”.

2888

C Intel® Math Kernel Library Reference Manual

In this case the number of threads, as well as any other configuration parameter, must not be
changed after DFT initialization by the DftiCommitDescriptor() function is done.

Example C-28 Using Parallel Mode with a Common Descriptor

// set number of threads inside Intel MKL:

//rem set MKL_SERIAL = YES - is not required

// since one-threaded mode for Intel MKL is forced automatically

2889

Code Examples C

// set OMP_NUM_THREADS = 4 - multi-threaded mode for customer

#include "mkl_dfti.h"

#include "omp.h"

void main ()

{

float _Complex x[200][100];

long status;

DFTI_DESCRIPTOR_HANDLE desc_handle;

int nThread = omp_get_max_threads ();

long len[2];

//...put input data into x[j][k] 0<=j<=199, 0<=k<=99

len[0] = 50; len[1] = 100;

status =

DftiCreateDescriptor (desc_handle, DFTI_SINGLE, DFTI_COMPLEX, 2, len);

status = DftiSetValue (desc_handle,

DFTI_NUMBER_OF_USER_THREADS, nThread);

status = DftiCommitDescriptor (desc_handle);

// each thread calculates real DFT for matrix (50*100)

#pragma omp parallel num_threads(nThread)

{

long myStatus;

int myID = omp_get_thread_num ();

myStatus = DftiComputeForward (desc_handle, &x[myID * len[0] * len[1]);

} /* End OpenMP parallel region */

2890

C Intel® Math Kernel Library Reference Manual

status = DftiFreeDescriptor (&desc_handle);

}

Examples for Cluster DFT Functions

The C example below computes 2-dimensional out-of-place FFT using Cluster DFT:

Example 29 2D Out-of-place Cluster DFT Computation
DFTI_DESCRIPTOR_DM_HANDLE desc;

long len[2],v,i,j,n,s;

Complex *in,*out;

MPI_Init(...);

// Create descriptor for 2D FFT

len[0]=nx;

len[1]=ny;

DftiCreateDescriptorDM(MPI_COMM_WORLD,&desc,DFTI_DOUBLE,DFTI_COMPLEX,2,l
en);

// Ask necessary length of in and out arrays and allocate memory

DftiGetValueDM(desc,CDFT_LOCAL_SIZE,&v);

in=(Complex*)malloc(v*sizeof(Complex));

out=(Complex*)malloc(v*sizeof(Complex));

// Fill local array with initial data. Current process performs n rows,

// 0 row of in corresponds to s row of virtual global array

DftiGetValueDM(desc,CDFT_LOCAL_NX,&n);

DftiGetValueDM(desc,CDFT_LOCAL_X_START,&s);

// Virtual global array globalIN is defined by function f as

2891

Code Examples C

// globalIN[i*ny+j]=f(i,j)

for(i=0;i<n;i++)

for(j=0;j<ny;j++) in[i*ny+j]=f(i+s,j);

// Set that we want out-of-place transform (default is DFTI_INPLACE)

DftiSetValueDM(desc,DFTI_PLACEMENT,DFTI_NOT_INPLACE);

// Commit descriptor, calculate FFT, free descriptor

DftiCommitDescriptorDM(desc);

DftiComputeForwardDM(desc,in,out);

// Virtual global array globalOUT is defined by function g as

// globalOUT[i*ny+j]=g(i,j)

// Now out contains result of FFT. out[i*ny+j]=g(i+s,j)

DftiFreeDescriptorDM(&desc);

free(in);

free(out);

MPI_Finalize();

The C example below illustrates one-dimensional in-place cluster DFT computations effected
with a user-defined workspace:

2892

C Intel® Math Kernel Library Reference Manual

Example 30 1D In-place Cluster DFT Computations
DFTI_DESCRIPTOR_DM_HANDLE desc;

long len,v,i,n_out,s_out;

Complex *in,*work;

MPI_Init(...);

// Create descriptor for 1D FFT

DftiCreateDescriptorDM(MPI_COMM_WORLD,&desc,DFTI_DOUBLE,DFTI_COMPLEX,1,l
en);

// Ask necessary length of array and workspace and allocate memory

DftiGetValueDM(desc,CDFT_LOCAL_SIZE,&v);

in=(Complex*)malloc(v*sizeof(Complex));

work=(Complex*)malloc(v*sizeof(Complex));

// Fill local array with initial data. Local array has n elements,

// 0 element of in corresponds to s element of virtual global array

DftiGetValueDM(desc,CDFT_LOCAL_NX,&n);

DftiGetValueDM(desc,CDFT_LOCAL_X_START,&s);

// Set work array as a workspace

DftiSetValueDM(desc,CDFT_WORKSPACE,work);

// Virtual global array globalIN is defined by function f as globalIN[i]=f(i)

for(i=0;i<n;i++) in[i]=f(i+s);

// Commit descriptor, calculate FFT, free descriptor

DftiCommitDescriptorDM(desc);

DftiComputeForwardDM(desc,in);

DftiGetValueDM(desc,CDFT_LOCAL_OUT_NX,&n_out);

DftiGetValueDM(desc,CDFT_LOCAL_OUT_X_START,&s_out);

// Virtual global array globalOUT is defined by function g as
globalOUT[i]=g(i)

// Now in contains result of FFT. Local array has n_out elements,

2893

Code Examples C

// 0 element of in corresponds to s_out element of virtual global array.

// in[i]==g(i+s_out)

DftiFreeDescriptorDM(&desc);

free(in);

free(work);

MPI_Finalize();

Interval Linear Solvers Code Examples
This section presents code examples of using the routines described in “Interval Linear Solvers”.
These routines are intended for computing enclosures and estimates of the solution sets to
interval linear systems of equations as well as for checking properties of interval matrices and
their inversion.

Example C-27. Interval Gauss-Seidel method

Given an interval system of linear algebraic equations, interval Gauss-Seidel method
(implemented as ?gegss routine) is often applied for enclosing a desired portion of the solution
set that is bounded by a prescribed interval box.

Consider the following interval linear system of equations

proposed first by E. Hansen (see Hansen92). Does its solution set intersect the interval box

2894

C Intel® Math Kernel Library Reference Manual

The following sample program answers the above question.

PROGRAM DIGEGSS_EXAMPLE

!

! Example program enclosing the solution set to a square interval

! linear system by interval Gauss-Seidel iterative method

!

!--!

USE INTERVAL_ARITHMETIC

IMPLICIT NONE

!--!

INTEGER, PARAMETER :: DIM = 2

INTEGER :: NRHS, LDA, LDB, NITS,

INFO, I, J

REAL(8) :: EPSILON

TYPE(D_INTERVAL) :: A(DIM,DIM), B(DIM,1),

ENCL(DIM,1)

CHARACTER(1) :: TRANS

!--!

PRINT 300

!--!

! !

! Initializing the input data - !

! !

TRANS = 'N'

NRHS = 2

A(1,1) = DINTERVAL(2.,3.); A(1,2) = DINTERVAL(0.,1.);

A(2,1) = DINTERVAL(0.,1.); A(2,2) = DINTERVAL(2.,3.);

LDA = 2

B(1,1) = DINTERVAL(0.,120.); B(2,1) = DINTERVAL(60.,240.);

2895

Code Examples C

LDB = 2

EPSILON = 1.D-6

NITS = 20

!--!

!

! Assigning the bounding box for the solution set -

DO I = 1, DIM

ENCL(I,1) = DINTERVAL(0.,200.)

END DO

!--!

CALL DIGEGSS(TRANS,

DIM, NRHS, A, LDA, B, LDB, ENCL, EPSILON, NITS, INFO)

!--!

!

! Outputting the solution

IF(INFO /= 0) THEN

PRINT 400

ELSE

PRINT 600

DO I = 1, DIM

PRINT *, '[', B(I,1), ']'

END DO

END IF

!--!

300 FORMAT (/,' **** SOLVING INTERVAL LINEAR SYSTEM **** ',/, &

' by interval Gauss-Seidel method ')

400 FORMAT (/,' The interval Gauss-Seidel method fails. ')

600 FORMAT (/,' Outer interval estimate of the solution set:',/)

2896

C Intel® Math Kernel Library Reference Manual

!--!

END PROGRAM DIGEGSS_EXAMPLE

Assigning double-precision intervals to the entries of the matrix A and right-hand side vector
B is carried out by DINTERVAL function that turns two real numbers into the interval having
these reals as endpoints. Running the above code produces the answer

**** SOLVING INTERVAL LINEAR SYSTEM****

by interval Gauss-Seidel method

Outer interval estimate of the solution set:

[0.000000000000000E+000 60.0000000000000]

[0.000000000000000E+000 120.000000000000]

One can make sure that the resulting box really encloses the required portion of the solution
set after having a look at the corresponding graph from the paper Hansen92. Moreover, it is
even the tightest possible enclosure.

2897

Code Examples C

Example C-28. Hansen-Bliek-Rohn procedure

The following Fortran-90 program illustrates the use of digehbs routine implementing
“semiinterval” Hansen-Bliek-Rohn procedure for outer interval estimation of the solution sets
to interval linear systems.

PROGRAM DIGEHBS_EXAMPLE

!

! Example program for enclosing the solution set to square interval

! interval system of equations by Hansen-Bliek-Rohn procedure

!

!--!

USE INTERVAL_ARITHMETIC

IMPLICIT NONE

!--!

INTEGER, PARAMETER :: DIM = 2

INTEGER :: LDA, LDB, INFO, I, J

TYPE(D_INTERVAL), ALLOCATABLE ::

A(:,:), B(:)

CHARACTER(1) :: TRANS

!--!

PRINT 300

!--!

!

! Initializing the input data -

!

TRANS = 'N'

ALLOCATE(A(DIM,DIM), B(DIM))

A(1,1) = DINTERVAL(2.,4.); A(1,2) = DINTERVAL(-2.,1.)

A(2,1) = DINTERVAL(-1.,2.); A(2,2) = DINTERVAL(2.,2.)

LDA = 2

2898

C Intel® Math Kernel Library Reference Manual

B(1) = DINTERVAL(0.,2.); B(2) = DINTERVAL(0.,2.)

LDB = 2

!--!

CALL DIGEHBS(TRANS, DIM, A, LDA,

B, LDB, INFO)

!--!

IF(INFO /= 0) THEN

PRINT 400

ELSE

PRINT 600

DO I = 1, DIM

PRINT *, I, ') [', B(I), ']'

END DO

END IF

!--!

DEALLOCATE(A, B)

!--!

300 FORMAT (/,' **** SOLVING INTERVAL LINEAR SYSTEM ****',/, &

' by Hansen-Bliek-Rohn procedure ',/)

400 FORMAT (/,' The matrix of the system is not an H-matrix,',/, &

' Hansen-Bliek-Rohn procedure fails. ',/)

600 FORMAT (/,' Enclosure of the solution set: ',/)

!--!

END PROGRAM DIGEHBS_EXAMPLE

However, the output of the program looks like

**** SOLVING INTERVAL LINEAR SYSTEM****

by Hansen-Bliek-Rohn procedure

The matrix of the system is not an H-matrix,

Hansen-Bliek-Rohn procedure fails.

2899

Code Examples C

This result is because the program is applied to the interval linear system

where the interval matrix is not an H-matrix (that is, it does not have diagonal dominance).

2900

C Intel® Math Kernel Library Reference Manual

However, preconditioning by digemip routine helps to resolve the problem. The next modified
program, which incorporates preliminary preconditioning of the interval linear system under
solution, makes the matrix diagonally dominant and produces an acceptable answer to the
problem.

PROGRAM DIGEMIP_DIGEHBS_EXAMPLE

!

! Example program for enclosing the solution set to square interval

! interval system of equations by Hansen-Bliek-Rohn procedure

!

!--!

USE INTERVAL_ARITHMETIC

IMPLICIT NONE

!--!

INTEGER, PARAMETER :: DIM = 2, NRHS = 1

INTEGER :: LDA, LDB, INFO, I, J

TYPE(D_INTERVAL), ALLOCATABLE ::

A(:,:), B(:)

CHARACTER(1) :: TRANS

!--!

PRINT 300

!--!

!

! Initializing the input data -

!

TRANS = 'N'

ALLOCATE(A(DIM,DIM), B(DIM))

A(1,1) = DINTERVAL(2.,4.); A(1,2) = DINTERVAL(-2.,1.)

A(2,1) = DINTERVAL(-1.,2.); A(2,2) = DINTERVAL(2.,2.)

LDA = 2

2901

Code Examples C

B(1) = DINTERVAL(0.,2.); B(2) = DINTERVAL(0.,2.)

LDB = 2

!--!

CALL DIGEMIP(DIM, NRHS, A, LDA,

B, LDB, INFO)

CALL DIGEHBS(TRANS, DIM, A, LDA,

B, LDB, INFO)

!--!

IF(INFO /= 0) THEN

PRINT 400

ELSE

PRINT 600

DO I = 1, DIM

PRINT *, I, ') [', B(I), ']'

END DO

END IF

DEALLOCATE(A, B)

!--!

300 FORMAT (/,' **** SOLVING INTERVAL LINEAR SYSTEM ****',/, &

' by Hansen-Bliek-Rohn procedure ',/)

400 FORMAT (/,' The matrix of the system is not an H-matrix,',/, &

' Hansen-Bliek-Rohn procedure fails. ',/)

600 FORMAT (/,' Enclosure of the solution set: ',/)

!--!

END PROGRAM DIGEMIP_DIGEHBS_EXAMPLE

2902

C Intel® Math Kernel Library Reference Manual

This time, the output of the program is

**** SOLVING INTERVAL LINEAR SYSTEM****

by Hansen-Bliek-Rohn procedure

Enclosure of the solution set:

1) [-4.23529411764708 10.7058823529412]

2) [-6.70588235294119 10.8235294117647]

(the last digits may change for various computer architectures).

Example C-29. Computing enclosure for inverse interval matrix

Given an interval 2 × 2 matrix

2903

Code Examples C

the following Fortran-90 code computes an enclosure of its inverse interval matrix:

PROGRAM SIGESZI_EXAMPLE

!

!Example program inverting an interval matrix by Sczulz iterative procedure

!

!--!

USE INTERVAL_ARITHMETIC

IMPLICIT NONE

!--!

INTEGER, PARAMETER :: DIM = 2, LDA = 2

INTEGER :: INFO, I, J

TYPE(S_INTERVAL), ALLOCATABLE ::

A(:,:)

!--!

PRINT 300

!--!

!

! Initislizing the input data -

!

ALLOCATE(A(LDA,DIM))

A(1,1) = SINTERVAL(3.,3.); A(1,2) = SINTERVAL(0.,1.)

A(2,1) = SINTERVAL(1.,2.); A(2,2) = SINTERVAL(2.,3.)

!--!

CALL SIGESZI (DIM, A, LDA, INFO)

!--!

PRINT 600

DO I = 1, DIM

PRINT *, ('[', A(I,J), ']', J = 1,

DIM)

2904

C Intel® Math Kernel Library Reference Manual

END DO

DEALLOCATE(A)

!--!

300 FORMAT (/,' **** INVERTING INTERVAL MATRIX ****',/, &

' by interval Schulz method ')

400 FORMAT (/,' Schulz inversion procedure failed. ',/)

600 FORMAT (/,' Enclosure of the inverse matrix ',/)

!--!

END PROGRAM SIGESZI_EXAMPLE

The output listing (with small variations depending on the architecture) looks as follows:

**** INVERTING INTERVAL MATRIX ****

by interval Schulz method

Enclosure of the inverse matrix

[0.2407409 0.5000001][-0.2500000 0.1018518]

[-0.5000000 5.5555239E-02][0.1388889 0.7500001]

At the same time, if we widen the (1,1) entry of the matrix to the interval [2, 3], the sigeszi
procedure fails to compute a finite enclosure of the inverse to the new interval matrix

Nevertheless, the interval linear system with such matrix can be successfully solved by
specialized routines, for example, by interval Gauss method or interval Gauss-Seidel method
(see Example C-27).

PDE Support Code Examples
This section presents code examples for routines described in the in the “Partial Differential
Equations Support” chapter. The examples are grouped in subsections

2905

Code Examples C

• Trigonometric Transform Code Examples

• Poisson Library Code Examples.

Trigonometric Transforms Interface Code Examples

Code presented in this section computes solutions of three simple 1D Helmholtz problems with
different boundary conditions: DD, NN and ND cases, where “D” denotes a Dirichlet boundary
condition and “N” stands for a Neumann boundary condition. Example C-34 implements the
computations in C and Example C-35 provides Fortran-90 code.

The algorithm of computing the solution uses Trigonometric Transform routines, described in
chapter 13. In the DD case, the sine transform is computed, the NN case uses the cosine
transform and the ND case corresponds to the staggered cosine transform.

Other details of the Helmholtz problems being solved are printed out along with the computed
solutions.

Upon successful execution of Example C-34 the following text is printed out (Example C-35
generates similar output):
Example of use of MKL Trigonometric Transforms

**

This example gives the the solutions of the 1D differential problems

with the equation -u"+u=f(x), 0<x<1,

2906

C Intel® Math Kernel Library Reference Manual

and with 3 types of boundary conditions:

DD case: u(0)=u(1)=0,

NN case: u'(0)=u'(1)=0,

ND case: u'(0)=u(1)=0.

In general, the error should be of order O(1.0/n**2)

For this example, the value of n is 8

The approximation error should be of order 5.0e-002 if everything is OK

Note that n should be even to use Trigonometric Transforms !

DOUBLE PRECISION COMPUTATIONS

===

The computed solution of DD problem is

u[0]= 0.000

u[1]= 0.153

u[2]= 0.524

u[3]= 0.895

u[4]= 1.049

u[5]= 0.895

u[6]= 0.524

u[7]= 0.153

u[8]= 0.000

Error=4.873e-002

The computed solution of NN problem is

2907

Code Examples C

u[0]=-0.026

u[1]= 0.128

u[2]= 0.500

u[3]= 0.872

u[4]= 1.026

u[5]= 0.872

u[6]= 0.500

u[7]= 0.128

u[8]=-0.026

Error=2.583e-002

The computed solution of ND problem is

u[0]=-0.009

u[1]= 0.145

u[2]= 0.517

u[3]= 0.890

u[4]= 1.045

u[5]= 0.892

u[6]= 0.522

u[7]= 0.152

u[8]= 0.000

Error=4.470e-002

C code for the computations is given below:

2908

C Intel® Math Kernel Library Reference Manual

Example C-34 C Example to Solve a Set of 1D Helmholtz Problems

! INTEL CONFIDENTIAL

! Copyright(C) 2005 Intel Corporation. All Rights Reserved.

! The source code contained or described herein and all documents related
to

! the source code ("Material") are owned by Intel Corporation or its
suppliers

! or licensors. Title to the Material remains with Intel Corporation
or its

! suppliers and licensors. The Material contains trade secrets and
proprietary

! and confidential information of Intel or its suppliers and licensors.
The

! Material is protected by worldwide copyright and trade secret laws
and

! treaty provisions. No part of the Material may be used, copied,
reproduced,

! modified, published, uploaded, posted, transmitted, distributed or
disclosed

! in any way without Intel's prior express written permission.

! No license under any patent, copyright, trade secret or other
intellectual

! property right is granted to or conferred upon you by disclosure or
delivery

! of the Materials, either expressly, by implication, inducement, estoppel
or

! otherwise. Any license under such intellectual property rights
must be

! express and approved by Intel in writing.

!

!***

! Content:

! Double precision C test example for trigonometric transforms

2909

Code Examples C

!***

!

! This example gives the solution of the 1D differential problems

! with the equation -u"+u=f(x), 0<x<1, and with 3 types of boundary
conditions:

! u(0)=u(1)=0 (DD case), or u'(0)=u'(1)=0 (NN case), or u'(0)=u(1)=0 (ND
case)

*/ #include <stdio.h>

#include <malloc.h>

#include <math.h>

#include "mkl_dfti.h"

#include "mkl_trig_transforms.h"

int main(void)

{

int n=8, i, k, tt_type;

int ir, ipar[128];

/* Note that the size of the transform n must be even !!! */

double pi=3.14159265358979324, xi, c;

double c1, c2, c3, c4, c5, c6;

double *u, *f, *dpar, *lambda;

DFTI_DESCRIPTOR_HANDLE handle = 0; /* Printing the header for the example
*/

printf("\n Example of use of MKL Trigonometric Transforms\n");

printf(" **\n\n");

printf(" This example gives the the solutions of the 1D differential
problems\n");

printf(" with the equation -u\"+u=f(x), 0<x<1, \n");

printf(" and with 3 types of boundary conditions:\n");

printf(" DD case: u(0)=u(1)=0,\n");

2910

C Intel® Math Kernel Library Reference Manual

printf(" NN case: u'(0)=u'(1)=0,\n");

printf(" ND case: u'(0)=u(1)=0.\n");

printf("
---\n");

printf(" In general, the error should be of order O(1.0/n**2)\n");

printf(" For this example, the value of n is %1i\n", n);

printf(" The approximation error should be of order 5.0e-002 if everything
is OK\n");

printf("
---\n");

printf(" Note that n should be even to use Trigonometric Transforms !\n");

printf("
---\n");

printf(" DOUBLE PRECISION COMPUTATIONS
\n");

printf("===\n\n");

u=(double*)malloc((n+1)*sizeof(double));

f=(double*)malloc((n+1)*sizeof(double));

dpar=(double*)malloc((3*n/2+1)*sizeof(double));

lambda=(double*)malloc((n+1)*sizeof(double));

for(i=0;i<=2;i++)

{

/* Varying the type of the transform */

tt_type=i;

/* Computing test solutions u(x) */

for(k=0;k<=n;k++)

{

xi=1.0E0*k/n;

u[k]=pow(sin(pi*xi),2.0E0);

}

2911

Code Examples C

/* Computing the right-hand side f(x) */

for(k=0;k<=n;k++)

{

f[k]=(4.0E0*(pi*pi)+1.0E0)*u[k]-2.0E0*(pi*pi);

}

/* Computing the right-hand side for the algebraic system */

for(k=0;k<=n;k++)

{

f[k]=f[k]/(n*n);

}

2912

C Intel® Math Kernel Library Reference Manual

if (tt_type==0)

{

/* The Dirichlet boundary conditions */

f[0]=0.0E0;

f[n]=0.0E0;

}

if (tt_type==2)

{

/* The mixed Neumann-Dirichlet boundary conditions */

f[n]=0.0E0;

}

/* Computing the eigenvalues for the three-point finite-difference
problem */

if (tt_type==0||tt_type==1)

{

for(k=0;k<=n;k++)

{

lambda[k]=pow(2.0E0*sin(0.5E0*pi*k/n),2.0E0)+1.0E0/(n*n);

}

}

if (tt_type==2)

{

for(k=0;k<=n;k++)

{</

lambda[k]=pow(2.0E0*sin(0.25E0*pi*(2*k+1)/n),2.0E0)+1.0E0/(n*n);

}

}

2913

Code Examples C

/* Computing the solution of 1D problem using trigonometric transforms

First we initialize the transform */

d_init_trig_transform(&n,&tt_type,ipar,dpar,&ir);

if (ir!=0) goto FAILURE;

/* Then we commit the transform. Note that the data in f will be changed
at this stage !

If you want to keep them, save them in some other array before the
call to the routine */

d_commit_trig_transform(f,&handle,ipar,dpar,&ir);

if (ir!=0) goto FAILURE;

/* Now we can apply trigonometric transform */

d_forward_trig_transform(f,&handle,ipar,dpar,&ir);

if (ir!=0) goto FAILURE;

2914

C Intel® Math Kernel Library Reference Manual

/* Scaling the solution by the eigenvalues */

for(k=0;k<=n;k++)

{

f[k]=f[k]/lambda[k];

}

/* Now we can apply trigonometric transform once again as ONLY

input vector f has changed */

d_backward_trig_transform(f,&handle,ipar,dpar,&ir);

if (ir!=0) goto FAILURE;

/* Cleaning the memory used by handle

Now we can use handle for other kind of trigonometric transform */

free_trig_transform(&handle,ipar,&ir);

if (ir!=0) goto FAILURE;

/* Performing the error analysis */

c1=0.0E0;

c2=0.0E0;

c3=0.0E0;

for(k=0;k<=n;k++)

{

/* Computing the absolute value of the exact solution */

c4=fabs(u[k]);

/* Computing the absolute value of the computed solution

Note that the solution is now in place of the former right-hand
side ! */

c5=fabs(f[k]);

/* Computing the absolute error */

c6=fabs(f[k]-u[k]);

/* Computing the maximum among the above 3 values c4-c6 */

if (c4>c1) c1=c4;

2915

Code Examples C

if (c5>c2) c2=c5;

if (c6>c3) c3=c6;

}

/* Printing the results */

if (tt_type==0)

{

printf("The computed solution of DD problem is\n\n");

for(k=0;k<=n;k++)

{

printf("u[%1i]=%6.3f\n",k,f[k]);

}

printf("\nError=%6.3e\n\n",c3/c1);

}

if (tt_type==1)

{

printf("The computed solution of NN problem is\n\n");

for(k=0;k<=n;k++)

{

printf("u[%1i]=%6.3f\n",k,f[k]);

}

printf("\nError=%6.3e\n\n",c3/c1);

}

if (tt_type==2)

2916

C Intel® Math Kernel Library Reference Manual

{

printf("The computed solution of ND problem is\n\n");

for(k=0;k<=n;k++)

{

printf("u[%1i]=%6.3f\n",k,f[k]);

}

printf("\nError=%6.3e\n\n",c3/c1);

}

/* End of the loop over the different kind of transforms and problems
*/

}

/* Jumping over failure message */

goto SUCCESS;

/* Failure message to print if something went wrong */

FAILURE: printf("Failed to compute the solution(s)...");

SUCCESS: return 0;

/* End of the example code */

}

Fortran code for the computations is given below:

2917

Code Examples C

Example C-35 Fortran Example to Solve a Set of 1D Helmholtz Problems
!***

! INTEL CONFIDENTIAL

! Copyright(C) 2005 Intel Corporation. All Rights Reserved.

! The source code contained or described herein and all documents related
to

! the source code ("Material") are owned by Intel Corporation or its
suppliers

! or licensors. Title to the Material remains with Intel Corporation
or its

! suppliers and licensors. The Material contains trade secrets and
proprietary

! and confidential information of Intel or its suppliers and licensors.
The

! Material is protected by worldwide copyright and trade secret laws
and

! treaty provisions. No part of the Material may be used, copied,
reproduced,

! modified, published, uploaded, posted, transmitted, distributed or
disclosed

! in any way without Intel's prior express written permission.

! No license under any patent, copyright, trade secret or other
intellectual

! property right is granted to or conferred upon you by disclosure or
delivery

! of the Materials, either expressly, by implication, inducement, estoppel
or

! otherwise. Any license under such intellectual property rights
must be

! express and approved by Intel in writing.

!

!

!***

! Content:

2918

C Intel® Math Kernel Library Reference Manual

! Double precision Fortran90 test example for trigonometric transforms

!***

! This example gives the solution of the 1D differential problems

! with the equation -u"+u=f(x), 0<x<1, and with 3 types of boundary
conditions:

! u(0)=u(1)=0 (DD case), or u'(0)=u'(1)=0 (NN case), or u'(0)=u(1)=0 (ND
case)

program d_tt_example_bvp

use mkl_dfti

use mkl_trig_transforms

implicit none

2919

Code Examples C

integer n, i, k,j, tt_type

integer ir, ipar(128)

! Note that the size of the transform n must be even !!!

parameter (n=8)

double precision pi, xi

double precision c1, c2, c3, c4, c5, c6

double precision u(n+1), f(n+1), dpar(3*n/2+1), lambda(n+1)

parameter (pi=3.14159265358979324D0)

type(dfti_descriptor), pointer :: handle

! Printing the header for the example

print *, ''

print *, ' Example of use of MKL Trigonometric Transforms'

print *, ' **'

print *, ''

print *, ' This example gives the solution of the 1D differential
problems'

print *, ' with the equation -u"+u=f(x), 0<x<1, '

print *, ' and with 3 types of boundary conditions:'

print *, ' DD case: u(0)=u(1)=0,'

print *, ' NN case: u''(0)=u''(1)=0,'

print *, ' ND case: u''(0)=u(1)=0.'

print *, '
---'

print *, ' In general, the error should be of order O(1.0/n**2)'

print *, ' For this example, the value of n is', n

print *, ' The approximation error should be of order 0.5E-01, if
everything is OK'

print *, '
---'

print *, ' Note that n should be even to use Trigonometric Transforms
!'

2920

C Intel® Math Kernel Library Reference Manual

print *, '
---'

print *, ' DOUBLE PRECISION COMPUTATIONS
'

print*,'===
'

print *, ''

do i=0,2

! Varying the type of the transform

tt_type=i

! Computing test solution u(x)

do k=1,n+1

xi=1.0D0*(k-1)/n

u(k)=dsin(pi*xi)**2

end do

! Computing the right-hand side f(x)

do k=1,n+1

f(k)=(4.0D0*(pi**2)+1.0D0)*u(k)-2.0D0*(pi**2)

end do

! Computing the right-hand side for the algebraic system

do k=1,n+1

f(k)=f(k)/(n**2)

end do

2921

Code Examples C

if (tt_type.eq.0) then

! The Dirichlet boundary conditions

f(1)=0.0D0

f(n+1)=0.0D0

end if

if (tt_type.eq.2) then

! The mixed Neumann-Dirichlet boundary conditions

f(n+1)=0.0D0

end if

! Computing the eigenvalues for the three-point finite-difference problem

if (tt_type.eq.0.or.tt_type.eq.1) then

do k=1,n+1

lambda(k)=(2.0D0*dsin(0.5D0*pi*(k-1)/n))**2+1.0D0/(n**2)

end do

end if

if (tt_type.eq.2) then

do k=1,n+1

lambda(k)=(2.0D0*dsin(0.25D0*pi*(2*k-1)/n))**2+1.0D0/(n**2)

end do

end if

! Computing the solution of 1D problem using trigonometric transforms

! First we initialize the transform

2922

C Intel® Math Kernel Library Reference Manual

CALL D_INIT_TRIG_TRANSFORM(n,tt_type,ipar,dpar,ir)

if (ir.ne.0) goto 99

! Then we commit the transform. Note that the data in f will be changed at
this stage !

! If you want to keep them, save them in some other array before the call
to the routine

CALL D_COMMIT_TRIG_TRANSFORM(f,handle,ipar,dpar,ir)

if (ir.ne.0) goto 99

! Now we can apply trigonometric transform

CALL D_FORWARD_TRIG_TRANSFORM(f,handle,ipar,dpar,ir)

if (ir.ne.0) goto 99

! Scaling the solution by the eigenvalues

do k=1,n+1

f(k)=f(k)/lambda(k)

end do

! Now we can apply trigonometric transform once again as ONLY input vector
f has changed

CALL D_BACKWARD_TRIG_TRANSFORM(f,handle,ipar,dpar,ir)

if (ir.ne.0) goto 99

! Cleaning the memory used by handle

! Now we can use handle for other KIND of trigonometric transform

CALL FREE_TRIG_TRANSFORM(handle,ipar,ir)

if (ir.ne.0) goto 99

2923

Code Examples C

! Performing the error analysis

c1=0.0D0

c2=0.0D0

c3=0.0D0

do k=1,n+1

! Computing the absolute value of the exact solution

c4=dabs(u(k))

! Computing the absolute value of the computed solution

! Note that the solution is now in place of the former right-hand side !

c5=dabs(f(k))

! Computing the absolute error

c6=dabs(f(k)-u(k))

! Computing the maximum among the above 3 values c4-c6

if (c4.gt.c1) c1=c4

if (c5.gt.c2) c2=c5

if (c6.gt.c3) c3=c6

end do

! Printing the results

if (tt_type.eq.0) then

print *, 'The computed solution of DD problem is'

print *, ''

do k=1,n+1

write(*,11) k,f(k)

end do

print *, ''

write(*,12) c3/c1

print *, ''

end if

2924

C Intel® Math Kernel Library Reference Manual

if (tt_type.eq.1) then

print *, 'The computed solution of NN problem is'

print *, ''

do k=1,n+1

write(*,11) k,f(k)

end do

print *, ''

write(*,12) c3/c1

print *, ''

end if

if (tt_type.eq.2) then

print *, 'The computed solution of ND problem is'

print *, ''

do k=1,n+1

write(*,11) k,f(k)

end do

print *, ''

write(*,12) c3/c1

print *, ''

end if

! End of the loop over the different kind of transforms and problems

end do

2925

Code Examples C

! Jumping over failure message

go to 1

! Failure message to print if something went wrong

99 continue

print *, 'Failed to compute the solution(s)...'

1 continue

! Print formats

11 format(1x,'u(',I1,')=',F6.3)

12 format(1x,'Relative error =',E10.3)

! End of the example code

end

Poisson Library Code Examples

Cartesian case

The code below computes an approximate solution of a 2D Poisson problem

in the rectangle 0<x<1, 0 <y<1.

The following boundary conditions are imposed for the problem:

• Dirichlet boundary condition

for 0≤y≤1.

• Neumann boundary condition

2926

C Intel® Math Kernel Library Reference Manual

for 0<x<1.

The exact solution is known to be

Example C-36 implements the computations in C and Example C-37 provides Fortran-90 code.
Mind that PL interface cannot be invoked from Fortran-77 due to restrictions imposed by the
use of Intel MKL DFT interface.

The algorithm of computing the approximate solution of a Poisson Problem uses Poisson Library
routines, described in chapter 13. Details of the Poisson problem being solved and the errors
are printed out between the computed solution and the exact one.

Upon successful execution of Example C-36 the following text is printed out (Example C-37
produces similar output):

Example of use of MKL Poisson Library

**

2927

Code Examples C

This example gives the solution of 2D Poisson problem

with the equation -u_xx-u_yy=f(x,y), 0<x<1, 0<y<1,

f(x,y)=(8*pi*pi)*sin(2*pi*x)*sin(2*pi*y),

and with the following boundary conditions:

u(0,y)=u(1,y)=1 (Dirichlet boundary conditions),

-u_y(x,0)=-2.0*pi*sin(2*pi*x) (Neumann boundary condition),

u_y(x,1)= 2.0*pi*sin(2*pi*x) (Neumann boundary condition).

In general, the error should be of order O(1.0/nx^2+1.0/ny^2)

For this example, the value of nx=ny is 6

The approximation error should be of order 1.0e-01, if everything is OK

Note that nx should be even to use Poisson Library !

DOUBLE PRECISION COMPUTATIONS

===

The number of mesh intervals in x-direction is nx=6

The number of mesh intervals in y-direction is ny=6

2928

C Intel® Math Kernel Library Reference Manual

In the mesh point (0.167,0.000) the error between the computed and the
true solution is equal to -7.505e-02

In the mesh point (0.167,0.167) the error between the computed and the
true solution is equal to 4.432e-02

In the mesh point (0.167,0.333) the error between the computed and the
true solution is equal to 6.309e-02

In the mesh point (0.167,0.500) the error between the computed and the
true solution is equal to -5.551e-16

In the mesh point (0.167,0.667) the error between the computed and the
true solution is equal to -6.309e-02

In the mesh point (0.167,0.833) the error between the computed and the
true solution is equal to -4.432e-02

In the mesh point (0.167,1.000) the error between the computed and the
true solution is equal to 7.505e-02

Double precision 2D Poisson example has successfully PASSED

through all steps of computation!

Note that actual figures in the error may slightly differ from the figures printed above depending
on the architecture and operating system used to run the example.

C code for the problem is presented below:

2929

Code Examples C

Example C-36 C Example to Solve 2D Poisson Problem
/***

/* INTEL CONFIDENTIAL

/* Copyright(C) 2006 Intel Corporation. All Rights Reserved.

/* The source code contained or described herein and all documents related
to

/* the source code ("Material") are owned by Intel Corporation or its
suppliers

/* or licensors. Title to the Material remains with Intel Corporation
or its

/* suppliers and licensors. The Material contains trade secrets and
proprietary

/* and confidential information of Intel or its suppliers and licensors.
The

/* Material is protected by worldwide copyright and trade secret
laws and

/* treaty provisions. No part of the Material may be used, copied,
reproduced,

/* modified, published, uploaded, posted, transmitted, distributed or
disclosed

/* in any way without Intel");s prior express written permission.

/* No license under any patent, copyright, trade secret or other
intellectual

/* property right is granted to or conferred upon you by disclosure or
delivery

/* of the Materials, either expressly, by implication, inducement, estoppel
or

/* otherwise. Any license under such intellectual property rights
must be

/* express and approved by Intel in writing.

/*

/***

/* Content:

/* C double precision example of solving 2D Poisson problem in a

2930

C Intel® Math Kernel Library Reference Manual

/* rectangular domain using MKL Poisson Library

/*

/***/

#include <stdio.h>

#include <malloc.h>

#include <math.h>

/* Include Poisson Library header files */

#include "mkl_dfti.h"

#include "mkl_poisson.h"

int main(void)

2931

Code Examples C

{

/* Note that the size of the transform nx must be even !!! */

int nx=6, ny=6;

double pi=3.14159265358979324;

int ix, iy, i, stat;

int ipar[128];

double ax, bx, ay, by, lx, ly, hx, hy, xi, yi, cx, cy;

double *dpar, *f, *u, *bd_ax, *bd_bx, *bd_ay, *bd_by;

double q;

DFTI_DESCRIPTOR_HANDLE xhandle = 0;

char *BCtype;

/* Printing the header for the example */

printf("\n Example of use of MKL Poisson Library\n");

printf(" **\n\n");

printf(" This example gives the solution of 2D Poisson problem\n");

printf(" with the equation -u_xx-u_yy=f(x,y), 0<x<1, 0<y<1,\n");

printf(" f(x,y)=(8*pi*pi)*sin(2*pi*x)*sin(2*pi*y),\n");

printf(" and with the following boundary conditions:\n");

printf(" u(0,y)=u(1,y)=1 (Dirichlet boundary conditions),\n");

printf(" -u_y(x,0)=-2.0*pi*sin(2*pi*x) (Neumann boundary condition),\n");

printf(" u_y(x,1)= 2.0*pi*sin(2*pi*x) (Neumann boundary condition).\n");

printf("
---\n");

printf(" In general, the error should be of order O(1.0/nx^2+1.0/ny^2)\n");

printf(" For this example, the value of nx=ny is %d\n", nx);

printf(" The approximation error should be of order 1.0e-01, if everything
is OK\n");

printf("
---\n");

printf(" Note that nx should be even to use Poisson Library !\n");

2932

C Intel® Math Kernel Library Reference Manual

printf("
---\n");

printf(" DOUBLE PRECISION COMPUTATIONS
\n");

printf("
===\n\n");

dpar=(double*)malloc((5*nx/2+7)*sizeof(double));

f=(double*)malloc((nx+1)*(ny+1)*sizeof(double));

u=(double*)malloc((nx+1)*(ny+1)*sizeof(double));

bd_ax=(double*)malloc((ny+1)*sizeof(double));

bd_bx=(double*)malloc((ny+1)*sizeof(double));

bd_ay=(double*)malloc((nx+1)*sizeof(double));

bd_by=(double*)malloc((nx+1)*sizeof(double));

/* Defining the rectangular domain 0<x<1, 0<y<1 for 2D Poisson Solver */

ax=0.0E0;

bx=1.0E0;

ay=0.0E0;

by=1.0E0;

/**
*

Setting the coefficient q to 0.

Note that this is the way to use Helmholtz Solver to solve Poisson problem!

/

2933

Code Examples C

q=0.0E0;

/* Computing the mesh size hx in x-direction */

lx=bx-ax;

hx=lx/nx;

/* Computing the mesh size hy in y-direction */

ly=by-ay;

hy=ly/ny;

/* Filling in the values of the TRUE solution
u(x,y)=sin(2*pi*x)*sin(2*pi*y)+1

in the mesh points into the array u

Filling in the right-hand side f(x,y)=(8*pi*pi+q)*sin(2*pi*x)*sin(2*pi*y)+q

in the mesh points into the array f.

We choose the right-hand side to correspond to the TRUE solution of Poisson
equation.

Here we are using the mesh sizes hx and hy computed before to compute

2934

C Intel® Math Kernel Library Reference Manual

the coordinates (xi,yi) of the mesh points */

for(iy=0;iy<=ny;iy++)

{

for(ix=0;ix<=nx;ix++)

{

xi=hx*ix/lx;

yi=hy*iy/ly;

cx=sin(2*pi*xi);

cy=sin(2*pi*yi);

u[ix+iy*(nx+1)]=1.0E0*cx*cy;

f[ix+iy*(nx+1)]=(8.0E0*pi*pi)*u[ix+iy*(nx+1)];

u[ix+iy*(nx+1)]=u[ix+iy*(nx+1)]+1.0E0;

}

}

/* Setting the type of the boundary conditions on each side of the
rectangular domain:

On the boundary laying on the line x=0(=ax) Dirichlet boundary condition
will be used

On the boundary laying on the line x=1(=bx) Dirichlet boundary condition
will be used

On the boundary laying on the line y=0(=ay) Neumann boundary condition
will be used

On the boundary laying on the line y=1(=by) Neumann boundary condition
will be used */

BCtype = "DDNN";

/* Setting the values of the boundary function G(x,y) that is equal to
the TRUE solution

2935

Code Examples C

in the mesh points laying on Dirichlet boundaries */

for(iy=0;iy<=ny;iy++)

{

bd_ax[iy]=1.0E0;

bd_bx[iy]=1.0E0;

}

/* Setting the values of the boundary function g(x,y) that is equal to
the normal derivative

of the TRUE solution in the mesh points laying on Neumann boundaries */

for(ix=0;ix<=nx;ix++)

{

bd_ay[ix]=-2.0*pi*sin(2*pi*ix/nx);

bd_by[ix]= 2.0*pi*sin(2*pi*ix/nx);

}

/* Initializing ipar array to make it free from garbage */

for(i=0;i<128;i++)

{

ipar[i]=0;

}

/* Initializing simple data structures of Poisson Library for 2D Poisson
Solver */

d_init_Helmholtz_2D(&ax, &bx, &ay, &by, &nx, &ny, BCtype, &q, ipar, dpar,
&stat);

if (stat!=0) goto FAILURE;

/* Initializing complex data structures of Poisson Library for 2D Poisson
Solver

NOTE: Right-hand side f may be altered after the Commit step. If you want
to keep it,

2936

C Intel® Math Kernel Library Reference Manual

you should save it in another memory location! */

d_commit_Helmholtz_2D(f, bd_ax, bd_bx, bd_ay, bd_by, &xhandle, ipar, dpar,
&stat);

if (stat!=0) goto FAILURE;

/* Computing the approximate solution of 2D Poisson problem

NOTE: Boundary data stored in the arrays bd_ax, bd_bx, bd_ay, bd_by should
not be changed

between the Commit step and the subsequent call to the Solver routine/*

Otherwise the results may be wrong. */

d_Helmholtz_2D(f, bd_ax, bd_bx, bd_ay, bd_by, &xhandle, ipar, dpar, &stat);

if (stat!=0) goto FAILURE;

/* Cleaning the memory used by xhandle */

free_Helmholtz_2D(&xhandle, ipar, &stat);

if (stat!=0) goto FAILURE;

/* Now we can use xhandle to solve another 2D Poisson problem*/

/* Printing the results */

printf("The number of mesh intervals in x-direction is nx=%d\n", nx);

printf("The number of mesh intervals in y-direction is ny=%d\n\n",ny);

/* Watching the error along the line x=hx */

ix=1;

for(iy=0;iy<=ny;iy++)

{

printf("In the mesh point (%5.3f,%5.3f) the error between the
computed and the true solution is equal to %10.3e\n", ix*hx, iy*hy,
f[ix+iy*(nx+1)]-u[ix+iy*(nx+1)]);

}

2937

Code Examples C

/* Success message to print if everything is OK */

printf("\n Double precision 2D Poisson example has successfully
PASSED\n");

printf(" through all steps of computation!\n");

/* Jumping over failure message */

goto SUCCESS;

/* Failure message to print if something went wrong */

FAILURE: printf("\nDouble precision 2D Poisson example FAILED to compute
the solution...\n");

SUCCESS: return 0;

/* End of the example code */

}

Fortran code for the computations is given below:

2938

C Intel® Math Kernel Library Reference Manual

Example C-37 Fortran Example to Solve 2D Poisson Problem
!***

! INTEL CONFIDENTIAL

! Copyright(C) 2006 Intel Corporation. All Rights Reserved.

! The source code contained or described herein and all documents related
to

! the source code ("Material") are owned by Intel Corporation or its
suppliers

! or licensors. Title to the Material remains with Intel Corporation
or its

! suppliers and licensors. The Material contains trade secrets and
proprietary

! and confidential information of Intel or its suppliers and licensors.
The

! Material is protected by worldwide copyright and trade secret laws
and

! treaty provisions. No part of the Material may be used, copied,
reproduced,

! modified, published, uploaded, posted, transmitted, distributed or
disclosed

! in any way without Intel's prior express written permission.

! No license under any patent, copyright, trade secret or other
intellectual

! property right is granted to or conferred upon you by disclosure or
delivery

! of the Materials, either expressly, by implication, inducement, estoppel
or

! otherwise. Any license under such intellectual property rights
must be

! express and approved by Intel in writing.

!

!***

! Content:

! Fortran-90 double precision example of solving 2D Poisson problem in a

2939

Code Examples C

! rectangular domain using MKL Poisson Library

!

!***

program Poisson_2D_double_precision

! Include modules defined by mkl_poisson.f90 and mkl_dfti.f90 header files

use mkl_poisson

use mkl_dfti

implicit none

integer nx,ny

! Note that the size of the transform nx must be even !!!

parameter(nx=6, ny=6)

double precision pi

parameter(pi=3.14159265358979324D0)

integer ix, iy, i, stat

integer ipar(128)

double precision ax, bx, ay, by, lx, ly, hx, hy, xi, yi, cx, cy

double precision dpar(5*nx/2+7)

! Note that proper packing of data in right-hand side array f is

2940

C Intel® Math Kernel Library Reference Manual

! automatically provided by the following declaration of the arrays

double precision f(nx+1,ny+1), u(nx+1,ny+1)

double precision bd_ax(ny+1), bd_bx(ny+1), bd_ay(nx+1), bd_by(nx+1)

double precision q

type(DFTI_DESCRIPTOR), pointer :: xhandle

character(4) BCtype

! Printing the header for the example

print *, ''

print *, ' Example of use of MKL Poisson Library'

print *, ' **'

print *, ''

print *, ' This example gives the solution of 2D Poisson problem'

print *, ' with the equation -u_xx-u_yy=f(x,y), 0<x<1, 0<y<1,'

print *, ' f(x,y)=(8*pi*pi)*sin(2*pi*x)*sin(2*pi*y),'

print *, ' and with the following boundary conditions:'

print *, ' u(0,y)=u(1,y)=1 (Dirichlet boundary conditions),'

print *, ' -u_y(x,0)=-2.0*pi*sin(2*pi*x) (Neumann boundary condition),'

print *, ' u_y(x,1)= 2.0*pi*sin(2*pi*x) (Neumann boundary condition).'

print *, '
---'

print *, ' In general, the error should be of order
O(1.0/nx^2+1.0/ny^2)'

print '(1x,a,I1)', ' For this example, the value of nx=ny is ', nx

print *, ' The approximation error should be of order 0.1E+0, if
everything is OK'

print *, '
---'

print *, ' Note that nx should be even to use Poisson Library !'

print *, '
---'

print *, ' DOUBLE PRECISION COMPUTATIONS

2941

Code Examples C

'

print *, '
==='

print *, ''

! Defining the rectangular domain 0<x<1, 0<y<1 for 2D Poisson Solver<

ax=0.0D0

bx=1.0D0

ay=0.0D0

by=1.0D0

!***

! Setting the coefficient q to 0.

! Note that this is the way to use Helmholtz Solver to solve Poisson problem!

!***

q=0.0D0

! Computing the mesh size hx in x-direction

lx=bx-ax

hx=lx/nx

! Computing the mesh size hy in y-direction

ly=by-ay

hy=ly/ny

! Filling in the values of the TRUE solution u(x,y)=sin(2*pi*x)*sin(2*pi*y)+1

! in the mesh points into the array u

! Filling in the right-hand side f(x,y)=(8*pi*pi+q)*sin(2*pi*x)*sin(2*pi*y)+q

! in the mesh points into the array f.

2942

C Intel® Math Kernel Library Reference Manual

! We choose the right-hand side to correspond to the TRUE solution of Poisson
equation.

! Here we are using the mesh sizes hx and hy computed before to compute

! the coordinates (xi,yi) of the mesh points

do iy=1,ny+1

do ix=1,nx+1

xi=hx*(ix-1)/lx

yi=hy*(iy-1)/ly

cx=dsin(2*pi*xi)

cy=dsin(2*pi*yi)

u(ix,iy)=1.0D0*cx*cy

f(ix,iy)=(8.0D0*pi**2)*u(ix,iy)

u(ix,iy)=u(ix,iy)+1.0D0

enddo

enddo

! Setting the type of the boundary conditions on each side of the rectangular
domain:

! On the boundary laying on the line x=0(=ax) Dirichlet boundary condition
will be used

! On the boundary laying on the line x=1(=bx) Dirichlet boundary condition
will be used

! On the boundary laying on the line y=0(=ay) Neumann boundary condition
will be used

! On the boundary laying on the line y=1(=by) Neumann boundary condition
will be used

BCtype = 'DDNN'

! Setting the values of the boundary function G(x,y) that is equal to the
TRUE solution

2943

Code Examples C

! in the mesh points laying on Dirichlet boundaries

do iy = 1,ny+1

bd_ax(iy) = 1.0D0

bd_bx(iy) = 1.0D0

enddo

! Setting the values of the boundary function g(x,y) that is equal to the
normal derivative

! of the TRUE solution in the mesh points laying on Neumann boundaries

do ix = 1,nx+1

bd_ay(ix) = -2.0*pi*dsin(2*pi*(ix-1)/nx)

bd_by(ix) = 2.0*pi*dsin(2*pi*(ix-1)/nx)

enddo

! Initializing ipar array to make it free from garbage

do i=1,128

ipar(i)=0

enddo

! Initializing simple data structures of Poisson Library for 2D Poisson
Solver

call d_init_Helmholtz_2D(ax, bx, ay, by, nx, ny, BCtype, q, ipar, dpar,
stat)

if (stat.ne.0) goto 999

! Initializing complex data structures of Poisson Library for 2D Poisson
Solver

! NOTE: Right-hand side f may be altered after the Commit step. If you want
to keep it,

! you should save it in another memory location!

call d_commit_Helmholtz_2D(f, bd_ax, bd_bx, bd_ay, bd_by, xhandle, ipar,
dpar, stat)

2944

C Intel® Math Kernel Library Reference Manual

if (stat.ne.0) goto 999

! Computing the approximate solution of 2D Poisson problem

! NOTE: Boundary data stored in the arrays bd_ax, bd_bx, bd_ay, bd_by should
not be changed

! between the Commit step and the subsequent call to the Solver routine!

! Otherwise the results may be wrong.

call d_Helmholtz_2D(f, bd_ax, bd_bx, bd_ay, bd_by, xhandle, ipar, dpar,
stat)

if (stat.ne.0) goto 999

! Cleaning the memory used by xhandle

call free_Helmholtz_2D(xhandle, ipar, stat)

if (stat.ne.0) goto 999

! Now we can use xhandle to solve another 2D Poisson problem

! Printing the results

write(*,10) nx

write(*,11) ny

print *, ''

! Watching the error along the line x=hx

ix=2

do iy=1,ny+1

write(*,12) (ix-1)*hx, (iy-1)*hy, f(ix,iy)-u(ix,iy)

enddo

print *, ''

2945

Code Examples C

! Success message to print if everything is OK

print *, ' Double precision 2D Poisson example has successfully PASSED'

print *, ' through all steps of computation!'

! Jumping over failure message

go to 1

! Failure message to print if something went wrong

999 print *, 'Double precision 2D Poisson example FAILED to compute the
solution...'

1 continue

10 format(1x,'The number of mesh intervals in x-direction is nx=',I1)

11 format(1x,'The number of mesh intervals in y-direction is ny=',I1)

12 format(1x,'In the mesh point (',F5.3,',',F5.3,') the error between
the computed and the true solution is equal to ', E10.3)

! End of the example code

end

Spherical case

The code below computes an approximate solution of a Helmholtz problem on the entire sphere:

with aφ = 0, bφ = 2π, aθ = 0, bθ = π, and a boundary condition

2946

C Intel® Math Kernel Library Reference Manual

at the poles (periodic case).

The exact solution is known to be u(φ,θ) = cosθ .

Example C-38 implements the computations in C and Example C-39 provides Fortran-90 code.
Mind that PL interface cannot be invoked from Fortran-77 due to restrictions imposed by the
use of Intel MKL DFT interface.

The algorithm of computing the approximate solution of a Poisson Problem uses Poisson Library
routines, described in chapter 13. Details of the Poisson problem being solved and the errors
are printed out between the computed solution and the exact one. Upon successful execution
of Example C-38 the following text is printed out (Example C-39produces similar output):

Example of use of MKL Poisson Library

**

This example gives the solution of Helmholtz problem on a whole sphere

0<p<2*pi, 0<t<pi, with Helmholtz coefficient q=1 and right-hand side

f(p,t)=3*cos(t)

In general, the error should be of order O(1.0/np^2+1.0/nt^2)

For this example, the value of np=nt is 8

The approximation error should be of order 1.5e-01, if everything is OK

Note that np should be divisible by 4 to solve the PERIODIC problem!

DOUBLE PRECISION COMPUTATIONS

2947

Code Examples C

===

NO3NO4The number of mesh intervals in phi-direction is np=8

The number of mesh intervals in theta-direction is nt=8

In the mesh point (0.785,0.000) the error between the computed and the true
solution is equal to -1.402e-001

In the mesh point (0.785,0.393) the error between the computed and the true
solution is equal to -3.097e-002

In the mesh point (0.785,0.785) the error between the computed and the true
solution is equal to -6.036e-003

In the mesh point (0.785,1.178) the error between the computed and the true
solution is equal to 2.964e-004

In the mesh point (0.785,1.571) the error between the computed and the true
solution is equal to 4.979e-017

In the mesh point (0.785,1.963) the error between the computed and the true
solution is equal to -2.964e-004

In the mesh point (0.785,2.356) the error between the computed and the true
solution is equal to 6.036e-003

In the mesh point (0.785,2.749) the error between the computed and the true
solution is equal to 3.097e-002

In the mesh point (0.785,3.142) the error between the computed and the true
solution is equal to 1.402e-001

Double precision Helmholtz example on a whole sphere has successfully PASSED

through all steps of computation!

Note that actual figures in the error may slightly differ from the figures printed above
dependingon the architecture and operating system used to run the example.

C code for the problem is presented below:

2948

C Intel® Math Kernel Library Reference Manual

Example C-38 C Example to Solve Helmholtz Problem on a Sphere
/***

/* INTEL CONFIDENTIAL

/* Copyright(C) 2006 Intel Corporation. All Rights Reserved.

/* The source code contained or described herein and all documents related
to

/* the source code ("Material") are owned by Intel Corporation or its
suppliers

/* or licensors. Title to the Material remains with Intel Corporation
or its

/* suppliers and licensors. The Material contains trade secrets and
proprietary

/* and confidential information of Intel or its suppliers and licensors.
The

/* Material is protected by worldwide copyright and trade secret
laws and

/* treaty provisions. No part of the Material may be used, copied,
reproduced,

/* modified, published, uploaded, posted, transmitted, distributed or
disclosed

/* in any way without Intel's prior express written permission.

/* No license under any patent, copyright, trade secret or other
intellectual

/* property right is granted to or conferred upon you by disclosure or
delivery

/* of the Materials, either expressly, by implication, inducement, estoppel
or

/* otherwise. Any license under such intellectual property rights
must be

/* express and approved by Intel in writing.

/*

/***

/* Content:

/* C double precision example of solving Helmholtz problem on a whole sphere

2949

Code Examples C

/* using MKL Poisson Library

/*

/***/

#include <stdio.h>

#include <malloc.h>

#include <math.h>

/* Include Poisson Library header files */

#include "mkl_dfti.h"

#include "mkl_poisson.h"

int main(void)

{

/* Note that the size of the transform np must be divisible by 4 !!! */

int np=8, nt=8;

double pi=3.14159265358979324;

int ip, it, i, stat;

int ipar[128];

double ap, bp, at, bt, lp, lt, hp, ht, theta_i, ct;

double *dpar, *f, *u;

double q;

DFTI_DESCRIPTOR_HANDLE handle_s = 0;

DFTI_DESCRIPTOR_HANDLE handle_c = 0;

/* Printing the header for the example */

printf("\n Example of use of MKL Poisson Library\n");

printf(" **\n\n");

printf(" This example gives the solution of Helmholtz problem on a whole
sphere\n");

printf(" 0<p<2*pi, 0<t<pi, with Helmholtz coefficient q=1 and right-hand
side\n");

printf(" f(p,t)=3*cos(t)\n");

2950

C Intel® Math Kernel Library Reference Manual

printf("
---\n");

printf(" In general, the error should be of order O(1.0/np^2+1.0/nt^2)\n");

printf(" For this example, the value of np=nt is %d\n", np);

printf(" The approximation error should be of order 1.5e-01, if everything
is OK\n");

printf("
---\n");

printf(" Note that np should be divisible by 4 to solve the PERIODIC
problem!\n");

printf("
---\n");

printf(" DOUBLE PRECISION COMPUTATIONS
\n");

printf("
===\n\n");

dpar=(double*)malloc((7*np/2+10)*sizeof(double));

f=(double*)malloc((np+1)*(nt+1)*sizeof(double));

u=(double*)malloc((np+1)*(nt+1)*sizeof(double));

/* Defining the rectangular domain on a sphere 0<p<2*pi, 0<t<pi for Helmholtz
Solver on a sphere */

/* Poisson Library will automatically detect that this problem is on a whole
sphere! */

ap=0.0E0;

bp=2*pi;

at=0.0E0;

bt=pi;

/* Setting the coefficient q to 1.0E0 for Helmholtz problem */

/* If you like to solve Poisson problem, please set q to 0.0E0 */

q=1.0E0;

/* Computing the mesh size hp in phi-direction */

lp=bp-ap;

2951

Code Examples C

hp=lp/np;

/* Computing the mesh size ht in theta-direction */

lt=bt-at;

ht=lt/nt;

/* Filling in the values of the TRUE solution u(p,t)=cos(t)

in the mesh points into the array u

Filling in the right-hand side f(p,t)=(2+q)*cos(t)

in the mesh points into the array f.

We choose the right-hand side to correspond to the TRUE solution of Helmholtz
equation on a sphere.

Here we are using the mesh sizes hp and ht computed before to compute

the coordinates (phi_i,theta_i) of the mesh points */

for(it=0;it<=nt;it++)

{</codeblock><codeblock> for(ip=0;ip<=np;ip++)

{

theta_i=ht*it;

ct=cos(theta_i);

u[ip+it*(np+1)]=ct;

f[ip+it*(np+1)]=ct*(2.+q);

}

}

/* Initializing ipar array to make it free from garbage */

for(i=0;i<128;i++)

{

ipar[i]=0;

}

2952

C Intel® Math Kernel Library Reference Manual

/* Initializing simple data structures of Poisson Library for Helmholtz
Solver on a sphere */

/* As we are looking for the solution on a whole sphere, this is a PERIDOC
problem */

/* Therefore, the routines ending with "_p" are used to find the solution
*/

d_init_sph_p(&ap,&bp,&at,&bt,&np,&nt,&q,ipar,dpar,&stat);

if (stat!=0) goto FAILURE;

/* Initializing complex data structures of Poisson Library for Helmholtz
Solver on a sphere

NOTE: Right-hand side f may be altered after the Commit step. If you want
to keep it,

you should save it in another memory location! */

d_commit_sph_p(f,&handle_s,&handle_c,ipar,dpar,&stat);

if (stat!=0) goto FAILURE;

/* Computing the approximate solution of Helmholtz problem on a whole sphere
*/

d_sph_p(f,&handle_s,&handle_c,ipar,dpar,&stat);

if (stat!=0) goto FAILURE;

/* Cleaning the memory used by handle_s and handle_c */

free_sph_p(&handle_s,&handle_c,ipar,&stat);

if (stat!=0) goto FAILURE;

/* Now we can use handle_s and handle_c to solve another Helmholtz problem
*/

/* after a proper initialization */

2953

Code Examples C

/* Printing the results */

printf("The number of mesh intervals in phi-direction is np=%d\n", np);

printf("The number of mesh intervals in theta-direction is nt=%d\n\n", nt);

/* Watching the error along the line phi=hp */

ip=1;

for(it=0;it<=nt;it++)

{

printf("In the mesh point (%5.3f,%5.3f) the error between the computed and
the true solution is equal to %10.3e\n", ip*hp, it*ht,
f[ip+it*(np+1)]-u[ip+it*(np+1)]);

}

/* Success message to print if everything is OK */

printf("\n Double precision Helmholtz example on a whole sphere has
successfully PASSED\n");

printf(" through all steps of computation!\n");

/* Jumping over failure message */

goto SUCCESS;

/* Failure message to print if something went wrong */

FAILURE: printf("\nDouble precision Helmholtz example on a whole sphere has
FAILED to compute the solution...\n");

return -1;

SUCCESS: return 0;

/* End of the example code */

}

Fortran-90 code for the problem is presented below:

2954

C Intel® Math Kernel Library Reference Manual

Example C-39 Fortran Example to Solve Helmholtz Problem on a Sphere
!***

! INTEL CONFIDENTIAL

! Copyright(C) 2006 Intel Corporation. All Rights Reserved.

! The source code contained or described herein and all documents related
to

! the source code ("Material") are owned by Intel Corporation or its
suppliers

! or licensors. Title to the Material remains with Intel Corporation
or its

! suppliers and licensors. The Material contains trade secrets and
proprietary

! and confidential information of Intel or its suppliers and licensors.
The

! Material is protected by worldwide copyright and trade secret laws
and

! treaty provisions. No part of the Material may be used, copied,
reproduced,

! modified, published, uploaded, posted, transmitted, distributed or
disclosed

! in any way without Intel's prior express written permission.

! No license under any patent, copyright, trade secret or other
intellectual

! property right is granted to or conferred upon you by disclosure or
delivery

! of the Materials, either expressly, by implication, inducement, estoppel
or

! otherwise. Any license under such intellectual property rights
must be

! express and approved by Intel in writing.

!

!***

! Content:

! Fortran-90 precision example of solving Helmholtz problem on a whole

2955

Code Examples C

sphere

! using MKL Poisson Library

!

!***

!

program d_sph_with_poles

! Include modules defined by mkl_poisson.f90 and mkl_dfti.f90 header files

use mkl_dfti

use mkl_poisson

implicit none

integer np,nt

parameter(np=8,nt=8)

double precision pi

parameter(pi=3.14159265358979324D0)

double precision ap,bp,hp,at,bt,ht,q,lp,lt,theta_i,ct

double precision u(np+1,nt+1),f(np+1,nt+1)

type(DFTI_DESCRIPTOR), pointer :: handle_s, handle_c

integer stat

double precision dpar(7*np/2+10)

integer ip,it,i

integer ipar(128)

2956

C Intel® Math Kernel Library Reference Manual

! Printing the header for the example

print *, ''

print *, ' Example of use of MKL Poisson Library'

print *, ' **'

print *, ''

print *, ' This example gives the solution of Helmholtz problem on a
whole sphere'

print *, ' 0<p<2*pi, 0<t<pi, with Helmholtz coefficient q=1 and
right-hand side'

print *, ' f(p,t)=3*cos(t)'

print *, '
---'

print *, ' In general, the error should be of order
O(1.0/np^2+1.0/nt^2)'

print '(1x,a,I1)', ' For this example, the value of np=nt is ', np

print *, ' The approximation error should be of order 0.15E+0, if
everything is OK'

print *, '
---'

print *, ' Note that np should be divisible by 4 to solve the PERIODIC
problem!'

print *, '
---'

print *, ' DOUBLE PRECISION COMPUTATIONS
'

print *, '
==='

print *, ''

2957

Code Examples C

! Defining the rectangular domain on a sphere 0<p<2*pi, 0<t<pi for Helmholtz
Solver on a sphere

! Poisson Library will automatically detect that this problem is on a whole
sphere!

ap=0.0D0

bp=2*pi

at=0.0D0

bt=pi

! Setting the coefficient q to 1.0D0 for Helmholtz problem

! If you like to solve Poisson problem, please set q to 0.0D0

q=1.0D0

! Computing the mesh size hp in phi-direction

lp=bp-ap

hp=lp/np

! Computing the mesh size ht in theta-direction

lt=bt-at

ht=lt/nt

! Filling in the values of the TRUE solution u(p,t)=cos(t)

! in the mesh points into the array u

! Filling in the right-hand side f(p,t)=3*cos(t)

! in the mesh points into the array f.

! We choose the right-hand side to correspond to the TRUE solution of
Helmholtz equation.

! Here we are using the mesh sizes hp and ht computed before to compute

2958

C Intel® Math Kernel Library Reference Manual

! the coordinates (phi_i,theta_i) of the mesh points

do it=1,nt+1

do ip=1,np+1

theta_i=ht*(it-1)

ct=dcos(theta_i)

u(ip,it)=ct

f(ip,it)=(2.0D0+q)*ct

enddo

enddo

! Initializing ipar array to make it free from garbage

do i=1,128

ipar(i)=0

enddo

! Initializing simple data structures of Poisson Library for Helmholtz Solver
on a sphere

! As we are looking for the solution on a whole sphere, this is a PERIDOC
problem

! Therefore, the routines ending with "_P" are used to find the solution

call D_INIT_SPH_P(ap,bp,at,bt,np,nt,q,ipar,dpar,stat)

if (stat.ne.0) goto 999

! Initializing complex data structures of Poisson Library for Helmholtz
Solver on a sphere

! NOTE: Right-hand side f may be altered after the Commit step. If you want
to keep it,

2959

Code Examples C

! you should save it in another memory location!

call D_COMMIT_SPH_P(f,handle_s,handle_c,ipar,dpar,stat)

if (stat.ne.0) goto 999

! Computing the approximate solution of Helmholtz problem on a whole sphere

call D_SPH_P(f,handle_s,handle_c,ipar,dpar,stat)

if (stat.ne.0) goto 999

! Cleaning the memory used by handle_s and handle_c

call FREE_SPH_P(HANDLE_S,HANDLE_C,IPAR,STAT)

if (stat.ne.0) goto 999

! Now we can use handle_s and handle_c to solve another Helmholtz problem
after a proper initialization

! Printing the results

write(*,10) np

write(*,11) nt

print *, ''

! Watching the error along the line phi=hp

ip=1

do it=1,nt+1

write(*,12) (ip-1)*hp, (it-1)*ht, f(ip,it)-u(ip,it)

enddo

print *, ''

2960

C Intel® Math Kernel Library Reference Manual

! Success message to print if everything is OK

print *, ' Double precision Helmholtz example on a whole sphere has
successfully PASSED'

print *, ' through all steps of computation!'

! Jumping over failure message

go to 1

! Failure message to print if something went wrong

999 print *, 'Double precision Helmholtz example on a whole sphere FAILED
to compute the solution...'

1 continue

10 format(1x,'The number of mesh intervals in x-direction is np=',I1)

11 format(1x,'The number of mesh intervals in y-direction is nt=',I1)

12 format(1x,'In the mesh point (',F5.3,',',F5.3,') the error between the
computed and the true solution is equal to ', E10.3)

! End of the example code

end

2961

Code Examples C

DCBLAS Interface to the BLAS

This appendix presents CBLAS, the C interface to the Basic Linear Algebra Subprograms (BLAS) implemented
in Intel® MKL.

Similar to BLAS, the CBLAS interface includes the following levels of functions:

• “Level 1 CBLAS” (vector-vector operations)

• “Level 2 CBLAS” (matrix-vector operations)

• “Level 3 CBLAS” (matrix-matrix operations).

• “Sparse CBLAS” (operations on sparse vectors).

To obtain the C interface, the Fortran routine names are prefixed with cblas_ (for example, dasum becomes
cblas_dasum). Names of all CBLAS functions are in lowercase letters.

Complex functions ?dotc and ?dotu become CBLAS subroutines (void functions); they return the complex
result via a void pointer, added as the last parameter. CBLAS names of these functions are suffixed with
_sub. For example, the BLAS function cdotc corresponds to cblas_cdotc_sub.

In the descriptions of CBLAS interfaces, links provided for each function group lead to the descriptions of
the respective Fortran-interface BLAS functions.

CBLAS Arguments
The arguments of CBLAS functions obey the following rules:

• Input arguments are declared with the const modifier.

• Non-complex scalar input arguments are passed by value.

• Complex scalar input arguments are passed as void pointers.

• Array arguments are passed by address.

• Output scalar arguments are passed by address.

• BLAS character arguments are replaced by the appropriate enumerated type.

• Level 2 and Level 3 routines acquire an additional parameter of type CBLAS_ORDER as their first
argument. This parameter specifies whether two-dimensional arrays are row-major
(CblasRowMajor) or column-major (CblasColMajor).

2963

Enumerated Types

The CBLAS interface uses the following enumerated types:

enum CBLAS_ORDER {

CblasRowMajor=101, /* row-major arrays */

CblasColMajor=102}; /* column-major arrays */

enum CBLAS_TRANSPOSE {

CblasNoTrans=111, /* trans='N' */

CblasTrans=112, /* trans='T' */

CblasConjTrans=113}; /* trans='C' */

enum CBLAS_UPLO {

CblasUpper=121, /* uplo ='U' */

CblasLower=122}; /* uplo ='L' */

enum CBLAS_DIAG {

CblasNonUnit=131, /* diag ='N' */

CblasUnit=132}; /* diag ='U' */

enum CBLAS_SIDE {

CblasLeft=141, /* side ='L' */

CblasRight=142}; /* side ='R' */

Level 1 CBLAS
This is an interface to “BLAS Level 1 Routines and Functions”, which perform basic vector-vector
operations.

?asum

float cblas_sasum(const int N, const float *X, const int incX);

double cblas_dasum(const int N, const double *X, const int incX);

float cblas_scasum(const int N, const void *X, const int incX);

double cblas_dzasum(const int N, const void *X, const int incX);

2964

D Intel® Math Kernel Library Reference Manual

?axpy

void cblas_saxpy(const int N, const float alpha, const float *X, const int
incX, float *Y, const int incY);

void cblas_daxpy(const int N, const double alpha, const double *X, const int
incX, double *Y, const int incY);

void cblas_caxpy(const int N, const void *alpha, const void *X, const int
incX, void *Y, const int incY);

void cblas_zaxpy(const int N, const void *alpha, const void *X, const int
incX, void *Y, const int incY);

?copy

void cblas_scopy(const int N, const float *X, const int incX, float *Y, const
int incY);

void cblas_dcopy(const int N, const double *X, const int incX, double *Y,
const int incY);

void cblas_ccopy(const int N, const void *X, const int incX, void *Y, const
int incY);

void cblas_zcopy(const int N, const void *X, const int incX, void *Y, const
int incY);

?dot

float cblas_sdot(const int N, const float *X, const int incX, const float
*Y, const int incY);

double cblas_ddot(const int N, const double *X, const int incX, const double
*Y, const int incY);

?sdot

float cblas_sdsdot(const int N, const float *SB, const float *SX, const int
incX, const float *SY, const int incY);

double cblas_dsdot(const int N, const float *SX, const int incX, const float
*SY, const int incY);

2965

CBLAS Interface to the BLAS D

?dotc

void cblas_cdotc_sub(const int N, const void *X, const int incX, const void
*Y, const int incY, void *dotc);

void cblas_zdotc_sub(const int N, const void *X, const int incX, const void
*Y, const int incY, void *dotc);

?dotu

void cblas_cdotu_sub(const int N, const void *X, const int incX, const void
*Y, const int incY, void *dotu);

void cblas_zdotu_sub(const int N, const void *X, const int incX, const void
*Y, const int incY, void *dotu);

?nrm2

float cblas_snrm2(const int N, const float *X, const int incX);

double cblas_dnrm2(const int N, const double *X, const int incX);

float cblas_scnrm2(const int N, const void *X, const int incX);

double cblas_dznrm2(const int N, const void *X, const int incX);

?rot

void cblas_srot(const int N, float *X, const int incX, float *Y, const int
incY, const float c, const float s);

void cblas_drot(const int N, double *X, const int incX, double *Y,const int
incY, const double c, const double s);

?rotg

void cblas_srotg(float *a, float *b, float *c, float *s);

void cblas_drotg(double *a, double *b, double *c, double *s);

2966

D Intel® Math Kernel Library Reference Manual

?rotm

void cblas_srotm(const int N, float *X, const int incX, float *Y, const int
incY, const float *P);

void cblas_drotm(const int N, double *X, const int incX, double *Y, const
int incY, const double *P);

?rotmg

void cblas_srotmg(float *d1, float *d2, float *b1, const float b2, float
*P);

void cblas_drotmg(double *d1, double *d2, double *b1, const double b2, double
*P);

?scal

void cblas_sscal(const int N, const float alpha, float *X, const int incX);

void cblas_dscal(const int N, const double alpha, double *X, const int incX);

void cblas_cscal(const int N, const void *alpha, void *X, const int incX);

void cblas_zscal(const int N, const void *alpha, void *X, const int incX);

void cblas_csscal(const int N, const float alpha, void *X, const int incX);

void cblas_zdscal(const int N, const double alpha, void *X, const int incX);

?swap

void cblas_sswap(const int N, float *X, const int incX, float *Y, const int
incY);

void cblas_dswap(const int N, double *X, const int incX, double *Y, const
int incY);

2967

CBLAS Interface to the BLAS D

void cblas_cswap(const int N, void *X, const int incX, void *Y, const int
incY);

void cblas_zswap(const int N, void *X, const int incX, void *Y, const int
incY);

i?amax

CBLAS_INDEX cblas_isamax(const int N, const float *X, const int incX);

CBLAS_INDEX cblas_idamax(const int N, const double *X, const int incX);

CBLAS_INDEX cblas_icamax(const int N, const void *X, const int incX);

CBLAS_INDEX cblas_izamax(const int N, const void *X, const int incX);

i?amin

CBLAS_INDEX cblas_isamin(const int N, const float *X, const int incX);

CBLAS_INDEX cblas_idamin(const int N, const double *X, const int incX);

CBLAS_INDEX cblas_icamin(const int N, const void *X, const int incX);

CBLAS_INDEX cblas_izamin(const int N, const void *X, const int incX);

Level 2 CBLAS
This is an interface to “BLAS Level 2 Routines”, which perform basic matrix-vector operations.
Each C routine in this group has an additional parameter of type CBLAS_ORDER (the first
argument) that determines whether the two-dimensional arrays use column-major or row-major
storage.

2968

D Intel® Math Kernel Library Reference Manual

?gbmv

void cblas_sgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE
TransA, const int M, const int N, const int KL, const int KU, const float
alpha, const float *A, const int lda, const float *X, const int incX, const
float beta, float *Y, const int incY);

void cblas_dgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE
TransA, const int M, const int N, const int KL, const int KU, const double
alpha, const double *A, const int lda, const double *X, const int incX, const
double beta, double *Y, const int incY);

void cblas_cgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE
TransA, const int M, const int N, const int KL, const int KU, const void
*alpha, const void *A, const int lda, const void *X, const int incX, const
void *beta, void *Y, const int incY);

void cblas_zgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE
TransA, const int M, const int N, const int KL, const int KU, const void
*alpha, const void *A, const int lda, const void *X, const int incX, const
void *beta, void *Y, const int incY);

?gemv

void cblas_sgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE
TransA, const int M, const int N, const float alpha, const float *A, const
int lda, const float *X, const int incX, const float beta, float *Y, const
int incY);

void cblas_dgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE
TransA, const int M, const int N, const double alpha, const double *A, const
int lda, const double *X, const int incX, const double beta, double *Y,
const int incY);

void cblas_cgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE
TransA, const int M, const int N, const void *alpha, const void *A, const
int lda, const void *X, const int incX, const void *beta, void *Y, const int
incY);

void cblas_zgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE
TransA, const int M, const int N, const void *alpha, const void *A, const
int lda, const void *X, const int incX, const void *beta, void *Y, const int
incY);

2969

CBLAS Interface to the BLAS D

?ger

void cblas_sger(const enum CBLAS_ORDER order, const int M, const int N, const
float alpha, const float *X, const int incX, const float *Y, const int incY,
float *A, const int lda);

void cblas_dger(const enum CBLAS_ORDER order, const int M, const int N, const
double alpha, const double *X, const int incX, const double *Y, const int
incY, double *A, const int lda);

?gerc

void cblas_cgerc(const enum CBLAS_ORDER order, const int M, const int N,
const void *alpha, const void *X, const int incX, const void *Y, const int
incY, void *A, const int lda);

void cblas_zgerc(const enum CBLAS_ORDER order, const int M, const int N,
const void *alpha, const void *X, const int incX, const void *Y, const int
incY, void *A, const int lda);

?geru

void cblas_cgeru(const enum CBLAS_ORDER order, const int M, const int N,
const void *alpha, const void *X, const int incX, const void *Y, const int
incY, void *A, const int lda);

void cblas_zgeru(const enum CBLAS_ORDER order, const int M, const int N,
const void *alpha, const void *X, const int incX, const void *Y, const int
incY, void *A, const int lda);

?hbmv

void cblas_chbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const int K, const void *alpha, const void *A, const int lda,
const void *X, const int incX, const void *beta, void *Y, const int incY);

void cblas_zhbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const int K, const void *alpha, const void *A, const int lda,
const void *X, const int incX, const void *beta, void *Y, const int incY);

2970

D Intel® Math Kernel Library Reference Manual

?hemv

void cblas_chemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const void *alpha, const void *A, const int lda, const void *X,
const int incX, const void *beta, void *Y, const int incY);

void cblas_zhemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const void *alpha, const void *A, const int lda, const void *X,
const int incX, const void *beta, void *Y, const int incY);

?her

void cblas_cher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const void *X, const int incX, void *A, const
int lda);

void cblas_zher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const void *X, const int incX, void *A,
const int lda);

?her2

void cblas_cher2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const void *alpha, const void *X, const int incX, const void
*Y, const int incY, void *A, const int lda);

void cblas_zher2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const void *alpha, const void *X, const int incX, const void
*Y, const int incY, void *A, const int lda);

?hpmv

void cblas_chpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const void *alpha, const void *Ap, const void *X, const int
incX, const void *beta, void *Y, const int incY);

void cblas_zhpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const void *alpha, const void *Ap, const void *X, const int
incX, const void *beta, void *Y, const int incY);

2971

CBLAS Interface to the BLAS D

?hpr

void cblas_chpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const void *X, const int incX, void *A);

void cblas_zhpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const void *X, const int incX, void *A);

?hpr2

void cblas_chpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const void *alpha, const void *X, const int incX, const void
*Y, const int incY, void *Ap);

void cblas_zhpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const void *alpha, const void *X, const int incX, const void
*Y, const int incY, void *Ap);

?sbmv

void cblas_ssbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const int K, const float alpha, const float *A, const int lda,
const float *X, const int incX, const float beta, float *Y, const int incY);

void cblas_dsbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const int K, const double alpha, const double *A, const int
lda, const double *X, const int incX, const double beta, double *Y, const
int incY);

?spmv

void cblas_sspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const float *Ap, const float *X, const int
incX, const float beta, float *Y, const int incY);

void cblas_dspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const double *Ap, const double *X, const
int incX, const double beta, double *Y, const int incY);

2972

D Intel® Math Kernel Library Reference Manual

?spr

void cblas_sspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const float *X, const int incX, float *Ap);

void cblas_dspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const double *X, const int incX, double
*Ap);

?spr2

void cblas_sspr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const float *X, const int incX, const float
*Y, const int incY, float *A);

void cblas_dspr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const double *X, const int incX, const
double *Y, const int incY, double *A);

?symv

void cblas_ssymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const float *A, const int lda, const float
*X, const int incX, const float beta, float *Y, const int incY);

void cblas_dsymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const double *A, const int lda, const double
*X, const int incX, const double beta, double *Y, const int incY);

?syr

void cblas_ssyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const float *X, const int incX, float *A,
const int lda);

void cblas_dsyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const double *X, const int incX, double *A,
const int lda);

2973

CBLAS Interface to the BLAS D

?syr2

void cblas_ssyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const float *X, const int incX, const float
*Y, const int incY, float *A, const int lda);

void cblas_dsyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const double *X, const int incX, const
double *Y, const int incY, double *A, const int lda);

?tbmv

void cblas_stbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,
const int K, const float *A, const int lda, float *X, const int incX);

void cblas_dtbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,
const int K, const double *A, const int lda, double *X, const int incX);

void cblas_ctbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,
const int K, const void *A, const int lda, void *X, const int incX);

void cblas_ztbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,
const int K, const void *A, const int lda, void *X, const int incX);

?tbsv

void cblas_stbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,
const int K, const float *A, const int lda, float *X, const int incX);

void cblas_dtbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,
const int K, const double *A, const int lda, double *X, const int incX);

void cblas_ctbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,
const int K, const void *A, const int lda, void *X, const int incX);

2974

D Intel® Math Kernel Library Reference Manual

void cblas_ztbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,
const int K, const void *A, const int lda, void *X, const int incX);

?tpmv

void cblas_stpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,
const float *Ap, float *X, const int incX);

void cblas_dtpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,
const double *Ap, double *X, const int incX);

void cblas_ctpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const void *Ap, void *X, const int incX);

void cblas_ztpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const void *Ap, void *X, const int incX);

?tpsv

void cblas_stpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const float *Ap, float *X, const int incX);

void cblas_dtpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const double *Ap, double *X, const int incX);

void cblas_ctpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const void *Ap, void *X, const int incX);

void cblas_ztpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const void *Ap, void *X, const int incX);

2975

CBLAS Interface to the BLAS D

?trmv

void cblas_strmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const float *A, const int lda, float *X, const int incX);

void cblas_dtrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const double *A, const int lda, double *X, const int incX);

void cblas_ctrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const void *A, const int lda, void *X, const int incX);

void cblas_ztrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const void *A, const int lda, void *X, const int incX);

?trsv

void cblas_strsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const float *A, const int lda, float *X, const int incX);

void cblas_dtrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const double *A, const int lda, double *X, const int incX);

void cblas_ctrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const void *A, const int lda, void *X, const int incX);

void cblas_ztrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
N,const void *A, const int lda, void *X, const int incX);

2976

D Intel® Math Kernel Library Reference Manual

Level 3 CBLAS
This is an interface to “BLAS Level 3 Routines”, which perform basic matrix-matrix operations.
Each C routine in this group has an additional parameter of type CBLAS_ORDER (the first
argument) that determines whether the two-dimensional arrays use column-major or row-major
storage.

?gemm

void cblas_sgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE
TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const
int K, const float alpha, const float *A, const int lda, const float *B,
const int ldb, const float beta, float *C, const int ldc);

void cblas_dgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE
TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const
int K, const double alpha, const double *A, const int lda, const double *B,
const int ldb, const double beta, double *C, const int ldc);

void cblas_cgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE
TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const
int K, const void *alpha, const void *A, const int lda, const void *B, const
int ldb, const void *beta, void *C, const int ldc);

void cblas_zgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE
TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const
int K, const void *alpha, const void *A, const int lda, const void *B, const
int ldb, const void *beta, void *C, const int ldc);

?hemm

void cblas_chemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha,
const void *A, const int lda, const void *B, const int ldb, const void *beta,
void *C, const int ldc);

void cblas_zhemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha,
const void *A, const int lda, const void *B, const int ldb, const void *beta,
void *C, const int ldc);

2977

CBLAS Interface to the BLAS D

?herk

void cblas_cherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float
alpha, const void *A, const int lda, const float beta, void *C, const int
ldc);

void cblas_zherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double
alpha, const void *A, const int lda, const double beta, void *C, const int
ldc);

?her2k

void cblas_cher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void
*alpha, const void *A, const int lda, const void *B, const int ldb, const
float beta, void *C, const int ldc);

void cblas_zher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void
*alpha, const void *A, const int lda, const void *B, const int ldb, const
double beta, void *C, const int ldc);

?symm

void cblas_ssymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const int M, const int N, const float alpha,
const float *A, const int lda, const float *B, const int ldb, const float
beta, float *C, const int ldc);

void cblas_dsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const int M, const int N, const double alpha,
const double *A, const int lda, const double *B, const int ldb, const double
beta, double *C, const int ldc);

void cblas_csymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha,
const void *A, const int lda, const void *B, const int ldb, const void *beta,
void *C, const int ldc);

2978

D Intel® Math Kernel Library Reference Manual

void cblas_zsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha,
const void *A, const int lda, const void *B, const int ldb, const void *beta,
void *C, const int ldc);

?syrk

void cblas_ssyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float
alpha, const float *A, const int lda, const float beta, float *C, const int
ldc);

void cblas_dsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double
alpha, const double *A, const int lda, const double beta, double *C, const
int ldc);

void cblas_csyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha,
const void *A, const int lda, const void *beta, void *C, const int ldc);

void cblas_zsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha,
const void *A, const int lda, const void *beta, void *C, const int ldc);

?syr2k

void cblas_ssyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float
alpha, const float *A, const int lda, const float *B, const int ldb, const
float beta, float *C, const int ldc);

void cblas_dsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double
alpha, const double *A, const int lda, const double *B, const int ldb, const
double beta, double *C, const int ldc);

void cblas_csyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSP SE Trans, const int N, const int K, const void
*alpha,const void *A, const int lda, const void *B, const int ldb, const
void *beta, void *C, const int ldc);

2979

CBLAS Interface to the BLAS D

void cblas_zsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void
*alpha, const void *A, const int lda, const void *B, const int ldb, const
void *beta, void *C, const int ldc);

?trmm

void cblas_strmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int M, const int N, const float alpha, const float
*A, const int lda, float *B, const int ldb);

void cblas_dtrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int M, const int N, const double alpha, const double
*A, const int lda, double *B, const int ldb);

void cblas_ctrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A,
const int lda, void *B, const int ldb);

void cblas_ztrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A,
const int lda, void *B, const int ldb);

?trsm

void cblas_strsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int M, const int N, const float alpha, const float
*A, const int lda, float *B, const int ldb);

void cblas_dtrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int M, const int N, const double alpha, const double
*A, const int lda, double *B, const int ldb);

void cblas_ctrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A,
const int lda, void *B, const int ldb);

2980

D Intel® Math Kernel Library Reference Manual

void cblas_ztrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A,
const int lda, void *B, const int ldb);

Sparse CBLAS
This is an interface to “Sparse BLAS Level 1 Routines and Functions”, which perform a number
of common vector operations on sparse vectors stored in compressed form.

Note that all index parameters, indx, are in C-type notation and vary in the range [0..N-1].

?axpyi

void cblas_saxpyi(const int N, const float alpha, const float *X, const int
*indx, float *Y);

void cblas_daxpyi(const int N, const double alpha, const double *X, const
int *indx, double *Y);

void cblas_caxpyi(const int N, const void *alpha, const void *X, const int
*indx, void *Y);

void cblas_zaxpyi(const int N, const void *alpha, const void *X, const int
*indx, void *Y);

?doti

float cblas_sdoti(const int N, const float *X, const int *indx, const float
*Y);

double cblas_ddoti(const int N, const double *X, const int *indx, const
double *Y);

?dotci

void cblas_cdotci_sub(const int N, const void *X, const int *indx, const
void *Y, void *dotui);

void cblas_zdotci_sub(const int N, const void *X, const int *indx, const
void *Y, void *dotui);

2981

CBLAS Interface to the BLAS D

?dotui

void cblas_cdotui_sub(const int N, const void *X, const int *indx, const
void *Y, void *dotui);

void cblas_zdotui_sub(const int N, const void *X, const int *indx, const
void *Y, void *dotui);

?gthr

void cblas_sgthr(const int N, const float *Y, float *X, const int *indx);

void cblas_dgthr(const int N, const double *Y, double *X, const int *indx);

void cblas_cgthr(const int N, const void *Y, void *X, const int *indx);

void cblas_zgthr(const int N, const void *Y, void *X, const int *indx);

?gthrz

void cblas_sgthrz(const int N, float *Y, float *X, const int *indx);

void cblas_dgthrz(const int N, double *Y, double *X, const int *indx);

void cblas_cgthrz(const int N, void *Y, void *X, const int *indx);

void cblas_zgthrz(const int N, void *Y, void *X, const int *indx);

?roti

void cblas_sroti(const int N, float *X, const int *indx, float *Y, const
float c, const float s);

void cblas_droti(const int N, double *X, const int *indx, double *Y, const
double c, const double s);

?sctr

void cblas_ssctr(const int N, const float *X, const int *indx, float *Y);

void cblas_dsctr(const int N, const double *X, const int *indx, double *Y);

void cblas_csctr(const int N, const void *X, const int *indx, void *Y);

void cblas_zsctr(const int N, const void *X, const int *indx, void *Y);

2982

D Intel® Math Kernel Library Reference Manual

ESpecific Features of Fortran-95
Interfaces for LAPACK Routines

Intel® MKL implements Fortran-95 interface for LAPACK package, further referred to as MKL LAPACK-95,
to provide full capacity of MKL Fortran-77 LAPACK routines. This is the principal difference of Intel MKL
from the Netlib Fortran-95 implementation for LAPACK.

A new feature of MKL LAPACK-95 by comparison with Intel MKL LAPACK-77 implementation is presenting
a package of source interfaces along with wrappers that make the implementation compiler-independent.
As a result, the MKL LAPACK package can be used in all programming environments intended for Fortran-95.

Depending on the degree and type of difference from Netlib implementation, the MKL LAPACK-95 interfaces
fall into several groups that require different transformations (see “MKL Fortran-95 Interfaces for LAPACK
Routines vs. Netlib Implementation”). The groups are given in full with the calling sequences of the routines
and appropriate differences from Netlib analogs.

The following conventions are used:
<interface> ::= <name of interface> ‘(’ <arguments list>‘)’

<arguments list> ::= <first argument> {<argument>}*

<first argument> ::= < identifier >

<argument> ::= <required argument>|<optional argument>

<required argument> ::= ‘,’ <identifier>

<optional argument> ::= ‘[,’ <identifier> ‘]’

<name of interface> ::= <identifier>

where defined notions are separated from definitions by ::=, notion names are marked by angle brackets,
terminals are given in quotes, and {…}* denotes repetition zero, one, or more times.

<first argument> and each <required argument> should be present in all calls of denoted interface,
<optional argument> may be omitted. Comments to interface definitions are provided where necessary.
Comment lines begin with character !.Two interfaces with one name are presented when two variants of
subroutine calls (separated by types of arguments) exist.

2983

Interfaces Identical to Netlib
GETRI(A, IPIV [,INFO])

GEEQU(A,R,C[,ROWCND][,COLCND][,AMAX][,INFO])

GESV(A,B[,IPIV][,INFO])

GESVX(A,B,X[,AF][,IPIV][,FACT][,TRANS][,EQUED][,R][,C][,FERR][,BERR]

[,RCOND][,RPVGRW][,INFO])

GBSV(A,B[,KL][,IPIV][,INFO])

GTSV(DL,D,DU,B[,INFO])

GTSVX(DL,D,DU,B,X[,DLF][,DF][,DUF][,DU2][,IPIV][,FACT][,TRANS][,FERR]

[,BERR][,RCOND][,INFO])

POSV(A,B[,UPLO][,INFO])

POSVX(A,B,X[,UPLO][,AF][,FACT][,EQUED][,S][,FERR][,BERR][,RCOND][,INFO])

PPSV(A,B[,UPLO][,INFO])

PPSVX(A,B,X[,UPLO][,AF][,FACT][,EQUED][,S][,FERR][,BERR][,RCOND][,INFO])

PBSV(A,B[,UPLO][,INFO])

PBSVX(A,B,X[,UPLO][,AF][,FACT][,EQUED][,S][,FERR][,BERR][,RCOND][,INFO])

PTSV(D,E,B[,INFO])

PTSVX(D,E,B,X[,DF][,EF][,FACT][,FERR][,BERR][,RCOND][,INFO])

SYSV(A,B[,UPLO][,IPIV][,INFO])

SYSVX(A,B,X[,UPLO][,AF][,IPIV][,FACT][,FERR][,BERR][,RCOND][,INFO])

HESVX(A,B,X[,UPLO][,AF][,IPIV][,FACT][,FERR][,BERR][,RCOND][,INFO])

SYTRD(A,TAU[,UPLO][,INFO])

ORGTR(A,TAU[,UPLO][,INFO])

HETRD(A,TAU[,UPLO][,INFO])

UNGTR(A,TAU[,UPLO][,INFO])

SYGST(A,B[,ITYPE][,UPLO][,INFO])

HEGST(A,B[,ITYPE][,UPLO][,INFO])

2984

E Intel® Math Kernel Library Reference Manual

GELS(A,B[,TRANS][,INFO])

GELSY(A,B[,RANK][,JPVT][,RCOND][,INFO])

GELSS(A,B[,RANK][,S][,RCOND][,INFO])

GELSD(A,B[,RANK][,S][,RCOND][,INFO])

GGLSE(A,B,C,D,X[,INFO])

GGGLM(A,B,D,X,Y[,INFO])

SYEV(A,W[,JOBZ][,UPLO][,INFO])

HEEV(A,W[,JOBZ][,UPLO][,INFO])

SYEVD(A,W[,JOBZ][,UPLO][,INFO])

SPEV(A,W[,UPLO][,Z][,INFO])

HPEV(A,W[,UPLO][,Z][,INFO])

SPEVD(A,W[,UPLO][,Z][,INFO])

HPEVD(A,W[,UPLO][,Z][,INFO])

SPEVX(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])

HPEVX(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])

SBEV(A,W[,UPLO][,Z][,INFO])

HBEV(A,W[,UPLO][,Z][,INFO])

SBEVD(A,W[,UPLO][,Z][,INFO])

HBEVD(A,W[,UPLO][,Z][,INFO])

SBEVX(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,Q][,ABSTOL]

[,INFO])

HBEVX(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,Q][,ABSTOL]

[,INFO])

HPGV(A,B,W[,ITYPE][,UPLO][,Z][,INFO])

STEV(D,E[,Z][,INFO])

STEVD(D,E[,Z][,INFO])

STEVX(D,E,W[,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])

STEVR(D,E,W[,Z][,VL][,VU][,IL][,IU][,M][,ISUPPZ][,ABSTOL][,INFO])

2985

Specific Features of Fortran-95 Interfaces for LAPACK Routines E

GEES(A,WR,WI[,VS][,SELECT][,SDIM][,INFO])

GEES(A,W[,VS][,SELECT][,SDIM][,INFO])

GEESX(A,WR,WI[,VS][,SELECT][,SDIM][,RCONDE][,RCONDV][,INFO])

GEESX(A,W[,VS][,SELECT][,SDIM][,RCONDE][,RCONDV][,INFO])

GEEV(A,WR,WI[,VL][,VR][,INFO])

GEEV(A,W[,VL][,VR][,INFO])

GEEVX(A,WR,WI[,VL][,VR][,BALANC][,ILO][,IHI][,SCALE][,ABNRM][,RCONDE][,RCONDV][,INFO])

GEEVX(A,W[,VL][,VR][,BALANC][,ILO][,IHI][,SCALE][,ABNRM][,RCONDE]

[,RCONDV][,INFO])

GESVD(A,S[,U][,VT][,WW][,JOB][,INFO])

GGSVD(A,B,ALPHA,BETA[,K][,L][,U][,V][,Q][,IWORK][,INFO])

SYGV(A,B,W[,ITYPE][,JOBZ][,UPLO][,INFO])

HEGV(A,B,W[,ITYPE][,JOBZ][,UPLO][,INFO])

SYGVD(A,B,W[,ITYPE][,JOBZ][,UPLO][,INFO])

HEGVD(A,B,W[,ITYPE][,JOBZ][,UPLO][,INFO])

SPGV(A,B,W[,ITYPE][,UPLO][,Z][,INFO])

SBGV(A,B,W[,UPLO][,Z][,INFO])

HBGV(A,B,W[,UPLO][,Z][,INFO])

GGES(A,B,ALPHAR,ALPHAI,BETA[,VSL][,VSR][,SELECT][,SDIM][,INFO])

GGES(A,B,ALPHA,BETA[,VSL][,VSR][,SELECT][,SDIM][,INFO])

GGESX(A,B,ALPHAR,ALPHAI,BETA[,VSL][,VSR][,SELECT][,SDIM][,RCONDE][,RCONDV][,INFO])

GGESX(A,B,ALPHA,BETA[,VSL][,VSR][,SELECT][,SDIM][,RCONDE][,RCONDV][,INFO])

GGEV(A,B,ALPHAR,ALPHAI,BETA[,VL][,VR][,INFO])

GGEV(A,B,ALPHA,BETA[,VL][,VR][,INFO])

GGEVX(A,B,ALPHAR,ALPHAI,BETA[,VL][,VR][,BALANC][,ILO][,IHI][,LSCALE][,RSCALE][,ABNRM]

[,BBNRM][,RCONDE][,RCONDV][,INFO])

GGEVX(A,B,ALPHA,BETA[,VL][,VR][,BALANC][,ILO][,IHI][,LSCALE][,RSCALE][,ABNRM]

2986

E Intel® Math Kernel Library Reference Manual

[,BBNRM][,RCONDE][,RCONDV][,INFO])

GERFS(A,AF,IPIV,B,X[,TRANS][,FERR][,BERR][,INFO])

Interfaces with Replaced Argument Names
Argument names in the routines of this group are replaced as follows:

MKL Argument NameNetlib Argument Name

AAP
AAB
AFAFP
BBP
BBB

SPSV(A,B[,UPLO][,IPIV][,INFO])

! netlib: (AP,B,UPLO,IPIV,INFO)

SPSVX(A,B,X[,UPLO][,AF][,IPIV][,FACT][,FERR][,BERR][,RCOND][,INFO])

! netlib: (A,B,X,UPLO,AFP,IPIV,FACT,FERR,BERR,RCOND,INFO)

HPSVX(A,B,X[,UPLO][,AF][,IPIV][,FACT][,FERR][,BERR][,RCOND][,INFO])

! netlib: (A,B,X,UPLO,AFP,IPIV,FACT,FERR,BERR,RCOND,INFO)

HEEVD(A,W[,JOB][,UPLO][,INFO])

! netlib: (A,W,JOBZ,UPLO,INFO)

SPGVD(A,B,W[,ITYPE][,UPLO][,Z][,INFO])

! netlib: (AP,BP,W,ITYPE,UPLO,Z,INFO)

HPGVD(A,B,W[,ITYPE][,UPLO][,Z][,INFO])

! netlib: (AP,BP,W,ITYPE,UPLO,Z,INFO)

SPGVX(A,B,W[,ITYPE][,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])

! netlib: (AP,BP,W,ITYPE,UPLO,Z,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)

HPGVX(A,B,W[,ITYPE][,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])

! netlib: (AP,BP,W,ITYPE,UPLO,Z,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)

SBGVD(A,B,W[,UPLO][,Z][,INFO])

2987

Specific Features of Fortran-95 Interfaces for LAPACK Routines E

! netlib: (AB,BB,W,UPLO,Z,INFO)

HBGVD(A,B,W[,UPLO][,Z][,INFO])

! netlib: (AB,BB,W,UPLO,Z,INFO)

SBGVX(A,B,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,Q][,ABSTOL][,INFO])

! netlib: (AB,BB,W,UPLO,Z,VL,VU,IL,IU,M,IFAIL,Q,ABSTOL,INFO)

HBGVX(A,B,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,Q][,ABSTOL][,INFO])

! netlib: (AB,BB,W,UPLO,Z,VL,VU,IL,IU,M,IFAIL,Q,ABSTOL,INFO)

GBSVX(A,B,X[,KL][,AF][,IPIV][,FACT][,TRANS][,EQUED][,R][,C][,FERR]

[,BERR][,RCOND][,RPVGRW][,INFO])

! netlib: !(A,B,X,KL,AFB,IPIV,FACT,TRANS,EQUED,R,C,FERR,

BERR,RCOND,RPVGRW,INFO)

2988

E Intel® Math Kernel Library Reference Manual

Modified Netlib Interfaces
SYEVX(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])

! Interface netlib95 exists, parameters:

! netlib: (A,W,JOBZ,UPLO,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)

! Different order for parameter UPLO, netlib: 4, mkl: 3

! Absent mkl parameter: JOBZ

! Extra mkl parameter: Z

HEEVX(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])

! Interface netlib95 exists, parameters:

! netlib: (A,W,JOBZ,UPLO,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)

! Different order for parameter UPLO, netlib: 4, mkl: 3

! Absent mkl parameter: JOBZ

! Extra mkl parameter: Z

SYEVR(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,ISUPPZ][,ABSTOL][,INFO])

! Interface netlib95 exists, parameters:

! netlib: (A,W,JOBZ,UPLO,VL,VU,IL,IU,M,ISUPPZ,ABSTOL,INFO)

! Different order for parameter UPLO, netlib: 4, mkl: 3

! Absent mkl parameter: JOBZ

! Extra mkl parameter: Z

HEEVR(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,ISUPPZ][,ABSTOL][,INFO])

! Interface netlib95 exists, parameters:

! netlib: (A,W,JOBZ,UPLO,VL,VU,IL,IU,M,ISUPPZ,ABSTOL,INFO)

! Different order for parameter UPLO, netlib: 4, mkl: 3

! Absent mkl parameter: JOBZ

! Extra mkl parameter: Z

GESDD(A,S[,U][,VT][,JOBZ][,INFO])

! Interface netlib95 exists, parameters:

2989

Specific Features of Fortran-95 Interfaces for LAPACK Routines E

! netlib: (A,S,U,VT,WW,JOB,INFO)

! Different number for parameter, netlib: 7, mkl: 6

! Absent mkl parameter: WW

! Absent mkl parameter: JOB

! Different order for parameter INFO, netlib: 7, mkl: 6

! Extra mkl parameter: JOBZ

SYGVX(A,B,W[,ITYPE][,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])

! Interface netlib95 exists, parameters:

! netlib: (A,B,W,ITYPE,JOBZ,UPLO,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)

! Different order for parameter UPLO, netlib: 6, mkl: 5

! Absent mkl parameter: JOBZ

! Extra mkl parameter: Z

HEGVX(A,B,W[,ITYPE][,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])

! Interface netlib95 exists, parameters:

! netlib: (A,B,W,ITYPE,JOBZ,UPLO,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)

! Different order for parameter UPLO, netlib: 6, mkl: 5

! Absent mkl parameter: JOBZ

! Extra mkl parameter: Z

GETRS(A,IPIV,B[,TRANS][,INFO])

! Interface netlib95 exists:

! Different intents for parameter A, netlib: INOUT, mkl: IN

2990

E Intel® Math Kernel Library Reference Manual

Interfaces Absent From Netlib
GTTRF(DL,D,DU,DU2[,IPIV][,INFO])

PPTRF(A[,UPLO][,INFO])

PBTRF(A[,UPLO][,INFO])

PTTRF(D,E[,INFO])

SYTRF(A[,UPLO][,IPIV][,INFO])

HETRF(A[,UPLO][,IPIV][,INFO])

SPTRF(A[,UPLO][,IPIV][,INFO])

HPTRF(A[,UPLO][,IPIV][,INFO])

GBTRS(A,B,IPIV[,KL][,TRANS][,INFO])

GTTRS(DL,D,DU,DU2,B,IPIV[,TRANS][,INFO])

POTRS(A,B[,UPLO][,INFO])

PPTRS(A,B[,UPLO][,INFO])

PBTRS(A,B[,UPLO][,INFO])

PTTRS(D,E,B[,INFO])

2991

Specific Features of Fortran-95 Interfaces for LAPACK Routines E

PTTRS(D,E,B[,UPLO][,INFO])

SYTRS(A,B,IPIV[,UPLO][,INFO])

HETRS(A,B,IPIV[,UPLO][,INFO])

SPTRS(A,B,IPIV[,UPLO][,INFO])

HPTRS(A,B,IPIV[,UPLO][,INFO])

TRTRS(A,B[,UPLO][,TRANS][,DIAG][,INFO])

TPTRS(A,B[,UPLO][,TRANS][,DIAG][,INFO])

TBTRS(A,B[,UPLO][,TRANS][,DIAG][,INFO])

GECON(A,ANORM,RCOND[,NORM][,INFO])

GBCON(A,IPIV,ANORM,RCOND[,KL][,NORM][,INFO])

GTCON(DL,D,DU,DU2,IPIV,ANORM,RCOND[,NORM][,INFO])

POCON(A,ANORM,RCOND[,UPLO][,INFO])

PPCON(A,ANORM,RCOND[,UPLO][,INFO])

PBCON(A,ANORM,RCOND[,UPLO][,INFO])

PTCON(D,E,ANORM,RCOND[,INFO])

SYCON(A,IPIV,ANORM,RCOND[,UPLO][,INFO])

HECON(A,IPIV,ANORM,RCOND[,UPLO][,INFO])

SPCON(A,IPIV,ANORM,RCOND[,UPLO][,INFO])

HPCON(A,IPIV,ANORM,RCOND[,UPLO][,INFO])

TRCON(A,RCOND[,UPLO][,DIAG][,NORM][,INFO])

TPCON(A,RCOND[,UPLO][,DIAG][,NORM][,INFO])

TBCON(A,RCOND[,UPLO][,DIAG][,NORM][,INFO])

GBRFS(A,AF,IPIV,B,X[,KL][,TRANS][,FERR][,BERR][,INFO])

GTRFS(DL,D,DU,DLF,DF,DUF,DU2,IPIV,B,X[,TRANS][,FERR][,BERR][,INFO])

PORFS(A,AF,B,X[,UPLO][,FERR][,BERR][,INFO])

PPRFS(A,AF,B,X[,UPLO][,FERR][,BERR][,INFO])

PBRFS(A,AF,B,X[,UPLO][,FERR][,BERR][,INFO])

PTRFS(D,DF,E,EF,B,X[,FERR][,BERR][,INFO])

2992

E Intel® Math Kernel Library Reference Manual

PTRFS(D,DF,E,EF,B,X[,UPLO][,FERR][,BERR][,INFO])

SYRFS(A,AF,IPIV,B,X[,UPLO][,FERR][,BERR][,INFO])

HERFS(A,AF,IPIV,B,X[,UPLO][,FERR][,BERR][,INFO])

SPRFS(A,AF,IPIV,B,X[,UPLO][,FERR][,BERR][,INFO])

HPRFS(A,AF,IPIV,B,X[,UPLO][,FERR][,BERR][,INFO])

TRRFS(A,B,X[,UPLO][,TRANS][,DIAG][,FERR][,BERR][,INFO])

TPRFS(A,B,X[,UPLO][,TRANS][,DIAG][,FERR][,BERR][,INFO])

TBRFS(A,B,X[,UPLO][,TRANS][,DIAG][,FERR][,BERR][,INFO])

POTRI(A[,UPLO][,INFO])

PPTRI(A[,UPLO][,INFO])

SYTRI(A,IPIV[,UPLO][,INFO])

HETRI(A,IPIV[,UPLO][,INFO])

SPTRI(A,IPIV[,UPLO][,INFO])

HPTRI(A,IPIV[,UPLO][,INFO])

TRTRI(A[,UPLO][,DIAG][,INFO])

TPTRI(A[,UPLO][,DIAG][,INFO])

GBEQU(A,R,C[,KL][,ROWCND][,COLCND][,AMAX][,INFO])

POEQU(A,S[,SCOND][,AMAX][,INFO])

PPEQU(A,S[,SCOND][,AMAX][,UPLO][,INFO])

PBEQU(A,S[,SCOND][,AMAX][,UPLO][,INFO])

HESV(A,B[,UPLO][,IPIV][,INFO])

HPSV(A,B[,UPLO][,IPIV][,INFO])

GEQRF(A[,TAU][,INFO])

GEQPF(A,JPVT[,TAU][,INFO])

GEQP3(A,JPVT[,TAU][,INFO])

ORGQR(A,TAU[,INFO])

ORMQR(A,TAU,C[,SIDE][,TRANS][,INFO])

UNGQR(A,TAU[,INFO])

2993

Specific Features of Fortran-95 Interfaces for LAPACK Routines E

UNMQR(A,TAU,C[,SIDE][,TRANS][,INFO])

GELQF(A[,TAU][,INFO])

ORGLQ(A,TAU[,INFO])

ORMLQ(A,TAU,C[,SIDE][,TRANS][,INFO])

UNGLQ(A,TAU[,INFO])

UNMLQ(A,TAU,C[,SIDE][,TRANS][,INFO])

GEQLF(A[,TAU][,INFO])

ORGQL(A,TAU[,INFO])

UNGQL(A,TAU[,INFO])

ORMQL(A,TAU,C[,SIDE][,TRANS][,INFO])

UNMQL(A,TAU,C[,SIDE][,TRANS][,INFO])

GERQF(A[,TAU][,INFO])

ORGRQ(A,TAU[,INFO])

UNGRQ(A,TAU[,INFO])

ORMRQ(A,TAU,C[,SIDE][,TRANS][,INFO])

UNMRQ(A,TAU,C[,SIDE][,TRANS][,INFO])

TZRZF(A[,TAU][,INFO])

ORMRZ(A,TAU,C,L[,SIDE][,TRANS][,INFO])

UNMRZ(A,TAU,C,L[,SIDE][,TRANS][,INFO])

GGQRF(A,B[,TAUA][,TAUB][,INFO])

GGRQF(A,B[,TAUA][,TAUB][,INFO])

GEBRD(A[,D][,E][,TAUQ][,TAUP][,INFO])

GBBRD(A[,C][,D][,E][,Q][,PT][,KL][,M][,INFO])

ORGBR(A,TAU[,VECT][,INFO])

ORMBR(A,TAU,C[,VECT][,SIDE][,TRANS][,INFO])

ORMTR(A,TAU,C[,SIDE][,UPLO][,TRANS][,INFO])

UNGBR(A,TAU[,VECT][,INFO])

UNMBR(A,TAU,C[,VECT][,SIDE][,TRANS][,INFO])

2994

E Intel® Math Kernel Library Reference Manual

BDSQR(D,E[,VT][,U][,C][,UPLO][,INFO])

BDSDC(D,E[,U][,VT][,Q][,IQ][,UPLO][,INFO])

UNMTR(A,TAU,C[,SIDE][,UPLO][,TRANS][,INFO])

SPTRD(A,TAU[,UPLO][,INFO])

OPGTR(A,TAU,Q[,UPLO][,INFO])

OPMTR(A,TAU,C[,SIDE][,UPLO][,TRANS][,INFO])

HPTRD(A,TAU[,UPLO][,INFO])

UPGTR(A,TAU,Q[,UPLO][,INFO])

UPMTR(A,TAU,C[,SIDE][,UPLO][,TRANS][,INFO])

SBTRD(A[,Q][,VECT][,UPLO][,INFO])

HBTRD(A[,Q][,VECT][,UPLO][,INFO])

STERF(D,E[,INFO])

STEQR(D,E[,Z][,COMPZ][,INFO])

STEDC(D,E[,Z][,COMPZ][,INFO])

STEGR(D,E,W[,Z][,VL][,VU][,IL][,IU][,M][,ISUPPZ][,ABSTOL][,INFO])

PTEQR(D,E[,Z][,COMPZ][,INFO])

STEBZ(D,E,M,NSPLIT,W,IBLOCK,ISPLIT[,ORDER][,VL][,VU][,IL][,IU][,ABSTOL][,INFO])

STEIN(D,E,W,IBLOCK,ISPLIT,Z[,IFAILV][,INFO])

DISNA(D,SEP[,JOB][,MINMN][,INFO])

SPGST(A,B[,ITYPE][,UPLO][,INFO])

HPGST(A,B[,ITYPE][,UPLO][,INFO])

SBGST(A,B[,X][,UPLO][,INFO])

HBGST(A,B[,X][,UPLO][,INFO])

PBSTF(B[,UPLO][,INFO])

GEHRD(A[,TAU][,ILO][,IHI][,INFO])

ORGHR(A,TAU[,ILO][,IHI][,INFO])

ORMHR(A,TAU,C[,ILO][,IHI][,SIDE][,TRANS][,INFO])

UNGHR(A,TAU[,ILO][,IHI][,INFO])

2995

Specific Features of Fortran-95 Interfaces for LAPACK Routines E

UNMHR(A,TAU,C[,ILO][,IHI][,SIDE][,TRANS][,INFO])

GEBAL(A[,SCALE][,ILO][,IHI][,JOB][,INFO])

GEBAK(V,SCALE[,ILO][,IHI][,JOB][,SIDE][,INFO])

HSEQR(H,WR,WI[,ILO][,IHI][,Z][,JOB][,COMPZ][,INFO])

HSEQR(H,W[,ILO][,IHI][,Z][,JOB][,COMPZ][,INFO])

HSEIN(H,WR,WI,SELECT[,VL][,VR][,IFAILL][,IFAILR][,INITV][,EIGSRC][,M][,INFO])

HSEIN(H,W,SELECT[,VL][,VR][,IFAILL][,IFAILR][,INITV][,EIGSRC][,M][,INFO])

TREVC(T[,HOWMNY][,SELECT][,VL][,VR][,M][,INFO])

TRSNA(T[,S][,SEP][,VL][,VR][,SELECT][,M][,INFO])

TREXC(T,IFST,ILST[,Q][,INFO])

TRSEN(T,SELECT[,WR][,WI][,M][,S][,SEP][,Q][,INFO])

TRSEN(T,SELECT[,W][,M][,S][,SEP][,Q][,INFO])

TRSYL(A,B,C,SCALE[,TRANA][,TRANB][,ISGN][,INFO])

GGHRD(A,B[,ILO][,IHI][,Q][,Z][,COMPQ][,COMPZ][,INFO])

GGBAL(A,B[,ILO][,IHI][,LSCALE][,RSCALE][,JOB][,INFO])

GGBAK(V[,ILO][,IHI][,LSCALE][,RSCALE][,JOB][,INFO])

HGEQZ(H,T[,ILO][,IHI][,ALPHAR][,ALPHAI][,BETA][,Q][,Z][,JOB][,COMPQ][,COMPZ][,INFO])

HGEQZ(H,T[,ILO][,IHI][,ALPHA][,BETA][,Q][,Z][,JOB][,COMPQ][,COMPZ][,INFO])

TGEVC(S,P[,HOWMNY][,SELECT][,VL][,VR][,M][,INFO])

TGEXC(A,B[,IFST][,ILST][,Z][,Q][,INFO])

TGSEN(A,B,SELECT[,ALPHAR][,ALPHAI][,BETA][,IJOB][,Q][,Z][,PL][,PR][,DIF][,M][,INFO])

TGSEN(A,B,SELECT[,ALPHA][,BETA][,IJOB][,Q][,Z][,PL][,PR][,DIF][,M][,INFO])

TGSYL(A,B,C,D,E,F[,IJOB][,TRANS][,SCALE][,DIF][,INFO])

TGSNA(A,B[,S][,DIF][,VL][,VR][,SELECT][,M][,INFO])

GGSVP(A,B,TOLA,TOLB[,K][,L][,U][,V][,Q][,INFO])

TGSJA(A,B,TOLA,TOLB,K,L[,U][,V][,Q][,JOBU][,JOBV][,JOBQ][,ALPHA][,BETA][,NCYCLE][,INFO])

2996

E Intel® Math Kernel Library Reference Manual

Interfaces of New Functionality
GETRF(A[,IPIV][,INFO])

! Interface netlib95 exists, parameters:

! netlib: (A,IPIV,RCOND,NORM,INFO)

! Different number for parameter, netlib: 5, mkl: 3

! Different order for parameter INFO, netlib: 5, mkl: 3

! Absent mkl parameter: NORM

! Absent mkl parameter: RCOND

GBTRF(A[,KL][,M][,IPIV][,INFO])

! Interface netlib95 exists, parameters:

! netlib: (A,K,M,IPIV,RCOND,NORM,INFO)

! Different number for parameter, netlib: 7, mkl: 5

! Different order for parameter INFO, netlib: 7, mkl: 5

! Absent mkl parameter: NORM

! Replace parameter name: netlib: K: mkl: KL

! Absent mkl parameter: RCOND

POTRF(A[,UPLO][,INFO])

! Interface netlib95 exists, parameters:

! netlib: (A,UPLO,RCOND,NORM,INFO)

! Different number for parameter, netlib: 5, mkl: 3

! Different order for parameter INFO, netlib: 5, mkl: 3

! Absent mkl parameter: NORM

! Absent mkl parameter: RCOND

2997

Specific Features of Fortran-95 Interfaces for LAPACK Routines E

FOptimization Solvers Basics

Classical optimization methods are linear methods that are based on calculation of direction and searching
for the best point in the direction of the chosen gradient. Direction is calculated on each iteration. Examples
of these methods are Conjugate Gradients method and Quickest Descent Method. Method of searching
for direction usually requires calculation of subtask that approximates the objective function in neighborhood
of the current point.

Optimization problems are generally made up of three basic components:

• An objective function that needs to be minimized or maximized. For instance, in a manufacturing
process, you might want to maximize the profit or minimize the cost. In fitting experimental data to
a user-defined model, the total deviation of observed data can be minimized from predictions based
on the model.

• A set of unknowns or variables that affect the value of the objective function. In the manufacturing
problem, the variables might include the amounts of different resources used or the time spent on
each activity. In fitting-the-data problem, the unknowns are the parameters that define the model.

• A set of constraints that allow the unknowns to take on certain values but exclude others. For the
manufacturing problem, it does not make sense to spend a negative amount of time on any activity,
so all the "time" variables are constrained to be non-negative.

So the optimization problem can be formulated as follows: Find values of the variables that minimize
or maximize the objective function while satisfying the constraints.

Intel® MKL provides math optimization tools, namely the Trust-Region (TR) solvers routines for solving
nonlinear least squares problem with or without linear (bound) constraints.

Nonlinear Least Square Problem
Nonlinear least squares problem can be described as follows:

where F(x) : Rn → R is a twice differentiable function in Rn. Solving of nonlinear least squares
problem is searching for the best approximation to vector y with the model function that has nonlinear
dependence on variables Ñ�. Best approximation means that the sum of squares of residuals is the
lowest possible.

2999

Let us designate

so

where R(x)={ri(x)}, i = 1, ... m.

Trust Region Algorithm
The Trust Region (TR) algorithms are relatively new iterative algorithms for solving nonlinear
optimization problems. They are widely used in power engineering, finance, applied mathematics,
physics, computer science, economics, sociology, biology, medicine, mechanical engineering,
chemistry, and other areas. TR methods have global convergence and local super convergence,
which differenciates them from line search methods and Newton methods. TR methods have
better convergence when compared with widely-used Newton-type methods.

The main idea behind TR algorithm is calculating a trial step and checking if the next values of
х+ belong to the trust region [Conn00]. Calculation of the trial step is strongly associated
with the approximation model.

If the nonlinear least squares problem is defined as

then the trial step is solution of the following subproblem:

3000

F Intel® Math Kernel Library Reference Manual

This operation is approximation of the objective function in neighborhood of the current point
x.

Let us consider a TR algorithm with boundary (linear) constraints :

The first-order necessary conditions for the vector to be minimized with this constraint are
stated as

where D is the diagonal scaling matrix

with

for i = 1, ..., n.

Assume Ω ={x ∈ Rn: l ≤ x ≤ u} ⊂ Rn, and write int(Ω) for the strict nonempty interior

of Ω. At each iteration, the basic structure of the method involves solution of an elliptical
trust-region subproblem and computation of a search step to update the current iteratation.

3001

Optimization Solvers Basics F

Assume xi ∈ int(Ω) and the trust region size Δk > 0. Consider the elliptical trust-region
subproblem given by

Let ptr(Δk) and pc(Δk) be a solution and a Cauchy point of the above trust-region subproblem
respectively [Conn00]. The search step (trial-step) used in the algorithm is defined by a linear
combination of two vectors ptr(Δk) and pc(Δk), that is,

A good agreement between the model function mk and the objective function f is ensured for
the following standard condition:

for the given constant β2 ∈ (0,1). If this condition is not met, reject p(Δk) and the trust-region

size Δk is adjusted to be successive reduction so that p(Δk) satisfies the accuracy requirement.

3002

F Intel® Math Kernel Library Reference Manual

Bibliography
For more information about the BLAS, Sparse BLAS, LAPACK, ScaLAPACK, Sparse Solver, Interval
Solver, VML, VSL, and DFT functionality, refer to the following publications:

• BLAS Level 1

C. Lawson, R. Hanson, D. Kincaid, and F. Krough. Basic Linear Algebra Subprograms for Fortran
Usage, ACM Transactions on Mathematical Software, Vol.5, No.3 (September 1979) 308-325.

• BLAS Level 2

J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended Set of Fortran Basic Linear
Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.14, No.1 (March 1988)
1-32.

• BLAS Level 3

J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling. A Set of Level 3 Basic Linear Algebra
Subprograms, ACM Transactions on Mathematical Software (December 1989).

• Sparse BLAS

D. Dodson, R. Grimes, and J. Lewis. Sparse Extensions to the FORTRAN Basic Linear Algebra
Subprograms, ACM Transactions on Math Software, Vol.17, No.2 (June 1991).

D. Dodson, R. Grimes, and J. Lewis. Algorithm 692: Model Implementation and Test Package for
the Sparse Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software,
Vol.17, No.2 (June 1991).

I.S.Duff, A.M.Erisman, and J.K.Reid. Direct Methods for Sparse Matrices.
Clarendon Press, Oxford, UK, 1986.

[Duff86]

Compaq Extended Math Library. Reference Guide, Oct.2001.[CXML01]

K.Remington. A NIST FORTRAN Sparse Blas User's Guide. (available on
http://math.nist.gov/~KRemington/fspblas/)

[Rem05]

Y.Saad. SPARSKIT: A Basic Tool-kit for Sparse Matrix Computation.
Version 2, 1994.(http://www.cs.umn.edu/~saad)

[Saad94]

Y.Saad. Iterative Methods for Linear Systems. PWS Publishing, Boston,
1996.

[Saad96]

• LAPACK

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D.
Sorensen. LAPACK Users' Guide, Third Edition, Society for Industrial and
Applied Mathematics (SIAM), 1999.

[LUG]

G. Golub and C. Van Loan. Matrix Computations, Johns Hopkins University
Press, Baltimore, third edition,1996.

[Golub96]

http://citeseer.ist.psu.edu/bischof92framework.html[Bischof92]

3003

O.Marques, E.J.Riedy, and Ch.Voemel. Benefits of IEEE-754 Features
in Modern Symmetric Tridiagonal Eigensolvers, SIAM Journal on
Scientific Computing, Vol.28, No.5, 2006. (Tech report version in
LAPACK Working Note 172 with the same title.)

[Marques06]

W. Kahan. Accurate Eigenvalues of a Symmetric Tridiagonal Matrix,
Report CS41, Computer Science Dept., Stanford University, July 21,
1966.

[Kahan66]

I. Dhillon, B. Parlett. Multiple representations to compute orthogonal
eigenvectors of symmetric tridiagonal matrices, Linear Algebra and
its Applications, 387(1), pp. 1-28, August 2004.

[Dhillon04]

I. Dhillon, B. Parlett. Orthogonal Eigenvectors and * Relative Gaps,
SIAM Journal on Matrix Analysis and Applications, Vol. 25, 2004.
(Also LAPACK Working Note 154.)

[Dhillon04-02]

I. Dhillon. A new O(n^2) algorithm for the symmetric tridiagonal
eigenvalue/eigenvector problem, Computer Science Division Technical
Report No. UCB/CSD-97-971, UC Berkeley, May 1997.

[Dhillon97]

• ScaLAPACK

L. Blackford, J. Choi, A.Cleary, E. D'Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K.Stanley, D.
Walker, and R. Whaley. ScaLAPACK Users' Guide, Society for
Industrial and Applied Mathematics (SIAM), 1997.

[SLUG]

• Sparse Solver

I. S. Duff and J. Koster. The Design and Use of Algorithms for
Permuting Large Entries to the Diagonal of Sparse Matrices. SIAM J.
Matrix Analysis and Applications, 20(4):889-901, 1999.

[Duff99]

J. Dongarra, V.Eijkhout, A.Kalhan. Reverse Communication Interface
for Linear Algebra Templates for Iterative Methods. UT-CS-95-291,
May 1995. http://www.netlib.org/lapack/lawnspdf/lawn99.pdf

[Dong95]

G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs. SIAM Journal on Scientific
Computing, 20(1):359-392, 1998.

[Karypis98]

X.S. Li and J.W. Demmel. A Scalable Sparse Direct Solver Using
Static Pivoting. In Proceeding of the 9th SIAM conference on Parallel
Processing for Scientific Computing, San Antonio, Texas, March
22-34,1999.

[Li99]

J.W.H. Liu. Modification of the Minimum-Degree algorithm by multiple
elimination. ACM Transactions on Mathematical Software,
11(2):141-153, 1985.

[Liu85]

3004

Intel® Math Kernel Library Reference Manual

R. Menon L. Dagnum. OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Computational Science &
Engineering, 1:46-55, 1998. http://www.openmp.org.

[Menon98]

Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd edition,
SIAM, Philadelphia, PA, 2003.

[Saad03]

O. Schenk. Scalable Parallel Sparse LU Factorization Methods on
Shared Memory Multiprocessors. PhD thesis, ETH Zurich, 2000.

[Schenk00]

O. Schenk, K. Gartner, and W. Fichtner. Efficient Sparse LU
Factorization with Left-right Looking Strategy on Shared Memory
Multiprocessors. BIT, 40(1):158-176, 2000.

[Schenk00-2]

O. Schenk and K. Gartner. Sparse Factorization with Two-Level
Scheduling in PARDISO. In Proceeding of the 10th SIAM conference
on Parallel Processing for Scientific Computing, Portsmouth, Virginia,
March 12-14, 2001.

[Schenk01]

O. Schenk and K. Gartner. Two-level scheduling in PARDISO:
Improved Scalability on Shared Memory Multiprocessing Systems.
Parallel Computing, 28:187-197, 2002.

[Schenk02]

O. Schenk and K. Gartner. Solving Unsymmetric Sparse Systems of
Linear Equations with PARDISO. Journal of Future Generation
Computer Systems, 20(3):475-487, 2004.

[Schenk03]

O. Schenk and K. Gartner. On Fast Factorization Pivoting Methods
for Sparse Symmetric Indefinite Systems. Technical Report,
Department of Computer Science, University of Basel, 2004,
submitted.

[Schenk04]

P. Sonneveld. CGS, a Fast Lanczos-Type Solver for Nonsymmetric
Linear Systems. SIAM Journal on Scientific and Statistical Computing,
10:36-52, 1989.

[Sonn89]

D.M.Young. Iterative Solution of Large Linear Systems. New York,
Academic Press, Inc., 1971.

[Young71]

• VSL

Document included with Intel® MKL product (file name vslnotes.pdf).[VSL Notes]

Bratley P., Fox B.L., and Schrage L.E. A Guide to Simulation. 2nd
edition. Springer-Verlag, New York, 1987.

[Bratley87]

Bratley P. and Fox B.L. Implementing Sobol`s Quasirandom Sequence
Generator, ACM Transactions on Mathematical Software, Vol. 14, No.
1, Pages 88-100, March 1988.

[Bratley88]

Bratley P., Fox B.L., and Niederreiter H. Implementation and Tests
of Low-Discrepancy Sequences, ACM Transactions on Modeling and
Computer Simulation, Vol. 2, No. 3, Pages 195-213, July 1992.

[Bratley92]

3005

Bibliography

Coddington, P. D. Analysis of Random Number Generators Using
Monte Carlo Simulation. Int. J. Mod. Phys. C-5, 547, 1994.

[Coddington94]

Gentle, James E. Random Number Generation and Monte Carlo
Methods, Springer-Verlag New York, Inc., 1998.

[Gentle98]

L'Ecuyer, Pierre. Uniform Random Number Generation. Annals of
Operations Research, 53, 77-120, 1994.

[L'Ecuyer94]

L'Ecuyer, Pierre. Tables of Linear Congruential Generators of Different
Sizes and Good Lattice Structure. Mathematics of Computation, 68,
225, 249-260, 1999.

[L'Ecuyer99]

L'Ecuyer, Pierre. Good Parameter Sets for Combined Multiple
Recursive Random Number Generators. Operations Research, 47, 1,
159-164, 1999.

[L'Ecuyer99a]

L'Ecuyer, Pierre. Software for Uniform Random Number Generation:
Distinguishing the Good and the Bad. Proceedings of the 2001 Winter
Simulation Conference, IEEE Press, 95-105, Dec. 2001.

[L'Ecuyer01]

Kirkpatrick, S., and Stoll, E. A Very Fast Shift-Register Sequence
Random Number Generator. Journal of Computational Physics, V.
40. 517-526, 1981.

[Kirkpatrick81]

Knuth, Donald E. The Art of Computer Programming, Volume 2,
Seminumerical Algorithms. 2nd edition, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1981.

[Knuth81]

Matsumoto, M., and Nishimura, T. Mersenne Twister: A
623-Dimensionally Equidistributed Uniform Pseudo-Random Number
Generator, ACM Transactions on Modeling and Computer Simulation,
Vol. 8, No. 1, Pages 3-30, January 1998.

[Matsumoto98]

Matsumoto, M., and Nishimura, T. Dynamic Creation of Pseudorandom
Number Generators, 56-69, in: Monte Carlo and Quasi-Monte Carlo
Methods 1998, Ed. Niederreiter, H. and Spanier, J., Springer 2000,
http://www.math.sci.hiroshima-u.ac.jp/%7Em-mat/MT/DC/dc.html.

[Matsumoto00]

NAG Numerical Libraries.
http://www.nag.co.uk/numeric/numerical_libraries.asp

[NAG]

Sobol, I.M., and Levitan, Yu.L. The production of points uniformly
distributed in a multidimensional cube. Preprint 40, Institute of
Applied Mathematics, USSR Academy of Sciences, 1976 (In Russian).

[Sobol76]

• DFT

E. Oran Brigham, The Fast Fourier Transform and Its Applications,
Prentice Hall, New Jersey, 1988.

[1]

Athanasios Papoulis, The Fourier Integral and its Applications, 2nd
edition, McGraw-Hill, New York, 1984.

[2]

3006

Intel® Math Kernel Library Reference Manual

Ping Tak Peter Tang, DFTI, a New API for DFT: Motivation, Design,
and Rationale, July 2002.

[3]

Charles Van Loan, Computational Frameworks for the Fast Fourier
Transform, SIAM, Philadelphia, 1992

[4]

• VML

J.M.Muller. Elementary functions: algorithms and implementation, Birkhauser Boston, 1997.

IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985.

• Interval Solver

G. Alefeld and J. Herzberger, Introduction to Interval Computations.
- Academic Press, New York, 1983.

[Alefeld83]

A.H.Bentbib, Solving the full rank interval least squares problem //
Applied Numerical Mathematics. - 2002. - Vol. 41. - P. 283-294.

[Bentbib02]

Ch. Bliek, Computer methods for design automation, Ph.D. Thesis.
- Dept. of Ocean Engineering, Massachusetts Institute of Technology,
1992.

[Bliek92]

R. Hammer, M. Hocks, U. Kulisch, D. Ratz, C++ Toolbox for Verified
Computing I. Basic Numerical Problems. - Berlin-Heidelberg: Springer,
1995.

[Hammer95]

E. Hansen, Bounding the solution of interval linear equations // SIAM
Journal on Numerical Analysis. - 1992. - Vol. 29, No. 5. - P.
1493-1503.

[Hansen92]

J. Herzberger, Iterative methods for the inclusion of the inverse of
a matrix // Topics in Validated Computations, J. Herzberger, ed. -
Amsterdam: Elsevier, 1994. -

[Herzberger94]

Ch.Jansson, Interval linear systems with symmetric matrices,
skew-symmetric matrices, and dependencies in the right hand side
// Computing. - 1991. - Vol. 46. - P. 265 - 274.

[Jansson91]

R.B. Kearfott, Rigorous Global Search: Continuous Problems. -
Dordrecht, Kluwer, 1996.

[Kearfott96]

R.B. Kearfott, M.T. Nakao, A. Neumaier, S.M. Rump, S.P. Shary, P.
van Hentenryck, Standardized notation in interval analysis. - An
electronic version of the paper is accessible at
http://www.mat.univie.ac.at/~neum/software/int/

[Kearfott]

V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl, Computational Complexity
and Feasibility of Data Processing and Interval Computations. -
Kluwer, Dordrecht, 1997.

[Kreinovich97]

A. Neumaier, Interval Methods for Systems of Equations. - Cambridge,
Cambridge University Press, 1990.

[Neumaier90]

3007

Bibliography

A.Neumaier, A simple derivation of Hansen-Bliek-Rohn-Ning-Kearfott
enclosure for linear interval equations // Reliable Computing. - 1999.
- Vol. 5, No. 2. - P. 131-136.

[Neumaier99]

S. Ning, R.B. Kearfott, A comparison of some methods for solving
linear interval equations // SIAM Journal on Numerical Analysis. -
1997. - Vol. 34, No. 4. - P. 1289-1305.

[Ning97]

G.Rex, J.Rohn, Sufficient conditions for regularity and singularity of
interval matrices // SIAM Journal on Numerical Analysis. - 1999. -
Vol. 20. - P. 437-445.

[Rex99]

J. Rohn, Cheap and tight bounds: the recent result by E. Hansen can
be made more efficient // Interval Computations. - 1993. - No. 4. -
P. 13-21.

[Rohn93]

S. M.Rump, Solving algebraic problems with high accuracy // A New
Approach to Scientific Computation; Kulisch U. W. and Miranker W.
L., eds. - New York: Academic Press, 1983. - P. 51-120.

[Rump83]

S. M.Rump, Solution of linear and nonlinear algebraic problems with
sharp guaranteed bounds // Computing Supplement. - 1984. - Vol.
5. - P. 147-168.

[Rump84]

S. M.Rump, Kaucher E. Small bounds for the solution of systems of
linear equations // Computing Supplement. - 1980. - Vol. 2. - P.
157-164.

[Rump80]

S. Rump, INTLAB -- INTerval LABoratory. - 21 p. - An electronic
version of the paper is accessible at http://www.ti3.tu-harburg.de/
rump/intlab/.

[Rump]

S.P. Shary, A new class of algorithms for optimal solution of interval
linear systems // Interval Computations. - 1992, No. 2(4). - P. 18-29.

[Shary92]

S.P. Shary, On optimal solution of interval linear equations // SIAM
Journal on Numerical Analysis. - 1995. - Vol. 32, No. 2. - P. 610-630.

[Shary95]

S. P. Shary, A new technique in systems analysis under interval
uncertainty and ambiguity // Reliable Computing. - 2002. - Vol. 8. -
321-419.

[Shary02]

S.P. Shary, A new class of methods for optimal enclosing solution
sets to interval linear systems // Journal of Computational
Mathematics. - to be published.

[Shary]

• Optimization Solvers

A. R. Conn, N. I.M. Gould, P. L. Toint.Trust-region Methods.SIAM
Society for Industrial & Applied Mathematics, Englewood Cliffs, New
Jersey, MPS-SIAM Series on Optimization edition, 2000.

[Conn00]

J. Dongara, V. Eijkhout, A. Kalhan.Reverse communication interface
for linear algebra templates for iterative methods.1995.

[Dong95]

3008

Intel® Math Kernel Library Reference Manual

For a reference implementation of BLAS, sparse BLAS, LAPACK, and ScaLAPACK packages
(without platform-specific optimizations) visit www.netlib.org

3009

Bibliography

Glossary
Denotes the conjugate of a general matrix A. See also conjugate matrix.AH

Denotes the transpose of a general matrix A. See also transpose.AT

A general m-by-n matrix A such that aij = 0 for |i - j| > l, where 1
< l < min(m, n). For example, any tridiagonal matrix is a band matrix.

band matrix

A special storage scheme for band matrices. A matrix is stored in a
two-dimensional array: columns of the matrix are stored in the
corresponding columns of the array, and diagonals of the matrix are
stored in rows of the array.

band storage

Abbreviation for Basic Linear Algebra Subprograms. These subprograms
implement vector, matrix-vector, and matrix-matrix operations.

BLAS

Abbreviation for Basic Random Number Generator. Basic random number
generators are pseudorandom number generators imitating i.i.d. random
number sequences of uniform distribution. Distributions other than uniform
are generated by applying different transformation techniques to the
sequences of random numbers of uniform distribution.

BRNG

Standardized mechanism that allows a user to include a user-designed
BRNG into the VSL and use it along with the predefined VSL basic
generators.

BRNG registration

Representation of a real symmetric or complex Hermitian matrix A in the
form A = PUDUHPT (or A = PLDLHPT) where P is a permutation matrix, U
and L are upper and lower triangular matrices with unit diagonal, and D is

Bunch-Kaufman
factorization

a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks.
U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks
of D.

When found as the first letter of routine names, c indicates the usage of
single-precision complex data type.

c

C interface to the BLAS. See BLAS.CBLAS
Cumulative Distribution Function. The function that determines probability
distribution for univariate or multivariate random variable X. For univariate
distribution the cumulative distribution function is the function of real

CDF

argument x, which for every x takes a value equal to probability of the

event A: X ≤ x. For multivariate distribution the cumulative distribution
function is the function of a real vector x = (x1,x2, ..., xn), which, for

every x, takes a value equal to probability of the event A = (X1 ≤ x1 &

X2 ≤ x2, & ..., & Xn ≤ xn).

3011

Representation of a symmetric positive-definite or, for complex data,
Hermitian positive-definite matrix A in the form A = UHU or A = LLH,
where L is a lower triangular matrix and U is an upper triangular matrix.

Cholesky
factorization

The number κ(A) defined for a given square matrix A as follows: κ(A)
= ||A|| ||A−1||.

condition number

The matrix AH defined for a given general matrix A as follows: (AH)ij
= (aji)

*.
conjugate matrix

The conjugate of a complex number z = a + bi is z* = a - bi.conjugate number
When found as the first letter of routine names, d indicates the usage
of double-precision real data type.

d

Abbreviation for Discrete Fourier Transforms. See Chapter 11 of this
book.

DFTs

The number denoted x · y and defined for given vectors x and y as

follows: x · y = Σi xiyi.

dot product

Here xi and yi stand for the i-th elements of x and y, respectively.

A floating-point data type. On Intel® processors, this data type allows
you to store real numbers x such that 2.23*10−308< | x | <

1.79*10308. For this data type, the machine precision ε is approximately

double precision

10−15, which means that double-precision numbers usually contain no
more than 15 significant decimal digits.For more information, refer to
Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume
1: Basic Architecture.

See eigenvalue problem.eigenvalue

A problem of finding non-zero vectors x and numbers λ (for a given

square matrix A) such that Ax = λx. Here the numbers λ are called
the eigenvalues of the matrix A and the vectors x are called the
eigenvectors of the matrix A.

eigenvalue problem

See eigenvalue problem.eigenvector

Matrix of a general form H = I − τvvT, where v is a column vector

and τ is a scalar. In LAPACK elementary reflectors are used, for example,
to represent the matrix Q in the QR factorization (the matrix Q is
represented as a product of elementary reflectors).

elementary
reflector(Householder
matrix)

Representation of a matrix as a product of matrices. See also
Bunch-Kaufman factorization, Cholesky factorization, LU factorization,
LQ factorization, QR factorization, Schur factorization.

factorization

Abbreviation for Fast Fourier Transforms. See Chapter 11 of this book.FFTs

3012

Intel® Math Kernel Library Reference Manual

A storage scheme allowing you to store matrices of any kind. A matrix
A is stored in a two-dimensional array a, with the matrix element aij
stored in the array element a(i,j).

full storage

A square matrix A that is equal to its conjugate matrix AH. The conjugate
AH is defined as follows: (AH)ij = (aji)

*.
Hermitian matrix

See identity matrix.I
A square matrix I whose diagonal elements are 1, and off-diagonal
elements are 0. For any matrix A, AI = A and IA = A.

identity matrix

Independent Identically Distributed.i.i.d.
Qualifier of an operation. A function that performs its operation in-place
takes its input from an array and returns its output to the same array.

in-place

Abbreviation for Intel® Math Kernel Library.Intel MKL
The matrix denoted as A−1 and defined for a given square matrix A as
follows: AA−1 = A−1A = I. A−1 does not exist for singular matrices A.

inverse matrix

Representation of an m-by-n matrix A as A = LQ or A = (L 0)Q. Here

Q is an n-by-n orthogonal (unitary) matrix. For m ≤ n, L is an m-by-m
lower triangular matrix with real diagonal elements; for m > n,

LQ factorization

where L1 is an n-by-n lower triangular matrix, and L2 is a rectangular
matrix.

Representation of a general m-by-n matrix A as A = PLU, where P is a
permutation matrix, L is lower triangular with unit diagonal elements
(lower trapezoidal if m > n) and U is upper triangular (upper trapezoidal
if m < n).

LU factorization

The number ε determining the precision of the machine representation
of real numbers. For Intel® architecture, the machine precision is
approximately 10−7 for single-precision data, and approximately 10−15

machine precision

for double-precision data. The precision also determines the number
of significant decimal digits in the machine representation of real
numbers. See also double precision and single precision.

Message Passing Interface. This standard defines the user interface
and functionality for a wide range of message-passing capabilities in
parallel computing.

MPI

3013

Glossary

A freely available, portable implementation of MPI standard for
message-passing libraries.

MPICH

A real square matrix A whose transpose and inverse are equal, that is,
AT = A-1, and therefore AAT = ATA = I. All eigenvalues of an
orthogonal matrix have the absolute value 1.

orthogonal matrix

A storage scheme allowing you to store symmetric, Hermitian, or
triangular matrices more compactly. The upper or lower triangle of a
matrix is packed by columns in a one-dimensional array.

packed storage

Probability Density Function. The function that determines probability
distribution for univariate or multivariate continuous random variable
X. The probability density function f(x) is closely related with the
cumulative distribution function F(x). For univariate distribution the
relation is

PDF

For multivariate distribution the relation is

A square matrix A such that Ax · x > 0 for any non-zero vector x.
Here · denotes the dot product.

positive-definitematrix

A completely deterministic algorithm that imitates truly random
sequences.

pseudorandom
number generator

Representation of an m-by-n matrix A as A = QR, where Q is an m-by-m
orthogonal (unitary) matrix, and R is n-by-n upper triangular with real

diagonal elements (if m ≥ n) or trapezoidal (if m < n) matrix.

QR factorization

An abstract source of independent identically distributed random
numbers of uniform distribution. In this manual a random stream points
to a structure that uniquely defines a random number sequence
generated by a basic generator associated with a given random stream.

random stream

3014

Intel® Math Kernel Library Reference Manual

Abbreviation for Random Number Generator. In this manual the term
"random number generators" stands for pseudorandom number
generators, that is, generators based on completely deterministic
algorithms imitating truly random sequences.

RNG

When found as the first letter of routine names, s indicates the usage
of single-precision real data type.

s

Stands for Scalable Linear Algebra PACKage.ScaLAPACK
Representation of a square matrix A in the form A = ZTZH. Here T is
an upper quasi-triangular matrix (for complex A, triangular matrix)
called the Schur form of A; the matrix Z is orthogonal (for complex A,
unitary). Columns of Z are called Schur vectors.

Schur factorization

A floating-point data type. On Intel® processors, this data type allows
you to store real numbers x such that 1.18*10−38 < | x | <

3.40*1038. For this data type, the machine precision (ε) is

single precision

approximately 10−7, which means that single-precision numbers usually
contain no more than 7 significant decimal digits. For more information,
refer to Intel® 64 and IA-32 Architectures Software Developer's Manual,
Volume 1: Basic Architecture.

A matrix whose determinant is zero. If A is a singular matrix, the inverse
A-1 does not exist, and the system of equations Ax = b does not have
a unique solution (that is, there exist no solutions or an infinite number
of solutions).

singular matrix

The numbers defined for a given general matrix A as the eigenvalues
of the matrix AAH. See also SVD.

singular value

Abbreviation for Symmetric MultiProcessing. The MKL offers performance
gains through parallelism provided by the SMP feature.

SMP

Routines performing basic vector operations on sparse vectors. Sparse
BLAS routines take advantage of vectors' sparsity: they allow you to
store only non-zero elements of vectors. See BLAS.

sparse BLAS

Vectors in which most of the components are zeros.sparse vectors
The way of storing matrices. See full storage, packed storage, and band
storage.

storage scheme

Abbreviation for Singular Value Decomposition. See also Singular value
decomposition section in Chapter 5.

SVD

A square matrix A such that aij = aji.symmetric matrix
The transpose of a given matrix A is a matrix AT such that (AT)ij =
aji (rows of A become columns of AT, and columns of A become rows
of AT).

transpose

3015

Glossary

A matrix A such that A = (A1A2), where A1 is an upper triangular
matrix, A2 is a rectangular matrix.

trapezoidal matrix

A matrix A is called an upper (lower) triangular matrix if all its
subdiagonal elements (superdiagonal elements) are zeros. Thus, for
an upper triangular matrix aij = 0 when i > j; for a lower triangular
matrix aij = 0 when i < j.

triangular matrix

A matrix whose non-zero elements are in three diagonals only: the
leading diagonal, the first subdiagonal, and the first super-diagonal.

tridiagonal matrix

A complex square matrix A whose conjugate and inverse are equal,
that is, that is, AH = A-1, and therefore AAH = AHA = I. All eigenvalues
of a unitary matrix have the absolute value 1.

unitary matrix

Abbreviation for Vector Mathematical Library. See Chapter 9 of this
book.

VML

Abbreviation for Vector Statistical Library. See Chapter 10 of this book.VSL
When found as the first letter of routine names, z indicates the usage
of double-precision complex data type.

z

3016

Intel® Math Kernel Library Reference Manual

Index
?_backward_trig_transform 2568
?_commit_Helmholtz_2D 2595
?_commit_Helmholtz_3D 2595
?_commit_sph_np 2611
?_commit_sph_p 2611
?_commit_trig_transform 2563
?_forward_trig_transform 2566
?_Helmholtz_2D 2601
?_Helmholtz_3D 2601
?_init_Helmholtz_2D 2592
?_init_Helmholtz_3D 2592
?_init_sph_np 2608
?_init_sph_p 2608
?_init_trig_transform 2562
?_sph_np 2613
?_sph_p 2613
?asum 50
?axpy 51
?axpyi 179
?bdsdc 672
?bdsqr 668
?ConvExec 2423
?ConvExec1D 2425
?ConvExecX 2428
?ConvExecX1D 2431
?ConvNewTask 2403
?ConvNewTask1D 2406
?ConvNewTaskX 2408
?copy 53
?CorrExec 2423
?CorrExec1D 2425
?CorrExecX 2428
?CorrExecX1D 2431
?CorrNewTask 2403

?CorrNewTask1D 2406
?CorrNewTaskX 2408
?CorrNewTaskX1D 2411
?dbtf2 2101
?dbtrf 2103
?disna 754
?dot 54
?dotc 57
?dotci 182
?doti 181
?dotu 59
?dotui 184
?dttrf 2105
?dttrsv 2106
?gbbrd 650
?gbcon 365
?gbequ 460
?gbmv 77
?gbrfs 400
?gbsv 481
?gbsvx 484
?gbtf2 1199
?gbtrf 300
?gbtrs 328
?gebak 798
?gebal 794
?gebd2 1201
?gebrd 646
?gecon 363
?geequ 458
?gees 1016
?geesx 1022
?geev 1028
?geevx 1033

3017

?gegas 2531
?gegss 2537
?gehbs 2539
?gehd2 1203
?gehrd 779
?gehss 2533
?gekws 2535
?gelq2 1205
?gelqf 585
?gels 892
?gelsd 905
?gelss 901
?gelsy 896
?gemip 2553
?gemm 145
?gemv 81
?gepps 2540
?gepss 2543
?geql2 1207
?geqlf 599
?geqp3 570
?geqpf 567
?geqr2 1209
?geqrf 563
?ger 84
?gerbr 2549
?gerc 86
?gerfs 397
?gerq2 1210
?gerqf 613
?geru 88
?gesc2 1212
?gesdd 1046
?gesv 471
?gesvd 1041
?gesvr 2551
?gesvx 475
?geszi 2548
?getc2 1213
?getf2 1215
?getrf 297
?getri 439
?getrs 325
?ggbak 841
?ggbal 839
?gges 1137
?ggesx 1144
?ggev 1153
?ggevx 1159

?ggglm 914
?gghrd 835
?gglse 910
?ggqrf 635
?ggrqf 639
?ggsvd 1051
?ggsvp 879
?gtcon 368
?gthr 185
?gthrz 187
?gtrfs 403
?gtsv 491
?gtsvx 493
?gttrf 302
?gttrs 331
?gtts2 1216
?hbev 979
?hbevd 986
?hbevx 995
?hbgst 769
?hbgv 1114
?hbgvd 1121
?hbgvx 1131
?hbtrd 718
?hecon 382
?heev 921
?heevd 928
?heevr 948
?heevx 937
?heft2 1557
?hegst 759
?hegv 1062
?hegvd 1069
?hegvx 1080
?hemm 149
?hemv 93
?her 96
?her2 98
?her2k 155
?herdb 686
?herfs 421
?herk 152
?hesv 535
?hesvx 538
?hetrd 694
?hetrf 316
?hetri 448
?hetrs 346
?hgeqz 844

3018

Intel® Math Kernel Library Reference Manual

?hpcon 386
?hpev 957
?hpevd 963
?hpevx 972
?hpgst 764
?hpgv 1089
?hpgvd 1096
?hpgvx 1106
?hpmv 101
?hpr 103
?hpr2 105
?hprfs 427
?hpsv 550
?hpsvx 552
?hptrd 709
?hptrf 322
?hptri 452
?hptrs 352
?hsein 806
?hseqr 800
?isnan 1218
?labrd 1219
?lacgv 1184
?lacn2 1222
?lacon 1224
?lacpy 1225
?lacrm 1185
?lacrt 1186
?ladiv 1227
?lae2 1228
?laebz 1229
?laed0 1234
?laed1 1237
?laed2 1239
?laed3 1242
?laed4 1244
?laed5 1246
?laed6 1247
?laed7 1249
?laed8 1253
?laed9 1256
?laeda 1258
?laein 1260
?laesy 1187
?laev2 1263
?laexc 1265
?lag2 1267
?lags2 1269
?lagtf 1271

?lagtm 1273
?lagts 1275
?lagv2 1277
?lahef 1498
?lahqr 1280
?lahr2 1286
?lahrd 1283
?laic1 1289
?laisnan 1218
?laln2 1291
?lals0 1295
?lalsa 1299
?lalsd 1303
?lamc1 1583
?lamc2 1584
?lamc3 1585
?lamc4 1585
?lamc5 1586
?lamch 1582
?lamrg 1306
?lamsh 2092
?laneg 1307
?langb 1308
?lange 1310
?langt 1311
?lanhb 1316
?lanhe 1325
?lanhp 1320
?lanhs 1313
?lansb 1314
?lansp 1318
?lanst/?lanht 1322
?lansy 1323
?lantb 1327
?lantp 1329
?lantr 1331
?lanv2 1333
?lapll 1334
?lapmt 1335
?lapy2 1337
?lapy3 1337
?laqgb 1338
?laqge 1340
?laqhb 1342
?laqp2 1344
?laqps 1346
?laqr0 1348
?laqr1 1352
?laqr2 1354

3019

Index

?laqr3 1358
?laqr4 1362
?laqr5 1366
?laqsb 1370
?laqsp 1372
?laqsy 1374
?laqtr 1375
?lar1v 1378
?lar2v 1381
?laref 2094
?larf 1383
?larfb 1385
?larfg 1387
?larft 1389
?larfx 1392
?largv 1393
?larnv 1395
?larra 1396
?larrb 1398
?larrc 1400
?larrd 1402
?larre 1406
?larrf 1410
?larrj 1413
?larrk 1415
?larrr 1416
?larrv 1418
?lartg 1422
?lartv 1424
?laruv 1425
?larz 1426
?larzb 1428
?larzt 1431
?las2 1434
?lascl 1436
?lasd0 1437
?lasd1 1439
?lasd2 1443
?lasd3 1447
?lasd4 1450
?lasd5 1452
?lasd6 1453
?lasd7 1458
?lasd8 1462
?lasd9 1464
?lasda 1467
?lasdq 1471
?lasdt 1474
?laset 1475

?lasorte 2096
?lasq1 1476
?lasq2 1477
?lasq3 1479
?lasq4 1480
?lasq5 1481
?lasq6 1483
?lasr 1484
?lasrt 1488
?lasrt2 2097
?lassq 1489
?lasv2 1491
?laswp 1492
?lasy2 1494
?lasyf 1496
?latbs 1501
?latdf 1503
?latps 1506
?latrd 1508
?latrs 1512
?latrz 1516
?lauu2 1519
?lauum 1520
?lazq3 1521
?lazq4 1524
?nrm2 60
?opgtr 704
?opmtr 706
?org2l/?ung2l 1526
?org2r/?ung2r 1527
?orgbr 653
?orghr 781
?orgl2/?ungl2 1529
?orglq 588
?orgql 602
?orgqr 573
?orgr2/?ungr2 1531
?orgrq 616
?orgtr 689
?orm2l/?unm2l 1532
?orm2r/?unm2r 1535
?ormbr 657
?ormhr 784
?orml2/?unml2 1537
?ormlq 591
?ormql 607
?ormqr 576
?ormr2/?unmr2 1540
?ormr3/?unmr3 1542

3020

Intel® Math Kernel Library Reference Manual

?ormrq 620
?ormrz 629
?ormtr 691
?pbcon 375
?pbequ 467
?pbrfs 412
?pbstf 772
?pbsv 513
?pbsvx 516
?pbtf2 1545
?pbtrf 309
?pbtrs 339
?pocon 371
?poequ 463
?porfs 406
?posv 498
?posvx 500
?potf2 1547
?potrf 304
?potri 442
?potrs 334
?ppcon 373
?ppequ 465
?pprfs 409
?ppsv 505
?ppsvx 508
?pptrf 306
?pptri 444
?pptrs 336
?ptcon 378
?pteqr 743
?ptrfs 415
?ptsv 521
?ptsvx 523
?pttrf 311
?pttrs 342
?pttrsv 2108
?ptts2 1548
?rot 61, 1189
?rotg 63
?roti 188
?rotm 64
?rotmg 67
?rscl 1550
?sbev 976
?sbevd 981
?sbevx 990
?sbgst 766
?sbgv 1111

?sbgvd 1117
?sbgvx 1126
?sbmv 108
?sbtrd 715
?scal 69
?sctr 190
?sdot 56
?spcon 384
?spev 954
?spevd 959
?spevx 968
?spgst 762
?spgv 1086
?spgvd 1092
?spgvx 1101
?spmv 111, 1190
?spr 114, 1192
?spr2 116
?sprfs 424
?spsv 543
?spsvx 545
?sptrd 702
?sptrf 320
?sptri 450
?sptrs 349
?stebz 747
?stedc 731
?stegr 737
?stein 751
?stemr 726
?steqr 722
?steqr2 2110
?sterf 720
?stev 1000
?stevd 1002
?stevr 1010
?stevx 1006
?sum1 1198
?swap 71
?sycon 380
?syev 918
?syevd 924
?syevr 942
?syevx 932
?sygs2/?hegs2 1551
?sygst 757
?sygv 1058
?sygvd 1065
?sygvx 1074

3021

Index

?symm 159
?symv 118, 1194
?syr 121, 1196
?syr2 123
?syr2k 166
?syrdb 683
?syrfs 418
?syrk 162
?sysv 527
?sysvx 530
?sytd2/?hetd2 1553
?sytf2 1555
?sytrd 680
?sytrf 313
?sytri 446
?sytrs 344
?tbcon 394
?tbmv 125
?tbsv 129
?tbtrs 360
?tgevc 852
?tgex2 1559
?tgexc 857
?tgsen 861
?tgsja 884
?tgsna 873
?tgsy2 1562
?tgsyl 868
?tpcon 391
?tpmv 133
?tprfs 433
?tpsv 136
?tptri 456
?tptrs 357
?trcon 389
?trevc 812
?trexc 822
?trmm 170
?trmv 138
?trrfs 430
?trsen 825
?trsm 173
?trsna 817
?trsv 141
?trsyl 831
?trti2 1566
?trtri 2547
?trtri (LAPACK) 454
?trtrs 2529

?trtrs (LAPACK) 354
?tzrzf 626
?ungbr 661
?unghr 788
?unglq 594
?ungql 604
?ungqr 579
?ungrq 618
?ungtr 697
?unmbr 664
?unmhr 791
?unmlq 596
?unmql 610
?unmqr 582
?unmrq 623
?unmrz 632
?unmtr 699
?upgtr 711
?upmtr 713

1-norm value
complex Hermitian matrix

packed storage 1320
complex Hermitian tridiagonal matrix 1322
complex symmetric matrix 1323
general rectangular matrix 1310, 1956
general tridiagonal matrix 1311
Hermitian band matrix 1316
real symmetric matrix 1323, 1961
real symmetric tridiagonal matrix 1322
symmetric band matrix 1314
symmetric matrix

packed storage 1318
trapezoidal matrix 1331
triangular band matrix 1327
triangular matrix

packed storage 1329
upper Hessenberg matrix 1313, 1958

A
absolute value of a vector element

largest 72
smallest 73

accuracy modes, in VML 2201
adding magnitudes of the vector elements 50
arguments

matrix 2777

3022

Intel® Math Kernel Library Reference Manual

arguments (continued)
sparse vector 177
vector 2775

array descriptor 1589
auxiliary routines

LAPACK 1169
ScaLAPACK 1895

B
balancing a matrix 794
band storage scheme 2777
basic quasi-number generator

Niederreiter 2290
Sobol 2290

basic random number generators 2281, 2289, 2290
GFSR 2289
MCG, 32-bit 2289
MCG, 59-bit 2289
Mersenne Twister

MT19937 2290
MT2203 2290

MRG 2289
Wichmann-Hill 2289

Bernoulli 2369
Beta 2362
bidiagonal matrix

LAPACK 643
ScaLAPACK 1789

Binomial 2373
bisection 1398
BLACS 1589, 2719, 2720, 2721, 2723, 2724, 2725,

2727, 2728, 2729, 2730, 2731, 2732, 2734
destruction routines 2727
informational routines 2730
initialization routines 2719
miscellaneous routines 2732
blacs_abort 2728
blacs_barrier 2732
blacs_exit 2729
blacs_freebuff 2727
blacs_get 2721
blacs_gridexit 2728
blacs_gridinfo 2730
blacs_gridinit 2724
blacs_gridmap 2725
blacs_pcoord 2731
blacs_pinfo 2720

BLACS (continued)
blacs_pnum 2731
blacs_set 2723
blacs_setup 2720
usage examples 2734

blacs_abort 2728
blacs_barrier 2732
blacs_exit 2729
blacs_freebuff 2727
blacs_get 2721
blacs_gridexit 2728
blacs_gridinfo 2730
blacs_gridinit 2724
blacs_gridmap 2725
blacs_pcoord 2731
blacs_pinfo 2720
blacs_pnum 2731
blacs_set 2723
blacs_setup 2720
BLAS Code Examples 2783
BLAS Level 1 functions

?asum 49, 50
?dot 49, 54
?dotc 49, 57
?dotu 49, 59
?nrm2 49, 60
?sdot 49, 56
code example 2783
dcabs1 49, 75
i?amax 49, 72
i?amin 49, 73

BLAS Level 1 routines
?axpy 49, 51
?copy 49, 53
?rot 49, 61
?rotg 49, 63
?rotm 49, 64
?rotmg 67
?rotmq 49
?scal 49, 69
?swap 49, 71
code example 2784

BLAS Level 2 routines
?gbmv 75, 77
?gemv 75, 81
?ger 75, 84
?gerc 75, 86
?geru 75, 88
?hbmv 75, 90

3023

Index

BLAS Level 2 routines (continued)
?hemv 75, 93
?her 75, 96
?her2 75, 98
?hpmv 75, 101
?hpr 75, 103
?hpr2 75, 105
?sbmv 75, 108
?spmv 75, 111
?spr 75, 114
?spr2 75, 116
?symv 75, 118
?syr 75, 121
?syr2 75, 123
?tbmv 75, 125
?tbsv 75, 129
?tpmv 75, 133
?tpsv 75, 136
?trmv 75, 138
?trsv 75, 141
code example 2785

BLAS Level 3 routines
?gemm 143, 145
?hemm 143, 149
?her2k 143, 155
?herk 143, 152
?symm 143, 159
?syr2k 143, 166
?syrk 143, 162
?trmm 143, 170
?trsm 143, 173
code example 2787

BLAS routines
routine groups 45

block reflector
general matrix

LAPACK 1428
ScaLAPACK 2002

general rectangular matrix
LAPACK 1385
ScaLAPACK 1983

triangular factor
LAPACK 1389, 1431
ScaLAPACK 1994, 2011

block-cyclic distribution 1589
block-splitting method 2290
BRNG 2281, 2289

Bunch-Kaufman factorization 297, 313, 316, 320, 322,
1593

Hermitian matrix
packed storage 322

symmetric matrix
packed storage 320

C
Cauchy 2346
CBLAS

arguments 2963
level 1 (vector operations) 2964
level 2 (matrix-vector operations) 2968
level 3 (matrix-matrix operations) 2977
sparse BLAS 2981

CBLAS to the BLAS 2963
Chlosky factorization

Hermitian positive-definite matrix 1831
symmetric positive-definite matrix 1831

Cholesky factorization
Hermitian positive-definite matrix

band storage 309, 339, 516, 1603, 1618
packed storage 306, 508

split 772
symmetric positive-definite matrix

band storage 309, 339, 516, 1603, 1618
packed storage 306, 508

clag2z 1568
code examples

BLAS Level 1 function 2783
BLAS Level 1 routine 2784
BLAS Level 2 routine 2785
BLAS Level 3 routine 2787

CommitDescriptor 2454
CommitDescriptorDM 2508
communication subprograms 1589
complex division in real arithmetic 1227
complex Hermitian matrix

1-norm value
LAPACK 1325
ScaLAPACK 1961

factorization with diagonal pivoting method 1557
Frobenius norm

LAPACK 1325
ScaLAPACK 1961

infinity- norm
LAPACK 1325

3024

Intel® Math Kernel Library Reference Manual

complex Hermitian matrix (continued)
infinity- norm (continued)

ScaLAPACK 1961
largest absolute value of element

LAPACK 1325
ScaLAPACK 1961

complex Hermitian matrix in packed form
1-norm value 1320
Frobenius norm 1320
infinity- norm 1320
largest absolute value of element 1320

complex Hermitian tridiagonal matrix
1-norm value 1322
Frobenius norm 1322
infinity- norm 1322
largest absolute value of element 1322

complex matrix
complex elementary reflector

ScaLAPACK 2007
complex symmetric matrix

1-norm value 1323
Frobenius norm 1323
infinity- norm 1323
largest absolute value of element 1323

complex vector
1-norm using true absolute value

LAPACK 1198
ScaLAPACK 1905

conjugation
LAPACK 1184
ScaLAPACK 1902

complex vector conjugation
LAPACK 1184
ScaLAPACK 1902

compressed sparse vectors 177
computational node 2283
Computational Routines 561
ComputeBackward 2462
ComputeBackwardDM 2515
ComputeForward 2458
ComputeForwardDM 2511
condition number

band matrix 365
general matrix

LAPACK 363
ScaLAPACK 1633, 1636, 1639

Hermitian matrix
packed storage 386

condition number (continued)
Hermitian positive-definite matrix

band storage 375
packed storage 373
tridiagonal 378

symmetric matrix
packed storage 384

symmetric positive-definite matrix
band storage 375
packed storage 373
tridiagonal 378

triangular matrix
band storage 394
packed storage 391

tridiagonal matrix 368
configuration parameters, in DFTI 2447
Continuous Distribution Generators 2208, 2324
Continuous Distributions 2325
ConvCopyTask 2435
ConvDeleteTask 2433
converting a sparse vector into compressed storage

form 185, 187
and writing zeros to the original vector 187

converting compressed sparse vectors into full storage
form 190
ConvInternalPrecision 2417
Convolution and Correlation 2394
Convolution Functions

?ConvExec 2423
?ConvExec1D 2425
?ConvExecX 2428
?ConvExecX1D 2431
?ConvNewTask 2403
?ConvNewTask1D 2406
?ConvNewTaskX 2408
?ConvNewTaskX1D 2411
ConvCopyTask 2435
ConvDeleteTask 2433
ConvSetDecimation 2420
ConvSetInternalPrecision 2417
ConvSetMode 2415
ConvSetStart 2418
CorrCopyTask 2435
CorrDeleteTask 2433

ConvSetMode 2415
ConvSetStart 2418
CopyDescriptor 2456

3025

Index

copying
matrices

distributed 1943
global parallel 1945
local replicated 1945
two-dimensional

LAPACK 1225
ScaLAPACK 1947

vectors 53
CopyStream 2308
CopyStreamState 2309
CorrCopyTask 2435
CorrDeleteTask 2433
Correlation Functions

?CorrExec 2423
?CorrExec1D 2425
?CorrExecX 2428
?CorrExecX1D 2431
?CorrNewTask 2403
?CorrNewTask1D 2406
?CorrNewTaskX 2408
?CorrNewTaskX1D 2411
CorrSetDecimation 2420
CorrSetInternalPrecision 2417
CorrSetMode 2415
CorrSetStart 2418

CorrSetInternalDecimation 2420
CorrSetInternalPrecision 2417
CorrSetMode 2415
CorrSetStart 2418
Cray 2112
CreateDescriptor 2452
CreateDescriptorDM 2506

D
data type

in VML 2201
shorthand 42

Data Types 2292
dcabs1 75
dcg_check 2172
dcg_get 2175
dcg_init 2171
dcgmrhs_check 2178
dcgmrhs_get 2182
dcgmrhs_init 2176
DeleteStream 2307

descriptor configuration
cluster DFTI 2506
DFTI 2448

descriptor manipulation
cluster DFTI 2506
DFTI 2448

dfgmres_check 2184
dfgmres_get 2188
dfgmres_init 2183
DFT computation 2448, 2506

cluster DFTI 2506
DFT Interface 2447
DFT routines

descriptor configuration
GetValue 2468
GetValueDM 2521
SetValue 2465

descriptor manipulation
CommitDescriptor 2454
CommitDescriptorDM 2508
CopyDescriptor 2456
CreateDescriptor 2452
CreateDescriptorDM 2506
FreeDescriptor 2457
FreeDescriptorDM 2510

DFT computation
ComputeBackward 2462
ComputeBackwardDM 2515
ComputeForward 2458
ComputeForwardDM 2511

status checking
ErrorClass 2449
ErrorMessage 2451

diagonal elements
LAPACK 1475
ScaLAPACK 2018

diagonally dominant-like banded matrix
solving systems of linear equations 1627

diagonally dominant-like tridiagonal matrix
solving systems of linear equations 1624

dimension 2775
Direct Sparse Solver (DSS) Interface Routines 2136
Discrete Distribution Generators 2325
Discrete Distributions 2365
Discrete Fourier Transform

CommitDescriptor 2454
CommitDescriptorDM 2508
ComputeBackward 2462
ComputeBackwardDM 2515

3026

Intel® Math Kernel Library Reference Manual

Discrete Fourier Transform (continued)
ComputeForward 2458
ComputeForwardDM 2511
CopyDescriptor 2456
CreateDescriptor 2452
CreateDescriptorDM 2506
ErrorClass 2449
ErrorMessage 2451
FreeDescriptor 2457
FreeDescriptorDM 2510
GetValue 2468
GetValueDM 2521
SetValue 2465
SetValueDM 2518

distributed-memory computations 1589
Distribution Generators 2323
Distribution Generators Supporting Accurate Mode 2325
djacobi 2691, 2700

usage example 2700
djacobi_delete 2691
djacobi_init 2689
djacobi_solve 2690, 2693

usage example 2693
dlag2s 1569
dNewAbstractStream 2301
dot product

complex vectors, conjugated 57
complex vectors, unconjugated 59
real vectors 54
real vectors (extended precision) 56
sparse complex vectors 184
sparse complex vectors, conjugated 182
sparse real vectors 181

driver
expert 1590
simple 1590

Driver Routines 470, 891
DSS interface, to sparse solver 2136
dss_create 2139
dtrnlsp

usage example 2652
dtrnlsp_delete 2651
dtrnlsp_get 2649
dtrnlsp_init 2646
dtrnlsp_solve 2647
dtrnlspbc

usage example 2672
dtrnlspbc_delete 2671
dtrnlspbc_get 2670

dtrnlspbc_init 2667
dtrnlspbc_solve 2668

E
eigenpairs, sorting 2096
eigenvalue problems 557, 675, 756, 774, 834, 1775,

2098, 2110
general matrix 774, 834, 1775
generalized form 756
Hermitian matrix 675
symmetric matrix 675
symmetric tridiagonal matrix 2098, 2110

eigenvalues
eigenvalue problems 675

eigenvectors
eigenvalue problems 675

elementary reflector
complex matrix 2007
general matrix 1426, 1998
general rectangular matrix

LAPACK 1383, 1392
ScaLAPACK 1979, 1988

LAPACK generation 1387
ScaLAPACK generation 1992

error diagnostics, in VML 2206
error estimation for linear equations

distributed tridiagonal coefficient matrix 1651
error handling

pxerbla 2117, 2711
xerbla 45, 1588, 2206

ErrorClass 2449
ErrorMessage 2451
errors in solutions of linear equations

distributed tridiagonal coefficient matrix 1651
general matrix

band storage 400
Hermitian matrix

packed storage 427
Hermitian positive-definite matrix

band storage 412
packed storage 409

symmetric matrix
packed storage 424

symmetric positive-definite matrix
band storage 412
packed storage 409

3027

Index

errors in solutions of linear equations (continued)
triangular matrix

band storage 436
packed storage 433

tridiagonal matrix 403
Euclidean norm

of a vector 60
expert driver 1590
Exponential 2337

F
factorization

Bunch-Kaufman
LAPACK 297
ScaLAPACK 1593

Cholesky
LAPACK 297, 1545, 1547
ScaLAPACK 2080

diagonal pivoting
Hermitian matrix

complex 1557
packed 552

symmetric matrix
indefinite 1555
packed 545

LU
LAPACK 297
ScaLAPACK 1593

orthogonal
LAPACK 561
ScaLAPACK 1667

partial
complex Hermitian indefinite matrix 1498
real/complex symmetric matrix 1496

triangular factorization 297
triangular factorization[factorization

aaa] 1593
upper trapezoidal matrix 1516

fill-in, for sparse matrices 2746
finding

index of the element of a vector with the largest
absolute value of the real part 1903
element of a vector with the largest absolute value
72
element of a vector with the largest absolute value
of the real part and its global index 1904

finding (continued)
element of a vector with the smallest absolute value
73

font conventions 42
Fortran-95 interface conventions

BLAS, Sparse BLAS 47
LAPACK 289

Fortran-95 Interfaces for LAPACK
absent from Netlib 2991
indentical to Netlib 2984
modified Netlib interfaces 2989
new functionality 2997
with replaced Netlib argument names 2987

Fortran-95 LAPACK interface vs. Netlib 291
free_Helmholtz_2D 2607
free_Helmholtz_3D 2607
free_sph_np 2616
free_sph_p 2616
free_trig_transform 2570
FreeDescriptor 2457
FreeDescriptorDM 2510
Frobenius norm

complex Hermitian matrix
packed storage 1320

complex Hermitian tridiagonal matrix 1322
complex symmetric matrix 1323
general rectangular matrix 1310, 1956
general tridiagonal matrix 1311
Hermitian band matrix 1316
real symmetric matrix 1323, 1961
real symmetric tridiagonal matrix 1322
symmetric band matrix 1314
symmetric matrix

packed storage 1318
trapezoidal matrix 1331
triangular band matrix 1327
triangular matrix

packed storage 1329
upper Hessenberg matrix 1313, 1958

full storage scheme 2777
full-storage vectors 177
function name conventions, in VML 2202

G
Gamma 2358

3028

Intel® Math Kernel Library Reference Manual

gathering sparse vector's elements into compressed
form 185, 187

and writing zeros to these elements 187
Gauss method, for interval systems 2531, 2554
Gauss-Seidel iteration, for interval systems 2537, 2554
Gaussian 2329
GaussianMV 2332
general matrix

block reflector 1428, 2002
eigenvalue problems 774, 834, 1775
elementary reflector 1426, 1998
estimating the condition number

band storage 365
inverting matrix

LAPACK 439
ScaLAPACK 1655

LQ factorization 585, 1684
LU factorization

band storage 300, 1199, 1596, 1599, 2101,
2103

matrix-vector product
band storage 77

multiplying by orthogonal matrix
from LQ factorization 1537, 2062
from QR factorization 1535, 2057
from RQ factorization 1540, 2066
from RZ factorization 1542

multiplying by unitary matrix
from LQ factorization 1537, 2062
from QR factorization 1535, 2057
from RQ factorization 1540, 2066
from RZ factorization 1542

QL factorization
LAPACK 599
ScaLAPACK 1698

QR factorization
with pivoting 567, 570, 1670

rank-l update 84
rank-l update, conjugated 86
rank-l update, unconjugated 88
reduction to bidiagonal form 1201, 1219, 1914
reduction to upper Hessenberg form 1918
RQ factorization

LAPACK 613
ScaLAPACK 1743

scalar-matrix-matrix product 145
solving systems of linear equations

band storage
LAPACK 328

general matrix (continued)
solving systems of linear equations (continued)

band storage (continued)
ScaLAPACK 1613

general rectangular distributed matrix
computing scaling factors 1662
equilibration 1662

general rectangular matrix
1-norm value

LAPACK 1310
ScaLAPACK 1956

block reflector
LAPACK 1385
ScaLAPACK 1983

elementary reflector
LAPACK 1383, 1988
ScaLAPACK 1979

Frobenius norm
LAPACK 1310
ScaLAPACK 1956

infinity- norm
LAPACK 1310
ScaLAPACK 1956

largest absolute value of element
LAPACK 1310
ScaLAPACK 1956

LQ factorization
LAPACK 1205
ScaLAPACK 1922

multiplication
LAPACK 1436
ScaLAPACK 2016

QL factorization
LAPACK 1207
ScaLAPACK 1924

QR factorization
LAPACK 1209
ScaLAPACK 1927

reduction of first columns
LAPACK 1283, 1286
ScaLAPACK 1951

reduction to bidiagonal form 1935
row interchanges

LAPACK 1492
ScaLAPACK 2023

RQ factorization
LAPACK 1210
ScaLAPACK 1713, 1930

scaling 1971

3029

Index

general square matrix
reduction to upper Hessenberg form 1203
trace 2025

general triangular matrix
LU factorization

band storage 1906
general tridiagonal matrix

1-norm value 1311
Frobenius norm 1311
infinity- norm 1311
largest absolute value of element 1311

general tridiagonal triangular matrix
LU factorization

band storage 1910
generalized eigenvalue problems 756, 757, 759, 762,

764, 766, 769, 1551, 1553, 1805, 1808,
2083, 2086

complex Hermitian-definite problem
band storage 769
packed storage 764

real symmetric-definite problem
band storage 766
packed storage 762

See also LAPACK routines, generalized eigenvalue
problems 756

Generalized LLS Problems 909
Generalized Nonsymmetric Eigenproblems 1136
generalized Schur factorization 1277, 1381, 1393, 1395
Generalized Singular Value Decomposition 878
generalized Sylvester equation 868
Generalized SymmetricDefinite Eigenproblems 1057
generation methods 2283
Geometric 2371
GetBrngProperties 2389
getcpuclocks 2714
getcpufrequency 2714
GetNumRegBrngs 2322
GetStreamStateBrng 2321
GetValue 2468
GetValueDM 2521
GFSR 2284
Givens rotation

modified Givens transformation parameters 67
of sparse vectors 188
parameters 63

global array 1589
Gumbel 2356

H
Hansen-Bliek-Rohn procedure, for interval systems 2539
Helmholtz problem

three-dimensional 2585
two-dimensional 2581

Helmholtz problem on a sphere
non-periodic 2583
periodic 2583

Hermitian band matrix
1-norm value 1316
Frobenius norm 1316
infinity- norm 1316
largest absolute value of element 1316

Hermitian matrix 90, 93, 96, 98, 101, 103, 105, 149,
152, 155, 316, 322, 346, 352, 382, 386,
448, 452, 675, 756, 1508, 1551, 1553,
1860, 1973, 2026, 2083, 2086

Bunch-Kaufman factorization
packed storage 322

eigenvalues and eigenvectors 1860
estimating the condition number

packed storage 386
generalized eigenvalue problems 756
inverting the matrix

packed storage 452
matrix-vector product

band storage 90
packed storage 101

rank-1 update
packed storage 103

rank-2 update
packed storage 105

rank-2k update 155
rank-n update 152
reducing to standard form

LAPACK 1551
ScaLAPACK 2083

reducing to tridiagonal form
LAPACK 1508, 1553
ScaLAPACK 2026, 2086

scalar-matrix-matrix product 149
scaling 1973
solving systems of linear equations

packed storage 352
Hermitian positive definite distributed matrix

computing scaling factors 1664
equilibration 1664

3030

Intel® Math Kernel Library Reference Manual

Hermitian positive-definite band matrix
Cholesky factorization 1545

Hermitian positive-definite distributed matrix
inverting the matrix 1658

Hermitian positive-definite matrix
Cholesky factorization

band storage 309, 1603
packed storage 306

estimating the condition number
band storage 375
packed storage 373

inverting the matrix
packed storage 444

solving systems of linear equations
band storage 339, 1618
packed storage 336

Hermitian positive-definite tridiagonal matrix
solving systems of linear equations 1621

Householder matrix
LAPACK 1387
ScaLAPACK 1992

Householder method, for interval systems 2533, 2554
Householder reflector 2094
Hypergeometric 2376

I
i?amax 72
i?amin 73
i?max1 1197
IBM ESSL library 2395
IEEE arithmetic 1954
IEEE standard

implementation 2113
signbit position 2116

ilaenv 1573
ilaver 1573
ILU0 preconditioner 2190
ILU0 Preconditioner Interface Description 2193
Incomplete LU Factorization Technique 2190
increment 2775
iNewAbstractStream 2299
infinity-norm

complex Hermitian matrix
packed storage 1320

complex Hermitian tridiagonal matrix 1322
complex symmetric matrix 1323
general rectangular matrix 1310, 1956

infinity-norm (continued)
general tridiagonal matrix 1311
Hermitian band matrix 1316
real symmetric matrix 1323, 1961
real symmetric tridiagonal matrix 1322
symmetric band matrix 1314
symmetric matrix

packed storage 1318
trapezoidal matrix 1331
triangular band matrix 1327
triangular matrix

packed storage 1329
upper Hessenberg matrix 1313, 1958

Interface Consideration 195
interval solver routines

?gegas 2531
?gegss 2537
?gehbs 2539
?gehss 2533
?gekws 2535
?gemip 2553
?gepps 2540
?gepss 2543
?gerbr 2549
?gesvr 2551
?geszi 2548
?trtri 2547
?trtrs 2529

inverse matrix. inverting a matrix 439, 1655, 1658,
1660
inverting a matrix

general matrix
LAPACK 439
ScaLAPACK 1655

Hermitian matrix
packed storage 452

Hermitian positive-definite matrix
LAPACK 442
packed storage 444
ScaLAPACK 1658

symmetric matrix
packed storage 450

symmetric positive-definite matrix
LAPACK 442
packed storage 444
ScaLAPACK 1658

triangular distributed matrix 1660
triangular matrix

packed storage 456

3031

Index

iparmq 1576
Iterative Sparse Solvers 2151
Iterative Sparse Solvers based on Reverse
Communication Interface (RCI ISS) 2151

J
Jacobi matrix calculation routines 2688, 2689, 2690,

2691
djacobi 2691
djacobi_delete 2691
djacobi_init 2689
djacobi_solve 2690

K
Krawczyk iteration method, for interval systems 2535

L
LAPACK

naming conventions 288
LAPACK routines

2-by-2 generalized eigenvalue problem 1267
2-by-2 Hermitian matrix

plane rotation 1381
2-by-2 orthogonal matrices 1269
2-by-2 real matrix

generalized Schur factorization 1277
2-by-2 real nonsymmetric matrix

Schur factorization 1333
2-by-2 symmetric matrix

plane rotation 1381
2-by-2 triangular matrix

singular values 1434
SVD 1491

approximation to smallest eigenvalue 1480, 1524
auxiliary routines

?gbtf2 1199
?gebd2 1201
?gehd2 1203
?gelq2 1205
?geql2 1207
?geqr2 1209
?gerq2 1210
?gesc2 1212
?getc2 1213

LAPACK routines (continued)
auxiliary routines (continued)

?getf2 1215
?gtts2 1216
?hetf2 1557
?isnan 1218
?labrd 1219
?lacgv 1184
?lacn2 1222
?lacon 1224
?lacpy 1225
?lacrm 1185
?lacrt 1186
?ladiv 1227
?lae2 1228
?laebz 1229
?laed0 1234
?laed1 1237
?laed2 1239
?laed3 1242
?laed4 1244
?laed5 1246
?laed6 1247
?laed7 1249
?laed8 1253
?laed9 1256
?laeda 1258
?laein 1260
?laesy 1187
?laev2 1263
?laexc 1265
?lag2 1267
?lags2 1269
?lagtf 1271
?lagtm 1273
?lagts 1275
?lagv2 1277
?lahef 1498
?lahqr 1280
?lahr2 1286
?lahrd 1283
?laic1 1289
?laisnan 1218
?laln2 1291
?lals0 1295
?lalsa 1299
?lalsd 1303
?lamrg 1306
?laneg 1307

3032

Intel® Math Kernel Library Reference Manual

LAPACK routines (continued)
auxiliary routines (continued)

?langb 1308
?lange 1310
?langt 1311
?lanhb 1316
?lanhe 1325
?lanhp 1320
?lanhs 1313
?lansb 1314
?lansp 1318
?lanst/?lanht 1322
?lansy 1323
?lantb 1327
?lantp 1329
?lantr 1331
?lanv2 1333
?lapll 1334
?lapmt 1335
?lapy2 1337
?lapy3 1337
?laqgb 1338
?laqge 1340
?laqhb 1342
?laqp2 1344
?laqps 1346
?laqr0 1348
?laqr1 1352
?laqr2 1354
?laqr3 1358
?laqr4 1362
?laqr5 1366
?laqsb 1370
?laqsp 1372
?laqsy 1374
?laqtr 1375
?lar1v 1378
?lar2v 1381
?larf 1383
?larfb 1385
?larfg 1387
?larft 1389
?larfx 1392
?largv 1393
?larnv 1395
?larra 1396
?larrb 1398
?larrc 1400
?larrd 1402

LAPACK routines (continued)
auxiliary routines (continued)

?larre 1406
?larrf 1410
?larrj 1413
?larrk 1415
?larrr 1416
?larrv 1418
?lartg 1422
?lartv 1424
?laruv 1425
?larz 1426
?larzb 1428
?larzt 1431
?las2 1434
?lascl 1436
?lasd0 1437
?lasd1 1439
?lasd2 1443
?lasd3 1447
?lasd4 1450
?lasd5 1452
?lasd6 1453
?lasd7 1458
?lasd8 1462
?lasd9 1464
?lasda 1467
?lasdq 1471
?lasdt 1474
?laset 1475
?lasq1 1476
?lasq2 1477
?lasq3 1479
?lasq4 1480
?lasq5 1481
?lasq6 1483
?lasr 1484
?lasrt 1488
?lassq 1489
?lasv2 1491
?laswp 1492
?lasy2 1494
?lasyf 1496
?latbs 1501
?latdf 1503
?latps 1506
?latrd 1508
?latrs 1512
?latrz 1516

3033

Index

LAPACK routines (continued)
auxiliary routines (continued)

?lauu2 1519
?lauum 1520
?lazq3 1521
?lazq4 1524
?org2l/?ung2l 1526
?org2r/?ung2r 1527
?orgl2l/?ungl2 1529
?orgr2/?ungr2 1531
?orm2l/?unm2l 1532
?orm2r/?unm2r 1535
?orml2/?unml2 1537
?ormr2/?unmr2 1540
?ormr3/?unmr3 1542
?pbtf2 1545
?potf2 1547
?ptts2 1548
?rot 1189
?rscl 1550
?spmv 1190
?spr 1192
?sum1 1198
?sygs2/?hegs2 1551
?symv 1194
?syr 1196
?sytd2/?hetd2 1553
?sytf2 1555
?tgex2 1559
?tgsy2 1562
?trti2 1566
clag2z 1568
dlag2s 1569
i?max1 1197
slag2d 1570
zlag2c 1571

bidiagonal divide and conquer 1474
block reflector

triangular factor 1389, 1431
checking for characters equality 1579
checking for safe infinity 1578
checking for strings equality 1580
complex Hermitian matrix

packed storage 1320
complex Hermitian tridiagonal matrix 1322
complex matrix multiplication 1185
complex symmetric matrix

computing eigenvalues and eigenvectors 1187
matrix-vector product 1194

LAPACK routines (continued)
complex symmetric matrix (continued)

symmetric rank-1 update 1196
complex symmetric packed matrix

symmetric rank-1 update 1192
complex vector

1-norm using true absolute value 1198
index of element with max absolute value 1197
linear transformation 1186
matrix-vector product 1190
plane rotation 1189

complex vector conjugation 1184
condition number estimation

?disna 754
?gbcon 365
?gecon 363
?gtcon 368
?hecon 382
?hpcon 386
?pbcon 375
?pocon 371
?ppcon 373
?ptcon 378
?spcon 384
?sycon 380
?tbcon 394
?tpcon 391
?trcon 389

determining machine parameters 1583, 1584
dqd transform 1483
dqds transform 1481
driver routines

generalized LLS problems
?ggglm 914
?gglse 910

generalized nonsymmetric eigenproblems
?gges 1137
?ggesx 1144
?ggev 1153
?ggevx 1159

generalized symmetric definite eigenproblems
?hbgv 1114
?hbgvd 1121
?hbgvx 1131
?hegv 1062
?hegvd 1069
?hegvx 1080
?hpgv 1089
?hpgvd 1096

3034

Intel® Math Kernel Library Reference Manual

LAPACK routines (continued)
driver routines (continued)

generalized symmetric definite eigenproblems
(continued)

?hpgvx 1106
?sbgv 1111
?sbgvd 1117
?sbgvx 1126
?spgv 1086
?spgvd 1092
?spgvx 1101
?sygv 1058
?sygvd 1065
?sygvx 1074

linear least squares problems
?gels 892
?gelsd 905
?gelss 901
?gelsy 896
?lals0 (auxiliary) 1295
?lalsa (auxiliary) 1299
?lalsd (auxiliary) 1303

nonsymmetric eigenproblems
?gees 1016
?geesx 1022
?geev 1028
?geevx 1033

singular value decomposition
?gelsd 905
?gesdd 1046
?gesvd 1041
?ggsvd 1051

solving linear equations
?gbsv 481
?gbsvx 484
?gesv 471
?gesvx 475
?gtsv 491
?gtsvx 493
?hesv 535
?hesvx 538
?hpsv 550
?hpsvx 552
?pbsv 513
?pbsvx 516
?posv 498
?posvx 500
?ppsv 505
?ppsvx 508

LAPACK routines (continued)
driver routines (continued)

solving linear equations (continued)
?ptsv 521
?ptsvx 523
?spsv 543
?spsvx 545
?sysv 527
?sysvx 530

symmetric eigenproblems
?hbev 979
?hbevd 986
?hbevx 995
?heev 921
?heevd 928
?heevr 948
?heevx 937
?hpev 957
?hpevd 963
?hpevx 972
?sbev 976
?sbevd 981
?sbevx 990
?spev 954
?spevd 959
?spevx 968
?stev 1000
?stevd 1002
?stevr 1010
?stevx 1006
?syev 918
?syevd 924
?syevr 942
?syevx 932

environmental enquiry 1573, 1576
finding a relatively isolated eigenvalue 1410
general band matrix

equilibration 1338
general matrix

block reflector 1428
elementary reflector 1426
reduction to bidiagonal form 1201, 1219

general rectangular matrix
block reflector 1385
elementary reflector 1383, 1392
equilibration 1340
LQ factorization 1205
plane rotation 1484
QL factorization 1207

3035

Index

LAPACK routines (continued)
general rectangular matrix (continued)

QR factorization 1209
row interchanges 1492
RQ factorization 1210

general square matrix
reduction to upper Hessenberg form 1203

general tridiagonal matrix 1271, 1273, 1275,
1311, 1406, 1418
generalized eigenvalue problems

?hbgst 769
?hegst 759
?hpgst 764
?pbstf 772
?sbgst 766
?spgst 762
?sygst 757

generalized SVD
?ggsvp 879
?tgsja 884

generalized Sylvester equation
?tgsyl 868

Hermitian band matrix
equilibration 1342, 1374

Hermitian band matrix in packed storage
equilibration 1372

Hermitian matrix
computing eigenvalues and eigenvectors 1263

Householder matrix
elementary reflector 1387

incremental condition estimation 1289
linear dependence of vectors 1334
LQ factorization

?gelq2 1205
?gelqf 585
?orglq 588
?ormlq 591
?unglq 594
?unmlq 596

LU factorization
general band matrix 1199

matrix equilibration
?gbequ 460
?geequ 458
?laqgb 1338
?laqge 1340
?laqhb 1342
?laqsb 1370
?laqsp 1372

LAPACK routines (continued)
matrix equilibration (continued)

?laqsy 1374
?pbequ 467
?poequ 463
?ppequ 465

matrix inversion
?getri 439
?hetri 448
?hptri 452
?potri 442
?pptri 444
?sptri 450
?sytri 446
?tptri 456
?trtri 454

matrix-matrix product
?lagtm 1273

merging sets of singular values 1443, 1458
mixed precision iterative refinement subroutines
471, 1568, 1569, 1570, 1571
nonsymmetric eigenvalue problems

?gebak 798
?gebal 794
?gehrd 779
?hsein 806
?hseqr 800
?orghr 781
?ormhr 784
?trevc 812
?trexc 822
?trsen 825
?trsna 817
?unghr 788
?unmhr 791

off-diagonal and diagonal elements 1475
permutation list creation 1306
permutation of matrix columns 1335
plane rotation 1422, 1424, 1484
plane rotation vector 1393
QL factorization

?geql2 1207
?geqlf 599
?orgql 602
?ormql 607
?ungql 604
?unmql 610

QR factorization
?geqp3 570

3036

Intel® Math Kernel Library Reference Manual

LAPACK routines (continued)
QR factorization (continued)

?geqpf 567
?geqr2 1209
?geqrf 563
?ggqrf 635
?ggrqf 639
?laqp2 1344
?laqps 1346
?orgqr 573
?ormqr 576
?ungqr 579
?unmqr 582
p?geqrf 1667

random numbers vector 1395
real lower bidiagonal matrix

SVD 1471
real square bidiagonal matrix

singular values 1476
real symmetric matrix 1323
real symmetric tridiagonal matrix 1229, 1322
real upper bidiagonal matrix

singular values 1437
SVD 1439, 1467, 1471

real upper quasi-triangular matrix
orthogonal similarity transformation 1265

reciprocal condition numbers for eigenvalues
and/or eigenvectors

?tgsna 873
RQ factorization

?geqr2 1210
?gerqf 613
?orgrq 616
?ormrq 620
?ungrq 618
?unmrq 623

RZ factorization
?ormrz 629
?tzrzf 626
?unmrz 632

singular value decomposition
?bdsdc 672
?bdsqr 668
?gbbrd 650
?gebrd 646
?orgbr 653
?ormbr 657
?ungbr 661
?unmbr 664

LAPACK routines (continued)
solution refinement and error estimation

?gbrfs 400
?gerfs 397
?gtrfs 403
?herfs 421
?hprfs 427
?pbrfs 412
?porfs 406
?pprfs 409
?ptrfs 415
?sprfs 424
?syrfs 418
?tbrfs 436
?tprfs 433
?trrfs 430

solving linear equations
?gbtrs 328
?getrs 325
?gttrs 331
?hetrs 346
?hptrs 352
?laln2 1291
?laqtr 1375
?pbtrs 339
?potrs 334
?pptrs 336
?pttrs 342
?sptrs 349
?sytrs 344
?tbtrs 360
?tptrs 357
?trtrs 354

sorting numbers 1488
square root 1337
square roots 1447, 1450, 1452, 1462, 1464, 1581
Sylvester equation

?lasy2 1494
?tgsy2 1562
?trsyl 831

symmetric band matrix
equilibration 1370, 1374

symmetric band matrix in packed storage
equilibration 1372

symmetric eigenvalue problems
?disna 754
?hbtrd 718
?herdb 686
?hetrd 694

3037

Index

LAPACK routines (continued)
symmetric eigenvalue problems (continued)

?hptrd 709
?opgtr 704
?opmtr 706
?orgtr 689
?ormtr 691
?pteqr 743
?sbtrd 715
?sptrd 702
?stebz 747
?stedc 731
?stegr 737
?stein 751
?stemr 726
?steqr 722
?sterf 720
?syrdb 683
?sytrd 680
?ungtr 697
?unmtr 699
?upgtr 711
?upmtr 713
auxiliary

?lae2 1228
?laebz 1229
?laed0 1234
?laed1 1237
?laed2 1239
?laed3 1242
?laed4 1244
?laed5 1246
?laed6 1247
?laed7 1249
?laed8 1253
?laed9 1256
?laeda 1258

symmetric matrix
computing eigenvalues and eigenvectors 1263
packed storage 1318

symmetric positive-definite tridiagonal matrix
eigenvalues 1477

trapezoidal matrix 1331, 1516
triangular factorization

?gbtrf 300
?getrf 297
?gttrf 302
?hetrf 316
?hptrf 322

LAPACK routines (continued)
triangular factorization (continued)

?pbtrf 309
?potrf 304
?pptrf 306
?pttrf 311
?sptrf 320
?sytrf 313
p?dbtrf 1599

triangular matrix
packed storage 1329

triangular system of equations 1506, 1512
tridiagonal band matrix 1327
uniform distribution 1425
unreduced symmetric tridiagonal matrix 1234
updated upper bidiagonal matrix

SVD 1453
updating sum of squares 1489
upper Hessenberg matrix

computing a specified eigenvector 1260
eigenvalues 1280
Schur factorization 1280

utility functions and routines
?labad 1581
?lamc1 1583
?lamc2 1584
?lamc3 1585
?lamc4 1585
?lamc5 1586
?lamch 1582
ieeeck 1578
ilaenv 1573
ilaver 1573
iparmq 1576
lsame 1579
lsamen 1580
second/dsecnd 1587
xerbla 1588

Laplace 2340
Laplace problem

three-dimensional 2586
two-dimensional 2582

largest absolute value of element
complex Hermitian matrix

packed storage 1320
complex Hermitian tridiagonal matrix 1322
complex symmetric matrix 1323
general rectangular matrix 1310, 1956
general tridiagonal matrix 1311

3038

Intel® Math Kernel Library Reference Manual

largest absolute value of element (continued)
Hermitian band matrix 1316
real symmetric matrix 1323, 1961
real symmetric tridiagonal matrix 1322
symmetric band matrix 1314
symmetric matrix

packed storage 1318
trapezoidal matrix 1331
triangular band matrix 1327
triangular matrix

packed storage 1329
upper Hessenberg matrix 1313, 1958

leading dimension 2780
leapfrog method 2290
LeapfrogStream 2313
least-squares problems 557
length. dimension 2775
library verion 2706
Library Version Obtaining 2706
library version string 2709
linear combination of vectors 51
Linear Congruential Generator 2284
linear equations, solving 325, 328, 331, 334, 336,

339, 342, 344, 346, 349, 352, 354, 357,
360, 471, 475, 481, 484, 491, 493, 498,
500, 505, 508, 513, 516, 521, 523, 527,
530, 535, 538, 543, 545, 550, 552, 1291,
1375, 1378, 1611, 1613, 1616, 1618, 1621,
1624, 1627, 1630, 1811, 1813, 1820, 1823,
1826, 1829, 1831, 1838, 1841, 1844, 2071,
2106, 2108

tridiagonal symmetric positive-definite matrix
LAPACK 521
ScaLAPACK 1841

band matrix
LAPACK 481, 484
ScaLAPACK 1820

Cholesky-factored matrix
LAPACK 339
ScaLAPACK 1618

diagonally dominant-like matrix
banded 1627
tridiagonal 1624

general band matrix
ScaLAPACK 1823

general matrix
band storage 328, 1613

general tridiagonal matrix
ScaLAPACK 1826

linear equations, solving (continued)
Hermitian matrix

error bounds 538, 552
packed storage 352, 550, 552

Hermitian positive-definite matrix
band storage

LAPACK 513
ScaLAPACK 1838

error bounds
LAPACK 500
ScaLAPACK 1831

LAPACK
linear equations, solving

multiple right-hand sides
symmetric positive-definite
matrix 498

packed storage 336, 505, 508
ScaLAPACK 1831

Hermitian positive-definite tridiagonal linear
equations 2108
Hermitian positive-definite tridiagonal matrix 1621
multiple right-hand sides

band matrix
LAPACK 481, 484
ScaLAPACK 1820

Hermitian matrix 535, 550
Hermitian positive-definite matrix

band storage 513
square matrix

LAPACK 471, 475
ScaLAPACK 1811, 1813

symmetric matrix 527, 543
symmetric positive-definite matrix

band storage 513
tridiagonal matrix 491, 493

overestimated or underestimated system 1844
square matrix

error bounds
LAPACK 475, 484
ScaLAPACK 1813

LAPACK 471, 475
ScaLAPACK 1811, 1813

symmetric matrix
error bounds 530, 545
packed storage 349, 543, 545

symmetric positive-definite matrix
band storage

LAPACK 513
ScaLAPACK 1838

3039

Index

linear equations, solving (continued)
symmetric positive-definite matrix (continued)

error bounds
LAPACK 500
ScaLAPACK 1831

LAPACK 498, 500
packed storage 336, 505, 508
ScaLAPACK 1829, 1831

symmetric positive-definite tridiagonal linear
equations 2108
triangular matrix

band storage 360, 2071
packed storage 357

tridiagonal Hermitian positive-definite matrix
error bounds 523
LAPACK 521
ScaLAPACK 1841

tridiagonal matrix
error bounds 493
LAPACK 331, 342, 491, 493
LAPACK auxiliary 1378
ScaLAPACK auxiliary 2106

tridiagonal symmetric positive-definite matrix
error bounds 523

Linear Least Squares (LLS) Problems 892
LoadStreamF 2312
Lognormal 2352
LQ factorization 561, 588, 594, 1205, 1687, 1689,

1922
computing the elements of

orthogonal matrix Q 588
real orthogonal matrix Q 1687
unitary matrix Q 594, 1689

general rectangular matrix 1205, 1922
lsame 1579, 2712
lsamen 1580, 2712
LU factorization 297, 300, 302, 1199, 1212, 1213,

1215, 1216, 1271, 1275, 1503, 1594, 1596,
1599, 1608, 1813, 1906, 1910, 1933, 2101,
2103, 2105

band matrix
blocked algorithm 2103
unblocked algorithm 2101

diagonally dominant-like tridiagonal matrix 1608
general band matrix 1199
general matrix 1215, 1933
solving linear equations

general matrix 1212
square matrix 1813

LU factorization (continued)
solving linear equations (continued)

tridiagonal matrix 1216, 1275
triangular band matrix 1906
tridiagonal band matrix 1910
tridiagonal matrix 302, 1271, 2105
with complete pivoting 1213, 1503
with partial pivoting 1215, 1933

M
machine parameters

LAPACK 1582
ScaLAPACK 2114

matrix arguments 2775, 2777, 2780
column-major ordering 2775, 2780
example 2780
leading dimension 2780
number of columns 2780
number of rows 2780
transposition parameter 2780

matrix block
QR factorization

with pivoting 1344
matrix equation

AX = B 173, 294, 325, 1590, 1611
matrix one-dimensional substructures 2775
matrix-matrix operation

product
general matrix 145

rank-2k update
Hermitian matrix 155
symmetric matrix 166

rank-n update
Hermitian matrix 152
symmetric matrix 162

scalar-matrix-matrix product
Hermitian matrix 149
symmetric matrix 159

matrix-matrix operation:scalar-matrix-matrix product
triangular matrix 170

matrix-vector operation
product

Hermitian matrix 90, 93, 101
real symmetric matrix 111, 118
triangular matrix 125, 133, 138

rank-1 update
Hermitian matrix 96, 103

3040

Intel® Math Kernel Library Reference Manual

matrix-vector operation (continued)
rank-1 update (continued)

real symmetric matrix 114, 121
rank-2 update

Hermitian matrix 98, 105
symmetric matrix 116, 123

matrix-vector operation:product
Hermitian matrix

band storage 90
packed storage 101

real symmetric matrix
packed storage 111

symmetric matrix
band storage 108

triangular matrix
band storage 125
packed storage 133

matrix-vector operation:rank-1 update
Hermitian matrix

packed storage 103
real symmetric matrix

packed storage 114
matrix-vector operation:rank-2 update

Hermitian matrix
packed storage 105

symmetric matrix
packed storage 116

mkl_cspblas_dbsrsymv 236
mkl_cspblas_dcsrsymv 210
mkl_dbsrmv 231
mkl_dbsrsymv 234
mkl_dcoogemv 217
mkl_dcoomm 264
mkl_dcoomv 215
mkl_dcoosm 277
mkl_dcoosv 246
mkl_dcoosymv 219
mkl_dcootrsv 248
mkl_dcscmm 261
mkl_dcscmv 212
mkl_dcscsm 275
mkl_dcscsv 243
mkl_dcsrgemv 206
mkl_dcsrmm 258
mkl_dcsrmv 203
mkl_dcsrsm 272
mkl_dcsrsv 238
mkl_dcsrsymv 208
mkl_dcsrtrsv 241

mkl_ddiagemv 224
mkl_ddiamm 266
mkl_ddiamv 222
mkl_ddiasm 280
mkl_ddiasv 251
mkl_ddiasymv 226
mkl_ddiatrsv 253
mkl_dskymm 269
mkl_dskymv 228
mkl_dskysm 282
mkl_dskysv 256
MKL_FreeBuffers 2715
MKLGetVersion 2706
MKLGetVersionStirng 2709
MPI 1589
Multiplicative Congruential Generator 2284

N
naming conventions 42, 45, 177, 191, 558, 1590,

2202
BLAS 45
LAPACK 558, 1590
Sparse BLAS Level 1 177
Sparse BLAS Level 2 191
Sparse BLAS Level 3 191
VML 2202

negative eigenvalues 1954
NegBinomial 2383
NewStream 2296
NewStreamEx 2297
NewTaskX1D 2411
nonlinear least square problem 2999
Nonsymmetric Eigenproblems 1015

O
off-diagonal elements

initialization 2018
LAPACK 1475
ScaLAPACK 2018

one-dimensional FFTs
storage effects 2485, 2487

optimization solvers basics 2999

3041

Index

orthogonal matrix 643, 675, 774, 834, 1526, 1527,
1529, 1531, 1532, 1775, 1789, 2041, 2044,
2047, 2050, 2053

from LQ factorization
LAPACK 1529
ScaLAPACK 2047

from QL factorization
LAPACK 1526, 1532
ScaLAPACK 2041, 2053

from QR factorization
LAPACK 1527
ScaLAPACK 2044

from RQ factorization
LAPACK 1531
ScaLAPACK 2050

P
p?dbsv 1823
p?dbtrf 1599
p?dbtrs 1627
p?dbtrsv 1906
p?dtsv 1826
p?dttrf 1608
p?dttrs 1624
p?dttrsv 1910
p?gbsv 1820
p?gbtrf 1596
p?gbtrs 1613
p?gebd2 1914
p?gebrd 1790
p?gecon 1633
p?geequ 1662
p?gehd2 1918
p?gehrd 1775
p?gelq2 1922
p?gelqf 1684
p?gels 1844
p?geql2 1924
p?geqlf 1698
p?geqpf 1670
p?geqr2 1927
p?geqrf 1667
p?gerfs 1643
p?gerq2 1930
p?gerqf 1713
p?gesv 1811
p?gesvd 1869

p?gesvx 1813
p?getf2 1933
p?getrf 1594
p?getri 1655
p?getrs 1611
p?ggqrf 1738
p?ggrqf 1743
p?heevx 1860
p?hegst 1808
p?hegvx 1883
p?hetrd 1757
p?labad 2112
p?labrd 1935
p?lachkieee 2113
p?lacon 1940
p?laconsb 1942
p?lacp2 1943
p?lacp3 1945
p?lacpy 1947
p?laevswp 1949
p?lahqr 1787
p?lahrd 1951
p?laiect 1954
p?lamch 2114
p?lange 1956
p?lanhs 1958
p?lantr 1964
p?lapiv 1967
p?laqge 1971
p?laqsy 1973
p?lared1d 1976
p?lared2d 1977
p?larf 1979
p?larfb 1983
p?larfc 1988
p?larfg 1992
p?larft 1994
p?larz 1998
p?larzb 2002
p?larzt 2011
p?lascl 2016
p?laset 2018
p?lasmsub 2020
p?lasnbt 2116
p?lassq 2021
p?laswp 2023
p?latra 2025
p?latrd 2026
p?latrz 2034

3042

Intel® Math Kernel Library Reference Manual

p?lauu2 2037
p?lauum 2039
p?lawil 2040
p?max1 1903
p?org2l/p?ung2l 2041
p?org2r/p?ung2r 2044
p?orgl2/p?ungl2 2047
p?orglq 1687
p?orgql 1701
p?orgqr 1673
p?orgr2/p?ungr2 2050
p?orgrq 1716
p?orm2l/p?unm2l 2053
p?orm2r/p?unm2r 2057
p?ormbr 1795
p?ormhr 1779
p?orml2/p?unml2 2062
p?ormlq 1691
p?ormql 1706
p?ormqr 1677
p?ormr2/p?unmr2 2066
p?ormrq 1720
p?ormrz 1731
p?ormtr 1753
p?pbsv 1838
p?pbtrf 1603
p?pbtrs 1618
p?pbtrsv 2071
p?pocon 1636
p?poequ 1664
p?porfs 1647
p?posv 1829
p?posvx 1831
p?potf2 2080
p?potrf 1601
p?potri 1658
p?potrs 1616
p?ptsv 1841
p?pttrf 1606
p?pttrs 1621
p?pttrsv 2076
p?rscl 2082
p?stebz 1766
p?stein 1770
p?sum1 1905
p?syev 1849
p?syevx 1852
p?sygs2/p?hegs2 2083
p?sygst 1805

p?sygvx 1874
p?sytd2/p?hetd2 2086
p?sytrd 1749
p?trcon 1639
p?trrfs 1651
p?trti2 2090
p?trtri 1660
p?trtrs 1630
p?tzrzf 1727
p?unglq 1689
p?ungql 1703
p?ungqr 1675
p?ungrq 1718
p?unmbr 1800
p?unmhr 1783
p?unmlq 1695
p?unmql 1709
p?unmqr 1681
p?unmrq 1724
p?unmrz 1734
p?unmtr 1762
Packed formats 2478
packed storage scheme 2777
parallel direct solver (Pardiso) 2119
parameter partitioning, for interval systems 2540
parameters

for a Givens rotation 63
modified Givens transformation 67

PARDISO 2119
pardiso function 2120
Partial Differential Equations support 2557, 2581,

2582, 2583, 2585, 2586
Helmholtz problem on a sphere 2582
Poisson problem on a sphere 2583
three-dimensional Helmholtz problem 2585
three-dimensional Laplace problem 2586
three-dimensional Poisson problem 2586
two-dimensional Helmholtz problem 2581
two-dimensional Laplace problem 2582
two-dimensional Poisson problem 2582

PDE support 2557
PDE Support Code Examples 2905
pdlaiectb 1954
pdlaiectl 1954
permutation matrix 2745
pivoting matrix rows or columns 1967
PL Interface 2579
platforms supported 39

3043

Index

points rotation
in the modified plane 64
in the plane 61

Poisson 2378
Poisson Library 2579, 2580, 2588, 2592, 2595, 2601,

2607, 2608, 2611, 2613, 2616, 2926
routines

?_commit_Helmholtz_2D 2595
?_commit_Helmholtz_3D 2595
?_commit_sph_np 2611
?_commit_sph_p 2611
?_Helmholtz_2D 2601
?_Helmholtz_3D 2601
?_init_Helmholtz_2D 2592
?_init_Helmholtz_3D 2592
?_init_sph_np 2608
?_init_sph_p 2608
?_sph_np 2613
?_sph_p 2613
code examples 2926
free_Helmholtz_2D 2607
free_Helmholtz_3D 2607
free_sph_np 2616
free_sph_p 2616

structure 2580
Poisson problem

on a sphere 2583
three-dimensional 2586
two-dimensional 2582

PoissonV 2381
preconditioners based on incomplete LU factorization

2190, 2194
dcsrilu0 2194

preconditioning, of an interval system 2554
process grid 1589
product

matrix-vector
general matrix 77, 81
Hermitian matrix 90, 93, 101
real symmetric matrix 111, 118
triangular matrix 125, 133, 138

scalar-matrix
general matrix 145
Hermitian matrix 149

scalar-matrix-matrix
general matrix 145
Hermitian matrix 149
symmetric matrix 159
triangular matrix 170

product (continued)
vector-scalar 69

product:matrix-vector
general matrix

band storage 77
Hermitian matrix

band storage 90
packed storage 101

real symmetric matrix
packed storage 111

symmetric matrix
band storage 108

triangular matrix
band storage 125
packed storage 133

pseudorandom numbers 2281
pslaiect 1954
pxerbla 2117, 2711

Q
QL factorization

computing the elements of
complex matrix Q 604
orthogonal matrix Q 1701
real matrix Q 602
unitary matrix Q 1703

general rectangular matrix
LAPACK 1207
ScaLAPACK 1924

multiplying general matrix by
orthogonal matrix Q 1706
unitary matrix Q 1709

QR factorization 561, 567, 570, 573, 579, 1209, 1210,
1344, 1346, 1670, 1673, 1675, 1927, 1930

computing the elements of
orthogonal matrix Q 573, 1673
unitary matrix Q 579, 1675

general rectangular matrix
LAPACK 1209, 1210
ScaLAPACK 1927, 1930

with pivoting
ScaLAPACK 1670

quasi-random numbers 2281
quasi-triangular matrix

LAPACK 774, 834
ScaLAPACK 1775

quasi-triangular system of equations 1375

3044

Intel® Math Kernel Library Reference Manual

R
random number generators 2281
random stream 2292
Random Streams 2292
rank-1 update

conjugated, general matrix 86
general matrix 84
Hermitian matrix

packed storage 103
real symmetric matrix

packed storage 114
unconjugated, general matrix 88

rank-2 update
Hermitian matrix

packed storage 105
symmetric matrix

packed storage 116
rank-2k update

Hermitian matrix 155
symmetric matrix 166

rank-n update
Hermitian matrix 152
symmetric matrix 162

Rayleigh 2349
RCI CG Interface 2156
RCI CG sparse solver routines

dcg 2173, 2179
dcg_check 2172
dcg_get 2175
dcg_init 2171
dcgmrhs_check 2178
dcgmrhs_get 2182
dcgmrhs_init 2176

RCI FGMRES Interface 2162
RCI FGMRES sparse solver routines

dfgmres_check 2184
dfgmres_get 2188
dfgmres_init 2183

RCI GFMRES sparse solver routines
dfgres 2185

RCI ISS 2151
RCI ISS interface 2151
RCI ISS sparse solver routines

implementation details 2189
real matrix

QR factorization
with pivoting 1346

real symmetric matrix
1-norm value 1323
Frobenius norm 1323
infinity- norm 1323
largest absolute value of element 1323

real symmetric tridiagonal matrix
1-norm value 1322
Frobenius norm 1322
infinity- norm 1322
largest absolute value of element 1322

reducing generalized eigenvalue problems
LAPACK 757
ScaLAPACK 1805

reduction to upper Hessenberg form
general matrix 1918
general square matrix 1203

refining solutions of linear equations
band matrix 400
general matrix 397, 1643
Hermitian matrix

packed storage 427
Hermitian positive-definite matrix

band storage 412
packed storage 409

symmetric matrix
packed storage 424

symmetric positive-definite matrix
band storage 412
packed storage 409

symmetric/Hermitian positive-definite distributed
matrix 1647
tridiagonal matrix 403

RegisterBrng 2388
registering a basic generator 2385
reordering of matrices 2746
Reverse Communication Interface 2151
Rex-Rohn test 2550, 2551
Ris-Beeck spectral criterion 2550
rotation

of points in the modified plane 64
of points in the plane 61
of sparse vectors 188
parameters for a Givens rotation 63
parameters of modified Givens transformation 67

routine group 40
routine name conventions

BLAS 45
Sparse BLAS Level 1 177
Sparse BLAS Level 2 191

3045

Index

routine name conventions (continued)
Sparse BLAS Level 3 191

RQ factorization
computing the elements of

complex matrix Q 618
orthogonal matrix Q 1716
real matrix Q 616
unitary matrix Q 1718

Rump criterion 2551

S
SaveStreamF 2310
ScaLAPACK 1589
ScaLAPACK routines

1D array redistribution 1976, 1977
auxiliary routines

?combamax1 1904
?dbtf2 2101
?dbtrf 2103
?dttrf 2105
?dttrsv 2106
?lamsh 2092
?laref 2094
?lasorte 2096
?lasrt2 2097
?pttrsv 2108
?stein2 2098
?steqr2 2110
p?dbtrsv 1906
p?dttrsv 1910
p?gebd2 1914
p?gehd2 1918
p?gelq2 1922
p?geql2 1924
p?geqr2 1927
p?gerq2 1930
p?getf2 1933
p?labrd 1935
p?lacgv 1902
p?lacon 1940
p?laconsb 1942
p?lacp2 1943
p?lacp3 1945
p?lacpy 1947
p?laevswp 1949
p?lahrd 1951
p?laiect 1954

ScaLAPACK routines (continued)
auxiliary routines (continued)

p?lange 1956
p?lanhs 1958
p?lansy, p?lanhe 1961
p?lantr 1964
p?lapiv 1967
p?laqge 1971
p?laqsy 1973
p?lared1d 1976
p?lared2d 1977
p?larf 1979
p?larfb 1983
p?larfc 1988
p?larfg 1992
p?larft 1994
p?larz 1998
p?larzb 2002
p?larzc 2007
p?larzt 2011
p?lascl 2016
p?laset 2018
p?lasmsub 2020
p?lassq 2021
p?laswp 2023
p?latra 2025
p?latrd 2026
p?latrs 2031
p?latrz 2034
p?lauu2 2037
p?lauum 2039
p?lawil 2040
p?max1 1903
p?org2l/p?ung2l 2041
p?org2r/p?ung2r 2044
p?orgl2/p?ungl2 2047
p?orgr2/p?ungr2 2050
p?orm2l/p?unm2l 2053
p?orm2r/p?unm2r 2057
p?orml2/p?unml2 2062
p?ormr2/p?unmr2 2066
p?pbtrsv 2071
p?potf2 2080
p?pttrsv 2076
p?rscl 2082
p?sum1 1905
p?sygs2/p?hegs2 2083
p?sytd2/p?hetd2 2086
p?trti2 2090

3046

Intel® Math Kernel Library Reference Manual

ScaLAPACK routines (continued)
auxiliary routines (continued)

pdlaiectb 1954
pdlaiectl 1954
pslaiect 1954

block reflector
triangular factor 1994, 2011

Cholesky factorization 1606
complex matrix

complex elementary reflector 2007
complex vector

1-norm using true absolute value 1905
complex vector conjugation 1902
condition number estimation

p?gecon 1633
p?pocon 1636
p?trcon 1639

driver routines
p?dbsv 1823
p?dtsv 1826
p?gbsv 1820
p?gels 1844
p?gesv 1811
p?gesvd 1869
p?gesvx 1813
p?heevx 1860
p?hegvx 1883
p?pbsv 1838
p?posv 1829
p?posvx 1831
p?ptsv 1841
p?syev 1849
p?syevx 1852
p?sygvx 1874

error estimation
p?trrfs 1651

error handling
pxerbla 2117, 2711

general matrix
block reflector 2002
elementary reflector 1998
LU factorization 1933
reduction to upper Hessenberg form 1918

general rectangular matrix
elementary reflector 1979
LQ factorization 1922
QL factorization 1924
QR factorization 1927
reduction to bidiagonal form 1935

ScaLAPACK routines (continued)
general rectangular matrix (continued)

reduction to real bidiagonal form 1914
row interchanges 2023
RQ factorization 1930

generalized eigenvalue problems
p?hegst 1808
p?sygst 1805

Householder matrix
elementary reflector 1992

LQ factorization
p?gelq2 1922
p?gelqf 1684
p?orglq 1687
p?ormlq 1691
p?unglq 1689
p?unmlq 1695

LU factorization
p?dbtrsv 1906
p?dttrf 1608
p?dttrsv 1910
p?getf2 1933

matrix equilibration
p?geequ 1662
p?poequ 1664

matrix inversion
p?getri 1655
p?potri 1658
p?trtri 1660

nonsymmetric eigenvalue problems
p?gehrd 1775
p?lahqr 1787
p?ormhr 1779
p?unmhr 1783

QL factorization
?geqlf 1698
?ungql 1703
p?geql2 1924
p?orgql 1701
p?ormql 1706
p?unmql 1709

QR factorization
p?geqpf 1670
p?geqr2 1927
p?ggqrf 1738
p?orgqr 1673
p?ormqr 1677
p?ungqr 1675
p?unmqr 1681

3047

Index

ScaLAPACK routines (continued)
RQ factorization

p?gerq2 1930
p?gerqf 1713
p?ggrqf 1743
p?orgrq 1716
p?ormrq 1720
p?ungrq 1718
p?unmrq 1724

RZ factorization
p?ormrz 1731
p?tzrzf 1727
p?unmrz 1734

singular value decomposition
p?gebrd 1790
p?ormbr 1795
p?unmbr 1800

solution refinement and error estimation
p?gerfs 1643
p?porfs 1647

solving linear equations
?dttrsv 2106
?pttrsv 2108
p?dbtrs 1627
p?dttrs 1624
p?gbtrs 1613
p?getrs 1611
p?potrs 1616
p?pttrs 1621
p?trtrs 1630

symmetric eigenproblems
p?hetrd 1757
p?ormtr 1753
p?stebz 1766
p?stein 1770
p?sytrd 1749
p?unmtr 1762

symmetric eigenvalue problems
?stein2 2098
?steqr2 2110

trapezoidal matrix 2034
triangular factorization

?dbtrf 2103
?dttrf 2105
p?dbtrsv 1906
p?dttrsv 1910
p?gbtrf 1596
p?getrf 1594
p?pbtrf 1603

ScaLAPACK routines (continued)
triangular factorization (continued)

p?potrf 1601
p?pttrf 1606

triangular system of equations 2031
updating sum of squares 2021
utility functions and routines

p?labad 2112
p?lachkieee 2113
p?lamch 2114
p?lasnbt 2116
pxerbla 2117, 2711

scalar-matrix product 145, 149, 159
scalar-matrix-matrix product 145, 149, 159, 170

general matrix 145
symmetric matrix 159
triangular matrix 170

scaling
general rectangular matrix 1971
symmetric/Hermitian matrix 1973

scaling factors
general rectangular distributed matrix 1662
Hermitian positive definite distributed matrix 1664
symmetric positive definite distributed matrix 1664

scattering compressed sparse vector's elements into
full storage form 190
Schulz interval procedure 2548
Schulz iterative method 2548
Schur decomposition 857, 861
Schur factorization 1277, 1280, 1333
second/dsecnd 2713
Service Functions 2204
Service Routines 2294
setcpufrequency 2715
SetInternalDecimation 2420
SetValue 2465
SetValueDM 2518
simple driver 1590
single node matrix 2092
singular value decomposition

LAPACK 643, 1041
LAPACK routines, singular value

decomposition[singular value
decomposition

aaa] 1789
ScaLAPACK 1789, 1869
See also LAPACK routines, singular value
decomposition 643

Singular Value Decomposition 1040

3048

Intel® Math Kernel Library Reference Manual

SkipAheadStream 2317
slag2d 1570
small subdiagonal element 2020
smallest absolute value of a vector element 73
sNewAbstractStream 2304
solution partitioning 2543
solver

direct 2743
iterative 2743

Solver
Sparse 2119

solving linear equations 328
solving linear equations. linear equations 1613
solving linear equations. See linear equations 1291
sorting

eigenpairs 2096
numbers in increasing/decreasing order

LAPACK 1488
ScaLAPACK 2097

Sparse BLAS Level 1 176, 177
data types 177
naming conventions 177

Sparse BLAS Level 1 routines and functions 177, 179,
181, 182, 184, 185, 187, 188, 190

?axpyi 179
?dotci 182
?doti 181
?dotui 184
?gthr 185
?gthrz 187
?roti 188
?sctr 190

Sparse BLAS Level 2 191
naming conventions 191

sparse BLAS Level 2 routines
mkl_cspblas_dbsrsymv 236
mkl_cspblas_dcsrsymv 210
mkl_dbsrgemv
mkl_dbsrmv 231
mkl_dbsrsymv 234
mkl_dcoogemv 217
mkl_dcoomv 215
mkl_dcoosv 246
mkl_dcoosymv 219
mkl_dcootrsv 248
mkl_dcscmv 212
mkl_dcscsv 243
mkl_dcsrgemv 206
mkl_dcsrmv 203

sparse BLAS Level 2 routines (continued)
mkl_dcsrsv 238
mkl_dcsrsymv 208
mkl_dcsrtrsv 241
mkl_ddiagemv 224
mkl_ddiamv 222
mkl_ddiasv 251
mkl_ddiasymv 226
mkl_ddiatrsv 253
mkl_dskymv 228
mkl_dskysv 256

Sparse BLAS Level 3 191
naming conventions 191

sparse BLAS Level 3 routines
mkl_dcoomm 264
mkl_dcoosm 277
mkl_dcscmm 261
mkl_dcscsm 275
mkl_dcsrmm 258
mkl_dcsrsm 272
mkl_ddiamm 266
mkl_ddiasm 280
mkl_dskymm 269
mkl_dskysm 282

sparse matrices 191
sparse matrix 191
Sparse Matrix Data Structures 193
Sparse Solver

direct sparse solver interface
dss_create 2139
dss_define_structure

dss_define_structure 2140
dss_delete 2145
dss_factor_real, dss_factor_complex 2142
dss_reorder 2141
dss_solve_real, dss_solve_complex 2143
dss_statistics 2145
mkl_cvt_to_null_terminated_str 2149

iterative sparse solver interface
dcg 2173
dcg_check 2172
dcg_get 2175
dcg_init 2171
dcgmrhs 2179
dcgmrhs_check 2178
dcgmrhs_get 2182
dcgmrhs_init 2176
dfgmres 2185
dfgmres_check 2184

3049

Index

Sparse Solver (continued)
iterative sparse solver interface (continued)

dfgmres_get 2188
dfgmres_init 2183

preconditioners based on incomplete LU
factorization

dcsrilu0 2194
Sparse Solvers 2119
sparse vectors 176, 177, 179, 181, 182, 184, 185,

187, 188, 190
adding and scaling 179
complex dot product, conjugated 182
complex dot product, unconjugated 184
compressed form 177
converting to compressed form 185, 187
converting to full-storage form 190
full-storage form 177
Givens rotation 188
norm 177
passed to BLAS level 1 routines 177
real dot product 181
scaling 177

Specific Features of Fortran-95 Interfaces for LAPACK
Routines 2983
split Cholesky factorization (band matrices) 772
square matrix

1-norm estimation
LAPACK 1222, 1224
ScaLAPACK 1940

status checking
DFTI 2448

storage, of sparse matrices 2752
stream 2292
stream descriptor 2283
stride. increment 2775
sum

of magnitudes of the vectoxr elements 50
of sparse vector and full-storage vector 179
of vectors 51

sum of squares
updating

LAPACK 1489
ScaLAPACK 2021

support routines
MKL_FreeBuffers 2715

SVD (singular value decomposition)
LAPACK 643
ScaLAPACK 1789

swapping adjacent diagonal blocks 1265, 1559

swapping vectors 71
Sylvester's equation 831
symmetric band matrix

1-norm value 1314
Frobenius norm 1314
infinity- norm 1314
largest absolute value of element 1314

Symmetric Eigenproblems 917
symmetric indefinite matrix

factorization with diagonal pivoting method 1555
symmetric matrix 108, 111, 114, 116, 118, 121, 123,

159, 162, 166, 313, 320, 344, 349, 380,
384, 446, 450, 675, 754, 756, 1190, 1192,
1194, 1196, 1508, 1551, 1553, 1849, 1852,
1973, 2026, 2083, 2086

Bunch-Kaufman factorization
packed storage 320

eigenvalues and eigenvectors 1849, 1852
estimating the condition number

packed storage 384
generalized eigenvalue problems 756
inverting the matrix

packed storage 450
matrix-vector product

band storage 108
packed storage 111, 1190

rank-1 update
packed storage 114, 1192

rank-2 update
packed storage 116

rank-2k update 166
rank-n update 162
reducing to standard form

LAPACK 1551
ScaLAPACK 2083

reducing to tridiagonal form
LAPACK 1508
ScaLAPACK 2026

scalar-matrix-matrix product 159
scaling 1973
solving systems of linear equations

packed storage 349
symmetric matrix in packed form

1-norm value 1318
Frobenius norm 1318
infinity- norm 1318
largest absolute value of element 1318

symmetric positive definite distributed matrix
computing scaling factors 1664

3050

Intel® Math Kernel Library Reference Manual

symmetric positive definite distributed matrix
(continued)

equilibration 1664
symmetric positive-definite band matrix

Cholesky factorization 1545
symmetric positive-definite distributed matrix

inverting the matrix 1658
symmetric positive-definite matrix

Cholesky factorization
band storage 309, 1603
LAPACK 304, 1547
packed storage 306
ScaLAPACK 1601, 2080

estimating the condition number
band storage 375
packed storage 373
tridiagonal matrix 378

inverting the matrix
packed storage 444

solving systems of linear equations
band storage 339, 1618
LAPACK 334
packed storage 336
ScaLAPACK 1616

symmetric positive-definite tridiagonal matrix
solving systems of linear equations 1621

symmetrically structured systems 2754
system of linear equations

with a triangular matrix
band storage 129
packed storage 136

systems of linear equations 325, 331, 342, 2106
linear equations 2106

systems of linear equationslinear equations 1611

T
timing functions

getcpuclocks 2714
getcpufrequency 2714
second/dsecnd 2713
setcpufrequency 2715

TR routines
dtrnlsp_delete 2651
dtrnlsp_get 2649
dtrnlsp_init 2646
dtrnlsp_solve 2647
dtrnlspbc_delete 2671

TR routines (continued)
dtrnlspbc_get 2670
dtrnlspbc_init 2667
dtrnlspbc_solve 2668
nonlinear least-squares problem

with linear bound constraints 2666
without constraints 2645

organization and implementation 2643
transposition parameter 2780
trapezoidal matrix

1-norm value 1331
Frobenius norm 1331
infinity- norm 1331
largest absolute value of element 1331
reduction to triangular form 2034
RZ factorization

LAPACK 626
ScaLAPACK 1727

triangular band matrix
1-norm value 1327
Frobenius norm 1327
infinity- norm 1327
largest absolute value of element 1327

triangular banded equations
LAPACK 1501
ScaLAPACK 2071

triangular distributed matrix
inverting the matrix 1660

triangular factorization
band matrix 300, 1596, 1599, 1906, 2103
general matrix 297, 1594
Hermitian matrix

packed storage 322
Hermitian positive-definite matrix

band storage 309, 1603
packed storage 306
tridiagonal matrix 311, 1606

symmetric matrix
packed storage 320

symmetric positive-definite matrix
band storage 309, 1603
packed storage 306
tridiagonal matrix 311, 1606

tridiagonal matrix
LAPACK 302
ScaLAPACK 2105

triangular matrix 125, 129, 133, 136, 138, 141, 170,
354, 357, 360, 389, 391, 394, 454, 456,

3051

Index

triangular matrix (continued)
774, 834, 1331, 1519, 1520, 1559, 1566,
1630, 1775, 1964, 2037, 2039, 2090

1-norm value
LAPACK 1331
ScaLAPACK 1964

estimating the condition number
band storage 394
packed storage 391

Frobenius norm
LAPACK 1331
ScaLAPACK 1964

infinity- norm
LAPACK 1331
ScaLAPACK 1964

inverting the matrix
LAPACK 1566
packed storage 456
ScaLAPACK 2090

largest absolute value of element
LAPACK 1331
ScaLAPACK 1964

matrix-vector product
band storage 125
packed storage 133

product
blocked algorithm 1520, 2039
LAPACK 1519, 1520
ScaLAPACK 2037, 2039
unblocked algorithm 1519

ScaLAPACK 1775
scalar-matrix-matrix product 170
solving systems of linear equations

band storage 129, 360
packed storage 136, 357
ScaLAPACK 1630

swapping adjacent diagonal blocks 1559
triangular matrix in packed form

1-norm value 1329
Frobenius norm 1329
infinity- norm 1329
largest absolute value of element 1329

triangular system of equations
solving with scale factor

LAPACK 1512
ScaLAPACK 2031

tridaigonal system of equations 1548
tridiagonal matrix 331, 342, 368, 675, 2106

estimating the condition number 368

tridiagonal matrix (continued)
solving systems of linear equations

ScaLAPACK 2106
tridiagonal triangular factorization

band matrix 1910
tridiagonal triangular system of equations 2076
trigonometric transform

backward cosine 2558
backward sine 2558
backward staggered cosine 2558
forward cosine 2558
forward sine 2557
forward staggered cosine 2558

Trigonometric Transform interface 2557, 2559, 2562,
2563, 2566, 2568, 2570, 2906

code examples 2906
routines

?_backward_trig_transform 2568
?_commit_trig_transform 2563
?_forward_trig_transform 2566
?_init_trig_transform 2562
free_trig_transform 2570

Trigonometric Transforms interface 2561
trust region algorithm 3000
TT interface 2557
TT routines 2561
two matrices

QR factorization
LAPACK 635
ScaLAPACK 1738

U
Uniform (continuous) 2326
Uniform (discrete) 2365
UniformBits 2367
unitary matrix 643, 675, 774, 834, 1526, 1527, 1529,

1531, 1532, 1775, 1789, 2041, 2044, 2047,
2050, 2053

from LQ factorization
LAPACK 1529
ScaLAPACK 2047

from QL factorization
LAPACK 1526, 1532
ScaLAPACK 2041, 2053

from QR factorization
LAPACK 1527
ScaLAPACK 2044

3052

Intel® Math Kernel Library Reference Manual

unitary matrix (continued)
from RQ factorization

LAPACK 1531
ScaLAPACK 2050

ScaLAPACK 1775, 1789
Unpack Functions 2203
updating

rank-1
general matrix 84
Hermitian matrix 96, 103
real symmetric matrix 114, 121

rank-1, conjugated
general matrix 86

rank-1, unconjugated
general matrix 88

rank-2
Hermitian matrix 98, 105
symmetric matrix 116, 123

rank-2k
Hermitian matrix 155
symmetric matrix 166

rank-n
Hermitian matrix 152
symmetric matrix 162

updating:rank-1
Hermitian matrix

packed storage 103
real symmetric matrix

packed storage 114
updating:rank-2

Hermitian matrix
packed storage 105

symmetric matrix
packed storage 116

upper Hessenberg matrix 774, 834, 1313, 1775, 1958
1-norm value

LAPACK 1313
ScaLAPACK 1958

Frobenius norm
LAPACK 1313
ScaLAPACK 1958

infinity- norm
LAPACK 1313
ScaLAPACK 1958

largest absolute value of element
LAPACK 1313
ScaLAPACK 1958

ScaLAPACK 1775
user time 1587

V
vector arguments 177, 2775, 2776

array dimension 2775
default 2776
examples 2775
increment 2775
length 2775
matrix one-dimensional substructures 2775
sparse vector 177

vector conjugation 1184, 1902
vector indexing 2205
vector mathematical functions 2207, 2208, 2210,

2211, 2213, 2214, 2215, 2216, 2218, 2221,
2222, 2224, 2226, 2227, 2229, 2231, 2232,
2234, 2235, 2237, 2239, 2240, 2242, 2244,
2245, 2247, 2249, 2250, 2252, 2253, 2255,
2256, 2257, 2258, 2259, 2261, 2262

complementary error function value 2252
computing a rounded integer value and raising
inexact result exception 2261
computing a rounded integer value in current
rounding mode 2259
computing a truncated integer value 2262
cosine 2227
cube root 2214
denary logarithm 2226
division 2210
error function value 2250
exponential 2222
four-quadrant arctangent 2239
hyperbolic cosine 2240
hyperbolic sine 2242
hyperbolic tangent 2244
inverse cosine 2234
inverse cube root 2215
inverse error function value 2253
inverse hyperbolic cosine 2245
inverse hyperbolic sine 2247
inverse hyperbolic tangent 2249
inverse sine 2235
inverse square root 2213
inverse tangent 2237
inversion 2208
natural logarithm 2224
power 2216
power (constant) 2218
rounding to nearest integer value 2258
rounding towards minus infinity 2255

3053

Index

vector mathematical functions (continued)
rounding towards plus infinity 2256
rounding towards zero 2257
sine 2229
sine and cosine 2231
square root 2211
square root of sum of squares 2221
tangent 2232

Vector Mathematical Functions 2201
vector multilication

LAPACK 1550
ScaLAPACK 2082

vector pack function 2264
vector statistics functions

Bernoulli 2369
Beta 2362
Binomial 2373
Cauchy 2346
CopyStream 2308
CopyStreamState 2309
DeleteStream 2307
dNewAbstractStream 2301
Exponential 2337
Gamma 2358
Gaussian 2329
GaussianMV 2332
Geometric 2371
GetBrngProperties 2389
GetNumRegBrngs 2322
GetStreamStateBrng 2321
Gumbel 2356
Hypergeometric 2376
iNewAbstractStream 2299
Laplace 2340
LeapfrogStream 2313
LoadStreamF 2312
Lognormal 2352
NegBinomial 2383
NewStream 2296
NewStreamEx 2297
Poisson 2378
PoissonV 2381
Rayleigh 2349
RegisterBrng 2388
SaveStreamF 2310
SkipAheadStream 2317
sNewAbstractStream 2304
Uniform (continuous) 2326
Uniform (discrete) 2365

vector statistics functions (continued)
UniformBits 2367
Weibull 2343

vector unpack function 2266
vector-scalar product 69, 179

sparse vectors 179
vectors

adding magnitudes of vector elements 50
copying 53
dot product

complex vectors 59
complex vectors, conjugated 57
real vectors 54

element with the largest absolute value 72
element with the largest absolute value of real part
and its index 1904
element with the smallest absolute value 73
Euclidean norm 60
Givens rotation 63
linear combination of vectors 51
modified Givens transformation parameters 67
rotation of points 61
rotation of points in the modified plane 64
sparse vectors 177
sum of vectors 51
swapping 71
vector-scalar product 69

vml
Functions Interface 2203
Input Parameters 2204
Output Parameters 2205

VML 2201
VML functions

mathematical functions
Acos 2234
Acosh 2245
Asin 2235
Asinh 2247
Atan 2237
Atan2 2239
Atanh 2249
Cbrt 2214
Ceil 2256
Cos 2227
Cosh 2240
Div 2210
Erf 2250
Erfc 2252
ErfInv 2253

3054

Intel® Math Kernel Library Reference Manual

VML functions (continued)
mathematical functions (continued)

Exp 2222
Floor 2255
Hypot 2221
Inv 2208
InvCbrt 2215
InvSqrt 2213
Ln 2224
Log10 2226
Modf 2262
NearbyInt 2259
Pow 2216
Powx 2218
Rint 2261
Round 2258
Sin 2229
SinCos 2231
Sinh 2242
Sqrt 2211
Tan 2232
Tanh 2244
Trunc 2257

pack/unpack functions
Pack 2264
Unpack 2266

service functions
ClearErrorCallBack 2280
ClearErrStatus 2275
GetErrorCallBack 2279
GetErrStatus 2275
GetMode 2272
SetErrorCallBack 2276
SetErrStatus 2273
SetMode 2269

VML Mathematical Functions 2203
VML Pack Functions 2203
VML Pack/Unpack Functions 2263
VML Service Functions 2269
VSL Fortran header 2281
VSL routines

advanced service subroutines
GetBrngProperties 2389
RegisterBrng 2388

convolution/correlation
CopyTask 2435
DeleteTask 2433
Exec 2423
Exec1D 2425

VSL routines (continued)
convolution/correlation (continued)

ExecX 2428
ExecX1D 2431
NewTask 2403
NewTask1D 2406
NewTaskX 2408
NewTaskX1D 2411
SetInternalPrecision 2417

generator subroutines
Bernoulli 2369
Beta 2362
Binomial 2373
Cauchy 2346
Exponential 2337
Gamma 2358
Gaussian 2329
GaussianMV 2332
Geometric 2371
Gumbel 2356
Hypergeometric 2376
Laplace 2340
Lognormal 2352
NegBinomial 2383
Poisson 2378
PoissonV 2381
Rayleigh 2349
Uniform (continuous) 2326
Uniform (discrete) 2365
UniformBits 2367
Weibull 2343

service subroutines
CopyStream 2308
CopyStreamState 2309
DeleteStream 2307
dNewAbstractStream 2301
GetNumRegBrngs 2322
GetStreamStateBrng 2321
iNewAbstractStream 2299
LeapfrogStream 2313
LoadStreamF 2312
NewStream 2296
NewStreamEx 2297
SaveStreamF 2310
SkipAheadStream 2317
sNewAbstractStream 2304

VSL routines:convolution/correlation
SetInternalDecimation 2420
SetMode 2415

3055

Index

VSL routines:convolution/correlation (continued)
SetStart 2418

W
Weibull 2343
Wilkinson transform 2040

X
xerbla 2710
xerbla, error reporting routine 45, 1588, 2206

Z
zlag2c 1571

3056

Intel® Math Kernel Library Reference Manual

	Intel® Math Kernel Library Reference Manual
	Version Information
	Legal Information
	Contents
	1. Overview
	About This Software
	Technical Support
	BLAS Routines
	Sparse BLAS Routines
	LAPACK Routines
	ScaLAPACK Routines
	Sparse Solver Routines
	VML Functions
	Statistical Functions
	Fourier Transform Functions
	Interval Solver Routines
	Partial Differential Equations Support
	Optimization Solvers Routines
	Support Functions
	BLACS Routines
	GMP Arithmetic Functions
	Performance Enhancements
	Parallelism
	Platforms Supported

	About This Manual
	Audience for This Manual
	Manual Organization
	Notational Conventions

	2. BLAS and Sparse BLAS Routines
	Routine Naming Conventions
	Fortran-95 Interface Conventions
	Matrix Storage Schemes
	BLAS Level 1 Routines and Functions
	?asum
	?axpy
	?copy
	?dot
	?sdot
	?dotc
	?dotu
	?nrm2
	?rot
	?rotg
	?rotm
	?rotmg
	?scal
	?swap
	i?amax
	i?amin
	dcabs1

	BLAS Level 2 Routines
	?gbmv
	?gemv
	?ger
	?gerc
	?geru
	?hbmv
	?hemv
	?her
	?her2
	?hpmv
	?hpr
	?hpr2
	?sbmv
	?spmv
	?spr
	?spr2
	?symv
	?syr
	?syr2
	?tbmv
	?tbsv
	?tpmv
	?tpsv
	?trmv
	?trsv

	BLAS Level 3 Routines
	?gemm
	?hemm
	?herk
	?her2k
	?symm
	?syrk
	?syr2k
	?trmm
	?trsm

	Sparse BLAS Level 1 Routines and Functions
	Vector Arguments
	Naming Conventions
	Routines and Data Types
	BLAS Level 1 Routines That Can Work With Sparse Vectors
	?axpyi
	?doti
	?dotci
	?dotui
	?gthr
	?gthrz
	?roti
	?sctr

	Sparse BLAS Level 2 and Level 3
	Naming Conventions in Sparse BLAS Level 2 and Level 3
	Sparse Matrix Data Structures
	Routines and Supported Operations
	Interface Consideration
	Sparse BLAS Level 2 and Level 3 Routines.
	mkl_dcsrmv
	mkl_dcsrgemv
	mkl_dcsrsymv
	mkl_cspblas_dcsrsymv
	mkl_dcscmv
	mkl_dcoomv
	mkl_dcoogemv
	mkl_dcoosymv
	mkl_ddiamv
	mkl_ddiagemv
	mkl_ddiasymv
	mkl_dskymv
	mkl_dbsrmv
	mkl_dbsrsymv
	mkl_cspblas_dbsrsymv
	mkl_dcsrsv
	mkl_dcsrtrsv
	mkl_dcscsv
	mkl_dcoosv
	mkl_dcootrsv
	mkl_ddiasv
	mkl_ddiatrsv
	mkl_dskysv
	mkl_dcsrmm
	mkl_dcscmm
	mkl_dcoomm
	mkl_ddiamm
	mkl_dskymm
	mkl_dcsrsm
	mkl_dcscsm
	mkl_dcoosm
	mkl_ddiasm
	mkl_dskysm

	3. LAPACK Routines: Linear Equations
	Routine Naming Conventions
	Fortran-95 Interface Conventions
	MKL Fortran-95 Interfaces for LAPACK Routines vs. Netlib Implementation

	Matrix Storage Schemes
	Mathematical Notation
	Error Analysis
	Computational Routines
	Routines for Matrix Factorization
	?getrf
	?gbtrf
	?gttrf
	?potrf
	?pptrf
	?pbtrf
	?pttrf
	?sytrf
	?hetrf
	?sptrf
	?hptrf

	Routines for Solving Systems of Linear Equations
	?getrs
	?gbtrs
	?gttrs
	?potrs
	?pptrs
	?pbtrs
	?pttrs
	?sytrs
	?hetrs
	?sptrs
	?hptrs
	?trtrs
	?tptrs
	?tbtrs

	Routines for Estimating the Condition Number
	?gecon
	?gbcon
	?gtcon
	?pocon
	?ppcon
	?pbcon
	?ptcon
	?sycon
	?hecon
	?spcon
	?hpcon
	?trcon
	?tpcon
	?tbcon

	Refining the Solution and Estimating Its Error
	?gerfs
	?gbrfs
	?gtrfs
	?porfs
	?pprfs
	?pbrfs
	?ptrfs
	?syrfs
	?herfs
	?sprfs
	?hprfs
	?trrfs
	?tprfs
	?tbrfs

	Routines for Matrix Inversion
	?getri
	?potri
	?pptri
	?sytri
	?hetri
	?sptri
	?hptri
	?trtri
	?tptri

	Routines for Matrix Equilibration
	?geequ
	?gbequ
	?poequ
	?ppequ
	?pbequ

	Driver Routines
	?gesv
	?gesvx
	?gbsv
	?gbsvx
	?gtsv
	?gtsvx
	?posv
	?posvx
	?ppsv
	?ppsvx
	?pbsv
	?pbsvx
	?ptsv
	?ptsvx
	?sysv
	?sysvx
	?hesv
	?hesvx
	?spsv
	?spsvx
	?hpsv
	?hpsvx

	4. LAPACK Routines: Least Squares and Eigenvalue Problems
	Routine Naming Conventions
	Matrix Storage Schemes
	Mathematical Notation
	Computational Routines
	Orthogonal Factorizations
	?geqrf
	?geqpf
	?geqp3
	?orgqr
	?ormqr
	?ungqr
	?unmqr
	?gelqf
	?orglq
	?ormlq
	?unglq
	?unmlq
	?geqlf
	?orgql
	?ungql
	?ormql
	?unmql
	?gerqf
	?orgrq
	?ungrq
	?ormrq
	?unmrq
	?tzrzf
	?ormrz
	?unmrz
	?ggqrf
	?ggrqf

	Singular Value Decomposition
	?gebrd
	?gbbrd
	?orgbr
	?ormbr
	?ungbr
	?unmbr
	?bdsqr
	?bdsdc

	Symmetric Eigenvalue Problems
	?sytrd
	?syrdb
	?herdb
	?orgtr
	?ormtr
	?hetrd
	?ungtr
	?unmtr
	?sptrd
	?opgtr
	?opmtr
	?hptrd
	?upgtr
	?upmtr
	?sbtrd
	?hbtrd
	?sterf
	?steqr
	?stemr
	?stedc
	?stegr
	?pteqr
	?stebz
	?stein
	?disna

	Generalized Symmetric-Definite Eigenvalue Problems
	?sygst
	?hegst
	?spgst
	?hpgst
	?sbgst
	?hbgst
	?pbstf

	Nonsymmetric Eigenvalue Problems
	?gehrd
	?orghr
	?ormhr
	?unghr
	?unmhr
	?gebal
	?gebak
	?hseqr
	?hsein
	?trevc
	?trsna
	?trexc
	?trsen
	?trsyl

	Generalized Nonsymmetric Eigenvalue Problems
	?gghrd
	?ggbal
	?ggbak
	?hgeqz
	?tgevc
	?tgexc
	?tgsen
	?tgsyl
	?tgsna

	Generalized Singular Value Decomposition
	?ggsvp
	?tgsja

	Driver Routines
	Linear Least Squares (LLS) Problems
	?gels
	?gelsy
	?gelss
	?gelsd

	Generalized LLS Problems
	?gglse
	?ggglm

	Symmetric Eigenproblems
	?syev
	?heev
	?syevd
	?heevd
	?syevx
	?heevx
	?syevr
	?heevr
	?spev
	?hpev
	?spevd
	?hpevd
	?spevx
	?hpevx
	?sbev
	?hbev
	?sbevd
	?hbevd
	?sbevx
	?hbevx
	?stev
	?stevd
	?stevx
	?stevr

	Nonsymmetric Eigenproblems
	?gees
	?geesx
	?geev
	?geevx

	Singular Value Decomposition
	?gesvd
	?gesdd
	?ggsvd

	Generalized Symmetric Definite Eigenproblems
	?sygv
	?hegv
	?sygvd
	?hegvd
	?sygvx
	?hegvx
	?spgv
	?hpgv
	?spgvd
	?hpgvd
	?spgvx
	?hpgvx
	?sbgv
	?hbgv
	?sbgvd
	?hbgvd
	?sbgvx
	?hbgvx

	Generalized Nonsymmetric Eigenproblems
	?gges
	?ggesx
	?ggev
	?ggevx

	5. LAPACK Auxiliary and Utility Routines
	Auxiliary Routines
	?lacgv
	?lacrm
	?lacrt
	?laesy
	?rot
	?spmv
	?spr
	?symv
	?syr
	i?max1
	?sum1
	?gbtf2
	?gebd2
	?gehd2
	?gelq2
	?geql2
	?geqr2
	?gerq2
	?gesc2
	?getc2
	?getf2
	?gtts2
	?isnan
	?laisnan
	?labrd
	?lacn2
	?lacon
	?lacpy
	?ladiv
	?lae2
	?laebz
	?laed0
	?laed1
	?laed2
	?laed3
	?laed4
	?laed5
	?laed6
	?laed7
	?laed8
	?laed9
	?laeda
	?laein
	?laev2
	?laexc
	?lag2
	?lags2
	?lagtf
	?lagtm
	?lagts
	?lagv2
	?lahqr
	?lahrd
	?lahr2
	?laic1
	?laln2
	?lals0
	?lalsa
	?lalsd
	?lamrg
	?laneg
	?langb
	?lange
	?langt
	?lanhs
	?lansb
	?lanhb
	?lansp
	?lanhp
	?lanst/?lanht
	?lansy
	?lanhe
	?lantb
	?lantp
	?lantr
	?lanv2
	?lapll
	?lapmt
	?lapy2
	?lapy3
	?laqgb
	?laqge
	?laqhb
	?laqp2
	?laqps
	?laqr0
	?laqr1
	?laqr2
	?laqr3
	?laqr4
	?laqr5
	?laqsb
	?laqsp
	?laqsy
	?laqtr
	?lar1v
	?lar2v
	?larf
	?larfb
	?larfg
	?larft
	?larfx
	?largv
	?larnv
	?larra
	?larrb
	?larrc
	?larrd
	?larre
	?larrf
	?larrj
	?larrk
	?larrr
	?larrv
	?lartg
	?lartv
	?laruv
	?larz
	?larzb
	?larzt
	?las2
	?lascl
	?lasd0
	?lasd1
	?lasd2
	?lasd3
	?lasd4
	?lasd5
	?lasd6
	?lasd7
	?lasd8
	?lasd9
	?lasda
	?lasdq
	?lasdt
	?laset
	?lasq1
	?lasq2
	?lasq3
	?lasq4
	?lasq5
	?lasq6
	?lasr
	?lasrt
	?lassq
	?lasv2
	?laswp
	?lasy2
	?lasyf
	?lahef
	?latbs
	?latdf
	?latps
	?latrd
	?latrs
	?latrz
	?lauu2
	?lauum
	?lazq3
	?lazq4
	?org2l/?ung2l
	?org2r/?ung2r
	?orgl2/?ungl2
	?orgr2/?ungr2
	?orm2l/?unm2l
	?orm2r/?unm2r
	?orml2/?unml2
	?ormr2/?unmr2
	?ormr3/?unmr3
	?pbtf2
	?potf2
	?ptts2
	?rscl
	?sygs2/?hegs2
	?sytd2/?hetd2
	?sytf2
	?hetf2
	?tgex2
	?tgsy2
	?trti2
	clag2z
	dlag2s
	slag2d
	zlag2c

	Utility Functions and Routines
	ilaver
	ilaenv
	iparmq
	ieeeck
	lsame
	lsamen
	?labad
	?lamch
	?lamc1
	?lamc2
	?lamc3
	?lamc4
	?lamc5
	second/dsecnd
	xerbla

	6. ScaLAPACK Routines
	Overview
	Routine Naming Conventions
	Computational Routines
	Linear Equations
	Routines for Matrix Factorization
	p?getrf
	p?gbtrf
	p?dbtrf
	p?potrf
	p?pbtrf
	p?pttrf
	p?dttrf

	Routines for Solving Systems of Linear Equations
	p?getrs
	p?gbtrs
	p?potrs
	p?pbtrs
	p?pttrs
	p?dttrs
	p?dbtrs
	p?trtrs

	Routines for Estimating the Condition Number
	p?gecon
	p?pocon
	p?trcon

	Refining the Solution and Estimating Its Error
	p?gerfs
	p?porfs
	p?trrfs

	Routines for Matrix Inversion
	p?getri
	p?potri
	p?trtri

	Routines for Matrix Equilibration
	p?geequ
	p?poequ

	Orthogonal Factorizations
	p?geqrf
	p?geqpf
	p?orgqr
	p?ungqr
	p?ormqr
	p?unmqr
	p?gelqf
	p?orglq
	p?unglq
	p?ormlq
	p?unmlq
	p?geqlf
	p?orgql
	p?ungql
	p?ormql
	p?unmql
	p?gerqf
	p?orgrq
	p?ungrq
	p?ormrq
	p?unmrq
	p?tzrzf
	p?ormrz
	p?unmrz
	p?ggqrf
	p?ggrqf

	Symmetric Eigenproblems
	p?sytrd
	p?ormtr
	p?hetrd
	p?unmtr
	p?stebz
	p?stein

	Nonsymmetric Eigenvalue Problems
	p?gehrd
	p?ormhr
	p?unmhr
	p?lahqr

	Singular Value Decomposition
	p?gebrd
	p?ormbr
	p?unmbr

	Generalized Symmetric-Definite Eigen Problems
	p?sygst
	p?hegst

	Driver Routines
	p?gesv
	p?gesvx
	p?gbsv
	p?dbsv
	p?dtsv
	p?posv
	p?posvx
	p?pbsv
	p?ptsv
	p?gels
	p?syev
	p?syevx
	p?heevx
	p?gesvd
	p?sygvx
	p?hegvx

	7. ScaLAPACK Auxiliary and Utility Routines
	Auxiliary Routines
	p?lacgv
	p?max1
	?combamax1
	p?sum1
	p?dbtrsv
	p?dttrsv
	p?gebd2
	p?gehd2
	p?gelq2
	p?geql2
	p?geqr2
	p?gerq2
	p?getf2
	p?labrd
	p?lacon
	p?laconsb
	p?lacp2
	p?lacp3
	p?lacpy
	p?laevswp
	p?lahrd
	p?laiect
	p?lange
	p?lanhs
	p?lansy, p?lanhe
	p?lantr
	p?lapiv
	p?laqge
	p?laqsy
	p?lared1d
	p?lared2d
	p?larf
	p?larfb
	p?larfc
	p?larfg
	p?larft
	p?larz
	p?larzb
	p?larzc
	p?larzt
	p?lascl
	p?laset
	p?lasmsub
	p?lassq
	p?laswp
	p?latra
	p?latrd
	p?latrs
	p?latrz
	p?lauu2
	p?lauum
	p?lawil
	p?org2l/p?ung2l
	p?org2r/p?ung2r
	p?orgl2/p?ungl2
	p?orgr2/p?ungr2
	p?orm2l/p?unm2l
	p?orm2r/p?unm2r
	p?orml2/p?unml2
	p?ormr2/p?unmr2
	p?pbtrsv
	p?pttrsv
	p?potf2
	p?rscl
	p?sygs2/p?hegs2
	p?sytd2/p?hetd2
	p?trti2
	?lamsh
	?laref
	?lasorte
	?lasrt2
	?stein2
	?dbtf2
	?dbtrf
	?dttrf
	?dttrsv
	?pttrsv
	?steqr2

	Utility Functions and Routines
	p?labad
	p?lachkieee
	p?lamch
	p?lasnbt
	pxerbla

	8. Sparse Solver Routines
	PARDISO - Parallel Direct Sparse Solver Interface
	pardiso

	Direct Sparse Solver (DSS) Interface Routines
	DSS Interface Description
	dss_create
	dss_define_structure
	dss_reorder
	dss_factor_real, dss_factor_complex
	dss_solve_real, dss_solve_complex
	dss_delete
	dss_statistics
	mkl_cvt_to_null_terminated_str
	Implementation Details

	Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS)
	CG Interface Description
	FGMRES Interface Description
	dcg_init
	dcg_check
	dcg
	dcg_get
	dcgmrhs_init
	dcgmrhs_check
	dcgmrhs
	dcgmrhs_get
	dfgmres_init
	dfgmres_check
	dfgmres
	dfgmres_get
	Implementation Details

	Preconditioners or Accelerators based on Incomplete LU Factorization Technique
	ILU0 Preconditioner Interface Description
	dcsrilu0

	Calling Sparse Solver Routines From C/C++

	9. Vector Mathematical Functions
	Data Types and Accuracy Modes
	Function Naming Conventions
	Functions Interface
	VML Mathematical Functions
	Pack Functions
	Unpack Functions
	Service Functions
	Input Parameters
	Output Parameters

	Vector Indexing Methods
	Error Diagnostics
	VML Mathematical Functions
	Inv
	Div
	Sqrt
	InvSqrt
	Cbrt
	InvCbrt
	Pow
	Powx
	Hypot
	Exp
	Ln
	Log10
	Cos
	Sin
	SinCos
	Tan
	Acos
	Asin
	Atan
	Atan2
	Cosh
	Sinh
	Tanh
	Acosh
	Asinh
	Atanh
	Erf
	Erfc
	ErfInv
	Floor
	Ceil
	Trunc
	Round
	NearbyInt
	Rint
	Modf

	VML Pack/Unpack Functions
	Pack
	Unpack

	VML Service Functions
	SetMode
	GetMode
	SetErrStatus
	GetErrStatus
	ClearErrStatus
	SetErrorCallBack
	GetErrorCallBack
	ClearErrorCallBack

	10. Statistical Functions
	Random Number Generators
	Conventions
	Mathematical Notation
	Naming Conventions

	Basic Generators
	BRNG Parameter Definition
	Random Streams
	Data Types

	Error Reporting
	Service Routines
	NewStream
	NewStreamEx
	iNewAbstractStream
	dNewAbstractStream
	sNewAbstractStream
	DeleteStream
	CopyStream
	CopyStreamState
	SaveStreamF
	LoadStreamF
	LeapfrogStream
	SkipAheadStream
	GetStreamStateBrng
	GetNumRegBrngs

	Distribution Generators
	Continuous Distributions
	Uniform
	Gaussian
	GaussianMV
	Exponential
	Laplace
	Weibull
	Cauchy
	Rayleigh
	Lognormal
	Gumbel
	Gamma
	Beta

	Discrete Distributions
	Uniform
	UniformBits
	Bernoulli
	Geometric
	Binomial
	Hypergeometric
	Poisson
	PoissonV
	NegBinomial

	Advanced Service Routines
	Data types
	RegisterBrng
	GetBrngProperties
	Formats for User-Designed Generators

	Convolution and Correlation
	Overview
	Naming Conventions
	Data Types
	Parameters
	Task Status and Error Reporting
	Task Constructors
	NewTask
	NewTask1D
	NewTaskX
	NewTaskX1D

	Task Editors
	SetMode
	SetInternalPrecision
	SetStart
	SetDecimation

	Task Execution Routines
	Exec
	Exec1D
	ExecX
	ExecX1D

	Task Destructors
	DeleteTask

	Task Copy
	CopyTask

	Usage Examples
	Mathematical Notation and Definitions
	Data Allocation

	11. Fourier Transform Functions
	DFT Functions
	Computing DFT
	DFT Interface
	Status Checking Functions
	ErrorClass
	ErrorMessage

	Descriptor Manipulation Functions
	CreateDescriptor
	CommitDescriptor
	CopyDescriptor
	FreeDescriptor

	DFT Computation Functions
	ComputeForward
	ComputeBackward

	Descriptor Configuration Functions
	SetValue
	GetValue

	Configuration Settings
	Precision of transform
	Forward domain of transform
	Transform dimension and lengths
	Number of transforms
	Scale
	Placement of result
	Packed formats
	Storage schemes
	Number of user threads
	Input and output distances
	Strides
	Ordering
	Transposition

	Cluster DFT Functions
	Computing Cluster DFT
	Distributing Data among Processes
	Cluster DFT Interface
	Descriptor Manipulation Functions
	CreateDescriptorDM
	CommitDescriptorDM
	FreeDescriptorDM

	DFT Computation Functions
	ComputeForwardDM
	ComputeBackwardDM

	Descriptor Configuration Functions
	SetValueDM
	GetValueDM

	Error Codes

	12. Interval Linear Solvers
	Routine Naming Conventions
	Routines for Fast Solution of Interval Systems
	?trtrs
	?gegas
	?gehss
	?gekws
	?gegss
	?gehbs

	Routines for Sharp Solution of Interval Systems
	?gepps
	?gepss

	Routines for Inverting Interval Matrices
	?trtri
	?geszi

	Routines for Checking Properties of Interval Matrices
	?gerbr
	?gesvr

	Auxiliary and Utility Routines
	?gemip

	13. Partial Differential Equations Support
	Trigonometric Transform Routines
	Transforms Implemented
	Sequence of Invoking TT Routines
	Interface Description
	TT Routines
	?_init_trig_transform
	?_commit_trig_transform
	?_forward_trig_transform
	?_backward_trig_transform
	free_trig_transform

	Common Parameters
	Implementation Details

	Poisson Library Routines
	Poisson Library Implemented
	Sequence of Invoking PL Routines
	Interface Description
	PL Routines for the Cartesian Solver
	?_init_Helmholtz_2D/?_init_Helmholtz_3D
	?_commit_Helmholtz_2D/?_commit_Helmholtz_3D
	?_Helmholtz_2D/?_Helmholtz_3D
	free_Helmholtz_2D/free_Helmholtz_3D

	PL Routines for the Spherical Solver
	?_init_sph_p/?_init_sph_np
	?_commit_sph_p/?_commit_sph_np
	?_sph_p/?_sph_np
	free_sph_p/free_sph_np

	Common Parameters
	Implementation Details

	Calling PDE Support Routines from Fortran-90

	14. Optimization Solvers Routines
	Organization and Implementation
	Nonlinear Least-Squares Problem without Constraints
	dtrnlsp_init
	dtrnlsp_solve
	dtrnlsp_get
	dtrnlsp_delete
	Examples of dtrnlsp Usage

	Nonlinear Least-Squares Problem with Linear (Bound) Constraints
	dtrnlspbc_init
	dtrnlspbc_solve
	dtrnlspbc_get
	dtrnlspbc_delete
	Examples of dtrnlspbc Usage

	Jacobi Matrix Calculation Routines
	djacobi_init
	djacobi_solve
	djacobi_delete
	djacobi
	Examples of djacobi_solve Usage
	Examples of djacobi Usage

	15. Support Functions
	Version Information Functions
	MKLGetVersion
	MKLGetVersionString

	Error Handling Functions
	xerbla
	pxerbla

	Equality Test Functions
	lsame
	lsamen

	Timing Functions
	second/dsecnd
	getcpuclocks
	getcpufrequency
	setcpufrequency

	Memory Functions
	MKL_FreeBuffers

	16. BLACS Routines
	Initialization Routines
	blacs_pinfo
	blacs_setup
	blacs_get
	blacs_set
	blacs_gridinit
	blacs_gridmap

	Destruction Routines
	blacs_freebuff
	blacs_gridexit
	blacs_abort
	blacs_exit

	Informational Routines
	blacs_gridinfo
	blacs_pnum
	blacs_pcoord

	Miscellaneous Routines
	blacs_barrier

	Examples of BLACS Routines Usage

	A. Linear Solvers Basics
	Sparse Linear Systems
	Matrix Fundamentals
	Direct Method
	Sparse Matrix Storage Formats

	Interval Linear Systems
	Intervals
	Interval vectors and matrices
	Preconditioning
	Inverting interval matrices

	B. Routine and Function Arguments
	Vector Arguments in BLAS
	Vector Arguments in VML
	Matrix Arguments

	C. Code Examples
	BLAS Code Examples
	PARDISO Code Examples
	Examples for Sparse Symmetric Linear Systems
	Examples for Sparse Unsymmetric Linear Systems

	Direct Sparse Solver Code Examples
	Iterative Sparse Solver Code Examples
	Fourier Transform Functions Code Examples
	DFT Code Examples
	Examples of Using Multi-Threading for DFT Computation

	Examples for Cluster DFT Functions

	Interval Linear Solvers Code Examples
	PDE Support Code Examples
	Trigonometric Transforms Interface Code Examples
	Poisson Library Code Examples

	D. CBLAS Interface to the BLAS
	CBLAS Arguments
	Level 1 CBLAS
	Level 2 CBLAS
	Level 3 CBLAS
	Sparse CBLAS

	E. Specific Features of Fortran-95 Interfaces for LAPACK Routines
	Interfaces Identical to Netlib
	Interfaces with Replaced Argument Names
	Modified Netlib Interfaces
	Interfaces Absent From Netlib
	Interfaces of New Functionality

	F. Optimization Solvers Basics
	Nonlinear Least Square Problem
	Trust Region Algorithm

	Bibliography
	Glossary
	Index

